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CHEM. ENG. IT : PROBABILITY AND STATISTICS

Chapter 4. Special Continuous Probability Distributions

4.1 The Exponential Distribution X ~ Exzponential (\)

Range : X = Rt
Parameter : A € Rt
Density function :

fx(@) =X zeR"

Interpretation : A continuous waiting-time model (that is, a useful model for data that arise at the end of a
measurement experiment).

The cdf for the exponential distribution can be calculated easily;
z z
Fx(z) = / fx(@®) dt= / deMdt=1—e? £>0.
—o0 0
and note that

P[X>2z]=1-P[X<z]=1-Fx(z)=e

which may give some motivation for using the Exponential model in practice.

Note: Suppose that a mechanical component fails in such a way that the number of failures in a given month has
a Poisson distribution with parameter A, that is, the failure events occur repeatedly through time at random, but
failures are relatively rare. Suppose that a component is installed at time 2 = 0. Then the random variable X
corresponding to the time wuntil the first failure has an exponential distribution, X ~ Exponential()).

In fact, it can be shown that all the inter-failure event times have an exponential distribution, and that the
inter-event times are probabilistically independent.

EXPECTATION E;f[X] = / e ® dxz%
0
VARIANCE Vars, [ X ] :EfX[X2]—{EfX[X]}2:/
0

where the integration by parts is straightforward in both cases.

4.2 The Gamma Distribution X ~ Gamma(a, §)

Range : X = Rt
Parameters : a, 8 € Rt
Density function :

Ba
fx(x) = &—z%te P gecRF
where
(o0}
I'(a) = / t*le7tdt a>0.
0

is known as the Gamma Function. This integral cannot by calculated analytically, but can be computed using
numerical integration for any a > 0.

Interpretation : Another continuous waiting-time model. It can be shown the sum of i.i.d. Exponential ran-
dom variables has a Gamma, distribution, that is, if X7, X, ..., X, are independent and identically distributed
Exponential(\) random variables, then

X = Z X; ~ Gamma(n, )

=1
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Notes :
HIa>1T(a)=(a-1I'(a-1).
2)fa=12,..,T'(a) =(a-1)L
(3) D(1/2) = v/7.

(4) If & = 1,2,..., then the Gamma(a/2,1/2) distribution is known as the Chi-squared distribution with «
degrees of freedom, denoted x2.

EXAMPLE: Suppose that a mechanical component fails in such a way that the number of failures in a given
month has a Poisson distribution with parameter A\. Suppose that a component is installed at time z = 0.
The random variable X corresponding to the time until the nth (n = 1,2,...) failure has a gamma distribution,
X ~ Gamma(n, A).

The expectation/variance calculations for the Gamma distribution are reasonably straightforward. First consider
the expectation of X" for r = 1,2, ..., that is,

Ef [ X7 ] :/ 7" fx (z) dx:/ xrﬂ—xa_le_ﬁ‘” dz = 5 / grtale=he dy
0 0

o L(a) I'(a)
_ B* T(a+r)
- T(a) potr

as the integrand in the last integral is proportional to a Gamma pdf with parameters r + a and 5. Hence

ala+1)...(a+r-1)

Eq[X"]=
[ X7 ar
and hence
EXPECTATION E;[X] = %
ala+1l) o «
VARIANCE Varg, [ X | :EfX[XQ]—{EfX[X]f:T—E:E
4.3 The Beta Distribution X ~ Beta(aq, 3)
Range : X =(0,1)
Parameters : a, 3 € RT
Density function :
Pl@+8) a4 -1
)= "2 (1-z z € (0,1).

Interpretation : A model for experiments whose outcomes lie in a bounded interval.

EXAMPLE: The percentage content of a particular element in a material is to be measured. The random variable
corresponding to the observed content can be modelled using a beta distribution.

The expectation/variance calculations for the Beta distribution are reasonably straightforward, and it can be

shown that
«a

EXPECTATION Ep[X] =
(8

of

VARIANCE Vol X1 = G a0
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4.4 The Normal Distribution X ~ N(u,o?)

Range: X =R
Parameters : u € R,o € Rt
Density function :

fx(z) = (27302)1/2exp{—2}7(x—,u)2} zeR.

Interpretation : A probability model that reflects observed (empirical) behaviour of data samples; this distribu-
tion is often observed in practice.

The pdf is symmetric about p, and hence p is controls the location of the distribution and o2 controls the spread
or scale of the distribution.

Notes :
(1) The Normal density function is justified by the Central Limit Theorem (see below).

(2) Special case: u = 0,02 = 1 - the standard or unit normal distribution. In this case, the density function is
denoted ¢(z), and the cdf is denoted ®(x) so that

@(x):/;at) dt:/:; (%)1/2exp{—%t2} dt.

This integral can only be calculated numerically (see table).

(3)If X ~N(0,1),and Y = 06X + u, then Y ~ N(u,0?).

(4) If X ~ N(0,1), and Y = X2, then Y ~ Gamma(1/2,1/2) = x2.

(5) If X ~ N(0,1) and Y ~ x2 are independent random variables, then random variable T, defined by

X
Y/a

has a Student-t distribution with a degrees of freedom.

The Student-t distribution plays an important role in certain statistical testing procedures.

4.5 The Central Limit Theorem

The following theorem provides a useful way of approximating probabilities, but also provides a justification for
using the Normal distribution in probability and statistics.

THEOREM

Suppose X1,..., X, arei.i.d. random variables with
Efx [Xl] = i Varfx [Xl] =0°

Let the random variable Z,, be defined by

n
ZXi —nu
i=1

Ly = =

no

Then, as n — 0, Z,, — Z ~ N(0,1) irrespective of the distribution of X3, ..., X},, so probability calculations
involving Z,, can be approximated using the unit normal c.d.f, ®, that is,

P[Z, < z] = &(2).
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The central limit theorem is important in probability theory because it justifies the use of an otherwise obscure pdf,
and allows us to make approximate probability statements about other probability distributions. For example,
can approximate the Binomial, Poisson and Gamma distributions by the normal, that is

BINOMIAL Binomial(n,0) = N(n#,nf(1—9)) n, 8 large

POISSON Poisson(A) ~ N A) A large

GAMMA Gamma(a,B) =~ N(a/B,a/8%) o large

These results allows us to approximate some otherwise awkward probabilities.

EXAMPLE : Suppose that X ~ Binomial(n,8). To calculate P[X < z] for large n, first define random variables
X1, ..., X, to be i.id. Bernoulli(f). Then, by construction,

ZXZ—HQ
z —nb z@( z —nb )

PX<z] =P l;Xz < x] =P i;ne(l ) < V/n8(1 - 6) nf(1-90)

EXAMPLE : Suppose that X ~ Poisson(A). To calculate P[X < z] for large n, first define random variables
X1,...,Xp to be 1.i.d. Poisson(A/n). Then, by construction,

and E¢, [X;] = A/n=u, Vary, [X;] = A/n = o% Hence, for large n,

" iXi—n)\/n
PX<az] = PlZXigx] =P|E

<A | <2 (5F):

EXAMPLE : Suppose that X ~ Gamma(n, ) (for n =1,2,...). To calculate P[X < z] for large n, first define
random variables X3, ..., X}, to be 1.i.d. Exzponential()\). Then, by construction,

and E¢, [X;] = 1/A=pu, Vary, [X;] = 1/A? = o>, Hence, for large n,

P[X < 1] :PlZXigx] = p|= z—n/A z@(gc_"/)‘)

VA2 < VA2 /A2



