CHEM. ENG. IT : PROBABILITY AND STATISTICS

Chapter 2. Random Variables and Probability Distributions

2.1 Motivation: Generalization of Notation

The probability definitions, rules, and theorems given previously are all framed in terms of events in a sample
space. For example, for an experiment with possible sample outcomes denoted by the sample space S, an event
FE was defined as any collection of sample outcomes, that is, any subset of the set S.

EXPERIMENT — SAMPLE OUTCOMES — EVENTS — PROBABILITY FUNCTION

{81,82,...}25 — EQS — P(E)

In this framework, it is necessary to consider each experiment with its associated sample space separately - the
nature of sample space S is typically different for different experiments.

EXAMPLE 1: Count the number of days in February which have zero precipitation.

SAMPLE SPACE: S = {0,1,2,...,28}.

Let E; = “ days have zero precipitation”. Then
28
EiﬁEj:(Z) and UEZ:S
i=0

so Ey, ..., Eag form a partition of . We must assign P(E;) = p; for i =0, 1, ...,28 such that, by the axioms,
28
0<p <1l and ) pi=1
=0

EXAMPLE 2: Count the number of goals in a football match.
SAMPLE SPACE: §={0,1,2,3,...}.

Let E; = “ goals in the match”. Then, as above

EiﬁEj:(Z) and UEZ:S
=0

so Ey, Ey, Es, ... form a partition of 2. We assign P(E;) = p; for i = 0,1, 2,3, ... such that, by the axioms,

o0
0<p;<l and ) pi=1
=0

In both of these examples, we need a formula to specify each p;.
EXAMPLE 3: Measure the operating temperature of an experimental process.
SAMPLE SPACE: S={z : 2> Tpn }

Here it is difficult to express
P[ “Measurement is z ” ]

but possible to think about
P[ “Measurement is <z ” | = F(z), say,

and again we seek a formula for F(z).



A general notation useful for all such examples can be obtained by considering a sample space that is equivalent
to S for a general experiment, but whose form is more familiar. For example, for a general sample space S, if it
were possible to associate a subset of the integer or real number systems, X say, with S, then attention could
be restricted to considering events in X, whose structure is more convenient, as then

events in S are collections of sample outcomes of the experiment

events in X are intervals of the real numbers

EXAMPLE : Consider an experiment involving counting the number of breakdowns of a production line in a
given month. The experimental sample space S is therefore the collection of sample outcomes sg, s1, S2, ... where
s; is the outcome “there were 7 breakdowns”; events in S are collections of the s;s. Then a useful equivalent
sample space is the set X = {0, 1,2, ...}, and events in X are collections of non-negative integers.

Formally, therefore, we seek a function or map from S to X. This map is known as a random variable.

2.2 Random Variables

DEFINITION
A random variable X is a function from experimental sample space S to some set of real numbers X that maps
s € S to a unique z € X

X: S—XCR
S—— X

Interpretation A random variable is a shorthand way of describing the outcome of an experiment in terms of
real numbers.

EXAMPLE 1 X =“the number of days in Feb. with zero precipitation”
EXAMPLE 2 X =“he number of goals in a football match”
EXAMPLE 3 X =“he measured operating temperature”

Our objective is to find (or assume) a formula for

EXAMPLE1 P[X=z]forz=0,1,2,...28
EXAMPLE 2 P[X=z]forz=0,1,2,3,..

EXAMPLE 3 P[X <z ]for & > Thin.

Therefore X is merely the count/number/measured value corresponding to the outcome of the experiment.

Depending on the type of experiment being carried out, there are two possible forms for the set of values that X
can take:

A random variable is DISCRETE if the set X is of the form
X={z1,%2,..,zn} or X={z1,29,...},

that is, a finite or infinite set of distinct values z1,zs, ..., Zn, .... Discrete random variables are used to describe
the outcomes of experiments that involve counting or classification.

A random variable is CONTINUOQUS if the set X is of the form

X:U{x:aigxgbi}

for real numbers a;, b;, that is, the union of intervals in R. Continuous random variables are used to describe
the outcomes of experiments that involve measurement.



2.3 Probability distributions

A probability distribution is a function that assigns probabilities to the possible values of a random variable.
When specifying a probability distribution for a random variable, two aspects need to be considered. First, the
range of the random variable (that is, the values of the random variable which have positive probability) must be
specified. Secondly, the method via which the probabilities are assigned to different values in the range must be
specified; typically this is achieved by means of a function or formula.

In summary, we need to find a function or formula via which
P[X=2z] o P[X<z]

can be calculated for each z in a suitable range X.

2.4 Discrete probability distributions

For discrete random variables there are two routes via which the probability distribution can be specified.

2.4.1. The probability mass function

The probability distribution of a discrete random variable X is described by the probability mass function
fx, specified by
fx(z)=PX =2z forzeX={x1,%2,...,%n,...}

2.4.2. Properties of the mass function

The mass function fx must exhibit the following properties:
(i) fx(z:) >0 for all 4 (i) Y fx (@) =1.
i

2.4.3. The cumulative distribution function

The cumulative distribution function or cdf, Fx, is defined by

Fx(z)=PX <z] forzeR

2.4.4. Properties of the (discrete) distribution function

The cdf Fx must exhibit the following properties:
() lim_Fx(z) =0

(i) lim Fx(z)=1

T—ro0
(iii) hlim+FX (x + h) = Fx(z) [i.e. Fx is continuous from the right)
-0
(iv) a < b= Fx(a) < Fx(b) [i.e. Fx is non-decreasing]

(v) Pla < X < 8] = Fx(b) - Fx (a)

The cumulative distribution function defined in this way is a “step function”.

The functions fx and/or Fx can be used to describe the probability distribution of random variable X.
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EXAMPLE An electrical circuit comprises six fuses.

let X =“number of fuses that fail within one month”. Then
X=4{0,1,2,3,4,5,6}
To specify the probability distribution of X, can use the mass function fx or the cdf Fx. For example,

zx 0 1 2 3 4 5 6

1 2 4 4 2 2 1
fx(@) 16 16 1 15 16 16 16
1@ 3 7 11 13 15 16
Fx(z) 16 16 16 16 16 16 16

as Fx(0)=P[ X <0]=P[ X =0]=fx(0), Fx(1)=P
and so on. Note also that, for example,
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P[X<25]=P[X<2]

as the random variable X only takes values 0,1, 2,3,4,5, 6.

EXAMPLE A computer is prone to crashes.

Suppose that P[ “Computer crashes on any given day” | = 8, for some 0 < 6 < 1, independently of crashes on
any other day.

Let X =“number of days until the first crash”. Then
X={1,2,3,..}
To specify the probability distribution of X, can use the mass function fx or the cdf Fx. Now,
fx@) =P[X=z]=01-6)""9

for x = 1,2, 3, ... (if the first crash occurs on day z, then we must have a sequence of z — 1 crash-free days, followed
by a crash on day z). Also

Fx(z)=P[X<z]=P[X=1]+P[X=2]+..4+P[X=z]=1—(1-6)"

as the terms in the summation are merely a geometric progression with first term ¢ and common term 1 — 6.

2.4.5 Fundamental relationship between fx and Fyx

The fundamental relationship between fx and Fx is obtained by noting that if 3 <z < ... <z, < ..., then

so that

z; <z

and
Ix(@1) = Fx(z1)

fx(z) = Fx(z;) — Fx(z4—1) fori>2

80 Ple; < X < ] = Fx(e2) — Fx(c1) for any real numbers ¢; < cs.

Hence, in the discrete case, we can calculate Fx from fx by summation, and calculate fx from Fx by differ-
encing.
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2.5 Continuous probability distributions

For discrete random variables there are two routes via which the probability distribution can be specified.

2.5.1. The cumulative distribution function

The probability distribution of a continuous random variable X is defined by the continuous cumulative dis-
tribution function or c.d.f., Fx, specified by

Fx(z)=PX <z] forzeX

that is, an identical definition to the discrete case.

2.5.2. Properties of the (continuous) distribution function

The continuous cdf Fx must exhibit the same properties: as for the discrete cdf, except
(iii) Ilzinh Fx(z+ h) = Fx(z) [i.e. Fx is continuous]
—

2.5.3. The probability density function

The probability density function, or pdf, fx, is defined by

fx(z) = - {Fx (@)

so that, by a fundamental calculus result,

Fx(z) = / © ) dt

2.5.4. Properties of the density function

The pdf fx must exhibit the following properties:

() fx(z)y>0forzeX, (i) /Xfx(x) dr = 1.

In the continuous case, we calculate Fx from fx by integration, and fx from Fx by differentiation.

NOTES

(i) In both discrete and continuous cases, Fx (z) id defined for all z € R, and fx(z) also defined for all x but
may be zero for some values of z.

(ii) If X is continuous, we have
Pla<X<b]=Fx(b)— Fx(a) —0

as b — a. Hence, for each z, we must have
P X=2]=0

if X is continuous. Therefore must use Fx to specify the probability distribution initially, although it is often
easier to think of the “shape” of the distribution via the pdf fx.

Any function that satisfies the properties for a pdf can be used to construct a probability distribution. Note
that, for a continuous random variable

fx(z) # P[X = zl.



EXAMPLE Failure times.

12

A component is installed at time z = 0 and continues to operate until failure. Let X =“failure time of the

component. then X={ z : 2 >0} =R". Suppose that

P X =
[X >z] EE z>0
Then 1
F =P[X<z]=1-P[X =1-—
X(-’L') [ _.’IJ] [ >.’IJ] (1+.’IJ)2
for z > 0. By differentiation, we have the pdf
d 2
= — F =

EXERCISE Sketch the two functions fx and Fx, and verify that the required properties detailed in sections

24.2.,2.4.4., 2.5.2 and 2.54..

2.6. Joint Probability Distributions

Consider a vector of k random variables, X = (X1, ..., X), (representing the outcomes of k different experiments

carried out once each, or of one experiment carried out k times). The probability distribution of X is described

by a joint probability mass or density function.

e.g. Consider the particular case k = 2, X = (X1, X3). Then the following functions are used to specify the

probability distribution of X;

2.6.1. Joint probability mass/density function

The joint mass/density function is denoted fx,,x,(z1,%2)

- assigns probability to the joint space of outcomes

- in the discrete case, fx;,x,(@1,22) = P[(X1 = z1) N (X2 Nz2)]
- need

(1) fx1,x,(z1,22) > 0 for all possible outcomes 1, 2.

(11) ZZle’X2(.’IJ1,.’L'2) =1or //le,X2(.’L'1,.’IJ2) d$1d.’152 =1

where the double summation/integration is over all possible values of (z1,z2).

Typically, such a specification is represented by a probability table; for example for discrete random variables X3

and X,, we could have

1 2 3 4

1| 0.100 0.200 0.000 0.000
2 | 0.200 0.250 0.050 0.000
X
3| 0.000 0.050 0.050 0.025

4 | 0.000 0.000 0.025 0.050

where the entry in column ¢, row j is fx, x, (4,j) = P[ (X1 = i)N (X2 = j) ], which we may write P[ X; =4, X, =

Jl
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2.6.2. Marginal probability mass/density functions

The joint mass function automatically defines the probability distribution of the individual random variables. For
example, if & = 2, then we have the two marginal mass/density functions are fx, (z1) and fx, (z2)

- in the discrete case,

fxi (1) Z fx1,%, (21, 32)

and

fx, (22) Z Fx,x (21, 22)

- in the continuous case,
fx: (@) = /fxl,x2($1a$2) dz2

fX2(.’L'2) = /fX17X2(x17x2) dz;.

so the marginal mass/density function for random variable X; is obtained by summing/integrating out the joint
mass/density function for X; and X, over all possible values of random variable X5. In the discrete case

X1 = .’I,'l ZP X1 = .’IJ1 (X2 = .’L'Q)]

which is a result that is justified by the Theorem of Total Probability.

2.6.3. Conditional mass/density functions

In the discrete two variable case, consider the probability
P[Xlz.’l,'l |X2:.’L'2]

that is, the conditional probability distribution of X;, given that Xo = x5. This conditional distribution is easily
computed from the conditional probability definition, that is

Pl Xi=z,Xo0=22] fx,,x,(21,22)

P[Xi=mz | Xo=2 ] = P[X; =25 |  fxe(m2)

that is, proportional to the z5 row of the table.

By extending these concepts, we may define the conditional probability distributions for both variables in the
discrete and continuous cases; The two conditional mass/density functions are fx,|x,(21|®2) and fx,|x, (z2|z1)

Ixixe (@1|z2) = % , if fx,(z2) > 0.

fX2|X1 ($2|$1) % , if fx, (.’L'l) > 0.

In the discrete case, this result becomes

fX1|X2(-'L'1|-’1»'2) = P[X1 = $1|X2 = $2] =

if P[X3 = z3] > 0, which is justified by the definition of conditional probability.
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EXAMPLE : Suppose that X; and X5 are discrete random variables that take values {1,2,...,n} and {1, 2, ...,m}
respectively. Then the joint mass function can be displayed as a table with n rows and m columns, where

- the (4, j)th cell contains P[(X; = i) N (X3 = j)]
- the marginal mass function for X; is given by the row totals
- the marginal mass function for X5 is given by the column totals

- the conditional mass function for X; given X5 = j is given by the jth
column divided by the sum of the jth column

- the conditional mass function for Xy given X; =i is given by the ith
row divided by the sum of the ith row

fori=1,..,nand j=1,...,m.

EXAMPLE Suppose that the joint density of continuous variables X; and X is given by
X0, %, (21, ®) = wae~ 20420

for z1,22 > 0 and zero otherwise. It can be shown that

/ / fX1,X2 (1»'1,1,'2) d$1d$2 =1

and that the marginal pdf for X; is given by

o] o] ez o 2
fx, (z1) :/_ooFxl,XQ(xl,xg) dzs :/0 glem2(1H21) g, — o)

for 1 > 0, and zero otherwise.

EXERCISE Check these calculations, and compute the marginal pdf for Xj.

DEFINITION

Random variables X; and X, are independent if

(i) the joint mass/density function of X; and X, factorizes into the product of the two marginal pdfs, that is,

fX1,X2 ($1,.’IJ2) = fX1 (-’1»'1)fX2 (xQ)

(ii) the range of X; does not conflict/influence/depend on the range of X (and wvice verse).

The concept of independence for random variables is closely related to the concept of independence for events.

EXERCISE A point is to be selected from the interior of the unit circle. Let X and Y be the continuous random
variables corresponding to the z- and y-coordinates respectively. Suppose that all points within the circle are
equally likely to be selected.

(i) write down the joint pdf of X and Y.
(ii) find the marginal pdfs of X and Y.

(iii) state whether X and Y are independent.



