CHEM. ENG. IT : PROBABILITY AND STATISTICS

Chapter 1. Basic Probability Concepts

The random variation associated with “measurement” procedures in a scientific analysis requires a framework
in which the uncertainty and variability that are inherent in the procedure can be handled.

1.1 Experiments and Events

An experiment is any procedure

(a) with a well-defined set of possible outcomes - the sample space, S.
(b) whose actual outcome is not known in advance.

A sample outcome, s, is precisely one of the possible outcomes of the experiment.

The sample space, S, is the entire set of possible outcomes.

EXAMPLES:
(a) Coin tossing: S = {H,T}.

(b) Dice: §=141,2,3,4,5,6}.

(¢) Proportion material content: S = {z: 0 <z <1}

(d) Failure time measurement: S = {z : 2z > 0} = R

(e) Temperature measurement: S ={z:a <z <b} CR

There are two basic types of experiment, namely
COUNTING
and
MEASUREMENT

- we shall see that these two types lead to two distinct ways of specifying probability distributions.

The collection of sample outcomes is a set, so we write
ses

if s is a member of the set S.

DEFINITION
An event F is a set of the possible outcomes of the experiment, that is F is a subset of S, E C S, F occurs if
the actual outcome is in this set.

NOTE: the sets S and E can be either countable, that is, can be written as a list of items, for example,

E ={s1,582,..,8n, .}

which may a finite or infinite list, or uncountable, that is, can only be represented by a continuum of outcomes,
for example
E={z:06<z<23}

Events are manipulated using set theory notation; if E, F' are two events, E,F C S,

Union EFEUF “FE or F or both occurs”
Intersection FENF “E and F occur”
Complement E “FE does not occur”



We can interpret the events F U F, ENF, and E' in terms of collections of sample outcomes, and use Venn
Diagrams to represent these concepts.

Special cases of events:

THE IMPOSSIBLE EVENT @ the emptyset, the collection of sample outcomes with zero elements

THE CERTAIN EVENT Q the collection of all sample outcomes

DEFINITION
Events E and F are mutually exclusive if

ENF=0

that is, the collections of sample outcomes F and F have no element in common.

1.2 Results in events manipulation

For events FE, F, and G, the following equations can be used to simplify complex expressions;

ASSOCIATIVITY  (EU F)UG= EU (FUG)
(EN F)NG= En (FNG)

DISTRIBUTIVITY EU(FNG)=(EUF)N(EUG)
EN(FUG) = (ENF)U(ENG)

also (EUFY =E NF, (ENF) =E UF

DEFINITION
Events Ey, ..., Ej, form a partition of event FF C S if

k
a) E;NE; =@ for all i and j b E,=FE, UE,U...UE, =PF.
3

=1

We are interested in mutually exclusive events and partitions because when we carry out probability calculations
we will essentially be counting or enumerating sample outcomes; to ease this counting operation, it is desirable
to deal with collections of outcomes that are completely distinct or disjoint.

1.3 The rules of probability

The probability function P(.) is a set function that assigns weight to collections of sample outcomes. We can
consider assigning probability to an event by adopting

CLASSICAL APPROACH consider equally likely outcomes
FREQUENTIST APPROACH consider long-run relative frequencies

SUBJECTIVE APPROACH consider your personal degree of belief

It is legitimate to use any justification where appropriate or plausible.



Mathematical Properties - The Probability Axioms

It is sufficient to require that the set function P(.) must satisfy the following properties.
For any events FE and F in sample space S,

(HO<PE)L1
(2) P(Q) = 1
(3) f ENF = @, then P(E U F) = P(E) + P(F)

Corollaries :

P(E')=1-P(E),P(®) =0
If Ei,..., Ej are events such that E; N E; = @ for all 4, j, then

k
P (U E) =P(E) + P(E,) + ... + P(Ey).
If ENF # @, then P(EUF) = P(E) + P(F) - P(ENF)

EXAMPLE CALCULATION Examination Pass Rates

The examination performance of students in a year of eight hundred students is to be studied: a student either
chooses an essay paper or a multiple choice test. The pass figures and rates are given in the table below:

PASS FAIL PASS RATE

FEMALE 200 200 0.5
MALE 240 160 0.6

The result of this study is clear: the pass rate for MALES is higher than that for FEMALES.

Further investigation revealed a more complex result: for the essay paper, the results were as follows;

PASS FAIL PASS RATE

FEMALE 120 180 0.4
MALE 30 70 0.3

so for the essay paper, the pass rate for FEMALES is higher than that for MALES.

For the multiple choice test, the results were as follows;

PASS FAIL PASS RATE

FEMALE 80 20 0.8
MALE 210 90 0.7

so for the multiple choice paper, the pass rate for FEMALES is higher than that for MALES.

Hence we conclude that FEMALES have a higher pass rate on the essay paper, and FEMALES have a higher
pass rate on the multiple choice test, but MALES have a higher pass rate overall.

This apparent contradiction can be resolved by careful use of the probability definitions. First introduce notation;
let E be the event that the student chooses an essay, F' be the event that the student is female, and G be the
event that the student passes the selected paper.

Exercise: Draw a Venn diagram to represent this problem.



1.4 Conditional probability

DEFINITION
For two events E and F with P(F) > 0, the conditional probability that E occurs, given that F occurs,
is written P(E|F), and is defined by
P(ENF)
P(E|F) = P(F)
so that
P(ENF)=P(E|F)P(F)

It is easy to show that this new probability operator P( . | . ) satisfies the probability axioms.

[In the exam results problem, what we really have specified are conditional probabilities. From the pooled table,
we have

P(G|F) =05 P(G|F)=0.6,
from the essay results table, we have
PGIENF)=04 P(GENF)=03,
and from the multiple choice table, we have
P(GIE NF)=08 P(G|E NF)=07

and so interpretation is more complicated than originally thought.]

The probability of the intersection of events Fj, ..., Fy is given by the chain rule

P(E1N...NEy) = P(E)P(E:|E)P(Es|EL N Es)..P(Ey|E1 N EsN ... Ey_1)

Special Case: Independence
Events F and F are independent if

P(E|F) = P(E)sothat P(ENF) = P(E)P(F)
and so if E,, ..., E};, are independent events, then

k
P(E; N..NEg) = [[ P(Ei) = P(E1)..P(Ey)

=1

1.5 The Theorem of Total Probability

THEOREM
If events Ey, ..., By, form a partition of event F C S, and event G C S is such that P(G) > 0, then

k
P(F) =Y P(FIE)P(E)

k
P(FIG) =3 P(F|E:NG)P(E|G)
=1
Proof
We have by assumption that
k k k
F=|JEnNF)=PF) =) PENF)=)Y_ P(F|E)PE)
=1 i=1 =1

by probability axiom (3), as the collection E; N F, ..., Ex N F are mutually exclusive.

Exercise: Attempt to resolve the examinations results paradox using this Theorem.



1.6 Bayes Theorem

THEOREM
For events E and F such that P(E), P(F) > 0,

P(F|E)P(E)

P(EIF) = =55

If events Ey, ..., By, form a partition of S, with P(E;) > 0 for all 4, then then

P(Ei|F) — P(FIPJ:T(iI)FI;(Ei) _ kP(F|EZ~)P(EZ~)
> P(F|E))P(E))

Jj=1

Proof
We have from the conditional probability definition that

P(ENF)=P(E|F)P(F) and P(ENF)=P(F|E)P(E)
and hence equating the right hand sides of the two equations we have
P(E|F)P(F) =P(F|E)P(E)
and hence the result follows.

Note that in the second part of the theorem,

F|E;)P(E;) _ P(F|E;)
P(F) PR

P(EF) = L P(E:)

so the probabilities P(E;) are re-scaled to P(E;|F') by conditioning on F. Note that

k

> PE|F)=1

i=1

This theorem is very important because, in general,
P(E|F) # P(F|E)

and it is crucial to condition on the correct event in a conditional probability calculation.

EXAMPLE Lie-detector test.

In an attempt to achieve a criminal conviction, a lie-detector test is used to determine the guilt of a suspect.
Let G be the event that the suspect is guilty, and let T be the event that the suspect fails the test.

The test is regarded as a good way of determining guilt, because laboratory testing indicate that the detection
rates are high; for example it is known that

P[ Suspect Fails Test | Suspect is Guilty ] =P(T|G) = 095 = 1-—a, say

P[ Suspect Passes Test | Suspect is Not Guilty ] =P(T'|G’) = 099 = 3, say.

Suppose that the suspect fails the test. What can be concluded ? The probability of real interest is P(G|T); we
do not have this probability but can compute it using Bayes Theorem.



For example, we have
P(T|G)P(G)
P(T)

where P(G) is not yet specified, but P(T") can be computed using the Theorem of Total probability, that is,

P(G|T) =

P(T) = P(T|G)P(G) + P(T|G)P(G")
so that
P(T|G)P(G)
(TIG)P(G) + P(T|G")P(G')
Clearly, the probability P(G), the probability that the suspect is guilty before the test is carried out, plays a
crucial role. Suppose, that P(G) = p = 0.005, so that only 1 in 200 suspects taking the test are guilty. Then

P(GIT) = 5

P(T) = 0.95 x 0.005 + 0.01 x 0.995 = 0.0147

50 that 0.95 x 0.005
- : : — 0.32
P(GIT) = 595 % 0,005 + 0.01 x 0095 — 0323

which is still relatively small. So, as a result of the lie-detector test being failed, the probability of guilt of the
suspect has increased from 0.005 to 0.323.

More extreme examples can be found by altering the values of a, 8 and p.

Exercise: Find the general relationship between «, 8, p and p* = P(G|T).



