CHEM. ENG. II - PROBABILITY AND STATISTICS

Probability and Statistics - Formula Sheet

Set theory definitions and results

Events E and F are mutually exclusive if $E \cap F = \emptyset$ (the empty set).

For events E, F, and G, the following results hold;

ASSOCIATIVITY
$$(E \cup F) \cup G = E \cup (F \cup G)$$

 $(E \cap F) \cap G = E \cap (F \cap G)$
DISTRIBUTIVITY $E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$
 $E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$
also $(E \cup F)' = E' \cap F', (E \cap F)' = E' \cup F'$

Events $E_1, ..., E_k$ form a **partition** of event $F \subset S$ if

(a)
$$E_i\cap E_j=\emptyset$$
 for all i and j (b) $igcup_{i=1}^k E_i=E_1\cup E_2\cup...\cup E_k=F.$

The rules of probability: For any events E and F in sample space S,

- (1) 0 < P(E) < 1
- (2) P(S) = 1
- (3) If $E \cap F = \emptyset$, then $P(E \cup F) = P(E) + P(F)$

Corollaries:

$$P(E') = 1 - P(E), P(\emptyset) = 0$$

If $E_1, ..., E_k$ are events such that $E_i \cap E_j = \emptyset$ for all i, j, then

$$P\left(\bigcup_{i=1}^k E_i\right) = P(E_1) + P(E_2) + \dots + P(E_k).$$

If $E \cap F \neq \emptyset$, then $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

Conditional probability:

P(E|F) is the probability that the event E occurs, given that F has occurred, for an event F such that P(F) > 0, and

$$\mathrm{P}(E|F) = rac{\mathrm{P}(E\cap F)}{\mathrm{P}(F)}$$

The probability of the **intersection** of events $E_1, ..., E_k$ is given by the **chain rule**

$$P(E_1 \cap ... \cap E_k) = P(E_1)P(E_2|E_1)P(E_3|E_1 \cap E_2)...P(E_k|E_1 \cap E_2 \cap ... \cap E_{k-1})$$

Events F and F are **independent** if

$$P(E|F) = P(E)$$
 so that $P(E \cap F) = P(E)P(F)$.

Theorem of Total Probability:

If events $E_1, ..., E_k$ form a partition of event $E \subseteq S$, then $P(E) = \sum_{i=1}^k P(E|E_i)P(E_i)$

Bayes Theorem:

If events $E_1, ..., E_k$ form a partition of event $E \subseteq S$, then

$$P(E_i|E) = \frac{P(E|E_i)P(E_i)}{P(E)} = \frac{P(E|E_i)P(E_i)}{\sum_{j=1}^k P(E|E_j)P(E_j)}$$

Discrete probability distributions:

The probability distribution of a discrete random variable X is described by the **probability mass function** f_X , specified by

$$f_X(x) = P[X = x]$$
 for $x \in X = \{x_1, x_2, ..., x_n, ...\}$

Properties of the mass function:

(i)
$$f_X(x_i) \ge 0$$
 for all i , (ii) $\sum_i f_X(x_i) = 1$.

The cumulative distribution function or c.d.f., F_X , is defined by

$$F_X(x) = P[X \le x]$$
 for $x \in \mathbb{R}$

Fundamental relationship between f_X and F_X :

$$F_X(x) = \sum_{x_i < x} f_X(x_i) \; ,$$

and

$$f_X(x_1) = F_X(x_1)$$

 $f_X(x_i) = F_X(x_i) - F_X(x_{i-1})$ for $i \ge 2$

Continuous probability distributions:

The probability distribution of a *continuous* random variable X is defined by the continuous **cumulative distribution function** or **c.d.f.**, F_X , specified by

$$F_X(x) = P[X \le x]$$
 for $x \in X$

The **probability density function**, or **p.d.f.**, f_X , is defined by

$$f_X(x) = rac{d}{dx} \left\{ F_X(x)
ight\} \quad ext{so that} \quad F_X(x) = \int_{-\infty}^x f_X(t) \ dt$$

Properties of the density function:

(i)
$$f_X(x) \ge 0$$
 for $x \in \mathbb{X}$, (ii) $\int_{\mathbb{X}} f_X(x) dx = 1$.

Expectation and Variance

For a discrete random variable X taking values in set X with mass function f_X , the expectation of X is defined by

$$\mathrm{E}_{f_X}[X] = \sum_{x \in \mathbb{X}} \!\! x f_X(x)$$

For a **continuous** random variable X taking values in interval X with pdf f_X , the expectation of X is defined by

$$\mathrm{E}_{f_X}[X] = \int_{\mathbb{R}} x f_X(x) \; dx.$$

The **variance** of X is defined by

$$\mathrm{E}_{f_X}[(X-\mathrm{E}_{f_X}[X])^2]=\mathrm{E}_{f_X}[X^2]-\{\mathrm{E}_{f_X}[X]\}^2.$$

Special Discrete Probability Distributions

<u>The Bernoulli Distribution</u> $X \sim Bernoulli(\theta)$

Range : $X = \{0, 1\}$ Parameter : $\theta \in [0, 1]$

Mass function:

$$f_X(x) = \theta^x (1 - \theta)^{1-x}$$
 $x \in \{0, 1\}$

The Binomial Distribution $X \sim Binomial(n, \theta)$

Range: $X = \{0, 1, ..., n\}$

Parameters : $n \in \mathbb{Z}^+, \ \theta \in [0, 1]$

Mass function:

$$f_X(x) = \left(egin{array}{c} n \ x \end{array}
ight) heta^x (1- heta)^{n-x} = rac{n!}{x!(n-x)!} heta^x (1- heta)^{n-x} \qquad x \in \{0,1,...,n\}$$

The Geometric Distribution $X \sim Geometric(\theta)$

Range : $X = \{1, 2, ...\}$ Parameter : $\theta \in (0, 1]$

Mass function:

$$f_X(x) = (1 - \theta)^{x-1}\theta.$$
 $x \in \{1, 2, ...\}$

The Negative Binomial Distribution $X \sim NegBin(n, \theta)$

Range : $\mathbb{X} = \{n, n+1, n+2, \ldots\}$

Parameter: $n \in \mathbb{Z}^+, \theta \in (0,1]$

Mass function:

$$f_X(x)=\left(egin{array}{c} x-1 \ n-1 \end{array}
ight) heta^n(1- heta)^{x-n} \quad x\in\{n,n+1,n+2,...\}\,.$$

The Poisson Distribution $X \sim Poisson(\lambda)$

 $\begin{array}{l} \text{Range}:\,\mathbb{X}=\{0,1,2,\ldots\}\\ \text{Parameter}:\,\lambda\in\mathbb{R}^+ \end{array}$

Mass function:

$$f_X(x) = rac{\lambda^x}{x!} e^{-\lambda} \qquad x \in \{0,1,2,...\}$$

Special Continuous Probability Distributions

The Exponential Distribution $X \sim Exponential(\theta)$

Range : $X = \mathbb{R}^+$ Parameter : $\lambda \in \mathbb{R}^+$ Density function :

$$f_X(x) = \lambda e^{-\lambda x}$$
 $x \in \mathbb{R}^+$

The Gamma Distribution $X \sim Gamma(\alpha, \beta)$

Range : $\mathbb{X} = \mathbb{R}^+$

Parameters : $\alpha, \beta \in \mathbb{R}^+$

Density function:

$$f_X(x) = rac{eta^lpha}{\Gamma(lpha)} x^{lpha-1} e^{-eta x} \hspace{0.5cm} x \in \mathbb{R}^+$$

where

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt \quad \alpha > 0.$$

If $\alpha > 1$, $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$, so if $\alpha = 1, 2, ..., \Gamma(\alpha) = (\alpha - 1)!$.

If $\alpha=1,2,...$, then the $Gamma(\alpha/2,1/2)$ distribution is known as the **Chi-squared distribution** with α degrees of freedom, denoted χ^2_{α} .

If $X_1, X_2 \sim Exponential(\lambda)$ are independent, then $Y = X_1 + X_2 \sim Gamma(2, \lambda)$.

The Beta Distribution $X \sim Beta(\alpha, \beta)$

Range : $\mathbb{X} = (0, 1)$ Parameters : $\alpha, \beta \in \mathbb{R}^+$ Density function :

$$f_X(x) = rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} x^{lpha-1} (1-x)^{eta-1} \quad x \in (0,1).$$

The Normal Distribution $X \sim N(\mu, \sigma^2)$

Range: $X = \mathbb{R}$

Parameters : $\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$

Density function:

$$f_X(x) = \left(rac{1}{2\pi\sigma^2}
ight)^{1/2} exp\left\{-rac{1}{2\sigma^2}(x-\mu)^2
ight\} \hspace{0.5cm} x\in\mathrm{R}.$$

Notes:

If $X \sim N(0,1)$, and $Y = \sigma X + \mu$, then $Y \sim N(\mu, \sigma^2)$.

If $X \sim N(0,1)$, and $Y = X^2$, then $Y \sim Gamma(1/2,1/2) = \chi_1^2$.

If $X \sim N(0,1)$ and $Y \sim \chi_{\alpha}^2$ are independent random variables, then random variable $T = X/\sqrt{Y/\alpha}$ has a t distribution with α degrees of freedom.

The Convolution Theorem

If X_1 and X_2 are discrete independent random variables with probability mass/density functions f_{X_1} and f_{X_2} respectively, then random variable Y, defined by $Y = X_1 + X_2$, has probability mass/density function given by

$$f_Y(y) = \left\{egin{array}{ll} \displaystyle \sum_{x_1 = -\infty}^{\infty} f_{X_1}(x_1) f_{X_2}(y-x_1) & ext{DISCRETE} \ \\ \displaystyle \int_{-\infty}^{\infty} f_{X_1}(x_1) f_{X_2}(y-x_1) \; dx_1 & ext{CONTINUOUS} \end{array}
ight.$$

Note: Terms in the sum/integral may be zero on intervals of \mathbb{R} .

The Central Limit Theorem

THEOREM

Suppose $X_1, ..., X_n$ are i.i.d. random variables with $E_{f_X}[X_i] = \mu$, $Var_{f_X}[X_i] = \sigma^2$. If Z_n is defined by

$$Z_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}}$$

Then, as $n \to \infty$, $Z_n \to Z \sim N(0,1)$ irrespective of the distribution of $X_1,...,X_n$.

Maximum Likelihood Estimation

Suppose a sample $x_1, ..., x_n$ has been obtained from a probability model specified by mass or density function $f(x; \theta)$ depending on parameter(s) θ lying in parameter space Θ . The **maximum likelihood estimate** or **m.l.e.** is produced as follows;

- **STEP 1** Write down the **likelihood function** $L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$
- **STEP 2** Take the natural log of the likelihood, and collect terms involving θ .
- **STEP 3** Find the value of θ , $\hat{\theta}$, for which $log L(\theta)$ is maximized in Θ .
- **STEP 4** Verify that $\hat{\theta}$ maximizes $logL(\theta)$.

Sampling Distributions

THEOREM

If $X_1, ..., X_n$ are i.i.d. $N(\mu, \sigma^2)$ random variables, then if

$$ar{X} = rac{1}{n} \sum_{i=1}^{n} X_i \quad S^2 = rac{1}{n} \sum_{i=1}^{n} (X_i - ar{X})^2 \quad s^2 = rac{1}{n-1} \sum_{i=1}^{n} (X_i - ar{X})^2$$

are the mean, variance, and adjusted variance, then it can be shown that

$$(1)\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \quad (2)\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2, \quad (3)\bar{X} \text{ and } s^2 \text{ are statistically independent.}$$

Hypothesis Testing for Normal data

One-sample tests

Suppose $x_1, ..., x_n \sim N(\mu, \sigma^2)$, with observed sample mean and adjusted variance \bar{x}, s^2 . To test the **hypothesis**

$$H_0: \mu = c$$
$$H_1: \mu \neq c$$

if σ is known, use the **Z-test**

$$z = \frac{\bar{x} - c}{\sigma / \sqrt{n}} \sim N(0, 1)$$
 if H_0 is TRUE.

If σ is unknown, use the **T-test**

$$t = \frac{(\bar{x} - \mu)}{s/\sqrt{n}} \sim t_{n-1}$$
 if H_0 is TRUE

To test $H_0: \sigma^2 = c$, calculate test statistic q

$$q = \frac{(n-1)s^2}{c} \sim \chi_{n-1}^2$$
 if H_0 is TRUE

Two-sample tests

For two data samples of size n_1 and n_2 , where \bar{x}_1 and \bar{x}_2 are the sample means, and s_1^2 and s_2^2 are the adjusted sample variances; to test the hypothesis

$$H_0: \mu_1 = \mu_1$$

 $H_1: \mu_1 \neq \mu_2$

if $\sigma_1 = \sigma_2 = \sigma$ is **known** use the statistic z, defined by

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$$
 if H_0 is TRUE

If $\sigma_1 = \sigma_2 = \sigma$ is **unknown**, use the statistic t, defined by

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$
 if H_0 is TRUE

where $s_P^2 = ((n_1 - 1)s_1^2 + (n_2 - 1)s_2^2)/(n_1 + n_2 - 2)$ is the **pooled** estimate of σ .

To test the hypothesis $H_0: \sigma_1 = \sigma_2$, use the F statistic

$$F = \frac{s_1^2}{s_2^2} \sim F_{n_1 - 1, n_2 - 1}$$
 if H_0 is TRUE

95 % Confidence Intervals for Parameters

Let $t_k(p)$ be the pth percentile of a t distribution with k degrees of freedom.

One-sample: 95 % Confidence interval for μ is

$$\begin{array}{ll} \bar{x} \ \pm \ 1.96\sigma/\sqrt{n} & \text{if σ is known} \\ \bar{x} \ \pm \ t_{n-1}(0.975)s/\sqrt{n} & \text{if σ is unknown} \end{array}$$

95 % Confidence interval for σ^2 is

$$[(n-1)s^2/c_2:(n-1)s^2/c_1]$$

where c_1 and c_2 are the 0.025 and 0.975 points of the χ^2_{n-1} distribution.

Two-sample: 95 % Confidence interval for $\mu_1 - \mu_2$ is

$$egin{array}{lll} ar{x_1} - ar{x_2} & \pm & 1.96 \ \sigma \sqrt{rac{1}{n_1} + rac{1}{n_2}} & ext{if σ is known} \\ ar{x_1} - ar{x_2} & \pm & t_{n_1 + n_2 - 2} (0.975) \ s_P \sqrt{rac{1}{n_1} + rac{1}{n_2}} & ext{if σ is unknown} \end{array}$$

95 % Confidence interval for σ_1^2/σ_2^2 is

$$[s_1^2/(c_2s_2^2):s_1^2/(c_1s_2^2)]$$

where c_1 and c_2 are the 0.025 and 0.975 points of the F_{n_1-1,n_2-1} distribution.

The Chi-squared test

To test the goodness-of-fit of a probability model to a sample of size n, use the **chi-squared statistic**

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}.$$

If H_0 is true, then χ^2 approximately has a chi-squared distribution with k-d-1 degrees of freedom, where d is the number of estimated parameters.

Linear Regression Analysis

Suppose that we have n measurements of two variables X and Y, denoted $\{(x_i, y_i) : i = 1, ..., n\}$, and there is a **linear regression** relationship between X and Y,

$$E[Y|X=x] = \alpha + \beta x.$$

Then the least-squares estimates of α and β are given by

$$\hat{lpha} = ar{y} - \hat{eta}ar{x} \qquad \hat{eta} = rac{nS_{xy} - S_{x}S_{y}}{nS_{xx} - \left\{S_{x}
ight\}^{2}}$$

where

$$S_x = \sum_{i=1}^n x_i$$
 $S_y = \sum_{i=1}^n y_i$ $S_{xx} = \sum_{i=1}^n x_i^2$ $S_{xy} = \sum_{i=1}^n x_i y_i$

Note: the correlation coefficient r is given by

$$r = rac{nS_{xy} - S_{x}S_{y}}{\sqrt{(nS_{xx} - S_{x}^{2})(nS_{yy} - S_{y}^{2})}}$$

Estimates of Error Variance and Residuals

The maximum likelihood estimate of σ^2 is,

$$\hat{\sigma^2} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{lpha} - \hat{eta} x_i)^2 = S^2$$

The **corrected** estimate, s^2 , of the error variance is defined by

$$s^2 = rac{1}{n-2} \, \sum_{i=1}^n (y_i - \hat{lpha} - \hat{eta} x_i)^2 \; = rac{1}{n-2} \, \sum_{i=1}^n (y_i - \hat{y_i})^2$$

where $\hat{y_i} = \hat{\alpha} + \hat{\beta}x_i$ is the **fitted value** of Y at $X = x_i$. The *i*th **residual**, e_i is given by $e_i = y_i - \hat{y}_i = y_i - \hat{\alpha} - \hat{\beta}x_i$.

Standard Errors of Estimators

$$s.e.(\hat{lpha}) = s \; \sqrt{rac{S_{xx}}{nS_{xx} - \left\{S_x
ight\}^2}} \hspace{1cm} s.e.(\hat{eta}) = s \; \sqrt{rac{n}{nS_{xx} - \left\{S_x
ight\}^2}}$$

Confidence Intervals for Parameters

$$\alpha : \hat{\alpha} \pm t_{n-2}(0.975) \ s \sqrt{\frac{S_{xx}}{nS_{xx} - \{S_x\}^2}}$$

$$\beta \ : \ \hat{\beta} \pm t_{n-2}(0.975) \ s \ \sqrt{\frac{n}{nS_{xx} - \{S_x\}^2}}$$

where $t_{n-2}(0.975)$ is the 97.5th percentile of a t distribution with n-2 degrees of freedom.