CHEM. ENG. II - PROBABILITY AND STATISTICS
Probability and Statistics - Formula Sheet

Set theory definitions and results

Events E and F are mutually exclusive if ENF = @ (the empty set).
For events FE, F, and G, the following results hold;

ASSOCIATIVITY (EU F)UG= E U (FUG)
(EN F)NG= EN (FNG)
DISTRIBUTIVITY EU (FNG)=(EUF)N(EUG)
EN(FUG)=(ENF)U(ENG)
also (EUF) =E'NnF, (ENF) =E UF

Events Ey, ..., Ex form a partition of event F C S if

k
(@)ENE;=Qforalliandj (b) | JE;=E1UEU..UE, =F.
i=1
The rules of probability : For any events E and F in sample space S,
()O<P(B) <1
(2 P(S) =1
BYULENF=0,then P(EUF)=P(E)+P(F)

Corollaries :
P(E)=1-P(E),P(@®)=0
If Ei,..., Ej are events such that E; N E; = @ for all 4, j, then

k
P (U E) =P(E) + P(E,) + ... + P(Ey).
i=1
IFENF #@,then P(EUF)=P(E)+P(F)-P(ENF)
Conditional probability :

P(E|F) is the probability that the event E occurs, given that F' has occurred, for an event F such that P(F) > 0,
and

P(ENF)
P(F)

The probability of the intersection of events Fj, ..., Fy is given by the chain rule

P(E|F) =

P(EiN..NE) = P(E)P(E:|E1)P(Es|E1 NER)..P(EL|ExNE;N...NEp_1)
Events F and F are independent if
P(E|F) = P(E) sothat P(ENF) = P(E)P(F).

Theorem of Total Probability :

k
If events Ey, ..., Ey form a partition of event E C S, then P(E) = ZP(E|EZ)P(EZ)

=1

Bayes Theorem :

If events E, ..., Ex form a partition of event E C S, then

P(E|E;)P(E;) _  P(E|E)P(E;)




Discrete probability distributions:

The probability distribution of a discrete random variable X is described by the probability mass function
fx, specified by
fx(z)=PX =2z forzeX={x1,%2,...,%n,...}

Properties of the mass function :
() fx(z) >0foralld, (i) Y fx(z:)=1.
i

The cumulative distribution function or c.d.f., Fx, is defined by

Fx(z)=PX <z] forzeR

Fundamental relationship between fx and Fyx :
Fx(z) =) fx(=),
z; <z

and

fx(@1) = Fx (z1)
fx (@) = Fx(z;) — Fx(z;_1) fori>2

Continuous probability distributions:

The probability distribution of a continuous random variable X is defined by the continuous cumulative dis-
tribution function or c.d.f., Fx, specified by

Fx(z)=PX <z] forzeX

The probability density function, or p.d.f., fx, is defined by
d x
fx(@) = - {Fx()} sothat Fx(s)= / Fx(t) dt
— o0

Properties of the density function :

() fx(z)>0forzeX, (i) /Xfx($)d$ =1.

Expectation and Variance
For a discrete random variable X taking values in set X with mass function fx, the expectation of X is defined
by

Efy [X] =) 2fx(@)

zeX

For a continuous random variable X taking values in interval X with pdf fx, the expectation of X is defined by

Es [X] = /Xxfx(x) dz.
The variance of X is defined by
Efy [(X —Efy [X])2] =Eg, [X2] - {Efx [X]}2



Special Discrete Probability Distributions

The Bernoulli Distribution X ~ Bernoulli(6)

Range : X ={0,1}
Parameter : 6 € [0, 1]

Mass function :
fx(x) =61 -8)'° z € {0,1}

The Binomial Distribution X ~ Binomial(n, )

Range : X ={0,1,...,n}
Parameters : n € Z*, § € [0,1]
Mass function :

n!

fx(z) = ( . )ew(1—o)"—w = °(1— )" z€{0,1,..,n}

zl(n — z)!

The Geometric Distribution X ~ Geometric(6)

Range : X ={1,2,...}
Parameter : 6 € (0,1]
Mass function :

fx@)=(1-02" ze{1,2..}

The Negative Binomial Distribution X ~ NegBin(n,#8)

Range : X={n,n+1,n+2,...}
Parameter : n € ZT, 6 € (0,1]
Mass function :

fx(z) = ( 2:} )o"(1—o)w—" ze{nn+ln+2,..}.

The Poisson Distribution X ~ Poisson(\)

Range : X ={0,1,2,...}
Parameter : A € Rt
Mass function :

fx(z) = e z€{0,1,2,..}

Special Continuous Probability Distributions

The Exponential Distribution X ~ Exponential (6)
Range : X = Rt

Parameter : A € Rt

Density function :

fx(@) =X zeR"

The Gamma Distribution X ~ Gammal(a, 3)

Range : X = R
Parameters : a, 8 € Rt
Density function :

Ba
fx(@) = ——z%te P geRF

where



[e9)
I'a) = / t* e tdt a>0.
0

fa>1,T(@)=(a-DI'(a-1),s0ifa=1,2,..,T'(a) = (a - 1)L

If a = 1,2,..., then the Gamma(a/2,1/2) distribution is known as the Chi-squared distribution with o
degrees of freedom, denoted x2.
If X1, Xs ~ Ezponential(\) are independent, then Y = X; + Xy ~ Gamma(2, \).

The Beta Distribution X ~ Beta(a, 3)

Range : X =(0,1)
Parameters : a, 8 € Rt
Density function :

F(a + 6) xa—l

T(@T(3) 1-z)1 ze(0,1).

fx () =
The Normal Distribution X ~ N(u,0?)

Range: X =R
Parameters : u € R,o € Rt
Density function :

fX(ﬂU):( ! )I/Qexp{—;?(x—uf} z € R.

2no2

Notes :
If X ~N(0,1),and Y = 0X + u, then Y ~ N(u,0?).

If X ~N(0,1),and Y = X2, then Y ~ Gamma(1/2,1/2) = x3.

If X ~ N(,1) and Y ~ x2 are independent random variables, then random variable T = X/1/Y/a has a t
distribution with a degrees of freedom.

The Convolution Theorem

If X1 and X, are discrete independent random variables with probability mass/density functions fx, and fx,
respectively, then random variable Y, defined by ¥ = X; + X5, has probability mass/density function given by

> Fx(@)fx. (v — 21) DISCRETE

fr(y) =
/ fx, () fx,(y — z1) dezy CONTINUOUS

Note : Terms in the sum/integral may be zero on intervals of R.

The Central Limit Theorem

THEOREM
Suppose X1, ..., Xy, are i.i.d. random variables with E, [X;] = @, Vary, [X;] = 0. If Z,, is defined by

n
ZXi —nu
i=1

Z, =%
no?

Then, as n — 00, Z, — Z ~ N(0,1) irrespective of the distribution of Xi,..., X,,.



Maximum Likelihood Estimation

Suppose a sample zy, ..., L, has been obtained from a probability model specified by mass or density function
f(z;8) depending on parameter(s) € lying in parameter space ©. The maximum likelihood estimate or m.l.e.
is produced as follows;

n

STEP 1 Write down the likelihood function L(#) = H flz;:6)

=1
STEP 2 Take the natural log of the likelihood, and collect terms involving 6.
STEP 3 Find the value of 8, 8, for which logL(6) is maximized in ©.
STEP 4 Verify that 6 maximizes logL(6).

Sampling Distributions

THEOREM
If X4, ..., X, are i.i.d. N(u,0?) random variables, then if

% 1 2 1 o\ 2 2 1 = o\ 2
X:EZXi $P==3(X;-X)* s :n_lz(Xi—X)
i=1 i=1 i=1

are the mean, variance, and adjusted variance, then it can be shown that

_ 0’2 (n bt 1)82 9 S 2 . .
()X ~N | g, ) (2)072 ~X._1, (3)X and s° are statistically independent.

Hypothesis Testing for Normal data

One-sample tests

Suppose 21, ...,Zp ~ N (,u, 02), with observed sample mean and adjusted variance Z, s2. To test the hypothesis

HO TH=cC
H1 2 7é C
if o is known, use the Z-test
2=27% L N(0,1) if Hyis TRUE
- U/\/ﬁ ’ 0 .
If o is unknown, use the T-test
T — . .
t= (s ; \/;_‘) ~ tn_1 if Hyis TRUE
To test Hy : 02 = ¢, calculate test statistic ¢
—1)s2
g= "=V 2 i is TRUE

c



Two-sample tests
For two data samples of size n; and ns, where Z; and Zo are the sample means, and s% and s% are the adjusted
sample variances; to test the hypothesis

Ho:pp=m
Hy:pa # po
if 71 = 09 = o is known use the statistic z, defined by

p= LT %2 L N(0,1) if Hyis TRUE

1 1

VAT
If 51 = 09 = o is unknown, use the statistic ¢, defined by

T — To

- tn1+n2—2
spi /L + L
P ni no

where s% = ((n1 — 1)s} + (n2 — 1)s3)/(n1 + ne — 2) is the pooled estimate of o.

t= if Hy is TRUE

To test the hypothesis Hy : 01 = g2, use the F statistic

F=—+%~ ni—1,na—1 if HO is TRUE

95 % Confidence Intervals for Parameters

Let t;(p) be the pth percentile of a ¢ distribution with k degrees of freedom.

One-sample: 95 % Confidence interval for u is

S]]

+ 1.960//n if o is known
+ ¢,-1(0.975)s/+/n if o is unknown

S]]

95 % Confidence interval for o2 is
[(n—1)s%/cy: (n — 1)s?/ci]

where ¢; and ¢; are the 0.025 and 0.975 points of the x2_; distribution.

Two-sample: 95 % Confidence interval for pu; — o is

£ -2 + 19604/ + = if ¢ is known

T1 — %2 £ tpy4n,—2(0.975) sp n1_1 + n1—2 if o is unknown

95 % Confidence interval for 0% /03 is
[57/(c283) : s3/(c183)]
where ¢; and ¢y are the 0.025 and 0.975 points of the F),, _1,n,—1 distribution.

The Chi-squared test

To test the goodness-of-fit of a probability model to a sample of size n, use the chi-squared statistic

k 2
0; — E;
Xzzz( = )

=1

If Hy is true, then x? approximately has a chi-squared distribution with k¥ — d — 1 degrees of freedom, where d is
the number of estimated parameters.



Linear Regression Analysis

Suppose that we have n measurements of two variables X and Y, denoted {(z;,y;) : ¢ = 1,...,n}, and there is a
linear regression relationship between X and Y,

EY|X =z]=a+ 8z
Then the least-squares estimates of a and 8 are given by

nSay — S5,

AT

where
n n n n
i=1 i=1 i=1 i=1
Note : the correlation coefficient r is given by

NS4y — Sz,
\/(nSzz = S2)(nS,, - 53)

r =

Estimates of Error Variance and Residuals

The maximum likelihood estimate of o2 is,

"o 1 4
o= D wi—a—Br) =5

=1

The corrected estimate, s2, of the error variance is defined by

(yi — )

v )
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| | =
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where y; = &+Bxi is the fitted value of Y at X = z;. The ith residual, ¢; is given by ¢; = y; —¢; = ; —&—Bxi.

Standard Errors of Estimators

S$$

m se.(B)=s S C—

s.e.(d) =s S — (5.1

Confidence Intervals for Parameters
. ~ S$$
a : & =% t,2(0.975) s —_——
nSze — {Sz}
B i B £ tas(0975) s,/ n
: —9(U. —_—
" nSez — {5z}

where #,,_2(0.975) is the 97.5th percentile of a ¢ distribution with n — 2 degrees of freedom.




