
MathSoft

S-PLUS 2000
Guide to Statistics, Volume 1

May 1999

Data Analysis Products Division

MathSoft, Inc.

Seattle, Washington



Proprietary 
Notice

MathSoft, Inc. owns both this software program and its
documentation. Both the program and documentation are
copyrighted with all rights reserved by MathSoft.

The correct bibliographical reference for this document is as follows:

S-PLUS 2000 Guide to Statistics, Volume 1, Data Analysis Products
Division, MathSoft, Seattle, WA.

Printed in the United States.

Copyright Notice Copyright © 1988-1999, MathSoft, Inc. All rights reserved.
ii



Acknowledgments S-PLUS would not exist without the pioneering research of the Bell
Labs S team at AT&T (now Lucent Technologies): Richard A. Becker
(now at AT&T Laboratories), John M. Chambers, Allan R. Wilks
(now at AT&T Laboratories), William S. Cleveland, Trevor Hastie
(now at Stanford University), and colleagues.

This release of S-PLUS includes specific work from a number of
scientists:

The survival functions were written by Terry Therneau (Mayo Clinic,
Rochester, Minnesota).

The mixed-effects modeling functions were written by Doug Bates
(University of Wisconsin–Madison) and José Pinheiro (Lucent
Technologies).

The discriminant analysis function discrim contains code
contributed by Brian Ripley (University of Oxford) and William
Venables (CSIRO).

The digamma function was written by William Venables (CSIRO).

Updates to functions provided to this and earlier releases of S-PLUS
were provided by Brian Ripley (University of Oxford), William
Venables (CSIRO), and Terry Therneau (Mayo Clinic, Rochester).
iii



iv



Preface xi

Chapter 1   Introduction to Statistical Analysis
  in S-PLUS 1

Introduction 2

Developing Statistical Models 3

Data Used for Models 4

Statistical Models in S-PLUS 9

Example of Data Analysis 15

Chapter 2   Specifying Models in S-PLUS 29

Introduction 30

Basic Formulas 31

Interactions in Formulas 34

Nesting in Formulas 36

Interactions Between Categorical and Continuous
  Variables 37

Using the Period Operator in Formulas 39

Combining Formulas With Fitting Procedures 40

Contrasts: The Coding of Factors 42

Useful Functions For Model Fitting 47

Optional Arguments to Model-Fitting Functions 49

CONTENTS  
v



Contents
Chapter 3   Statistical Inference for One- and 
Two-Sample Problems 51

Introduction 52

Background 57

One Sample: Distribution Shape, Location, and Scale 63

Two Samples: Distribution Shapes, Locations, and Scales 70

Two Paired Samples 77

Correlation 83

References 92

Chapter 4   Goodness of Fit Tests 93

Introduction 94

Cumulative Distribution Functions 95

The Chi-Square Test of Goodness of Fit 98

The Kolmogorov-Smirnov Test 101

One-Sample Tests 103

Two-Sample Tests 107

References 109

Chapter 5   Statistical Inference for Counts and
  Proportions 111

Introduction 112

Proportion Parameter for One Sample 114

Proportion Parameters for Two Samples 116

Proportion Parameters for Three or More Samples 119

Contingency Tables and Tests for Independence 122

References 132
vi



Contents
Chapter 6   Cross-Classified Data and Contingency
  Tables 133

Introduction 134

Choosing Suitable Data Sets 138

Cross-Tabulating Continuous Data 142

Cross-Classifying Subsets of Data Frames 145

Manipulating and Analyzing Cross-Classified Data 148

Chapter 7   Power and Sample Size 149

Introduction 150

Power and Sample Size Theory 151

Normally Distributed Data 152

Binomial Data 157

References 163

Chapter 8   Regression and Smoothing For 
  Continuous Response Data 165

Introduction 167

Simple Least-Squares Regression 169

Multiple Regression 175

Adding and Dropping Terms From a Linear Model 179

Choosing the Best Model—Stepwise Selection 186

Updating Models 189

Weighted Regression 190

Prediction With the Model 194

Confidence Intervals 196

Polynomial Regression 199

Generalized Least Squares Regression 204

Smoothing 213

Additive Models 225
vii



Contents
More on Nonparametric Regression 231

References 253

Chapter 9   Robust Regression 255

Introduction 257

Overview of the Robust MM Regression Method 258

Computing Least Squares and Robust Fits 261

Visualizing and Summarizing the Robust Fit 264

Comparing Least Squares and Robust Fits 268

Robust Model Selection 272

Controlling Options For Robust Regression 276

Theoretical Details 282

Other Robust Regression Techniques 288

Appendix 297

Bibliography 298

Chapter 10   Generalizing the Linear Model 299

Introduction 300

Logistic Regression 301

Poisson Regression 315

Generalized Linear Models 322

Generalized Additive Models 326

Quasi-Likelihood Estimation 328

Residuals 331

Prediction From the Model 333

References 337

Chapter 11   Local Regression Models 339

Introduction 340

Fitting a Simple Model 341
viii



Contents
Diagnostics: Evaluating the Fit 342

Exploring Data With Multiple Predictors 345

Fitting a Multivariate Loess Model 352

Looking at the Fitted Model 359

Improving the Model 363

Chapter 12   Classification and Regression Trees 369

Introduction 370

Growing Trees 372

Displaying Trees 378

Prediction and Residuals 381

Missing Data 382

Pruning and Shrinking 385

Graphically Interacting With Trees 390

References 401

Chapter 13   Linear and Nonlinear Mixed-Effects
  Models 403

Introduction 404

Representing Grouped Data Sets 406

Fitting Models Using the lme Function 417

Manipulating lme Objects 421

Fitting Models Using the nlme Function 430

Manipulating nlme Objects 434

Advanced Model Fitting 442

References 457

Chapter 14   Nonlinear Models 459

Introduction 460

Optimization Functions 461
ix



Contents
Examples of Nonlinear Models 474

Inference for Nonlinear Models 479

Chapter 15   Designed Experiments and Analysis
  of Variance 501

Introduction 502

Experiments With One Factor 504

The Unreplicated Two-Way Layout 512

The Two-Way Layout With Replicates 526

Many Factors at Two Levels: 2k Designs 537

References 550

Chapter 16   Further Topics in Analysis of Variance 551

Introduction 552

Model Coefficients and Contrasts 553

Summarizing ANOVA Results 558

Multivariate Analysis of Variance 580

Split-Plot Designs 582

Repeated-Measures Designs 584

Rank Tests For One-Way and Two-Way Layouts 588

Variance Components Models 590

References 594

Chapter 17   Multiple Comparisons 597

Introduction 598

Overview 599

Advanced Applications 608

Capabilities and Limits 618

References 620

Index 621
x



PREFACE
Introduction Welcome to the S-PLUS 2000 Guide to Statistics, Volume 1.

This book is designed as a reference tool for S-PLUS users wanting to
use the powerful statistical techniques in S-PLUS. The Guide to
Statistics, Volume 1 covers a wide range of statistical and mathematical
modeling; no one user is likely to tap all of these resources since
advanced topics such as survival analysis and time series are complete
fields of study in themselves.

All examples in this guide are run using input through the
Commands window—the traditional method of accessing the power
of S-PLUS. Many of the functions can also be run through the Statistics
menu and dialogs available in the graphical user interface. We hope
you will find this book a valuable aid for exploring both the theory
and practice of statistical modeling.

Online Version The Guide to Statistics, Volume 1 is also available online, through the
Online Manuals entry of the main Help menu. It can be viewed using
Adobe Acrobat Reader, which is included with S-PLUS.

The online version is identical in content to the printed one but with
some particular advantages. First, you can cut-and-paste example
S-PLUS code directly into the Commands window and run these
examples without having to type them. Be careful not to cut-and-paste
the “>” prompt character and notice that distinct colors differentiate
between command language input and output.

Second, the online text can be searched for any character string. If
you wish information on a certain function, for example, you can
easily browse through all occurrences of it in the guide.

Also, contents and index entries in the online version are hot-links;
click on them to go to the appropriate page.

Evolution of 
S-PLUS

S-PLUS has evolved considerably from its beginnings as a research
tool, and the contents of this guide have grown steadily, and will
continue to grow, as the language is improved and expanded. This
may mean that some examples in the text do not match your output
from S-PLUS in every formatting detail. However, the underlying
theory and computations are as described here.
xi



In addition to the huge range of functionality covered in this guide,
there are additional modules, libraries, and user-written functions
available from a number of sources. Refer to the User’s Guide for more
details.

Companion 
Guides

The Guide to Statistics, Volume 1, together with Guide to Statistics,
Volume 2, is a companion volume to the User’s Guide and the
Programmer’s Guide. All four are available both in printed form and
online through the help system.

This volume covers the following topics:

• An overview of statistical modeling in S-PLUS

• The S-PLUS statistical modeling framework

• Statistical inference for one, two, and many sample problems,
both continuous and discrete

• Cross-classified data and contingency tables

• Regression models

• Robust regression models

• Generalized linear models

• Local regression models

• Classification and regression trees

• Mixed-effects models

• Analysis of variance

The Guide to Statistics, Volume 2 covers multivariate analysis
techniques, cluster analysis, survival analysis, resampling techniques,
and mathematical computing.
xii



Introduction 2

Developing Statistical Models 3

Data Used for Models 4
Data Frame Objects 4
Continuous and Discrete Data 4
Summaries and Plots for Examining Data 5

Statistical Models in S-PLUS 9
The Unity of Models in Data Analysis 10

Example of Data Analysis 15
The Iterative Process of Model Building 15
Exploring the Data 16
Fitting the Model 19
Fitting an Alternative Model 25
Conclusions 27

INTRODUCTION TO 
STATISTICAL ANALYSIS IN 
S-PLUS

1

1



Chapter 1  Introduction to Statistical Analysis in S-PLUS
INTRODUCTION

All statistical analysis has, at its heart, a model which attempts to
describe the structure or relationships in some objects or phenomena
on which measurements (the data) are taken. Estimation, hypothesis
testing, and inference, in general, are based on the data at hand and a
conjectured model which you may define implicitly or explicitly. You
specify many types of models in S-PLUS using formulas, which express
the conjectured relationships between observed variables in a natural
way. The power of S-PLUS as a statistical modeling language lies in its
convenient and useful way of organizing data, its wide variety of
classical and modern modeling techniques, and its way of specifying
models.

The goal of this chapter is to give you a feel for data analysis in
S-PLUS: examining the data, selecting a model, and displaying and
summarizing the fitted model.
2



Developing Statistical Models
DEVELOPING STATISTICAL MODELS

The process of developing a statistical model varies depending on
whether you follow a classical, hypothesis-driven approach
(confirmatory data analysis) or a more modern, data-driven approach
(exploratory data analysis). In many data analysis projects, both
approaches are frequently used. For example, in classical regression
analysis, you usually examine residuals using exploratory data
analytic methods for verifying whether underlying assumptions of the
model hold. The goal of either approach is a model which imitates, as
closely as possible, in as simple a way as possible, the properties of
the objects or phenomena being modeled. Creating a model usually
involves the following steps:

1. Determine the variables to observe. In a study involving a
classical modeling approach, these variables correspond to
the hypothesis being tested. For data-driven modeling, these
variables are the link to the phenomena being modeled.

2. Collect and record the data observations.

3. Study graphics and summaries of the collected data to
discover and remove mistakes and to reveal low-dimensional
relationships between variables.

4. Choose a model describing the important relationships seen
or hypothesized in the data.

5. Fit the model using the appropriate modeling technique.

6. Examine the fit using model summaries and diagnostic plots.

7. Repeat steps 4–6 until you are satisfied with the model.

There are a wide range of possible modeling techniques to choose
from when developing statistical models in S-PLUS. Among these are
linear models (lm), analysis of variance models (aov), generalized
linear models (glm), generalized additive models (gam), local
regression models (loess), and tree-based models (tree).
3



Chapter 1  Introduction to Statistical Analysis in S-PLUS
DATA USED FOR MODELS

This section provides descriptions of the most common types of data
objects used when developing models in S-PLUS. There are also brief
descriptions and examples of common S-PLUS functions used for
developing and displaying models.

Data Frame 
Objects

Statistical models allow inferences to be made about objects by
modeling associated observational or experimental data, organized
by variables. A data frame is an object that represents a sequence of
observations on some chosen set of variables. Data frames are like
matrices, with variables as columns and observations as rows. They
allow computations where variables can act as separate objects and can
be referenced simply by naming them. This makes data frames very
useful in modeling.

Variables in data frames are generally of three forms:

• Numeric vectors

• Factors and ordered factors

• Numeric matrices

Continuous 
and Discrete 
Data

The type of data you have when developing a model is important for
deciding which modeling technique best suits your data. Continuous
data represent quantitative data having a continuous range of values.
Categorical data, by contrast, represent qualitative data and are
discrete, meaning they can assume only certain fixed numeric or
nonnumeric values.

In S-PLUS, you represent categorical data with factors, which keep
track of the levels or different values contained in the data and the
level each data point corresponds to. For example, you might have a
factor gender in which every element assumed one of the two values
"male" and "female". You represent continuous data with numeric
objects. Numeric objects are vectors, matrices, or arrays of numbers.
Numbers can take the form of decimal numbers (such as 11, -2.32,
or 14.955) and exponential numbers expressed in scientific notation
(such as .002 expressed as 2e-3).
4



Data Used for Models
A statistical model expresses a response variable as some function of a
set of one or more predictor variables. The type of model you select
depends on whether the response and predictor variables are
continuous (numeric) or categorical (factor). For example, the
classical regression problem has a continuous response and
continuous predictors, but the classical ANOVA problem has a
continuous response and categorical predictors.

Summaries 
and Plots for 
Examining 
Data

Before you fit a model, you should examine the data. Plots provide
important information on mistakes, outliers, distributions, and
relationships between variables. Numerical summaries provide a
statistical synopsis of the data in a tabular format.

Among the most common functions to use for generating plots and
summaries are the following:

• summary: provides a synopsis of an object. The following
example displays a summary of the kyphosis data frame:

> summary(kyphosis)

   Kyphosis         Age            Number
 absent  :64  Min.   :  1.00  Min.   : 2.000
 present :17  1st Qu.: 26.00  1st Qu.: 3.000
              Median : 87.00  Median : 4.000
              Mean   : 83.65  Mean   : 4.049
              3rd Qu.:130.00  3rd Qu.: 5.000
              Max.   :206.00  Max.   :10.000

       Start
 Min.    : 1.00
 1st Qu. : 9.00
 Median  :13.00
 Mean    :11.49
 3rd Qu. :16.00
 Max.    :18.00

• plot: a generic plotting function, plot produces different
kinds of plots depending on the data passed to it. In its most
common use, it produces a scatter plot of two numeric
objects.

• hist: creates histograms.
5



Chapter 1  Introduction to Statistical Analysis in S-PLUS
• qqnorm: creates quantile-quantile plots.

• pairs: creates, for multivariate data, a matrix of scatter plots
showing each variable plotted against each of the other
variables. To create the pairwise scatter plots for the data in
the matrix longley.x, use pairs as follows:

> pairs(longley.x)

The resulting plot appears as in Figure 1.1.
6



Data Used for Models
Figure 1.1:  Pairwise scatter plots for longley.x.

GNP deflator

250 350 450 550

•

•• •

•
• ••

•
•

•
•

• •• •

•

• ••

•
••

••
•
•

•
••

••

150 250 350

•

• ••

•
••

••
•
•

•
••
• •

•

• ••

•
• •• •

•
•

•
• • • •

1950 1960

90
10

0
11

0

•

• • •

•
• • • •

•
•

•
• • • •

25
0

35
0

45
0

55
0

•
••
•

•
•
••

•
•

• •

•
•
•
•

GNP

•
• •

•

•
•
• •

•
•
• •

•
•

•
•

•
• •

•

•
•
••

•
•
••

•
•
•

•

•
• •

•

•
•

••
•
•

• •

•
•

•
•

•
• •

•

•
•

• •
•

•
• •

•
•

•
•

• •

•
•

•
••

•

• • •

•

••

•

•

• •

•
•

•
• •

•

• • •

•

• •

•

•

Unemployed

••

•
•

•
••

•

•••

•

••

•

•

••

•
•

•
• •

•

• • •

•

• •

•

•

20
0

30
0

40
0

• •

•
•

•
• •

•

• • •

•

• •

•

•

15
0

20
0

25
0

30
0

35
0

•
•
••

•

••
•

•
• •

• •••

•

•
•
• •

•

• •
•

•
• •

• • ••

•

•
•

••

•

••
•

•
••

••• •

•

Armed Forces

•
•
••

•

• •
•

•
• •

• • • •

•

•
•

• •

•

• •
•

•
• •

• • • •

•

• •
•
•

•
•
•
•
•

•
•

•
•
•
•
•

• •
•

•
•
•
•
•

•
•

•
•

•
•
•

•

••
•

•
•

•
•

•
•
•
•

•
•
•

•
•

••
•
•

•
•
•

•
•

•
•

•
•
•
•

•

Population

11
0

11
5

12
0

12
5

13
0

• •
•

•
•

•
•

•
•

•
•

•
•

•
•

•

90 100

19
50

19
55

19
60

•
•
•
•

•
•
•
•
•

•
•

•
•
•
•
•

•
•
•

•
•
•
•
•

•
•

•
•

•
•
•

•

200 300 400

•
•

•
•

•
•
•

•
•
•
•

•
•
•

•
•

•
•

•
•

•
•
•

•
•

•
•

•
•
•
•

•

110 120 130

•
•
•
•
•
•

•
•
•
•

•
•
•

•
•

•

Year
7



Chapter 1  Introduction to Statistical Analysis in S-PLUS
• coplot: provides a graphical look at cross-sectional
relationships, which enable you to assess potential interaction
effects. The following example shows the effect of the
interaction between C and E on values of NOx. The resulting
plots appear as in Figure 1.2.

> attach(ethanol)
> E.intervals <- co.intervals(E, 9, 0.25)
> coplot(NOx ~ C | E, given.values = E.intervals,
+ data = ethanol, panel = function(x, y) panel.smooth(x,
+ y, span = 1, degree = 1))

Figure 1.2:  Coplot of response and predictors.

•
•

••

••
•

• • • • •

•

8 10 14 18

1
2

3
4

•

•
• •

•
•

•••• •
•

•
•

•

••

•

•
•
••
•

•

•

8 10 14 18

•
••••

•

•

•

• •• •• •
•

•
•
••

•
••
• •• •

••
•

•• •
•

•
• •

•
•

•

1
2

3
4

••

•
• ••

•
•

•
•
•
•

1
2

3
4

•
• • •• ••••

•
• ••

8 10 14 18

•• • •
••
••• •• • •

0.6 0.8 1.0 1.2

C

N
O

x

Given :  E
8



Statistical Models in S-PLUS
STATISTICAL MODELS IN S-PLUS

The development of statistical models is, in many ways, data
dependent. The choice of the modeling technique you use depends
upon the type and structure of your data and what you want the
model to test or explain. A model may predict new responses, show
general trends, or uncover underlying phenomena. This section gives
general selection criteria to help you develop a statistical model.

The fitting procedure for each model is based on a unified modeling
paradigm in which:

• A data frame contains the data for the model.

• A formula object specifies the relationship between the
response and predictor variables.

• The formula and data frame are passed to the fitting function.

• The fitting function returns a fit object.

There is a relatively small number of functions to help you fit and
analyze statistical models in S-PLUS.

• Fitting models:

• lm: linear (regression) models.

• aov and varcomp: analysis of variance models.

• glm: generalized linear models.

• gam: generalized additive models.

• loess: local regression models.

• tree: tree models.

• Extracting information from a fitted object:

• fitted: returns fitted values.

• coefficients or coef: returns the coefficients (if
present).

• residuals or resid: returns the residuals.

• summary: provides a synopsis of the fit.
9



Chapter 1  Introduction to Statistical Analysis in S-PLUS
• anova: for a single fit object, produces a table with rows
corresponding to each of the terms in the object, plus a
row for residuals. If two or more fit objects are used as
arguments, anova returns a table showing the tests for
differences between the models, sequentially, from first to
last.

• Plotting the fitted object:

• plot: plot a fitted object.

• qqnorm: produces a normal probability plot, frequently
used in analysis of residuals.

• coplot: provides a graphical look at cross-sectional
relationships for examining interaction effects.

• For minor modifications in a model, use the update function
(adding and deleting variables, transforming the response,
etc.).

• To compute the predicted response from the model, use the
predict function.

The Unity of 
Models in Data 
Analysis

Because there is usually more than one way to model your data, you
should learn which type(s) of model are best suited to various types of
response and predictor data. When deciding on a modeling
technique, it helps to ask: “What do I want the data to explain? What
hypothesis do I want to test? What am I trying to show?”

Some methods should or should not be used depending on whether
the response and predictors are continuous, factors, or a combination
of both. Table 1.1 organizes the methods by the type of data they can
handle.
10



Statistical Models in S-PLUS
Linear regression models a continuous response variable, y, as a
linear combination of predictor variables xj, for j = 1, ..., p. For a
single predictor, the data fit by a linear model scatter about a straight
line or curve. A linear regression model has the mathematical form

where ε i, referred to, generally, as the error, is the difference between
the ith observation and the model. On average, for given values of the
predictors, you predict the response best with the equation

Analysis of variance models are also linear models, but all predictors
are categorical, which contrasts with the typically continuous
predictors of regression. For designed experiments, use analysis of
variance to estimate and test for effects due to the factor predictors.
For example, consider the catalyst data frame, which contains the
data below:

Table 1.1:  Criteria for developing models.

Model Response Predictors

lm Continuous Both

aov Continuous Factors

glm Both Both

gam Both Both

loess Continuous Both

tree Both Both

yi β0 βjxij
j 1=

p

∑ ε i+ +=

y β0 β jxj
j 1=

p

∑+=
11



Chapter 1  Introduction to Statistical Analysis in S-PLUS
      Temp Conc Cat Yield
    1  160   20   A    60
    2  180   20   A    72
    3  160   40   A    54
    4  180   40   A    68
    5  160   20   B    52
    6  180   20   B    83
    7  160   40   B    45
    8  180   40   B    80

Each of the predictor terms, Temp, Conc, and Cat, is a factor with two
possible levels, and the response term, Yield, contains numeric data.
Use analysis of variance to estimate and test for the effect of the
predictors on the response.

Linear models produce estimates with good statistical properties
when the relationships are, in fact, linear, and the errors are normally
distributed. In some cases, when the distribution of the response is
skewed, you can transform the response, using, for example, square
root, logarithm, or reciprocal transformations, and produce a better
fit. In other cases, you may need to include polynomial terms of the
predictors in the model. However, if linearity or normality does not
hold, or if the variance of the observations is not constant, and
transformations of the response and predictors do not help, you
should explore other techniques such as generalized linear models,
generalized additive models, or classification and regression trees.

Generalized linear models generalize linear models by assuming a
transformation of the expected (or average) response is a linear
function of the predictors, and the variance of the response is a
function of the mean response:

Generalized linear models, fitted using the glm function, allow you to
model data with distributions including normal, binomial, Poisson,
gamma, and inverse normal, but still require a linear relationship in
the parameters.

η E y( )( ) β0 β jxj
j 1=

p

∑+=

VAR y( ) φV µ( )=
12



Statistical Models in S-PLUS
When the linear fit provided by glm does not produce a good fit, an
alternative is the generalized additive model, fit with the gam
function. In contrast to glm, gam allows you to fit nonlinear data-
dependent functions of the predictors. The mathematical form of a
generalized additive model is:

where the fj term represent functions to be estimated from the data.
The form of the model assumes a low-dimensional additive structure.
That is, the pieces represented by functions, fi, of each predictor
added together predict the response without interaction.

In the presence of interactions, if the response is continuous and the
errors about the fit are normally distributed, local regression (or loess)
models, allow you to fit a multivariate function which include
interaction relationships. The form of the model is:

where g represents the regression surface.

Tree-based models have gained in popularity because of their
flexibility in fitting all types of data. Tree models are generally used
for exploratory analysis. They allow you to study the structure of
data, creating nodes or clusters of data with similar characteristics.
The variance of the data within each node is relatively small, since the
characteristics of the contained data is similar. The following example
displays a tree-based model using the data frame car.test.frame:

> car.tree <- tree(Mileage ~ Weight, car.test.frame)
> plot(car.tree, type = "u")
> text(car.tree)
> title("Tree-based Model")

η E y( )( ) fj xj( )
j 1=

p

∑=

yi g xi1 xi2 … xip, , ,( ) ε+=
13



Chapter 1  Introduction to Statistical Analysis in S-PLUS
The resulting plot appears as in Figure 1.3.

Figure 1.3:  A tree-based model for Mileage versus Weight.

|
Weight<2567.5

Weight<2280 Weight<3087.5

Weight<2747.5

Weight<2882.5

Weight<3637.5

Weight<3322.5

Weight<3197.5

34.00 28.89

25.62

23.33 24.11

20.60 20.40

22.00

18.67

Tree-based Model
14



Example of Data Analysis
EXAMPLE OF DATA ANALYSIS

The example that follows describes only one way of analyzing data
through the use of statistical modeling. There is no perfect cookbook
approach to building models, as different techniques do different
things, and not all of them use the same arguments when doing the
actual fitting.

The Iterative 
Process of 
Model Building

As was discussed at the beginning of this chapter, there are some
general steps you can take when building a model:

1. Determine the variables to observe. In a study involving a
classical modeling approach, these variables correspond
directly to the hypothesis being tested. For data-driven
modeling, these variables are the link to the phenomena
being modeled.

2. Collect and record the data observations.

3. Study graphics and summaries of the collected data to
discover and remove mistakes and to reveal low-dimensional
relationships between variables.

4. Choose a model describing the important relationships seen
or hypothesized in the data.

5. Fit the model using the appropriate modeling technique.

6. Examine the fit through model summaries and diagnostic
plots.

7. Repeat steps 4–6 until you are satisfied with the model.

At any point in the modeling process, you may find that your choice
of a model does not appropriately fit the data. In some cases,
diagnostic plots may give you clues to improve the fit. Sometimes you
may need to try transformed variables or entirely different variables.
You may need to try a different modeling technique that will, for
example, allow you to fit nonlinear relationships, interactions, or
different error structures. At times, all you need to do is remove
outlying, influential data, or fit the model robustly. A point to
remember is that there is no one answer on how to build good
15



Chapter 1  Introduction to Statistical Analysis in S-PLUS
statistical models. By iteratively fitting, plotting, testing, changing
something and then refitting, you will arrive at the best fitting model
for your data.

Exploring the 
Data

The following analysis uses the built-in data set auto.stats, which
contains a variety of data for car models between the years 1970-1982,
including price, miles per gallon, weight, and more. Suppose we want
to model the effect that Weight has on the gas mileage of a car. The
object, auto.stats, is not a data frame, so we start by coercing it
into a data frame object:

> auto.dat <- data.frame(auto.stats)

Attach the data frame to treat each variable as a separate object:

> attach(auto.dat)

Look at the distribution of the data by plotting a histogram of the two
variables, Weight and Miles.per.gallon. First, split the graphics
screen into two portions to display both graphs:

> par(mfrow = c(1, 2))

Plot the histograms:

> hist(Weight)
> hist(Miles.per.gallon)

The resulting histograms appear as in Figure 1.4.

Figure 1.4:  Histograms of Weight and Miles.per.gallon.

2000 3000 4000 5000

0
5

1
0

1
5

Weight

10 20 30 40

0
5

1
0

2
0

Miles.per.gallon
16



Example of Data Analysis
Subsetting (or subscripting) gives you the ability to look at only a
portion of the data. For example, type the following to look at only
those cars with mileage greater than 34 miles per gallon:

> auto.dat[Miles.per.gallon > 34,]

               Price Miles.per.gallon Repair (1978)
    Datsun 210  4589               35             5
        Subaru  3798               35             5
Volk Rabbit(d)  5397               41             5

               Repair (1977) Headroom Rear.Seat Trunk Weight
    Datsun 210             5      2.0      23.5     8   2020
        Subaru             4      2.5      25.5    11   2050
Volk Rabbit(d)             4      3.0      25.5    15   2040
               Length Turning.Circle Displacement Gear.Ratio
    Datsun 210    165             32           85       3.70
        Subaru    164             36           97       3.81
Volk Rabbit(d)    155             35           90       3.78

Suppose you want to predict the gas mileage of a particular auto
based upon its weight. Create a scatter plot of Weight versus
Miles.per.gallon to examine the relationship between the
variables. First, reset the graphics window to display only one graph:

> par(mfrow = c(1,1))

Plot Weight versus Miles.per.gallon. The plot appears as in
Figure 1.5.

> plot(Weight, Miles.per.gallon)
17



Chapter 1  Introduction to Statistical Analysis in S-PLUS
The resulting figure displays a curved scattering of the data. This
might suggest a nonlinear relationship. Create a plot from a different
perspective, giving gallons per mile (1/Miles.per.gallon) as the
vertical axis:

> plot(Weight, 1/Miles.per.gallon)

Figure 1.5:  Scatter plot: Weight versus Miles.per.gallon.

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •
•

•

•
•

••
•

•

•

•

•

•

•

•
•

• ••
•• •

•

•

•

•

•

•

•

•

•

•

•

Weight

M
ile

s.
pe

r.
ga

llo
n

2000 2500 3000 3500 4000 4500

15
20

25
30

35
40
18



Example of Data Analysis
The resulting scatter plot appears as in Figure 1.6.

Fitting the 
Model

Gallons per mile is more linear with respect to weight, suggesting that
you can fit a linear model to Weight and 1/Miles.per.gallon. The
formula 1/Miles.per.gallon ~ Weight describes this model. Fit
the model by using the lm function, and name the fitted object fit1:

> fit1 <- lm(1/Miles.per.gallon ~ Weight)

As with any S-PLUS object, when you type the name, fit1, S-PLUS
prints the object, in this case, using the specific print method for "lm"
objects:

> fit1

Call:
lm(formula = 1/Miles.per.gallon ~ Weight)

Coefficients:
 (Intercept)       Weight
 0.007447302 1.419734e-05

Figure 1.6:  Scatter plot of Weight versus 1/Miles.per.gallon.

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •

•

•

•
•

••
•

•

•

•

•

•

•

• •

• ••
•• •

•
•

•

•

•

•

•

•

•
•

•

Weight

1/
M

ile
s.

pe
r.

ga
llo

n

2000 2500 3000 3500 4000 4500

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08
19



Chapter 1  Introduction to Statistical Analysis in S-PLUS
Degrees of freedom: 74 total; 72 residual
Residual standard error: 0.006363808

Plot the regression line to see how well it fits the data. The resulting
line appears as in Figure 1.7.

> abline(fit1)

Judging from Figure 1.7, the regression line does not fit well in the
upper range of Weight. Plot the residuals versus the fitted values to
see more clearly where the model does not fit well.

> plot(fitted(fit1), residuals(fit1))

Figure 1.7:  Regression line of fit1.

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •

•

•

•
•

••
•

•

•

•

•

•

•

• •

• ••
•• •

•
•

•

•

•

•

•

•

•
•

•

Weight

1/
M

ile
s.

pe
r.

ga
llo

n

2000 2500 3000 3500 4000 4500

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08
20



Example of Data Analysis
The plot appears as in Figure 1.8.

Note that with the exception of two outliers in the lower right corner,
the residuals become more positive as the fitted value increases. You
can identify the outliers by typing the following command, then
interactively clicking on the outliers with your mouse:

> outliers <- identify(fitted(fit1), residuals(fit1),
+ labels = names(Weight))

Figure 1.8:  Plot of residuals for fit1.

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

• •

•
•

•
•

•

• •
•

•

•
••

•

•

• •
•

•
•

•

••

•
•

•
•

•

•
•

•

•

•

•

•••

••

•

•

•

•

•

•

•

•
•

•

fitted(fit1)

re
si

du
al

s(
fit

1)

0.04 0.05 0.06 0.07

-0
.0

2
-0

.0
1

0.
0

0.
01
21



Chapter 1  Introduction to Statistical Analysis in S-PLUS
The identify function allows you to interactively select the points
on the plot. The labels argument and names function label the
points with their names in the object. For more information on the
identify function, see Chapter 8, Traditional Graphics, in the
Programmer’s Guide. The plot appears as in Figure 1.9.

These outliers correspond to cars with better gas mileage than other
cars in the study with similar weights. You can remove the outliers
using the subset argument to lm.

> fit2 <- lm(1/Miles.per.gallon ~ Weight,
+ subset = -outliers)

Plot Weight versus 1/Miles.per.gallon, and also two regression
lines, one for the fit1 object and one for the fit2 object. Use the
lty= argument to differentiate between the regression lines:

> plot(Weight, 1/Miles.per.gallon)
> abline(fit1, lty=2)
> abline(fit2)

Figure 1.9:  Plot with labeled outliers.

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

• •

•
•

•
•

•

• •
•

•

•
••

•

•

• •
•

•
•

•

••

•
•

•
•

•

•
•

•

•

•

•

•••

••

•

•

•

•

•

•

•

•
•

•

fitted(fit1)

re
si

du
al

s(
fit

1)

0.04 0.05 0.06 0.07

-0
.0

2
-0

.0
1

0.
0

0.
01

Olds 98

Cad. Seville
22



Example of Data Analysis
The two lines appear with the data in Figure 1.10.

A plot of the residuals versus the fitted values shows a better fit. The
plot appears as in Figure 1.11.

> plot(fitted(fit2), residuals(fit2))

Figure 1.10:  Regression lines of fit1 versus fit2.

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •

•

•

•
•

••
•

•

•

•

•

•

•

• •

• ••
•• •

•
•

•

•

•

•

•

•

•
•

•

Weight

1/
M

ile
s.

pe
r.

ga
llo

n

2000 2500 3000 3500 4000 4500

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08
23



Chapter 1  Introduction to Statistical Analysis in S-PLUS
To see a synopsis of the fit contained in fit2, use summary as follows:

> summary(fit2)

Call: lm(formula = 1/Miles.per.gallon ~ Weight,
subset = - outliers)
Residuals:
      Min        1Q     Median       3Q     Max
 -0.01152 -0.004257 -0.0008586 0.003686 0.01441

Coefficients:
              Value Std. Error t value Pr(>|t|)
(Intercept)  0.0047     0.0026  1.8103   0.0745
     Weight  0.0000     0.0000 18.0625   0.0000

Residual standard error: 0.00549 on 70 degrees of freedom 
Multiple R-squared: 0.8233
F-statistic: 326.3 on 1 and 70 degrees of freedom, the 
p-value is 0

Figure 1.11:  Plot of residuals for fit2.

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

• •

•

•

•
•

• •

•
•

•

•
•

•

• •

•
•

•

•

•
•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•

•
••

••

•

•

•

•

•

•

•

•
• •

fitted(fit2)

re
si

du
al

s(
fit

2)

0.03 0.04 0.05 0.06 0.07 0.08

-0
.0

10
0.

0
0.

00
5

0.
01

0
0.

01
5

24



Example of Data Analysis
Correlation of Coefficients:
       (Intercept)
Weight -0.9686

The summary displays information on the spread of the residuals,
coefficients, standard errors, and tests of significance for each of the
variables in the model (it includes an intercept by default), and overall
regression statistics for the fit. As expected, Weight is a very
significant predictor of 1/Miles.per.gallon. The amount of the
variability of 1/Miles.per.gallon explained by Weight is about
82%, and the residual standard error is .0055, down about 14% from
that of fit1.

To see the individual coefficients for fit2, use coef as follows:

> coef(fit2)

 (Intercept)       Weight
 0.004713079 1.529348e-05

Fitting an 
Alternative 
Model

Now consider an alternative approach. Recall the plot in Figure 1.5
showed curvature in the scatter plot of Weight versus
Miles.per.gallon, indicating that a straight line fit is an
inappropriate model. You can fit a nonparametric nonlinear model to
the data using gam using a cubic spline smoother to model the
curvature in the data:

> fit3 <- gam(Miles.per.gallon ~ s(Weight))
> fit3

Call:
gam(formula = Miles.per.gallon ~ s(Weight))

Degrees of Freedom: 74 total; 69.00244 Residual
Residual Deviance: 704.7922
25



Chapter 1  Introduction to Statistical Analysis in S-PLUS
The resulting plot of fit3 appears as in Figure 1.12.

> plot(fit3, residuals = T, scale =
+ diff(range(Miles.per.gallon)))

The cubic spline smoother in the plot appears to give a good fit to the
data. You can check the fit with diagnostic plots of the residuals as we
did for the linear models. You should also compare the gam model
with a linear model using aov to produce a statistical test.

Use the predict function to make predictions from models. One of
the arguments to predict, newdata, specifies a data frame
containing the values at which the predictions are required. If
newdata is not supplied, the predict function will make predictions
at the data originally supplied to fit the gam model, as in the following
example:

> predict.fit3 <- predict(fit3)

Figure 1.12:  Plot of additive model with smoothed spline term.

Weight

s(
W

ei
gh

t)

2000 2500 3000 3500 4000 4500

-1
0

-5
0

5
10

15
20

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •
•

•

•
•

••
•

•

•

•

•

•

•

•
•

• ••
•• •

•

•

•

•

•

•

•

•

•

•

•

26



Example of Data Analysis
Create a new object predict.high and print it to display cars with
predicted miles per gallon greater than 30:

> predict.high <- predict.fit3[predict.fit3 > 30]
> predict.high

 Ford Fiesta Honda Civic Plym Champ
    30.17946    30.49947   30.17946

Conclusions The previous examples show a few simple methods for taking data
and iteratively fitting models until achieving desired results. The
chapters that follow discuss the previously mentioned modeling
techniques in far greater detail. Before proceeding further, it is good
to remember that:

• General formulas define the structure of models.

• Data used in model-fitting are generally in the form of data
frames.

• Different methods can be used on the same data.

• A variety of functions are available for diagnostic study of the
fitted models.

• The S-PLUS functions, like model-fitting in general, are
designed to be very flexible for users. Handling different
preferences and procedures in model-fitting are what make
S-PLUS very effective for data analysis.
27



Chapter 1  Introduction to Statistical Analysis in S-PLUS
28



Introduction 30

Basic Formulas 31
Continuous Data 31
Categorical Data 32
General Formula Syntax 32

Interactions in Formulas 34
Categorical Data 34
Continuous Data 35

Nesting in Formulas 36

Interactions Between Categorical and Continuous
  Variables 37

Using the Period Operator in Formulas 39

Combining Formulas With Fitting Procedures 40
Composite Terms in Formulas 41

Contrasts: The Coding of Factors 42
Built-In Contrasts 42
Specifying Contrasts 44

Useful Functions For Model Fitting 47

Optional Arguments to Model-Fitting Functions 49

SPECIFYING MODELS IN 
S-PLUS 2
29



Chapter 2  Specifying Models in S-PLUS
INTRODUCTION

Models are specified in S-PLUS using formulas, which express the
conjectured relationships between observed variables in a natural
way. Once you begin building models in S-PLUS, you quickly
discover that formulas specify models for the wide variety of
modeling techniques available in S-PLUS. You can use the same
formula to specify a model for linear regression (lm), analysis of
variance (aov), generalized linear modeling (glm), generalized
additive modeling (gam), local regression (loess), and tree-based
regression (tree).

For example, consider the following formula:

> mpg ~ weight + displ

This formula can specify a least squares regression with mpg regressed
on two predictors, weight and displ, or a generalized additive
model with purely linear effects.

You can also specify smoothed fits for weight and displ in the
generalized additive model as follows:

> mpg ~ s(weight) + s(displ)

and compare the resulting fit with the purely linear fit to see if some
nonlinear structure must be built into the model.

Thus, formulas provide the means for you to specify models for all
modeling techniques: parametric or nonparametric, classical or
modern. This chapter provides you with an introduction to the syntax
used for specifying statistical models.

The chapters that follow make use of this syntax in a wide variety of
specific examples.
30



Basic Formulas
BASIC FORMULAS

A formula is an S-PLUS expression that specifies the form of a model
in terms of the variables involved. For example, to specify that mpg is
modeled as a linear and additive model of the two predictors weight
and displ, you use the following formula:

> mpg ~ weight + displ

The tilde (~) character separates the response variable from the
explanatory variables. For something to be interpretable as a variable
it must be one of the following:

• numeric vector

• factor or ordered factor

• matrix

For numeric vectors, one coefficient is fit; for matrices, a coefficient
for each column is fit; for factors, the equivalent of one coefficient is fit
for each level of the factor.

You can use any acceptable S-PLUS expression in the place of any of
the variables, provided the expression evaluates to something
interpretable as one or more variables. Thus, the formula

> log(mpg) ~ weight + poly(displ,2)

specifies that the log of mpg is modeled as a linear function of weight
and a quadratic polynomial of displ.

Continuous 
Data

Each continuous variable you provide generates one coefficient in the
fitted model. Thus, the formula

> mpg ~ weight + displ

fits the model

mpg = β0 + β1 weight + β2 displ + ε

A formula always implicitly includes an intercept term (β0 in the
above formula).
31



Chapter 2  Specifying Models in S-PLUS
You can, however, remove the intercept term by specifying the model
with -1 as an explicit predictor:

> mpg ~ -1 + weight + displ

Similarly, you can explicitly include an intercept with a + 1.

When you provide a numeric matrix as one term in a formula, each
column of the matrix is taken to be a separate variable in the model.
Any names associated with the columns are carried along as labels in
the subsequent fits.

Categorical 
Data

When you specify categorical variables (factors, ordered factors, or
categories) as predictors in the formulas, the modeling functions fit a
coefficient for each level of the variable. For example, to model
salary as a linear model of age (continuous) and gender (factor)
you specify it as follows:

> salary ~ age + gender

However, a different parameter is fitted for each of the two levels of
gender. This is equivalent to fitting two dummy variables—one for
males and one for females. Thus, you need not create and specify
dummy variables in the model. (In actuality only one additional
parameter is fitted, because the parameters are not independent of the
intercept term. More details on over-parameterization and the
defining of contrasts between factor levels is provided in the section
Contrasts: The Coding of Factors.

General 
Formula 
Syntax

This section provides a table summarizing the meanings of the
operators in formulas and shows how to create and save formulas.
32



Basic Formulas
Table 2.1, based on page 29 of Statistical Models in S, summarizes the
syntax of formulas.

You can create and save formulas as objects using the formula
function:

> form.eg.1 <- formula(Fuel ~ poly(Weight, 2) + Disp. +
+ Type)
> form.eg.1

Fuel ~ poly(Weight, 2) + Disp. + Type

Table 2.1:  A summary of formula syntax.

Expression Meaning

T ~ F T is modeled as F

Fa + Fb Include both Fa and Fb in the model

Fa - Fb Include all of Fa except what is in Fb in the model

Fa : Fb The interaction between Fa and Fb

Fa * Fb Fa + Fb + Fa : Fb

Fb %in% Fa Fb is nested within Fa

Fa / Fb Fa + Fb %in% Fa

F^m All terms in F crossed to order m
33



Chapter 2  Specifying Models in S-PLUS
INTERACTIONS IN FORMULAS

You can specify interactions for categorical data (e.g., factors),
continuous data, or a mixture of the two. In each case, additional
parameters are fitted that are appropriate for the different types of
variables specified in the model. The syntax for specifying the
interaction is the same in each case, but the interpretation varies
depending on the data types.

To specify a particular interaction between two or more variables use
a colon (:) between the variable names. Thus, to specify the
interaction between gender and race, use the following term:

gender:race

You can use an asterisk (*) to specify all terms in the model created by
the subsets of the variables named along with the *. Thus

salary ~ age * gender

is equivalent to

salary ~ age + gender + age:gender

You can remove terms with a minus or hyphen (-). Thus

salary ~ gender*race*education - gender:race:education

is equivalent to

salary ~ gender + race + education + gender:race + 
gender:education + race:education

the model consisting of all the terms in the full model except the
three-way interaction. A third way to specify this model is by using
the power notation to get all terms of order two or less:

salary ~ (gender + race + education) ^ 2

Categorical 
Data

For categorical data, interactions add coefficients for each
combination of the levels of the named factors. Thus, for two factors,
Opening and Mask, with three and five levels, respectively, the
Opening:Mask term in a model adds 15 additional parameters to the
34



Interactions in Formulas
model. (In practice, because of dependencies among the parameters,
only some of the total number of parameters specified by a model are
fitted.)

You can specify, for example, a two-way analysis of variance with the
simplified notation as follows:

skips ~ Opening * Mask

The fitted model is

skips = µ + Openingi + Maskj + (Opening : Mask)ij + ε

Continuous 
Data

You can specify interactions between continuous variables in the
same way as you do for categorical and a mixture of categorical and
continuous variables. However, the interaction specified is
multiplicative. Thus

mpg ~ weight * displ

fits the model

mpg = β0 + β1weight + β2displ + β3(weight)(displ) + ε
35



Chapter 2  Specifying Models in S-PLUS
NESTING IN FORMULAS

Nesting arises in models when the levels of one or more factors make
sense only within the levels of one or more other factors. For example,
in sampling the U.S. population, a sample of states is drawn, from
which a sample of counties is drawn, from which a sample of cities is
drawn, from which a sample of families or households is drawn.
Counties are nested within states, cities are nested within counties,
and households are nested within cities.

There is special syntax to emphasize the nesting of factors within
others. You can write the county within state model as:

state + county

You can state the model more succinctly with

state / county

which means “state and then county within state.” The slash (/) used
for nested models is the counterpart of the asterisk (*) which is used
for factorial models.

You can specify the full state-county-city-household example as
follows:

state / county / city / household
36



Interactions Between Categorical and Continuous Variables
INTERACTIONS BETWEEN CATEGORICAL AND 
CONTINUOUS VARIABLES

For categorical data combined with continuous data, interactions add a
coefficient for the continuous variable for each level of the categorical
variable. So, for example, you can easily fit a model with different
slope estimates for different groups where the categorical variables
specify the groups.

When you combine categorical and continuous data using the nesting
syntax, you can specify analysis of covariance models simply. If
gender (categorical) and age (continuous) are predictors in a model,
you can fit separate slopes for each gender by nesting. First, make
gender a factor (that is, gender <- factor(gender)). Then the
analysis of covariance model is:

salary ~ gender / age

This fits a model equivalent to:

µ + genderi + βiage

This is also equivalent to gender * age. However, the
parameterization for the two models is different. When you fit the
nested model, you get estimates of the individual slopes for each
group. When you fit the factorial model, you get an overall slope
estimate plus the deviations in the slope for the different group
contrasts. For example, in gender / age, the formula expands into
main effects for gender followed by age within each level of gender.
One coefficient is fitted for age from each level of gender. Another
coefficient estimates the contrast between the two levels of gender.
Thus, the nesting model fits the following type of model:

SalaryM µ αg β1 age×+ +=

SalaryF µ αg– β2 age×+=
37



Chapter 2  Specifying Models in S-PLUS
The intercept is µ, the contrast is αg, and the model has coefficients βi
for age within each level of gender. Thus, you have separate slope
estimates for each group. Conversely, the factorial model
gender * age fits the following model:

You get the overall slope estimate β plus the deviations in the slope
for the different group contrasts.

You can fit the “equal slope, separate intercept” model by specifying:

salary ~ gender + age

This fits a model equivalent to:

SalaryM µ αg– β age γ age×–×+=

SalaryF µ αg β age γ age×+×+ +=

µ genderi β age×+ +
38



Using the Period Operator in Formulas
USING THE PERIOD OPERATOR IN FORMULAS

A single period (“.”) operator can act as a default left or right side of a
formula. There are numerous ways you can use “.” in formulas. To see
how “.” is used, consider the function update, which allows you to
modify existing models. The following example uses the data frame
fuel.frame to display the usage of the single “.” in formulas:

> fuel.null <- lm(Fuel ~ 1, fuel.frame)

If Weight is the single best predictor, use update to add it to the
model:

> fuel.wt <- update(fuel.null, . ~ . + Weight)
> fuel.wt

Call:
lm(formula = Fuel ~ Weight, data = fuel.frame)

Coefficients:
 (Intercept)     Weight
   0.3914324 0.00131638
Degrees of freedom: 60 total; 58 residual
Residual standard error: 0.387715

The single dots “.” in the above example are replaced on the left and
right side of the tilde “~” by the left and right sides of the formula
used to fit the object fuel.null. Two additional methods use “.” in
reference to data frame objects. In the following example, a linear
model is fit using the data frame fuel.frame:

> lm(Fuel ~ ., data = fuel.frame)

Here, the new model includes all the predictors in fuel.frame. In
the example,

> lm(skips ~ .^2, data = solder.balance)

all main effects and second-order interactions in solder.balance
are used to fit the model.
39



Chapter 2  Specifying Models in S-PLUS
COMBINING FORMULAS WITH FITTING PROCEDURES

Once you specify a model with its associated formula, you can fit it to
a given data set by passing the formula and the data to the
appropriate fitting procedure. For the following example, you create
the data frame auto.dat from the data set auto.stats by typing,

> auto.dat <- data.frame(auto.stats)

To fit a linear model to Miles.per.gallon ~ Weight +
Displacement, when Miles.per.gallon, Weight, and
Displacement are columns in a data frame named auto.dat, you
type:

> lm(Miles.per.gallon ~ Weight + Displacement, auto.dat)

You could fit a smoothed model to the same data with:

> loess(Miles.per.gallon ~ s(Weight) + s(Displacement),
+ auto.dat)

All the fitting procedures take a formula and an optional data set
(actually a data frame) as the first two arguments. If the individual
variables are in your search path, or you attached the data frame
auto.dat, you can omit the data specification and type more simply:

> lm(Miles.per.gallon ~ Weight + Displacement)

or

> loess(Miles.per.gallon ~ s(Weight) + s(Displacement))

Warning

If you attach a data frame for fitting models and have objects in your .Data directory with names
that match those in the data frame, the data frame variables are masked and are not used in the
actual model fitting.
40



Combining Formulas With Fitting Procedures
Composite 
Terms in 
Formulas

As was previously mentioned, certain operators have special meaning
when used in formula expressions. They must appear only at the top
level in the formulas and only on the right side of the “~”. However, if
the operators appear within arguments to functions within the
formula, then they work as they normally do in S-PLUS. In the
formula

Kyphosis ~ poly(Age, 2) + I((Start > 12) * (Start - 12))

the ‘*’ and ‘-’ operators evaluate as they normally do in S-PLUS,
without the special meaning they have when used at the top level
within the formula because they appear within arguments to the I
function. The I function’s sole purpose, in fact, is to protect special
operators on the right side of formulas.

You can use any acceptable S-PLUS expression in the place of any
variable within the formula, provided the expression evaluates to
something interpretable as one or more variables. The expression must be
one of the following:

• Numeric vector

• Factor, ordered factor, or category

• Matrix

Thus, certain composite terms (among them poly, I, and bs) can be
used as formula variables. Matrices used in formulas are treated as
single terms. You can also use functions that produce factors and
categories as formula variables.
41



Chapter 2  Specifying Models in S-PLUS
CONTRASTS: THE CODING OF FACTORS

A coefficient for each level of a factor cannot usually be estimated
because of dependencies among the coefficients of the overall model.
An example of this is the sum of all the dummy variables for any
factor, which is a vector of all ones. This corresponds to the term used
for fitting an intercept. Overparametrization induced by dummy
variables is removed prior to fitting, by replacing the dummy
variables with a set of linear combinations of the dummy variables,
which are:

• functionally independent of each other, and

• functionally independent of the sum of the dummy variables.

A factor with k levels has k - 1 possible independent linear
combinations. A particular choice of linear combinations of the
dummy variables is called a set of contrasts. Any choice of contrasts for
a factor alters the specific individual coefficients in the model, but does
not change the overall contribution of the term to the fit.

Built-In 
Contrasts

S-PLUS provides four different kinds of contrasts as built-in functions:

• Helmert contrasts

The function contr.helmert implements Helmert contrasts.
The jth linear combination is the difference between the level
j + 1 and the average of the first j. The following example
returns a Helmert parametrization based upon four levels:

> contr.helmert(4)

  [,1] [,2] [,3]
1   -1   -1   -1
2    1   -1   -1
3    0    2   -1
4    0    0    3

• Orthogonal polynomials

The function contr.poly implements polynomial contrasts.
Individual coefficients represent orthogonal polynomials if
the levels of the factor are equally spaced numeric values. In
42



Contrasts: The Coding of Factors
general, the function produces k - 1 orthogonal contrasts
representing polynomials of degree 1 to k - 1. The following
example uses four levels:

> contr.poly(4)

              L     Q           C
[1,] -0.6708204   0.5  -0.2236068
[2,] -0.2236068  -0.5   0.6708204
[3,]  0.2236068  -0.5  -0.6708204
[4,]  0.6708204   0.5   0.2236068

• Sum

The function contr.sum implements sum contrasts. This
produces contrasts between each of the first k - 1 levels and
level k:

> contr.sum(4)

  [,1] [,2] [,3]
1    1    0    0
2    0    1    0
3    0    0    1
4   -1   -1   -1

• Treatment

The function contr.treatment implements treatment
contrasts. This is not really a contrast but simply includes each
level as a dummy variable excluding the first one. This
generates statistically dependent coefficients even in balanced
experiments.

> contr.treatment(4)

  2 3 4
1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

This is not a true set of contrasts, for the columns do not sum
to zero and thus are not orthogonal to the vector of ones.
43



Chapter 2  Specifying Models in S-PLUS
Specifying 
Contrasts

Use the functions C, contrasts, and options to specify contrasts.
Use C to specify a contrast as you type the formula; it is the simplest
way to alter the choice of contrasts. Use contrasts to specify a
contrast attribute on a factor. Use options to specify the default
choice of contrasts for all factors.

The C Function As was previously stated, the C function is the simplest way to alter
the choice of contrasts. The arguments to the function are C(object,
contr) where object is a factor or ordered factor, and contr is the
contrast to alter. An optional argument, how.many, is for the number
of contrasts to assign to the factor. The value returned by C is the
factor with a "contrasts" attribute equal to the specified contrast
matrix.

For example, with the soldering experiment contained in
solder.balance, you could specify sum contrasts for Mask with
C(Mask, sum). You could also have your own contrast function,
special.contrast, that returns a matrix of the desired dimension
with the call C(Mask, special.contrast).

You can also specify contrasts by supplying the contrast matrix
directly. For example, quality is a factor with four levels:

> levels(quality)

[1] "tested-low"  "low"      "high"      "tested-high"

You can contrast levels 1 and 4 with levels 2 and 3 by including
quality in the model formula as C(quality, c(1, -1, -1, 1)).
Two additional contrasts are generated, orthogonal to the one
supplied.

Note

If you create your own contrast function, it must return a matrix with the following properties:

• The number of rows must be equal to the number of levels specified and the number of
columns one less than the number of rows.

• The columns must be linearly independent of each other and of the vector of all ones.
44



Contrasts: The Coding of Factors
To contrast the “low” values versus the “high” values, provide the
contrasts as a matrix:

> contrast.mat

     [,1] [,2]
[1,]    1    1
[2,]   -1    1
[3,]   -1   -1
[4,]    1   -1

The contrasts 
Function

Use the contrasts function to set the contrasts for a particular factor
whenever it appears. The contrasts function extracts contrasts from
a factor and returns them as a matrix. The following sets the contrasts
for the quality factor:

> contrasts(quality) <- contrast.mat
> contrasts(quality)

            [,1] [,2] [,3]
 tested-low    1    1 -0.5
        low   -1    1  0.5
       high   -1   -1 -0.5
tested-high    1   -1  0.5

Now quality has the contrast.mat parametrization by default any
time it appears in the formula. To override this new default setting,
supply a new contrast specification through the C function.

Setting the 
contrasts Option

Use the contrast options function to change the default choice of
contrasts for all factors, as in the following example:

> options()$contrasts

          factor      ordered
 "contr.helmert" "contr.poly"

> options(contrasts = c(factor = "contr.treatment",
+ ordered = "contr.poly"))
> options()$contrasts

[1] "contr.treatment" "contr.poly"
45



Chapter 2  Specifying Models in S-PLUS
In summary, the options function sets the default choice of contrasts
globally (on all factors); the contrasts function sets the default
choice of contrasts on a particular factor; and the C function overrides
the default.
46



Useful Functions For Model Fitting
USEFUL FUNCTIONS FOR MODEL FITTING

As model building proceeds, you’ll find several functions useful for
adding and deleting terms in formulas. The update function starts
with an existing fit and adds or removes terms as you specify. For
example, create a data frame from the data set fuel.frame by
typing:

> fuel.fit <- data.frame(fuel.frame)

Suppose you save the result of lm as follows:

> fuel.lm.fit <- lm(Mileage ~ Weight + Disp., fuel.fit)

You can use update to change, for example, the response to Fuel.
Use a period on either side of the tilde to represent the current state of
the model in the fit object (fuel.lm.fit below).

> update(fuel.lm.fit, Fuel ~ . )

Recall that the period (“.”) means to include every predictor that is in
fuel.lm.fit in the new model. Only the response changes.

You could drop the Disp. term, keeping the response the same by:

> update(fuel.lm.fit, . ~ . - Disp.)

Another useful function is drop1, which produces statistics obtained
from dropping each term out of the model one at a time. For
example:

> drop1(fuel.lm.fit)

Single term deletions

Model: Mileage ~ Weight + Disp.
       Df Sum of Sq   RSS    Cp
<none>              380.3 420.3
Weight  1     323.4 703.7 730.4
Disp.   1       0.6 380.8 407.5

Each line presents model summary statistics corresponding to
dropping the term indicated in the first column. The first line in the
table corresponds to the original model, that is, no terms (<none>) are
deleted.
47



Chapter 2  Specifying Models in S-PLUS
There is also an add1 function which adds one term at a time. The
second argument to add1 provides the scope for added terms. The
scope argument can be a formula or a character vector indicating the
terms to be added. The resulting table prints a line for each term
indicated by the scope argument.

> add1(fuel.lm.fit, c("Type", "Fuel"))

Single term additions

Model: Mileage ~ Weight + Disp.
       Df Sum of Sq     RSS      Cp
<none>              380.271 420.299
  Type  5   119.722 260.549 367.292
  Fuel  1   326.097  54.173 107.545
48



Optional Arguments to Model-Fitting Functions
OPTIONAL ARGUMENTS TO MODEL-FITTING FUNCTIONS

In most model-building calls, you will need to specify the data frame
to use. You may need arguments that check for missing values in the
data frame, or select only particular portions of the data frame to use
in the fit. The following list summarizes standard optional arguments
for most model-fitting functions (other than nonlinear models) you
can use in the model fit:

• data: specifies a data frame to interpret the variables named
in the formula, or in the subset and weights arguments.
The following example fits a linear model to data in the
fuel.frame data frame:

> fuel.lm <- lm(Fuel ~ Weight + Disp.,
+ data = fuel.frame)

• weights: specifies a vector of observation of weights. If
weights is supplied, the algorithm fits to minimize the sum of
the squared residuals multiplied by the weights:

Negative weights generate an S-PLUS error. We recommend
that the weights be strictly positive, since zero weights give no
residuals. The following example fits a linear model to the
claims data frame, and uses number with the weights
argument:

> claims.fit <- lm(cost ~ age + type + car.age,
+ claims, weights = number, na.action = na.omit)

The number in the preceding call corresponds to the number
of claims per type of car in the claims data frame.

• subset: indicates a subset of the rows of the data to be used
in the fit. The expression should evaluate to a logical or
numeric vector, or a character vector with appropriate row
names. The following example removes outliers and fits a
linear model to data in the auto.dat data frame:

> fit <- lm(1/Miles.per.gallon ~ Weight,
+ subset = -outliers)

wir i
2∑
49



Chapter 2  Specifying Models in S-PLUS
• na.action: a missing-data filter function, applied to the
model frame, after any subset argument has been used. The
following example uses na.omit with the na.action
argument to drop any row of the data frame that contains a
missing value:

> ozone.lm <- lm(ozone ~ temperature + wind,
+ data=air, subset=wind > 8, na.action=na.omit)

Each model fitting function has nonstandard optional arguments, not
listed above, which you can use to fit the appropriate model. The
following chapters describe the available arguments for each model
type.
50



Introduction 52

Background 57
Exploratory Data Analysis 57
Statistical Inference 59
Robust and Nonparametric Methods 61

One Sample: Distribution Shape, Location, and Scale 63
Setting Up the Data 64
Exploratory Data Analysis 64
Statistical Inference 67

Two Samples: Distribution Shapes, Locations, and Scales 70
Setting Up the Data 71
Exploratory Data Analysis 71
Statistical Inference 72

Two Paired Samples 77
Setting Up the Data 79
Exploratory Data Analysis 79
Statistical Inference 81

Correlation 83
Setting Up the Data 85
Exploratory Data Analysis 85
Statistical Inference 87

References 92

STATISTICAL INFERENCE FOR 
ONE- AND TWO-SAMPLE 
PROBLEMS 3
51



Chapter 3  Statistical Inference for One- and Two-Sample Problems
INTRODUCTION

Suppose you have one or two samples of data that are continuous in
the sense that the individual observations can take on any possible
value in an interval. You often want to draw conclusions from your
data concerning underlying “population” or distribution model
parameters which determine the character of the observed data. The
parameters which are most often of interest are the mean and
variance in the case of one sample, and the relative means and
variances and the correlation coefficient in the case of two samples.
This chapter shows you how to use S-PLUS to carry out statistical
inference for these parameters.

Often, your samples of data are assumed to come from a distribution
that is normal, or Gaussian. A normal distribution has the familiar bell-
shaped population “frequency” curve (or probability density) shown by
the solid line in Figure 3.1. Another common assumption is that the
observations within a sample are serially uncorrelated with one another.
In fact, the data seldom come from an exactly normal distribution.
Usually, a more accurate assumption is that the samples are drawn
from a nearly normal distribution—that is, a nearly bell-shaped curve
whose tails do not go to zero in quite the same way as those of the true
normal distribution, as shown by the dotted line in Figure 3.1.
52



Introduction
It is important that you be aware that nearly normal distributions,
which have “heavier tails” than a normal distribution, give rise to
outliers, that is, unusually aberrant or deviant data values. For
example, in Figure 3.1 the left-hand tail of the nearly normal
distribution is heavier than the tail of the normal distribution, but the
right hand tail is not, and so this nearly normal distribution generates
outliers which fall to the left (smaller values than) the bulk of the data.

Even though your data has only a nearly normal distribution, rather
than a normal distribution, you can use a normal distribution as a
good “nominal” model, as indicated by Figure 3.1. Thus, you are
interested in knowing the values of the parameters of a normal
distribution (or of two normal distributions in the case of two samples)
that provides a good nominal distribution model for your data.

A normal distribution is characterized by two parameters: the mean µ
and the variance σ2, or, equivalently, the mean and the standard
deviation σ (the square root of the variance). The mean locates the

Figure 3.1:  Normal and nearly normal densities.

x

0 5 10 15 20 25

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

x

0 5 10 15 20 25

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Normal
Nearly normal
53



Chapter 3  Statistical Inference for One- and Two-Sample Problems
center of symmetry of the normal distribution, and so the parameter µ
is sometimes referred to as the location. Similarly, the standard
deviation provides a measure of the spread of the distribution, and
thus can be thought of as a scale parameter.

In the case of two samples, X1, X2, …, Xn and Y1, Y2, …, Yn, for two
variables X and Y, you may also be interested in the value of the
correlation coefficient ρ. The parameter ρ measures the correlation (or
linear dependency) between the variables X and Y. The value of ρ is
reflected in the scatter plot obtained by plotting Yi versus Xi for i = 1, 2,
…, n. A scatterplot of Yi versus Xi, which has a roughly elliptical
shape, with the values of Yi increasing with increasing values of Xi,
corresponds to positive correlation ρ (see, for example, Figure 3.7).
An elliptically-shaped scatter plot with the values of Yi decreasing
with increasing values of Xi corresponds to negative correlation ρ. A
circular shape to the scatter plot corresponds to a zero value for the
correlation coefficient ρ.

Keep in mind that the correlation between two variables X and Y, as
just described, is quite distinct from serial correlation between the
observations within one or both of the samples when the samples are
collected over time. Whereas the former reveals itself in a scatterplot
of the Yi versus the Xi, the latter reveals itself in scatter plots of the
observations versus lagged values of the observations; for example, a
scatter plot of Yi versus Yi+1 or a scatter plot of Xi versus Xi+1. If these
scatter plots have a circular shape, the data is serially uncorrelated.
Otherwise, the data has some serial correlation.

Generally, you must be careful not to assume that data collected over
time is serially uncorrelated. You need to check this assumption
carefully, because the presence of serial correlation invalidates most
of the methods of this chapter.

To summarize: You want to draw conclusions from your data

concerning the population mean and variance parameters µ and σ2

for one sample of data, and you want to draw conclusions from your
data concerning the population means µ1, µ2, the population

variances ,  and the population correlation coefficient ρ for two

samples of data. You frame your conclusions about the above

σ1
2 σ2

2

54



Introduction
parameters in one of the following two types of statistical inference
statements, illustrated for the case of the population mean µ in a one-
sample problem:

• A CONFIDENCE INTERVAL. With probability 1 - α, the
mean µ lies within the confidence interval (L,U).

•  A HYPOTHESIS TEST. The computed statistic T compares
the null hypothesis that the mean µ has the specified value µ0
with the alternative hypothesis that µ ≠ µ0. At any level of
significance greater than the reported p-value for T, we reject
the null hypothesis in favor of the alternative hypothesis.

A more complete description of confidence intervals and hypothesis
tests is provided in the section Statistical Inference on page 59.

Classical methods of statistical inference, such as Student’s t methods,
rely on the assumptions that the data come from a normal distribution
and the observations within a sample are serially uncorrelated. If your
data contain outliers, or are strongly nonnormal, or if the
observations within a sample are serially correlated, the classical
methods of statistical inference can give you very misleading results.
Fortunately, there are robust and nonparametric methods which give
reliable statistical inference for data that contain outliers or are
strongly nonnormal. Special methods are needed for dealing with
data that are serially correlated. See, for example, Heidelberger and
Welch (1981).

In this chapter, you learn to use S-PLUS functions for making both
classical and robust or nonparametric statistical inference statements
for the population means and variances for one and two samples, and
for the population correlation coefficient for two samples. The basic
steps in using S-PLUS functions are essentially the same no matter
which of the above parameters you are interested in. They are as
follows:

1. Setting up your data.

Before S-PLUS can be used to analyze the data, you must put
the data in a form that S-PLUS recognizes.
55



Chapter 3  Statistical Inference for One- and Two-Sample Problems
2. Exploratory data analysis, or EDA.

EDA is a graphically-oriented method of data analysis which
helps you determine whether the data support the
assumptions required for the classical methods of statistical
inference: an outlier-free nearly normal distribution and
serially uncorrelated observations

3. Statistical inference.

Once you’ve verified that your sample or samples are nearly
normal, outlier-free, and uncorrelated, you can use classical
methods of statistical inference which assume a normal
distribution and uncorrelated observations, to draw
conclusions from your data.

If your data are not nearly normal and outlier-free, the results
of the classical methods of statistical inference may be
misleading. Hence, you often need “robust” or
“nonparametric” methods, as described in the section Robust
and Nonparametric Methods on page 61.
56



Background
BACKGROUND

This section prepares you for using the S-PLUS functions in the
remainder of the chapter by providing brief background information
on the following three topics: exploratory data analysis, statistical
inference, and robust and nonparametric methods.

Exploratory 
Data Analysis

The classical methods of statistical inference depend heavily on the
assumption that your data is outlier-free and nearly normal, and that
your data is serially uncorrelated. Exploratory data analysis (EDA) uses
graphical displays to help you obtain an understanding of whether or
not such assumptions hold. Thus, you should always carry out some
graphical exploratory data analysis (EDA) to answer the following
questions:

• Do the data come from a nearly normal distribution?

• Do the data contain outliers?

• If the data were collected over time, is there any evidence of
serial correlation (correlation between successive values of the
data)?

You can get a pretty good picture of the shape of the distribution
generating your data, and also detect the presence of outliers, by
looking at the following collection of four plots: a histogram, a boxplot,
a density plot, and a normal qq-plot. Examples of these four plots are
provided by Figure 3.2.

Density plots are essentially smooth versions of histograms, which
provide smooth estimates of population frequency, or probability density
curves; for example, the normal and nearly normal curves of Figure
3.1. Since the latter are smooth curves, it is both appropriate and
more pleasant to look at density plots than at histograms.

A normal qq-plot (or quantile-quantile plot) consists of a plot of the
ordered values of your data versus the corresponding quantiles of a
standard normal distribution; that is, a normal distribution with mean
zero and variance one. If the qq-plot is fairly linear, your data are
reasonably Gaussian; otherwise, they are not.
57



Chapter 3  Statistical Inference for One- and Two-Sample Problems
Of these four plots, the histogram and density plot give you the best
picture of the distribution shape, while the boxplot and normal
qq-plot give the clearest display of outliers. The boxplot also gives a
clear indication of the median (the solid dot inside the box), and the
upper and lower quartiles (the upper and lower ends of the box).

A simple S-PLUS function can create all four suggested distributional
shape EDA plots, and displays them all on a single screen or a single
hard copy plot. Define the function as follows:

> eda.shape <- function(x)
+ {
+       par(mfrow = c(2, 2))
+       hist(x)
+       boxplot(x)
+       iqd <- summary(x)[5] - summary(x)[2]
+       plot(density(x,width=2*iqd), xlab = "x",
+       ylab = "", type = "l")
+       qqnorm(x)
+       qqline(x)
+ }

This function is used to make the EDA plots you see in the remainder
of this chapter. (The argument width = 2*iqd to density sets the
degree of smoothness of the density plot in a good way. For more
details on writing functions, see the Programmer’s Guide.)

If you have collected your data over time, the data may contain serial
correlation. That is, the observations may be correlated with one
another at different times. The assessment of whether or not there is
any time series correlation in the context of confirmatory data
analysis for location and scale parameters (and more generally) is an
often-neglected task.

You can check for obvious time series features, such as trends and
cycles, by looking at a plot of your data against time, using the
function ts.plot. You can check for the presence of less obvious
58



Background
serial correlation by looking at a plot of the autocorrelation function
for the data, using the acf function. These plots can be created, and
displayed one above the other, with the following S-PLUS function:

> eda.ts <- function(x)
+ {
+       par(mfrow=c(2,1))
+       ts.plot(x)
+       acf(x)
+       invisible()
+ }

This function is used to make the time series EDA plots you find in
the remainder of this chapter. See, for example, Figure 3.3. The
discussion of Figure 3.3 includes a guideline for interpreting the acf
plot.

Statistical 
Inference

Formal methods of statistical inference provide probability-based
statements about population parameters such as the mean, variance,
and correlation coefficient for your data. You may be interested in a
simple (point) estimate of a population parameter. For example, the
sample mean is a point estimate of the population mean. However, a
point estimate neither conveys any uncertainty about the value of the
estimate, nor indicates whether a hypothesis about the population
parameter is to be rejected. To address these two issues, you will
usually use one or both of the following methods of statistical
inference: confidence intervals and hypothesis tests.

We define these two methods for you, letting θ represent any one of
the parameters you may be interested in; for example, θ may be the
mean µ, or the difference between two means µ1 - µ2, or the
correlation coefficient ρ.

Warning

If either the time series plot or the acf plot suggests the presence of serial correlation, then you
can place little credence in the results computed in this chapter, using either the Student’s
t-statistic approach or using the nonparametric Wilcoxon approach! A method for estimating the
population mean in the presence of serial correlation is described by Heidelberger and Welch
(1981). Seek expert assistance, as needed.
59



Chapter 3  Statistical Inference for One- and Two-Sample Problems
CONFIDENCE INTERVALS. A (1 - α)100% confidence interval for
the true but unknown parameter θ is any interval of the form (L,U),
such that the probability is 1-α that (L,U) contains θ. The probability
a with which the interval (L,U) fails to cover q is sometimes called the
error rate of the interval. The quantity (1 - α) x 100% is called the
confidence level of the confidence interval. Common values of α are
α = .01, .05, .1, which yield 99%, 95%, and 90% confidence intervals,
respectively.

HYPOTHESIS TESTS. A hypothesis test is a probability-based
method for making a decision concerning the value of a population
parameter θ (for example, the population mean µ or standard
deviation σ in a one-sample problem), or the relative values of two
population parameters θ1 and θ2 (for example, the difference between
the population means µ1 - µ2 in a two-sample problem). You begin by
forming a null hypothesis and an alternative hypothesis. For example, in
the two-sample problem your null hypothesis is often the hypothesis
that θ1 = θ2, and your alternative hypothesis is one of the following:

• The two-sided alternative: θ1 ≠ θ2

• The greater-than alternative: θ1 > θ2

• The less-than alternative: θ1 < θ2

Your decision to accept the null hypothesis, or to reject the null
hypothesis in favor of your alternative hypothesis is based on the
observed value T = tobs of a suitably chosen test statistic T. The
probability that the statistic T “exceeds” the observed value tobs when
your null hypothesis is in fact true, is called the p-value.

For example, suppose you are testing the null hypothesis that θ = θ0

against the alternative hypothesis that θ ≠ θ0 in a one-sample
problem. The p-value is the probability that the absolute value of T
exceeds the absolute value of tobs for your data, when the null
hypothesis is true.

In formal hypothesis testing, you proceed by choosing a “good”
statistic T and specifying a level of significance, which is the probability
of rejecting a null hypothesis when the null hypothesis is in fact true.
60



Background
In terms of formal hypothesis testing, your p-value has the following
interpretation: the p-value is the level of significance for which your
observed test statistic value tobs lies on the boundary between
acceptance and rejection of the null hypothesis. At any significance
level greater than the p-value, you reject the null hypothesis, and at
any significance level less than the p-value you accept the null
hypothesis. For example, if your p-value is .03, you reject the null
hypothesis at a significance level of .05, and accept the null
hypothesis at a significance level of .01.

Robust and 
Nonparametric 
Methods

Two problems frequently complicate your statistical analysis. For
example, Student’s t-test, which is the basis for most statistical
inference on the mean-value locations of normal distributions, relies
on two critical assumptions:

1. The observations have a common normal (or Gaussian)

distribution with mean µ and variance σ2.

2. The observations are independent.

However, one or both of these assumptions often fail to hold in
practice.

For example, if the actual distribution for the observations is an
outlier-generating, heavy-tailed deviation from an assumed Gaussian
distribution, the confidence level remains quite close to (1 - α)100%,
but the average confidence interval length is considerably larger than
under normality. The p-values based on the Student’s t test are also
heavily influenced by outliers.

In this example, and more generally, you would like to have statistical
methods with the property that the conclusions you draw are not
much affected if the distribution for the data deviates somewhat from
the assumed model; for example, if the assumed model is a normal,
or Gaussian distribution, and the actual model for the data is a nearly
normal distribution. Such methods are called robust. In this chapter
you will learn how to use an S-PLUS function to obtain robust point
estimates and robust confidence intervals for the population
correlation coefficient.

For one and two-sample location parameter problems (among others),
there exist strongly robust alternatives to classical methods, in the form
of nonparametric statistics. The term “nonparametric” means that the
61



Chapter 3  Statistical Inference for One- and Two-Sample Problems
methods work even when the actual distribution for the data is far
from normal; that is, when the data do not have to have even a nearly
normal distribution. In this chapter, you will learn to use one of the
best of the nonparametric methods for constructing a hypothesis test
p-value, namely the Wilcoxon rank method, as implemented in the
S-PLUS function wilcox.test.

It is important to keep in mind that serial correlation in the data can
quickly invalidate the use of both classical methods (such as Student’s
t) and nonparametric methods (such as the Wilcoxon rank method)
for computing confidence intervals and p-values. For example, a 95%
Student’s t confidence interval can have a much higher error rate than
5% when there is a small amount of positive correlation in the data.
Also, most modern robust methods are oriented toward obtaining
insensitivity toward outliers generated by heavy-tailed nearly normal
distributions, and are not designed to cope with serial correlation. For
information on how to construct confidence intervals for the
population mean when your data are serially correlated and free of
outliers, see Heidelberger and Welch (1981).
62



One Sample: Distribution Shape, Location, and Scale
ONE SAMPLE: DISTRIBUTION SHAPE, LOCATION, AND 
SCALE

In 1876, the French physicist Cornu reported a value of 299,990 km/
sec for c, the speed of light. In 1879, the American physicist A.A.
Michelson carried out several experiments to verify and improve on
Cornu’s value.

Michelson obtained the following 20 measurements of the speed of
light:

 850  740  900  1070  930  850  950  980  980  880
1000  980  930   650  760  810 1000 1000  960  960

To obtain Michelson’s actual measurements in km/sec, add 299,000
km/sec to each of the above values.

The twenty observations can be thought of as observed values of
twenty random variables with a common but unknown mean-value
location µ. If the experimental setup for measuring the speed of light
is free of bias, then it is reasonable to assume that µ is the true speed
of light.

In evaluating this data, we seek answers to at least five questions:

1. What is the speed of light µ?

2. Has the speed of light changed relative to our best previous
value µ0?

3. What is the uncertainty associated with our answers to (1) and
(2)?

4. What is the shape of the distribution of the data?

5. The measurements were taken over time. Is there any
evidence of serial correlation?

The first three questions were probably in Michelson’s mind when he
gathered his data. The last two must be answered to determine which
techniques can be used to obtain valid statistical inferences from the
data. For example, if the shape of the distribution indicates a nearly
normal distribution without outliers, we can use the Student’s t tests in
attempting to answer question (2). If the data contain outliers or are
far from normal, we should use a robust method or a nonparametric
63



Chapter 3  Statistical Inference for One- and Two-Sample Problems
method such as the Wilcoxon signed-rank test. On the other hand, if
serial correlation exists, neither the Student’s t nor the Wilcoxon test
offers valid conclusions.

In this section, we use S-PLUS to carefully analyze the Michelson data.
Identical techniques can be used to explore and analyze any set of
one-sample data.

Setting Up the 
Data

The data form a single, ordered set of observations, so they are
appropriately described in S-PLUS as a vector. Use the scan function
to create the vector mich:

> mich <- scan()

1: 850 740 900 1070 930
6: 850 950 980 980 880
11: 1000 980 930 650 760
16: 810 1000 1000 960 960
21:

Exploratory 
Data Analysis

To start, we can evaluate the shape of the distribution, by making a set
of four EDA plots, using the eda.shape function described in the
section Exploratory Data Analysis on page 57:

> eda.shape(mich)
64



One Sample: Distribution Shape, Location, and Scale
The plots in Figure 3.2 reveal a distinctly skewed distribution, skewed
toward the left (that is, toward smaller values), but rather normal in
the middle region. The distribution is thus not normal, and probably
not even "nearly" normal.

The solid horizontal line in the box plot is located at the median of the
data, and the upper and lower ends of the box are located at the upper
quartile and lower quartile of the data, respectively. To get precise
values for the median and quartiles, use the summary function:

> summary(mich)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
  650     850    940  909     980 1070

Figure 3.2:  Exploratory data analysis plots.

600 700 800 900 1000

0
2

4
6

8
10

x

70
0

80
0

90
0

10
00

x

600 700 800 900 1100

0.
0

0.
00

2
0.

00
4

•

•

•

•

•

•

•
• •

•

••
•

•

•
•

• •
• •

Quantiles of Standard Normal

x

-2 -1 0 1 2

70
0

80
0

90
0

10
00
65



Chapter 3  Statistical Inference for One- and Two-Sample Problems
The summary shows, from left to right, the smallest observation, the
first quartile, the median, the mean, the third quartile, and the largest
observation. From this summary you can compute the interquartile
range, IQR = 3Q - 1Q. The interquartile range provides a useful
criterion for identifying outliers—any observation which is more than
1.5 x IQR above the third quartile or below the first quartile is a
suspected outlier.

To examine possible serial correlation, or dependency, make two
plots using the eda.ts function defined in the section Exploratory
Data Analysis on page 57.

> eda.ts(mich)

The top plot in Figure 3.3 reveals a somewhat unusual excursion at
observations 14, 15, 16, and perhaps a slightly unusual oscillation in
the first 6 observations. However, the autocorrelation function plot in
the lower part of Figure 3.3 reveals no significant serial correlations—
all values lie within the horizontal dashed lines for lags greater than 0.

Figure 3.3:  Time series plots.

•

•

•

•

•

•

•
• •

•

•
•

•

•

•

•

• •
• •

Time

m
ic

h

5 10 15 20

70
0

80
0

90
0

10
00

Series 1  

Lag

A
C

F

0 2 4 6 8 10 12

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : mich
66



One Sample: Distribution Shape, Location, and Scale
Statistical 
Inference

Because the Michelson data are not normal, you should probably use
the Wilcoxon signed-rank test rather than the Student’s t-test for your
statistical inference. For illustrative purposes, we’ll use both.

To compute Student’s t confidence intervals for the population mean-
value location parameter µ, and to compute Student’s t significance
test p-values for the parameter µ0, use the function t.test.

To perform the test, you specify the confidence level, the
hypothesized mean-value location µ, and the hypothesis being tested,
as follows:

• conf.level= specifies the confidence level of the confidence
interval. Usual values are 0.90, 0.95, or 0.99. The default is
0.95.

• mu= specifies the null hypothesis value µ0 of µ. The default is
µ0 = 0, which is often inappropriate for one-sample problems.
You should choose µ carefully, using either a previously
accepted value or a value suggested by the data before
sampling.

• alternative= specifies the specific hypothesis being tested.
There are three options:

• "two.sided" tests the hypothesis that the true mean is not
equal to µ0. This is the default alternative.

• "greater" tests the hypothesis that the true mean is greater
than µ0.

• "less" tests the hypothesis that the true mean is less than µ0.

For Michelson’s data, suppose you want to test the null hypothesis
value µ0 = 990 (plus 299,000) against a two-sided alternative. Then
you use t.test with the argument mu=990:

> t.test(mich,mu=990)

         One-sample t-Test

data:  mich
t = -3.4524, df = 19, p-value = 0.0027
alternative hypothesis: true mean is not equal to 990
67



Chapter 3  Statistical Inference for One- and Two-Sample Problems
95 percent confidence interval:
 859.8931 958.1069
sample estimates:
 mean of x
       909

The p-value is 0.0027, which is highly significant. S-PLUS returns other
useful information besides the p-value, including the t-statistic value,
the degrees of freedom (df), the sample mean, and the confidence
interval.

Our example used the default confidence level of .95. If you specify a
different confidence level, as in the following command:

> t.test(mich,conf.level=.90,mu=990)

you obtain a new confidence interval of (868,950), which is shorter
than before, but nothing else changes in the output from t.test.

Wilcoxon Signed 
Rank Test 
p-Values

To perform the Wilcoxon signed rank nonparametric test, use the
function wilcox.test. As with t.test, the test is completely
determined by the confidence level, the hypothesized mean µ0, and
the hypothesis to be tested. These options are specified for
wilcox.test exactly as for t.test.

For example, to test the hypothesis that µ = 990 (plus 299,000), use
wilcox.test as follows:

> wilcox.test(mich,mu=990)

Wilcoxon signed-rank test

data:  mich
signed-rank normal statistic with correction Z = -3.0715,  
p-value = 0.0021
alternative hypothesis: true mu is not equal to 990
Warning messages:
  cannot compute exact p-value with ties in:
  wil.sign.rank(dff, alternative, exact, correct)

The p-value of .0021 compares with the t-test p-value of .0027 for
testing the same null hypothesis with a two-sided alternative.
68



One Sample: Distribution Shape, Location, and Scale
Michelson’s data have several tied values. Because exact p-values
cannot be computed if there are tied values (or if the null hypothesis
mean is equal to one of the data values), a normal approximation is
used and the associated Z-statistic value is reported.
69



Chapter 3  Statistical Inference for One- and Two-Sample Problems
TWO SAMPLES: DISTRIBUTION SHAPES, LOCATIONS, AND 
SCALES

Suppose you are a nutritionist interested in the relative merits of two
diets, one featuring high protein, the other low protein. Do the two
diets lead to differences in mean weight gain? Consider the data in
Table 3.1, which shows the weight gains (in grams) for two lots of
female rats, under the two diets. The first lot, consisting of 12 rats, was
given the high protein diet, and the second lot, consisting of 7 rats,
was given the low protein diet. These data appear in section 6.9 of
Snedecor and Cochran (1980).

Table 3.1:  Weight gain data.

High Protein Low Protein

134 70

146 118

104 101

119 85

124 107

161 132

107 94

83
70



Two Samples: Distribution Shapes, Locations, and Scales
The high protein and low protein samples are presumed to have
mean-value location parameters µH and µL, and standard deviation
scale parameters σH and σL, respectively. While you are primarily
interested in whether there is any difference in the µ’s, you may also
be interested in whether or not the two diets result in different
variabilities, as measured by the standard deviations (or their squared
values, the variances). This section shows you how to use S-PLUS
functions to answer such questions.

Setting Up the 
Data

In the two-sample case, each sample forms a set of data. Thus, you
begin by creating two data vectors, say gain.high and gain.low,
containing, respectively, the first and second columns of data from
Table 3.1:

> gain.high <- scan()

1: 134 146 104 119 124 161 107 83 113 129 97 123
13:

> gain.low <- scan()

1: 70 118 101 85 107 132 94
8:

Exploratory 
Data Analysis

For each sample, make a set of EDA plots, consisting of a histogram, a
boxplot, a density plot and a normal qq-plot, all displayed in a two-
by-two plot layout, using the eda.shape function defined in the
section Exploratory Data Analysis on page 57:

113

129

97

123

Table 3.1:  Weight gain data. (Continued)

High Protein Low Protein
71



Chapter 3  Statistical Inference for One- and Two-Sample Problems
> eda.shape(gain.high)
> eda.shape(gain.low)

The resulting plots for the high-protein group are shown in Figure 3.4.
They indicate that the data come from a nearly normal distribution,
and there is no indication of outliers. The plots for the low-protein
group, which we do not show, support the same conclusions.

Since the data were not collected in any specific time order, you need
not make any exploratory time series plots to check for serial
correlation.

Statistical 
Inference

Is the mean weight gain the same for the two groups of rats?
Specifically, does the high-protein group show a higher average
weight gain? From our exploratory data analysis, we have good
reason to believe that Student’s t-test will provide a valid test of our

Figure 3.4:  EDA plots for high-protein group.

80 100 120 140 160 180

0
1

2
3

4

x

80
10

0
12

0
14

0
16

0

x

60 80 100 120 140 160 180

0.
0

0.
01

0
0.

02
0

•

•

•

•
•

•

•

•

•

•

•

•

Quantiles of Standard Normal

x

-1 0 1

80
10

0
12

0
14

0
16

0

72



Two Samples: Distribution Shapes, Locations, and Scales
hypotheses. As in the one-sample case, you can get confidence
intervals and hypothesis test p-values for the difference µ1 - µ2

between the two mean-value location parameters µ1 and µ2 using the

functions t.test and wilcox.test.

As before, each test is specified by a confidence level, a hypothesized
µ0 (which now refers to the difference of the two sample means), and

the hypothesis to be tested. However, because of the possibility that
the two samples may be from different distributions, you may also
specify whether the two samples have equal variances.

You define the test to be performed using the following arguments to
t.test:

• conf.level= specifies the confidence level of the confidence
interval. Usual values are 0.90, 0.95, or 0.99. The default is
0.95.

• mu= specifies the null hypothesis value µ0 of µdiff = µH - µL.

The default is µ0 = 0.

• alternative= specifies the hypothesis being tested. There
are three options:

• "two.sided" tests the hypothesis that the difference of
means is not equal to µ0. This is the default alternative.

• "greater" tests the hypothesis that the difference of means is
greater than µ0.

• "less" tests the hypothesis that the difference of means is less
than µ0.

• var.equal= specifies whether equal variances are assumed
for the two samples. The default is var.equal=TRUE.

To determine the correct setting for the option var.equal, you can
either use informal inspection of the EDA boxplots or use the
function var.test for a more formal test. If the heights of the boxes
in the two boxplots are approximately the same, then so are the
variances of the two outlier-free samples. The var.test function
performs the F test for variance equality on the vectors representing
the two samples. For the weight gain data:

> var.test(gain.high,gain.low)
73



Chapter 3  Statistical Inference for One- and Two-Sample Problems
         F test for variance equality
data:  gain.high and gain.low
F = 1.0755, num df = 11, denom df = 6, p-value = 0.9788
alternative hypothesis: true ratio of variances is not
 equal to 1
95 percent confidence interval:
 0.1988088 4.1737320
sample estimates:
 variance of x variance of y
      457.4545      425.3333

The evidence supports the assumption that the variances are the
same, so var.equal=T is a valid choice.

We are interested in two alternative hypotheses: the two-sided
alternative that µH - µL = 0 and the one-sided alternative that
µH - µL > 0. To test these, we run the standard two-sample t-test twice,
once with the default two-sided alternative and a second time with the
one-sided alternative alt="g".

You get both a confidence interval for µH - µL, and a two-sided test of
the null hypothesis that µH - µL = 0, by the following simple use of
t.test:

> t.test(gain.high,gain.low)

         Standard Two-Sample t-Test
data: gain.high and gain.low
t = 1.8914, df = 17, p-value = 0.0757
alternative hypothesis: true difference in means is
 not equal to 0
95 percent confidence interval:
  -2.198905 40.198905
sample estimates:
 mean of x mean of y
       120       101

The p-value is .0757, so the null hypothesis is rejected at the .10 level,
but not at the .05 level. The confidence interval is (-2.2, 40.2).
74



Two Samples: Distribution Shapes, Locations, and Scales
To test the one-sided alternative that µH - µL > 0, use t.test again
with the argument alternative="greater" (abbreviated below for
ease of typing):

t.test(gain.high,gain.low,alt="g")

         Standard Two-Sample t-Test

data:  gain.high and gain.low
t = 1.8914, df = 17, p-value = 0.0379
alternative hypothesis: true difference in means
 is greater than 0
95 percent confidence interval:
 1.521055       NA
sample estimates:
mean of x mean of y
      120       101

In this case, the p-value is just half of the p-value for the two-sided
alternative. This relationship between the p-values of the one-sided
and two-sided alternatives holds in general. You also see that when
you use the alt="g" argument, you get a lower confidence bound.
This is the natural one-sided confidence interval corresponding to the
“greater than" alternative.

Hypothesis Test 
p-Values Using 
wilcox.test

To get a two-sided hypothesis test p-value for the “two-sided”
alternative, based on the Wilcoxon rank sum test statistic, use
wilcox.test, which takes the same arguments as t.test:

> wilcox.test(gain.high,gain.low)

             Wilcoxon rank-sum test

data: gain.high and gain.low
rank-sum normal statistic with correction Z = 1.691,
 p-value = 0.0908
alternative hypothesis: true mu is not equal to 0

Warning messages:
  cannot compute exact p-value with ties
75



Chapter 3  Statistical Inference for One- and Two-Sample Problems
The above p-value of .0908, based on the normal approximation
(used because of ties in the data), is rather close to the t-statistic
p-value of .0757.
76



Two Paired Samples
TWO PAIRED SAMPLES

Often two samples of data are collected in the context of a comparative
study. A comparative study is designed to determine the difference
between effects, rather than the individual effects. For example,
consider the data in Table 3.2, which gives values of wear for two
kinds of shoe sole material, A and B, along with the differences in
values.

In the table, (L) indicates the material was used on the left sole; (R),
that it was used on the right sole.

The experiment leading to this data, described in Box, Hunter, and
Hunter (1978), was carried out by taking 10 pairs of shoes and putting
a sole of material A on one shoe and a sole of material B on the other

Table 3.2:  Comparing shoe sole material

boy wear.A wear.B wear.A-wear.B

1 14.0(R) 13.2(L) 0.8

2 8.8(R) 8.2(L) 0.6

3 11.2(L) 10.9(R) 0.3

4 14,2(R) 14.3(L) -0.1

5 11.8(L) 10.7(R) 1.1

6 6.4(R) 6.6(L) -0.2

7 9.8(R) 9.5(L) 0.3

8 11.3(R) 10.8(L) 0.5

9 9.3(L) 8.8(R) 0.5

10 13.6(R) 13.3(L) 0.3
77



Chapter 3  Statistical Inference for One- and Two-Sample Problems
shoe in each pair. Which material type went on each shoe was
determined by randomizing, with equal probability that material A
was on the right shoe or left shoe. A group of 10 boys then wore the
shoes for a period of time, after which the amount of wear was
measured. The problem is to determine whether shoe material A or B
is longer wearing.

You could treat this problem as a two-sample location problem and
use either t.test or wilcox.test, as described in the section Two
Samples: Distribution Shapes, Locations, and Scales on page 70, to
test for a difference in the means of wear for material A and material
B. However, you will not be very successful with this approach
because there is considerable variability in wear of both materials
types A and B from individual to individual, and this variability tends
to mask the difference in wear of material A and B when you use an
ordinary two-sample test.

However, the above experiment uses paired comparisons. Each boy
wears one shoe with material A and one shoe with material B. In
general, pairing involves selecting similar individuals or things. One
often uses self-pairing as in the above experiment, in which two
procedures, often called treatments, are applied to the same individual
(either simultaneously or at two closely spaced time intervals) or to
similar material. The goal of pairing is to make a comparison more
sensitive by measuring experimental outcome differences on each
pair, and combining the differences to form a statistical test or
confidence interval. When you have paired data, you use t.test and
wilcox.test with the optional argument paired = T.

The use of paired versions of t.test and wilcox.test leads to
improved sensitivity over the usual versions when the variability of
differences is smaller than the variability of each sample; for example,
when the variability of differences of material wear between materials
A and B is smaller than the variability in wear of material A and
material B.
78



Two Paired Samples
Setting Up the 
Data

In paired comparisons you start with two samples of data, just as in
the case of ordinary two-sample comparisons. You begin by creating
two data vectors, wear.A and wear.B, containing the first and second
columns of Table 3.2:

> wear.A <- scan()
1: 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6
10:
> wear.B <- scan()
1: 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
10:

Exploratory 
Data Analysis

You can carry out exploratory data analysis on each of the two paired
samples x1, …, xn and y1, …, yn, as for an ordinary two-sample

problem, as described in the section Exploratory Data Analysis on
page 71. However, since your analysis is based on differences, it is
appropriate to carry out EDA based on a single sample of differences
di = xi - yi, i = 1, …, n.

In the shoe material wear experiment, you use eda.shape on the
difference wear.A-wear.B:

> eda.shape(wear.A - wear.B)

The results are displayed in Figure 3.5. The histogram and density
indicate some deviation from normality that is difficult to judge
because of the small sample size.
79



Chapter 3  Statistical Inference for One- and Two-Sample Problems
You might also want to make a scatter plot of wear.B versus wear.A,
using plot(wear.A,wear.B), as a visual check on correlation
between the two variables. Strong correlation is an indication that
within-sample variability is considerably larger than the difference in
means, and hence that the use of pairing will lead to greater test
sensitivity. To obtain the scatter plot of Figure 3.6, use the following
S-PLUS expression:

> plot(wear.A,wear.B)

Figure 3.5:  EDA plots for differences in shoe sole material wear.

-0.5 0.0 0.5 1.0 1.5
0

1
2

3
4

5

x

-0
.2

0.
2

0.
6

1.
0

x

-0.5 0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

1.
2

•

•

•

•

•

•

•

• •

•

Quantiles of Standard Normal

x

-1.5 -0.5 0.5 1.5
-0

.2
0.

2
0.

6
1.

0

80



Two Paired Samples
Statistical 
Inference

To perform a paired t-test on the shoe material wear data, with the
default two-sided alternative use t.test with the paired argument,
as follows:

> t.test(wear.A,wear.B,paired=T)

         Paired t-Test

data: wear.A and wear.B
t = 3.3489, df = 9, p-value = 0.0085
alternative hypothesis: true mean of differences is not
 equal to 0
95 percent confidence interval:
 0.1330461 0.6869539
sample estimates:
 mean of x - y
          0.41

Figure 3.6:  Scatter plot of wear.A versus wear.B.

•

•

•

•

•

•

•

•

•

•

wear.A

w
ea

r.
B

8 10 12 14

8
10

12
14
81



Chapter 3  Statistical Inference for One- and Two-Sample Problems
The p-value of .0085 is highly significant for testing the difference in
mean wear of materials A and B. You also get the 95% confidence
interval (.13,.67) for the difference in mean values. You can control
the type of alternative hypothesis with the alt= optional argument,
and you can control the confidence level with the conf.level=
optional argument, as usual. To perform a paired Wilcoxon test (often
called the Wilcoxon signed rank test) on the shoe material data, with the
default two-sided alternative use wilcox.test with the paired
argument, as follows:

> wilcox.test(wear.A,wear.B,paired=T)

Wilcoxon signed-rank test

data:  wear.A and wear.B
signed-rank normal statistic with correction Z = 2.4495,
 p-value = 0.0143
alternative hypothesis: true mu is not equal to 0

Warning messages:
  cannot compute exact p-value with ties in:
  wil.sign.rank(dff, alternative, exact, correct)

The p-value of .0143 is highly significant for testing the null
hypothesis of equal centers of symmetry for the distributions of
wear.A and wear.B. You can control the type of alternative
hypothesis by using the optional argument alt= as usual.
82



Correlation
CORRELATION

What effect, if any, do housing starts have on the demand for
residential telephone service? If there is some useful association, or
correlation, between the two, you may be able to use housing start data
as a predictor of growth in demand for residential phone lines.
Consider the data displayed in Table 3.3 (in coded form), which
relates to residence telephones in one area of New York City.

Table 3.3:  The phone increase data.

Diff. HS Phone Increase

.06 1.135

.13 1.075

.14 1.496

-.07 1.611

-.05 1.654

-.31 1.573

.12 1.689

.23 1.850

-.05 1.587

-.03 1.493
83



Chapter 3  Statistical Inference for One- and Two-Sample Problems
The first column of data, labeled “Diff. HS", shows annual first
differences in new housing starts over a period of fourteen years. The
first differences are calculated as the number of new housing starts in
a given year, minus the number of new housing starts in the previous
year. The second column of data, labeled “Phone Increase,” shows
the annual increase in the number of “main" residence telephone
services (excluding extensions), for the same fourteen-year period.

The general setup for analyzing the association between two samples
of data such as those above is as follows. You have two samples of
observations, of equal sizes n, of the random variables X1, X2, …, Xn
and Y1, Y2, …, Yn. Let’s assume that each of the two-dimensional
vector random variables (Xi, Yi), i = 1, 2, …, n, have the same joint
distribution.

The most important, and commonly used measure of association
between two such random variables is the (population) correlation
coefficient parameter ρ, defined as

,

where µ1, µ2 and σ1, σ2 are the means and standard deviations,

respectively, of the random variables X and Y. The E appearing in the
numerator denotes the statistical expected value, or expectation operator,
and the quantity E(X - µ1)(Y - µ2) is the covariance between the random
variables X and Y. The value of ρ is always between 1 and -1.

.62 2.049

.29 1.942

-.32 1.482

.71 1.382

Table 3.3:  The phone increase data. (Continued)

Diff. HS Phone Increase

ρ
E x µ1–( ) Y µ2–( )

σ1σ2
-------------------------------------------=
84



Correlation
Your main goal is to use the two samples of observed data to
determine the value of the correlation coefficient ρ. In the process you
want to do sufficient graphical EDA to feel confident that your
determination of ρ is reliable.

Setting Up the 
Data

The data form two distinct data sets, so we create two vectors with the
suggestive names diff.hs and phone.gain:

> diff.hs <- scan()

1: .06 .13 .14 -.07 -.05 -.31 .12
8: .23 -.05 -.03 .62 .29 -.32 -.71
15:

> phone.gain <- scan()

1: 1.135 1.075 1.496 1.611 1.654 1.573 1.689
8: 1.850 1.587 1.493 2.049 1.943 1.482 1.382
15:

Exploratory 
Data Analysis

If two variables are strongly correlated, that correlation may appear
in a scatter plot of one variable against the other. For example, plot
phone.gain versus diff.hs using the following command:

> plot(diff.hs, phone.gain)

The results are shown in Figure 3.7. The plot reveals a strong positive
correlation, except for two obvious outliers. To identify the
observation numbers associated with the outliers in the scatter plot,
along with that of a third suspicious point, we used identify as
follows:

> identify(diff.hs, phone.gain, n=3)
85



Chapter 3  Statistical Inference for One- and Two-Sample Problems
See the on-line help for a complete discussion of identify.

The obvious outliers occur at the first and second observations. In
addition, the suspicious point (labeled “3” in the scatter plot) occurs at
the third observation time.

Since you have now identified the observation times of the outliers,
you can gain further insight by making a time series plot of each
series:

> plot(diff.hs,type="b")
> plot(phone.gain,type="b")

You should also make an autocorrelation plot for each series:

> acf(diff.hs)
> acf(phone.gain)

The results are shown in Figure 3.8. Except for the first three
observations of the two series phone.gain and diff.hs, there is a
strong similarity of shape exhibited in the two time series plots. This
accounts for the strong positive correlation between the two variables

Figure 3.7:  Scatter plot of phone.gain versus diff.hs.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

diff.hs

m
ai

n.
ga

in

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1.
2

1.
4

1.
6

1.
8

2.
0

2

1

3

86



Correlation
diff.hs and phone.gain shown in Figure 3.7. The dissimilar
behavior of the two time series plots for the first three observations
produces the two obvious outliers, and the suspicious point, in the
scatter plot of phone.gain versus diff.hs.

The ACF plots show little evidence of serial correlation within each of
the individual series.

Statistical 
Inference

From your exploratory data analysis, two types of questions present
themselves for more formal analysis. If the evidence for correlation is
inconclusive, you may want to test whether there is correlation
between the two variables of interest by testing the null hypothesis
that ρ = 0. On the other hand, if your EDA convinces you that

correlation exists, you might prefer a point estimate  of the
correlation coefficient ρ, or a confidence interval for ρ.

Figure 3.8:  Time series and ACF plots of phone increase data.

ρ̂

• • •
• •

•

• •
• •

•
•

•

•

Index

di
ff.

hs

2 4 6 8 10 12 14

-0
.6

0.
2

• •

•
• • •

•
•

• •

• •

• •

Index

ph
on

e.
ga

in

2 4 6 8 10 12 14

1.
2

1.
8

Lag

0 2 4 6 8 10

-0
.5

0.
5

 Series : diff.hs

Lag

0 2 4 6 8 10

-0
.5

0.
5

 Series : phone.gain
87



Chapter 3  Statistical Inference for One- and Two-Sample Problems
Hypothesis Test 
p-Values

You can get p-values for the null hypothesis that ρ = 0 by using the
function cor.test. To perform this test, you specify the alternative
hypothesis to be tested and the test method to use, as follows:

• alternative= specifies the alternative hypothesis to be
tested. There are three options:

• "two.sided" (the default alternative) tests the alternative
hypothesis that ρ ≠ 0.

• "greater" tests the alternative hypothesis that ρ > 0.

• "less" tests the alternative hypothesis that ρ < 0.

You can also use the abbreviated forms alt="g" and alt="l".

• method= specifies which of the following methods is used:

• "pearson" (the default) uses the standard Pearson sample
correlation coefficient.

• "kendall" uses the rank-based Kendall’s τ  measure of
correlation.

• "spearman" uses the rank-based Spearman’s ρ measure of
correlation.

You can abbreviate these methods by using enough of the character
string to determine a unique match; here "p", "k", and "s" work.

Because both Kendall’s τ  and Spearman’s ρ methods are based on
ranks, they are not so sensitive to outliers and nonnormality as the
standard Pearson estimate.

Here is a simple use of cor.test to test the alternative hypothesis
that there is a positive correlation in the phone gain data. We use the
default choice of the classical Pearson estimate with the one-sided
alternative alt="g":

> cor.test(diff.hs,phone.gain,alt="g")

         Pearson product-moment correlation

data:  diff.hs and phone.gain
t = 1.9155, df = 12, p-value = 0.0398
alternative hypothesis: true coef is greater than 0
88



Correlation
sample estimates:
       cor
 0.4839002

You get a normal theory t-statistic having the modest value of 1.9155,
and a p-value of .0398. The estimate of ρ is .48, to two decimal places.
There are 14 bivariate observations, and since the mean is estimated
for each sample under the null hypothesis that ρ > 0, the number of
degrees of freedom (df) is 12.

Since your EDA plots reveal two obvious bivariate outliers in the
phone gain data, the nonparametric alternatives, either Kendall’s τ  or
Spearman’s ρ, are preferable in determining p-values for this case.
Using Kendall’s method, we obtain the following results:

> cor.test(diff.hs,phone.gain,alt="g",method="k")

         Kendall’s rank correlation tau

data: diff.hs and phone.gain
normal-z = 2.0256, p-value = 0.0214
alternative hypothesis: true tau is greater than 0
sample estimates:
       tau
 0.4065934

The p-value obtained from Kendall’s method is smaller than that
obtained from the Pearson method. The null hypothesis is rejected at
a level of 0.05. Spearman’s ρ, by contrast, yields a p-value similar to
that of the standard Pearson method.

Point Estimates 
and Confidence 
Intervals for ρ

You may want an estimate  of ρ, or a confidence interval for ρ. The
function cor.test gives you the classical sample correlation
coefficient estimate r of ρ, when you use the default Pearson’s
method. However, cor.test does not provide you with a robust

Warning

The values returned for “tau" and “rho" (.407 and .504, respectively, for the phone gain data) do
not provide unbiased estimates of the true correlation ρ. Transformations of “tau" and “rho" are
required to obtain unbiased estimates of ρ.

ρ̂

89



Chapter 3  Statistical Inference for One- and Two-Sample Problems
estimate of ρ, (since neither Kendall’s τ  or Spearman’s ρ provide an
unbiased estimate of ρ). Furthermore, cor.test does not provide any
kind of confidence interval for ρ.

To obtain a robust point estimate of ρ, use the function cor with a
nonzero value for the optional argument trim=. You should specify a
fraction α between 0 and .5 for the value of this argument. This results
in a robust estimate which consists of the ordinary sample correlation
coefficient based on the fraction (1 - α) of the data remaining after
“trimming" away a fraction α. In most cases, set trim=.2. If you
think your data contain more than 20% outliers, you should use a
larger fraction in place of .2. The default value is trim=0, which
yields the standard Pearson sample correlation coefficient.

Applying cor to the phone gain data, you get:

> cor(diff.hs,phone.gain,trim=.2)

[1] 0.715215

Comparing this robust estimate to our earlier value for ρ obtained
using cor.test, we see the robust estimate yields a larger estimate of
ρ. This is what you expect, since the two outliers cause the standard
sample correlation coefficient to have a value smaller than that of the
“bulk" of the data.

To obtain a confidence interval for ρ, we’ll use the following
procedure (as in Snedecor and Cochran (1980)). First, transform ρ
using Fisher’s “z-transform,” which consists of taking the inverse
hyperbolic tangent transform z = atanh(ρ). Then, construct a
confidence interval for the correspondingly transformed true

correlation coefficient . Finally, transform this
interval back to the original scale by transforming each endpoint of
this interval with the hyperbolic tangent transformation tanh.

ρ ρ( )atanh=
90



Correlation
To implement the procedure just described as an S-PLUS function,
create the function cor.confint as follows:

> cor.confint <- function(x, y, conf.level = .95, trim = 0)
+ {
+          z <- atanh(cor(x, y, trim))
+          b <- qnorm((1 - conf.level)/2)/(length(x) - 3)^.5
+          ci.z <- c(z - b, z + b)
+          conf.int <- tanh(ci.z)
+          conf.int
+ }

You can now use your new function cor.confint on the phone gain
data:

> cor.confint(diff.hs,phone.gain)

[1]  0.80722631 -0.06280418

> cor.confint(diff.hs,phone.gain,trim=.2)

[1] 0.9028239 0.2962303

When you use the optional argument trim = .2, you are basing the
confidence interval on a robust estimate of ρ, and consequently you
get a robust confidence interval. Since the robust estimate has the
value .72, which is larger than the standard (nonrobust) estimate value
of .48, you should be reassured to get an interval which is shifted
upward, and is also shorter, than the nonrobust interval you got by
using cor.confint with the default option trim = 0.
91



Chapter 3  Statistical Inference for One- and Two-Sample Problems
REFERENCES

Bishop, Y.M.M., Fienberg, S.J., and Holland, P.W. (1980). Discrete
Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge,
MA.

Box, G.E.P., Hunter, W.G., and Hunter, J.S. (1978). Statistics for
Experimenters: An Introduction to Design, Data Analysis and Model
Building. John Wiley, New York.

Conover, W.J. (1980). Practical Nonparametric Statistics, 2nd edition.
John Wiley, New York.

Heidelberger, P. and Welch, P.D. (1981). A Spectral Method for
Confidence Interval Generation and Run-length Control in
Simulations. Communications of the ACM, 24:233-245.

Hogg, R.V. and Craig, A.T. (1970). Introduction to Mathematical
Statistics, 3rd edition. Macmillan, Toronto, Canada.

Mood, A.M., Graybill, F.A., and Boes, D.C. (1974). Introduction to the
Theory of Statistics, 3rd edition. McGraw-Hill, New York.

Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods, 7th
edition. Iowa State University Press, Ames, IA.
92



Introduction 94

Cumulative Distribution Functions 95

The Chi-Square Test of Goodness of Fit 98

The Kolmogorov-Smirnov Test 101

One-Sample Tests 103
Composite Tests for a Family of Distributions 104

Two-Sample Tests 107

References 109

GOODNESS OF FIT TESTS 4
93



Chapter 4  Goodness of Fit Tests
INTRODUCTION

Most S-PLUS functions for hypothesis testing assume a certain
distributional form—often normal—and then use data to make
conclusions about certain parameters of the distribution—often the
mean or variance. In Chapter 3, Statistical Inference for One- and
Two-Sample Problems, we describe EDA techniques to informally
test the assumptions of these procedures. Goodness of fit (GOF) tests
are another, more formal, tool to assess the evidence for assuming a
certain distribution.

There are two types of GOF problems—corresponding to the number
of samples—which ask the following questions:

1. One sample. Does the sample arise from a hypothesized
distribution?

2. Two sample. Do two independent samples arise from the same
distribution?

S-PLUS implements the two best known GOF tests:

• Chi-square, in the chisq.gof function.

• Kolmogorov-Smirnov, in the ks.gof function.

The chi-square test applies only in the one-sample case; Kolmogorov-
Smirnov can be used in both the one-sample and the two-sample
cases. This chapter describes both tests, together with a graphical
function, cdf.compare, that can be used in both the one-sample and
two-sample cases as an exploratory tool for evaluating goodness of fit.
94



Cumulative Distribution Functions
CUMULATIVE DISTRIBUTION FUNCTIONS

For a random variable X, a cumulative distribution function (cdf),
F(x) = P[X ≤x], assigns a measure (between 0 and 1) of the probability
that X ≤x. If X1, …, Xn form a random sample from a continuous
distribution, with observed values x1, …, xn, an empirical distribution

function Fn can be defined for all x, , so that Fn(x) is the
proportion of observed values less than or equal to x. The empirical
distribution function estimates the unknown cdf. To decide whether
two samples arise from the same unknown distribution, a natural
procedure is to compare their empirical distribution functions.
Likewise, for one sample, you can compare its empirical distribution
function with a hypothesized cdf.

A graphical comparison of either one empirical distribution function
with a known cdf, or of two empirical distribution functions, can be
obtained easily in S-PLUS using the function cdf.compare.

For example, consider the plot shown in Figure 4.1. In this example,
the empirical distribution function and a hypothetical cdf are quite
close. This plot is produced using the cdf.compare function as
follows:

> z <- rnorm(100)
> cdf.compare(z, distribution="normal")

∞ x ∞< <–
95



Chapter 4  Goodness of Fit Tests
You may also compare distributions using quantile-quantile plots
(qq-plots) generated by either of the following functions:

• qqnorm to compare one sample with a normal distribution

• qqplot to compare two samples

For our normal sample z, qqnorm(z) produces the plot shown in
Figure 4.2.

Figure 4.1:  The empirical distribution function of a sample of size 100 generated 
from a N(0,1) distribution. The dotted line is the smoothed theoretical N(0,1) 
distribution evaluated at the sample points.

Empirical and Hypothesized CDFs

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dotted line is the smoothed hypothesized continuous cdf
96



Cumulative Distribution Functions
Departures from linearity show how the sample differs from the
normal, or how the two sample distributions differ. To compare
samples with distributions other than the normal, you may produce
qq-plots using the function ppoints. For more details, see Chapter 8,
Traditional Graphics, in the Programmer’s Guide.

In many cases, the graphical conclusions drawn from cdf.compare
or the qq-plots make more formal tests such as the chi square or
Kolmogorov-Smirnov unnecessary. For example, consider the two
empirical distributions compared in Figure 4.3—they clearly have
different distribution functions:

> x <- rnorm(30)
> y <- runif(30)
> cdf.compare(x,y)

Figure 4.2:  A qqnorm plot of a sample from a normal distribution.

•

••

•

•

•

•

•
•

•

•
•

•

•

•

•

• •

•

•
•

•

• ••
•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

Quantiles of Standard Normal

z

-2 -1 0 1 2

-3
-2

-1
0

1
2

97



Chapter 4  Goodness of Fit Tests
THE CHI-SQUARE TEST OF GOODNESS OF FIT

The chi-square test, the oldest and best known goodness-of-fit test, is a
one-sample test that examines the frequency distribution of n
observations grouped into k classes. The observed counts ci in each
class are compared to the expected counts Ci from the hypothesized
distribution. The test statistic, due to Pearson, is

Under the null hypothesis that the sample comes from the

hypothesized distribution, it has a  distribution with k - 1 degrees
of freedom. For any significance level α, reject the null hypothesis if

 is greater than the critical value ν for which .

Figure 4.3:  Two clearly different empirical distribution functions.

Comparison of Empirical cdfs of x and y

dotted line is cdf of y
-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

χ̂
2 ci Ci–( )2

Ci

-----------------------
i 1=

k

∑=

χ2

χ̂2 P χ2 ν>( ) α=
98



The Chi-Square Test of Goodness of Fit
You perform the chi-square goodness of fit test with the chisq.gof
function. In the simplest case, you specify a test vector and a
hypothesized distribution:

> z.chisq <- chisq.gof(z, distribution="normal")
> z.chisq

         Chi-square Goodness of Fit Test

data: z

Chi-square = 8.94, df = 12,
p-value = 0.708
alternative hypothesis:
True cdf does not equal the normal Distn.
     for at least one sample point.

Since we created z as a random sample from a normal distribution, it
is not surprising that we cannot reject the null hypothesis. If we
hypothesize a different distribution, we see that the chi-square
correctly rejects the hypothesis:

> chisq.gof(z, distribution="exponential")

         Chi-square Goodness of Fit Test

data: z

Chi-square = 324.84, df = 12,
p-value = 0
alternative hypothesis:
True cdf does not equal the exponential Distn.
     for at least one sample point.

The allowable values for the distribution argument are the
following strings (the default is "normal"):

"beta"            "binomial"     "cauchy"    "chisquare"
"exponential"     "f"             "gamma"    "geometric"
"hypergeometric"  "lognormal"  "logistic"  "negbinomial"
"normal"          "poisson"           "t"      "uniform"
"weibull"         "wilcoxon"
99



Chapter 4  Goodness of Fit Tests
When the sample being tested is from a continuous distribution, one
factor affecting the outcome is the choice of partition for determining
the grouping of the observations. This becomes particularly
important when the expected count in one or more cells drops below
1, or the average expected cell count drops below five (Snedecor and
Cochran (1980), p. 77). You can control the choice of partition using
either the n.classes or cut.points argument to chisq.gof. By
default, chisq.gof uses a default value for n.classes due to Moore
(1986).

Use the n.classes argument to specify the number of equal-width
classes:

> chisq.gof(z, n.classes=5)

Use the cut.points argument to specify the end points of the cells;
the specified points should span the observed values:

> cuts.z <- c(floor(min(z))-1, -1,0,1, ceiling(max(z))+1)
> chisq.gof(z, cut.points=cuts.z)

Chi-square tests apply to any type of variable: continuous, discrete, or
a combination of these. For large sample sizes (n ≤50), if the
hypothesized distribution is discrete, the chi-square is the only valid
test. In addition, the chi-square test easily adapts to the situation when
parameters of a distribution are estimated. However, especially for
continuous variables, information is lost by grouping the data.

When the hypothesized distribution is continuous, the Kolmogorov-
Smirnov test is more likely to reject the null hypothesis when it should;
it is more powerful than the chi-square test.
100



The Kolmogorov-Smirnov Test
THE KOLMOGOROV-SMIRNOV TEST

Suppose F1 and F2 are two cdfs. In the one-sample situation, F1 is the
empirical distribution function, and F2 is a hypothesized cdf. In the
two-sample situation, F1 and F2 are both empirical distribution
functions.

Possible hypotheses and alternatives concerning these cdfs are:

• Two-sided:

H0: F1(x) = F2(x) for all x

HA: F1(x) ≠ F2(x) for at least one value of x

• One-sided (“less” alternative):

H0: F1(x) ≥ F2(x) for all x

HA: F1(x) < F2(x) for at least one value of x.

• One-sided (“greater” alternative):

H0: F1(x) ≤F2(x) for all x

HA: F1(x) > F2(x) for at least one value of x

The Kolmogorov-Smirnov test is a method for testing the above
hypotheses. Corresponding to each alternative hypothesis is a
Kolmogorov-Smirnov test statistic, as follows:

• Two-sided Test: 

• Less Alternative: 

• Greater Alternative: 

If the test statistic is greater than some critical value, the null
hypothesis is rejected.

T supx F1 x( ) F2 x( )–=

T- supx F2 x( ) F1 x( )–=

T+ supx F1 x( ) F2 x( )–=
101



Chapter 4  Goodness of Fit Tests
To perform a KS test, use the function ks.gof. By default, the one-
sample ks.gof test compares the sample x to a normal with mean
mean(x) and standard deviation sqrt(var(x)):

> ks.gof(z)

One sample Kolmogorov-Smirnov Test of Composite Normality
data: z

ks = 0.0457, p-value = 0.5
alternative hypothesis:
True cdf does not equal the normal Distn.
     for at least one sample point.

sample estimates:
   mean of x standard deviation of x
 -0.04593973                1.103777
Warning messages:
  The Dallal-Wilkinson approximation, used to calculate
     the p-value in testing composite normality,
     is most accurate for p-values <= 0.10 .
   The calculated p-value is 0.881
     and so is set to 0.5 . in: dall.wilk(test, nx)

In the one-sample case, ks.gof can test any of the three alternative
hypotheses ("two-sided", "greater", "less"). In the two-sample
case, ks.gof can test only the two-sided hypothesis. The default
hypothesized distribution is the normal, as for the chisq.gof
function. You can specify a different distribution using the
distribution argument. Allowable values for the distribution
argument are as follows:

"beta"            "binomial"     "cauchy"    "chisquare"
"exponential"     "f"             "gamma"    "geometric"
"hypergeometric"  "lognormal"  "logistic"  "negbinomial"
"normal"          "poisson"           "t"      "uniform"
"weibull"         "wilcoxon"
102



One-Sample Tests
ONE-SAMPLE TESTS

In a real situation, we do not know the true source of the data.
Suppose, instead, that we think the underlying distribution is chi-
square with 2 degrees of freedom. The KS test gives strong evidence
against this assumption:

> ks.gof(z,alternative="greater",dist="chisquare",df=2)

         One-sample Kolmogorov-Smirnov Test;
                     hypothesized distribution = chisquare

data: z
ks = 0.4741, p-value = 0
alternative hypothesis: True cdf is greater than the
       chisquare Distn. for at least one sample point.

Figure 4.4:  Like the previous figure, except the dotted line shows a chi-square cdf 
with 2 degrees of freedom.

Empirical and Hypothesized chisquare CDFs

solid line is the empirical d.f.
-4 -2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

103



Chapter 4  Goodness of Fit Tests
Figure 4.4, created as follows, further shows that this assumption is
not reasonable:

> cdf.compare(z, dist="chisquare", df=2)

The chisq.gof test gives further confirmation:

> chisq.gof(z,dist="chisquare",n.param.est=0,df=2)

         Chi-square Goodness of Fit Test
data: z
Chi-square = 282.98, df = 12, p-value = 0
alternative hypothesis: True cdf does not equal the
         chisquare Distn. for at least one sample point.

Note that chisq.gof tests only the two sided alternative.

Composite 
Tests for a 
Family of 
Distributions

When the parameters are estimated from the sample, rather than
specified in advance, the tests described above are no longer
adequate. Different tables of critical values are needed. In fact, for the
KS test, the tables vary for different distributions, parameters
estimated, methods of estimation, and sample sizes. The null
hypothesis is now composite: rather than hypothesizing that the data
have a distribution with specific parameters, we hypothesize only that
the distribution belongs to the family of distributions with a certain
form, such as normal. This family of distributions results from
allowing all possible parameter values.

The two functions ks.gof and chisq.gof use different strategies to
solve composite tests: ks.gof explicitly calculates the required
parameters in two cases (described below), but otherwise forbids
composite hypotheses, while chisq.gof requires the user to pass
both the number of estimated parameters and the estimates
themselves as arguments, then reduces the degrees of freedom for the
chi-square by the number of estimated parameters.

The function ks.gof estimates parameters in the following two cases:

• Normal, with both mean and variance estimated.

• Exponential, with mean estimated.
104



One-Sample Tests
As an example, we test whether we can reasonably assume that the
Michelson data (see the section section One Sample: Distribution
Shape, Location, and Scale on page 63) arises from a normal
distribution. We start with an exploratory plot using cdf.compare
(Figure 4.5) and then use ks.gof with estimated mean and variance:

> cdf.compare(mich, dist="normal", mean=mean(mich),
+                 sd=sqrt(var(mich)))
> ks.gof(mich,dist="normal")

One-sample Kolmogorov-Smirnov Test of Composite Normality

data: mich
ks = 0.1793, p-value = 0.0914
alternative hypothesis: True cdf does not equal
         the normal Distn. for at least one sample point.

For the function chisq.gof, if parameters are estimated, the degrees
of freedom depend on the method of estimation. In practice, you may
estimate the parameters from the original (that is, not grouped) data,

Figure 4.5:  Exploratory plot of cdf of mich data.

Empirical and Hypothesized normal CDFs

solid line is the empirical d.f.
700 800 900 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

105



Chapter 4  Goodness of Fit Tests
and then set the argument n.param.est to the number of parameters
estimated. The function then subtracts one degree of freedom for
each parameter estimated.

In truth, if the parameters are estimated by maximum likelihood, the
degrees of freedom are bounded between (m - 1) and (m - 1 - k),
where m is the number of cells, and k is the number of parameters
estimated. Therefore, especially when the sample size is small, it is
important to compare the test statistic to the chi-square distribution
with both (m - 1) and (m - 1 - k) degrees of freedom. See Kendall and
Stuart (1979), for a more complete discussion.

We again test the normal assumption for the Michelson data using
chisq.gof:

> chisq.gof(mich, dist="normal", n.param.est=2,
+ mean=mean(mich), sd=sqrt(var(mich)))

        Chi-square Goodness of Fit Test
data: mich
Chi-square = 8.7, df = 4, p-value = 0.0691
alternative hypothesis: True cdf does not equal
      the normal Distn. for at least one sample point.

Warning messages:
Expected counts < 5. Chi-square approximation may not
    be appropriate. in: chisq.gof(mich, dist = "normal",
    n.param.est = 2, mean = mean(mich), sd = sqrt( ....

Both goodness-of-fit tests return results which make us suspect the
null hypothesis, but don’t allow us to firmly reject it at 95% or 99%
confidence levels.

Note that the distribution theory of the chi-square test is a large
sample theory. Therefore when any expected cell counts are small,
chisq.gof issues a warning message. You should regard p-values
with caution in this case.
106



Two-Sample Tests
TWO-SAMPLE TESTS

In the two-sample case, you can use ks.gof as for the one-sample
case (with the second sample y filling in for the hypothesized
distribution).

The assumptions of the two-sample KS test are:

• the samples are random samples,

• the two samples are mutually independent, and

• the data are measured on at least an ordinal scale.

In addition, the test gives exact results only if the underlying
distributions are continuous.

For example, compare the cdfs of vectors x and y generated from a
normal and exponential distribution, respectively:

> x <- rnorm(30)
> y <- rexp(100)
> qqplot(x,y)
> cdf.compare(x,y)

Figure 4.6 shows a qq-plot which is not linear and cdfs which are quite
different.
107



Chapter 4  Goodness of Fit Tests
This graphical evidence is verified by a formal KS test:

> ks.gof(x,y)

        Two-Sample Kolmogorov-Smirnov Test

data: x and y

ks = 0.3667, p-value = 0.0028
alternative hypothesis:
cdf of x does not equal the
              cdf of y for at least one sample point.

Figure 4.6:  A normal and exponential (dotted line) sample compared.

• •
• •

• •
• •••

•

••
•• ••

••
•
•
•
•
• •

•
••

•

•

x

y

-1 0 1 2

0
1

2
3

Comparison of Empirical cdfs of x and y

dotted line is cdf of y

-1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

108



References
REFERENCES

Kendall, M.G. and Stuart, A. (1979). The Advanced Theory of Statistics,
4th edition, 2:Inference and Relationship. Oxford University Press,
New York.

Moore, D.S. (1986). Tests of Chi-Squared Type. In D'Agostino, R.B.
and Stevens, M.A., editors, Goodness-of-Fit Techniques. Marcel Dekker,
New York.

Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods, 7th
edition. Iowa State University Press, Ames, Iowa.
109



Chapter 4  Goodness of Fit Tests
110



Introduction 112

Proportion Parameter for One Sample 114
Setting Up the Data 114
Hypothesis Testing 114
Confidence Intervals 115

Proportion Parameters for Two Samples 116
Setting Up the Data 116
Hypothesis Testing 116
Confidence Intervals 118

Proportion Parameters for Three or More Samples 119
Setting Up the Data 119
Hypothesis Testing 120
Confidence Intervals 121

Contingency Tables and Tests for Independence 122
The Chi-Square and Fisher Tests of Independence 123
The Chi-Square Test of Independence 126
Fisher’s Exact Test of Independence 127
The Mantel-Haenszel Test of Independence 127
McNemar Test for Symmetry Using Matched Pairs 129

References 132

STATISTICAL INFERENCE FOR 
COUNTS AND PROPORTIONS 5
111



Chapter 5  Statistical Inference for Counts and Proportions
INTRODUCTION

This chapter shows you how to use S-PLUS statistical inference
functions for two types of problems that involve counts or proportions.
With these functions, you can obtain confidence intervals for the
unknown population parameters and p-values for hypothesis tests of
the parameter values.

The first type of problem is one where you have one or more
samples, or sets of trials, in which the count for each sample
represents the number of times that a certain interesting outcome
occurs. By common convention, we refer to the occurrence of the
outcome of interest as a “success.” For example, if you play roulette
100 times at a casino, and you bet on red each time, you are interested
in counting the number of times that the color red comes up. This
count is a number between 0 and 100. When you divide this count by
100 you get a proportion (that is, a number between 0 and 1). This
proportion is a natural estimate of the probability that red comes up
on the roulette wheel.

Another example is provided by the famous Salk vaccine trials. These
trials involved two groups, one of which received the vaccine and one
of which received a placebo. For each group, the count of interest was
the number of individuals who contracted polio. The ratio of the
number of individuals who contracted polio to the total number of
individuals in the group is a proportion that provides a natural
estimate of the probability of contracting polio within that group.

The underlying probability model for problems of this first type is the
binomial distribution. For each set of trials i, this distribution is
characterized by the number of trials and the probability pi that a
success occurs on each trial. This probability is called a proportion
parameter. Your main interest is in making statistical inference
statements concerning the probabilities p1, p2, …, pm of occurrence of
the event of interest for each of the m sets of trials.

The second type of problem is one where you have counts on the
number of occurrences of several possible outcomes for each of two
variables. For example, you may be studying three types of cancer
and three types of diet (such as low, medium and high fat diets). The
two variables of interest may be “type of cancer” and “type of diet”.
For a fixed set of individuals, you have counts on the number of
112



Introduction
individuals who fall jointly in each of the categories defined by the
simultaneous occurrence of a type of cancer and a diet classification.
For problems of this kind, the data is arranged in a two-way table
called a contingency table.

In this second kind of problem, your main interest is to determine
whether there is any association between the two variables of interest.
The probability model for such problems is one of statistical
independence between the two variables.

The first three sections of this chapter cover the first type of problem
described above, for which the proportion parameters are the
probabilities of success, p1, p2, …, pm in m sets of binomial trials. The
last section covers the second type of problem, where you are
interested in testing the null hypothesis of independence between two
variables.
113



Chapter 5  Statistical Inference for Counts and Proportions
PROPORTION PARAMETER FOR ONE SAMPLE

When you play roulette and bet on red, you expect your probability
of winning to be close to, but slightly less than, 0.5. You expect this
because (in the United States) a roulette wheel has 18 red slots, 18
black slots, and two additional slots labeled “0” and “00”, for a total of
38 slots into which the ball can fall. Thus, for a “fair” (that is, perfectly
balanced) wheel, you expect the probability of red to be p0 = 18/38 =
.474. You hope that the house is not cheating you by altering the
roulette wheel so that the probability of red is less than .474.

To test whether a given sample has a particular proportion parameter,
use the binom.test function.

Setting Up the 
Data

In the roulette case there is little to do, since the only data are the
number n of trials and the number x of successes. These two values
can be directly supplied as arguments to binom.test, as shown in
the examples below.

Hypothesis 
Testing

You can test the null hypothesis that p = p0 using the function
binom.test. For example, if you bet on red 100 times and red comes
up 42 times, you get a p-value for this null hypothesis against the two-
sided alternative that p ≠ .474 as follows:

> binom.test(42,100,p=.474)$p.value

[1] 0.3167881

The two-sided alternative is the default alternative for binom.test.
You can get a p-value for a one-sided alternative by using the optional
argument alt=. For example, in the roulette wheel example you are
concerned that the house might cheat you in some way so that p < p0.
Use the following to test the null hypothesis against this one-sided
alternative:

> binom.test(42,100,p=.474,alt="l")$p.value

[1] 0.1632416

Here alt="l" specifies the “less than” alternative p < p0. To specify
the “greater than” alternative p > p0, use alt="g".
114



Proportion Parameter for One Sample
The default for the optional argument p=, which specifies the null
hypothesis value for p, is p=.5. For example, suppose you toss a coin
1000 times, with heads coming up 473 times. To test the coin for
“fairness;” that is, to test that the probability of heads equals .5, use
the following:

> binom.test(473,1000)$p.value

[1] 0.09368729

Confidence 
Intervals

The function binom.test does not compute a confidence interval for
the probability p of success. You can get a confidence interval for p by
using the function prop.test. For example, the following shows how
to obtain the 95% confidence interval for p:

> prop.test(45,100)$conf.int

[1] 0.3514281 0.5524574
attr(, "conf.level"):
[1] 0.95

The function prop.test uses a normal approximation to the
binomial distribution for such computations.

You get different confidence intervals by using the optional argument
conf.level= with different values. For example, to get a 90%
confidence interval:

> prop.test(45,100,conf.level=.9)$conf.int

[1] 0.3657761 0.5370170
attr(, "conf.level"):
[1] 0.9
115



Chapter 5  Statistical Inference for Counts and Proportions
PROPORTION PARAMETERS FOR TWO SAMPLES

In the Salk vaccine trials, two large groups were involved in the
placebo-control phase of the study. The first group, which received
the vaccination, consisted of 200,745 individuals. The second group,
which received a placebo, consisted of 201,229 individuals. There
were 57 cases of polio in the first group and 142 cases of polio in the
second group.

You assume a binomial model for each group, with a probability p1 of
contracting polio in the first group and a probability p2 of contracting
polio in the second group. You are mainly interested in knowing
whether or not the vaccine is effective. Thus you are mainly
interested in knowing the relationship between p1 and p2.

You can use prop.test to obtain hypothesis test p-values concerning
the values of p1 and p2, and to obtain confidence intervals for the

difference between the values p1 and p2.

Setting Up the 
Data

The first two arguments to prop.test are vectors containing,
respectively, the number of successes and the total number of trials.
For consistency with the one-sample case, we name these vectors x
and n. In the case of the Salk vaccine trials, a “success” corresponds to
contracting polio (although one hardly thinks of this as a literal
success!) Thus, you create the vectors x and n as follows:

> x <- c(57,142)
> n <- c(200745,201229)

Hypothesis 
Testing

For two-group problems, you can use either of two null hypotheses:
an equal probabilities null hypothesis that p1 = p2, with no restriction

on the common value of these probabilities other than that they be
between 0 and 1, or a completely specified probabilities null
hypothesis, where you provide specific probabilities for both p1 and
p2, and test whether the true probabilities are equal to those

hypothesized.
116



Proportion Parameters for Two Samples
The Equal 
Probabilities Null 
Hypothesis

When using the equal probabilities null hypothesis, a common
alternative hypothesis is the two-sided alternative p1 ≠ p2. These null

and alternative hypotheses are the defaults for prop.test.

In the Salk vaccine trials, your null hypothesis is that the vaccine has
no effect. For the two-sided alternative that the vaccine has some
effect, either positive or negative, you get a p-value by extracting the
p.value component of the list returned by prop.test:

> prop.test(x,n)$p.value

[1] 2.86606e-09

The extremely small p-value clearly indicates that the vaccine has
some effect.

To test the one-sided alternative that the vaccine has a positive effect;
that is, that p1 < p2, use the argument alt="l" to prop.test:

> prop.test(x,n,alt="l")$p.value

[1] 1.43303e-09

Here the p-value is even smaller, indicating that the vaccine is highly
effective in protecting against the contraction of polio.

Completely 
Specified Null 
Hypothesis 
Probabilities

You can also use prop.test to test “completely” specified null
hypothesis probabilities. For example, suppose you have some prior
belief that the probabilities of contracting polio with and without the
Salk vaccine are p01 = .0002 and p02 = .0006, respectively. Then you

supply these null hypothesis probabilities as a vector object, using the
optional argument p=. The p-value returned is for the joint probability
that both probabilities are equal to the hypothesized probabilities;
that is, .0002 and .0006 .

> prop.test(x,n,p=c(.0002,.0006))$p.value

[1] 0.005997006

The above p-value is very small and indicates that the null hypothesis
that the joint probability that the underlying population probabilities
with and without the Salk vaccine are .0002 and .0006 is very unlikely
and should be rejected.
117



Chapter 5  Statistical Inference for Counts and Proportions
Confidence 
Intervals

You obtain a confidence interval for the difference p1 - p2 in the
probabilities of success for the two samples by extracting the
conf.int component of prop.test. For example, to get a 95%
confidence interval for the difference in probabilities for the Salk
vaccine trials:

> prop.test(x,n)$conf.int

[1] -0.0005641810 -0.0002792617

attr(, "conf.level"):

[1] 0.95

The 95% confidence level is the default confidence level for
prop.test. You get a different confidence level by using the optional
argument conf.level=. For example, to get a 99% confidence
interval, use:

> prop.test(x,n,conf.level=.99)$conf.int

[1] -0.0006073705 -0.0002360723

attr(, "conf.level"):

[1] 0.99

You get a confidence interval for the difference p1 - p2 by using
prop.test only when you use the default null hypothesis that
p1 = p2.

You get all the information provided by prop.test as follows:

> prop.test(x,n,conf.level=.90)

         2-sample test for equality of proportions with
 continuity correction
data: x out of n
X-squared = 35.2728, df = 1, p-value = 0
alternative hypothesis: two.sided
90 percent confidence interval:
 -0.0005420769 -0.0003013659
sample estimates:
 prop’n in Group 1 prop’n in Group 2
      0.0002839423      0.0007056637
118



Proportion Parameters for Three or More Samples
PROPORTION PARAMETERS FOR THREE OR MORE 
SAMPLES

Sometimes you may have three or more samples of subjects, with
each subject characterized by the presence or absence of some
characteristic. An alternative, but equivalent, terminology is that you
have three or more sets of trials, with each trial resulting in a success
or failure. For example, consider the data shown in Table 5.1 for four
different studies of lung cancer patients, as presented by Fleiss (1981).

Each study has a certain number of patients, as shown in the second
column of the table, and for each study a certain number of the
patients were smokers, as shown in the third column of the table. For
this data, you are interested in whether the probability of a patient
being a smoker is the same in each of the four studies, that is, whether
each of the studies involve patients from a homogeneous population.

Setting Up the 
Data

The first argument to prop.test is a vector containing the number
of subjects having the characteristic of interest for each of the groups
(or the number of successes for each set of trials). The second
argument to prop.test is a vector containing the number of subjects
in each group (or the number of trials for each set of trials). As in the
one and two sample cases, we call these vectors x and n.

Table 5.1:  Smoking status among lung cancer patients in four studies.

Study Number of Patients Number of Smokers

1 86 83

2 93 90

3 136 129

4 82 70
119



Chapter 5  Statistical Inference for Counts and Proportions
For the smokers data in Table 5.1, you create the vectors x and n as
follows:

> x <- c(83,90,129,70)
> n <- c(86,93,136,82)

Hypothesis 
Testing

For problems with three or more groups, you can use either an equal
probabilities null hypothesis or a completely specified probabilities
null hypothesis.

The Equal 
Probabilities Null 
Hypothesis

In the lung cancer study, the null hypothesis is that the probability of
being a smoker is the same in all groups. Because the default null
hypothesis for prop.test is that all groups (or sets of trials) have the
same probability of success, you get a p-value as follows:

> prop.test(x,n)$p.value

[1] 0.005585477

The p-value of .006 is highly significant, so you can not accept the null
hypothesis that all groups have the same probability that a patient is a
smoker. To see all the results returned by prop.test, use:

> prop.test(x,n)

         4-sample test for equality of proportions without
 continuity correction

data: x out of n
X-squared = 12.6004, df = 3, p-value = 0.0056
alternative hypothesis: two.sided
sample estimates:
prop’n in Group 1 prop’n in Group 2 prop’n in Group 3
        0.9651163         0.9677419         0.9485294
prop’n in Group 4
        0.8536585

Completely 
Specified Null 
Hypothesis 
Probabilities

If you want to test a completely specified set of null hypothesis
probabilities, you need to supply the optional argument p=, with the
value of this argument being a vector of probabilities having the same
length as the first two arguments, x and n.
120



Proportion Parameters for Three or More Samples
For example, in the lung cancer study, to test the null hypothesis that
the first three groups have a common probability .95 of a patient
being a smoker, while the fourth group has a probability .90 of a
patient being a smoker, create the vector p as follows, the use it as an
argument to prop.test:

> p <- c(.95,.95,.95,.90)
> prop.test(x,n,p)$p.value

[1] 0.5590245
Warning messages:
  Expected counts < 5. Chi-square approximation may not be
appropriate.

Alternatively, you could use

prop.test(x,n,p=c(.95,.95,.95,.90))$p.value

Confidence 
Intervals

Confidence intervals are not computed by prop.test when you
have three or more groups (or sets of trials).
121



Chapter 5  Statistical Inference for Counts and Proportions
CONTINGENCY TABLES AND TESTS FOR INDEPENDENCE

The Salk vaccine trials in the early 1950s resulted in the data
presented in Table 5.2.

There are two categorical variables for the Salk trials: vaccination
status, which has the two levels “vaccinated” and “placebo,” and polio
status, which has the three levels “no polio,” “non-paralytic polio,”
and “paralytic polio.” Of 200,745 individuals who were vaccinated,
24 contracted non-paralytic polio, 33 contracted paralytic polio, and
the remaining 200,688 did not contract any kind of polio. Of 201,229
individuals who received the placebo, 27 contracted non-paralytic
polio, 115 contracted paralytic polio, and the remaining 201,087 did
not contract any kind of polio.

Tables such as Table 5.2 are called contingency tables. A contingency
table lists the number of counts for the joint occurrence of two levels
(or possible outcomes), one level for each of two categorical variables.
The levels for one of the categorical variables correspond to the
columns of the table, and the levels for the other categorical variable
correspond to the rows of the table.

When working with contingency table data, your primary interest is
most often determining whether there is any association in the form
of statistical dependence between the two categorical variables whose
counts are displayed in the table. The null hypothesis is that the two
variables are statistically independent. You can test this null
hypothesis with the functions chisq.test and fisher.test. The
function chisq.test is based on the classic chi-square test statistic,
and the associated p-value computation entails some approximations.

Table 5.2:  Contingency table of Salk vaccine trials data.

No Polio
Non-paralytic 

Polio
Paralytic 

Polio Totals

Vaccinated 200,688 24 33 200,745

Placebo 201,087 27 115 201,229

Totals 401,775 51 148 401,974
122



Contingency Tables and Tests for Independence
The function fisher.test computes an exact p-value for tables
having at most 10 levels for each variable. The function fisher.test
also entails a statistical conditioning assumption.

For contingency tables involving confounding variables, which are
variables related to both variables of interest, you can test for
independence using the function mantelhaen.test, which performs
the Mantel-Haenszel test. For contingency tables involving matched
pairs, use the function mcnemar.test to perform McNemar’s chi-
square test.

The functions for testing independence in contingency tables do not
compute confidence intervals, only p-values and the associated test
statistic.

The Chi-Square 
and Fisher 
Tests of 
Independence

The chi-square and Fisher’s exact tests are familiar methods for
testing independence. The Fisher test is often recommended when
expected counts in any cell are below 5, as the chi-square probability
computation becomes increasingly inaccurate when the expected
counts in any cell are low. (S-PLUS produces a warning message in
that case). Other factors may also influence your choice of which test
to use, however. Refer to a statistics text for further discussion if you
are unsure which test to use.

Setting Up the 
Data

You can set up your contingency table data in several ways. Which
way you choose depends to some extent on the original form of the
data and whether the data involves a large number of counts or a
small to moderate number of counts.

Two-Column 
Matrix Objects

If you already have the data in the form of a contingency table in
printed form, as in Table 5.2, the easiest thing to do is to put the data
in matrix form (excluding the marginal totals, if provided in the
original data). For example,

> salk.mat <- rbind(c(200688,24,33),c(201087,27,115))
> salk.mat

       [,1] [,2] [,3]
[1,] 200688   24   33
[2,] 201087   27  115
123



Chapter 5  Statistical Inference for Counts and Proportions
You could obtain the same result in a slightly different way as follows:

> salk.mat <- matrix(c(200688, 24, 33, 201087, 27, 115),
+ 2, 3, byrow=T)

Two Numeric 
Vector Objects

You may be given the raw data in the form of two equal-length coded
vectors, one for each variable. In such cases, the length of the vectors
corresponds to the number of individuals, with each entry indicating
the level by a numeric coding. For example, suppose you have two
variables from a clinical trial of the drug propranolol. (The data was
reported by P.J.D. Snow in Lancet, (Snow 1965)). The vector drug is
coded for control or propranolol status, and the vector status is
coded yes or no indicating whether the patient survived at least 28
days. The raw data is as follows:

> drug

 [1] "control" "control" "control" "control" "prop"
 [6] "control" "prop"    "control" "prop"    "control"
[11] "prop"    "prop"    "control" "prop"    "prop"
[16] "control" "control" "prop"    "prop"    "prop"
[21] "prop"    "control" "prop"    "control" "control"
[26] "prop"    "control" "control" "control" "control"
[31] "control" "control" "prop"    "control" "prop"
[36] "control" "prop"    "prop"    "prop"    "control"
[41] "prop"    "control" "prop"    "control" "prop"
[46] "control" "prop"    "control" "control" "prop"
[51] "prop"    "prop"    "control" "prop"    "prop"
[56] "prop"    "control" "control" "control" "prop"
[61] "prop"    "control" "prop"    "control" "prop"
[66] "control" "prop"    "control" "prop"    "control"
[71] "prop"    "control" "prop"    "control" "prop"
[76] "control" "prop"    "control" "prop"    "control"
[81] "prop"    "control" "prop"    "control" "prop"
[86] "control" "prop"    "control" "control" "prop"
[91] "prop"

> status

 [1] "yes" "yes" "yes" "no"  "yes" "yes" "yes" "yes" "yes"
[10] "yes" "yes" "no"  "no"  "yes" "yes" "no"  "no"  "yes"
[19] "yes" "yes" "yes" "no"  "yes" "yes" "no"  "yes" "no"
[28] "yes" "no"  "yes" "no"  "yes" "no"  "yes" "yes" "no"
124



Contingency Tables and Tests for Independence
[37] "no"  "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes"
[46] "no"  "yes" "no"  "yes" "yes" "yes" "yes" "yes" "yes"
[55] "yes" "yes" "yes" "yes" "yes" "no"  "yes" "yes" "yes"
[64] "no"  "no"  "no"  "yes" "yes" "yes" "yes" "no"  "no"
[73] "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes"
[82] "yes" "yes" "yes" "yes" "yes" "yes" "no"  "no"  "yes"
[91] "no"

To obtain the contingency table (without marginal count totals) use
the function table with status and drug as arguments:

> table(status,drug)

    control prop
no       17    7
yes      29   38

Two Factor 
Objects

Your data may already be in the form of two factor objects, or you
may want to put your data in that form for further analysis in S-PLUS.
For example, to put drug and status into factor form, use the
factor command as follows:

> drug.fac <- factor(drug)
> drug.fac

 [1] control control control control prop    control
 [7] prop    control prop    control prop    prop
[13] control prop    prop    control control prop
[19] prop    prop    prop    control prop    control
[25] control prop    control control control control
[31] control control prop    control prop    control
[37] prop    prop    prop    control prop    control
[43] prop    control prop    control prop    control
[49] control prop    prop    prop    control prop
[55] prop    prop    control control control prop
[61] prop    control prop    control prop    control
[67] prop    control prop    control prop    control
[73] prop    control prop    control prop    control
[79] prop    control prop    control prop    control
[85] prop    control prop    control control prop
[91] prop
125



Chapter 5  Statistical Inference for Counts and Proportions
> status.fac <- factor(status)

> status.fac

 [1] yes yes yes no  yes yes yes yes yes yes yes no
[13] no  yes yes no  no  yes yes yes yes no  yes yes
[25] no  yes no  yes no  yes no  yes no  yes yes no
[37] no  yes yes yes yes yes yes yes yes no  yes no
[49] yes yes yes yes yes yes yes yes yes yes yes no
[61] yes yes yes no  no  no  yes yes yes yes no  no
[73] yes yes yes yes yes yes yes yes yes yes yes yes
[85] yes yes yes no  no  yes no

Then use drug.fac and status.fac as arguments to the functions
described below.

The Chi-Square 
Test of 
Independence

You use the function chisq.test to perform a classical chi-square
test of the null hypothesis that the categorical variables of interest are
independent. For example, using the matrix form of data object
salk.mat for the Salk vaccine trials

> chisq.test(salk.mat)$p.value

[1] 1.369748e-10

which yields an exceedingly small p-value. This leads to rejection of
the null hypothesis of no association between polio status and
vaccination status.

To get all the information computed by chisq.test, use
chisq.test without specifying a return component, as usual:

> chisq.test(salk.mat)

Pearson’s chi-square test without Yates’ continuity 
correction

data: salk.mat
X-squared = 45.4224, df = 2, p-value = 0

You could also use the two factor objects, such as drug.fac and
status.fac as follows:

> chisq.test(drug.fac,status.fac)
126



Contingency Tables and Tests for Independence
Pearson’s chi-square test with Yates’ continuity correction

data: drug.fac and status.fac
X-squared = 4.3198, df = 1, p-value = 0.0377

The results are the same no matter which way you have set up the
data.

Fisher’s Exact 
Test of 
Independence

You can perform an exact test of indepence by using the S-PLUS

function fisher.test. You can use any data object type that can be
used with chisq.test. For example, using the factor object for the
propranolol clinical trial:

> fisher.test(drug.fac,status.fac)

         Fisher’s exact test

data: drug.fac and status.fac
p-value = 0.0314 alternative hypothesis: two.sided

When using fisher.test you should be aware that the p-value is
computed conditionally on the fixed marginal counts of the
contingency table you are analyzing That is, the inference does not
extend to all possible tables that might be obtained by repeating the
experiment and getting different marginal counts.

The Mantel-
Haenszel 
Test of 
Independence

A cancer study produced the data shown in Table 5.3 and Table 5.4,
as reported by Rosner (1986). In these tables, “case” refers to an
individual who had cancer and “control” refers to an individual who
did not have cancer. A “passive” smoker is an individual who lives
with a smoker. A smoker can also be a passive smoker if that smoker
lives with a spouse who also smokes.

Table 5.3:  Nonsmokers in cancer study.

Case-Control Status Passive Smoker
Not a Passive 

Smoker

case 120 111

control 80 155
127



Chapter 5  Statistical Inference for Counts and Proportions
For each of these tables, you can use chisq.test or fisher.test to
test for independence between cancer status and passive smoking
status. The data is presented in separate tables because “smoking
status;” that is, being a smoker or not being a smoker, could be a
confounding variable, because both smoking status and passive smoking
status are related to the outcome, cancer status, and because smoking
status may be related to the smoking status of the spouse. You would
like to be able to combine the information in both tables so as to
produce an overall test of independence between cancer status and
passive smoking status. You can do so for two or more two-by-two
tables, by using the function mantelhaen.test, which performs the
Mantel-Haenszel test.

Since the data is now associated with three categorical variables, the
two main variables of interest plus a confounding variable, you can
prepare your data in any one of the following forms:

• a three-dimensional array which represents the three
dimensional contingency table (two-by-two tables stacked on
top of one another)

• three numerical vectors representing each of the three
categorical variables, two of primary interest and one a
confounding variable

• three factor objects for the three categorical variables

Which form you use depends largely on the form in which the data is
presented to you. For example, the data in Table 5.3 and Table 5.4 are
ideal for use with a three-dimensional array:

> x.array <- array(c(120, 80, 111, 155, 161, 130,
+ 117, 124),c(2,2,2))

Table 5.4:  Smokers in cancer study.

Case-Control Status Passive Smoker
Not a Passive 

Smoker

case 161 117

control 130 124
128



Contingency Tables and Tests for Independence
> x.array

, , 1
     [,1] [,2]
[1,]  120  111
[2,]   80  155

, , 2
     [,1] [,2]
[1,]  161  117
[2,]  130  124

> mantelhaen.test(x.array)$p.value

[1] 0.0001885083

> mantelhaen.test(x.array)

         Mantel-Haenszel chi-square test with
 continuity correction

data: x.array
Mantel-Haenszel chi-square = 13.9423, df = 1,
p-value = 2e-04

McNemar Test 
for Symmetry 
Using Matched 
Pairs

In some experiments with two categorical variables, one of the
variables specifies two or more groups of individuals who receive
different treatments. In such situations, matching of individuals is
often carried out in order to increase the precision of statistical
inference. However, when matching is carried out the observations
usually are not independent. In such cases, the inference obtained
from chisq.test, fisher.test and mantelhaen.test is not valid
because these tests all assume independent observations. The
function mcnemar.test allows you to obtain a valid inference for
experiments where matching is carried out.
129



Chapter 5  Statistical Inference for Counts and Proportions
Consider, for example, the data in Table 5.5, as reported by Rosner
(1986). In this table, each entry represents one pair. For instance, the
“5” in the lower left cell means that in 5 pairs, the individual with
treatment A died, while the individual that that person was paired
with, who received treatment B, survived.

Your interest is in the relative effectiveness of treatments A and B in
treating a rare form of cancer. Each count in the table is associated
with a matched pair of individuals.

A pair in the table for which one member of a matched pair survives
while the other member dies is called a discordant pair. There are 16
discordant pairs in which the individual who received treatment A
survives and the individual who received treatment B dies. There are
5 discordant pairs with the reverse situation in which the individual
who received treatment A dies and the individual who received
treatment B survives.

If both treatments are equally effective, then you expect these two
types of discordant pairs to occur with “nearly” equal frequency. Put
in terms of probabilities, your null hypothesis is that p1 = p2, where p1
is the probability that the first type of discordancy occurs in a
matched pair of individuals, and p2 is the probability that the second
type of discordancy occurs.

We illustrate the use of mcnemar.test on the above data, putting the
data into the form of a matrix object:

> x.matched <- cbind(c(90,5),c(16,510))
> x.matched

     [,1] [,2]
[1,]   90   16
[2,]    5  510

Table 5.5:  Matched pair data for cancer study.

Survive With 
Treatment B

Die With 
Treatment B

survive with treatment A 90 16

die with treatment A 5 510
130



Contingency Tables and Tests for Independence
> mcnemar.test(x.matched)$p.value

[1] 0.02909633

> mcnemar.test(x.matched)

         McNemar’s chi-square test with continuity
 correction

data: x.matched
McNemar’s chi-square = 4.7619, df = 1, p-value = 0.0291

You can use mcnemar.test with two numeric vector objects, or two
factor objects, as the data arguments (just as with the other functions
in this section). You can also use mcnemar.test with matched pair
tables having more than two rows and more than two columns. In
such cases, the null hypothesis is symmetry of the probabilities pij
associated with each row and column of the table; that is, the null
hypothesis is that pij = pji for each combination of i and j.
131



Chapter 5  Statistical Inference for Counts and Proportions
REFERENCES

Bishop, Y.M.M. and Fienberg, S.J. and Holland, P.W. (1980). Discrete
Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge,
MA.

Conover, W.J. (1980). Practical Nonparametric Statistics, 2nd edition.
John Wiley, New York.

Fienberg, S.E. (1983). The Analysis of Cross-Classified Categorical Data,
2nd edition. The MIT Press, Cambridge, MA.

Fleiss, J.L. (1981). Statistical Methods for Rates and Proportions, 2nd
edition. Wiley, New York.

Lehmann, E.L. (1975). Nonparametrics: Statistical Methods Based on
Ranks. Holden-Day, San Francisco.

Rosner, B. (1986). Fundamentals of Biostatistics. Duxbury Press,
Boston.

Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods, 7th
edition. Iowa State University Press, Ames, Iowa.

Snow, P.J.D. (1965). Lancet.
132



Introduction 134

Choosing Suitable Data Sets 138

Cross-Tabulating Continuous Data 142

Cross-Classifying Subsets of Data Frames 145

Manipulating and Analyzing Cross-Classified Data 148

CROSS-CLASSIFIED DATA 
AND CONTINGENCY TABLES 6
133



Chapter 6  Cross-Classified Data and Contingency Tables
INTRODUCTION

Much data of interest is categorical in nature. Did patients receive
treatment A, B, or C; did they survive? Do the people in a sample
population smoke? Do they have high cholesterol counts? Have they
had heart trouble? These data are stored in S-PLUS as factors, that is, as
vectors where the elements indicate one of a number of levels. A
useful way of looking at this data is to cross-classify it and get a count of
the number of cases sharing a given combination of levels, and then
create a multi-way contingency table (a cross-tabulation) showing the
levels and the counts.

Consider the data set claims. It contains the number of claims for
auto insurance received broken down by the following variables: age
of claimant, age of car, type of car, and the average cost of the claims.
We can disregard the costs for the moment, and consider the question
of which groups of claimants generate the most claims. To make the
work easier we create an new data frame claims.src which does not
contain the cost variable:

> claims.src <- claims[,-4]
> summary(claims.src)

           age    car.age  type        number
17-20       :16   0-3:32   A:32   Min.   :  0.00
21-24       :16   4-7:32   B:32   1st Qu.:  9.00
25-29       :16   8-9:32   C:32   Median : 35.50
30-34,35-39 :32   10+:32   D:32   Mean   : 69.86
40-49       :16                   3rd Qu.: 96.25
50-59       :16                     Max. :434.00
60+         :16

Use the function crosstabs to generate tables of cross-classified data.
The following call to crosstabs generates output showing car age vs.
car type.

> crosstabs(number~car.age+type, claims.src)
134



Introduction
Call:
crosstabs(number ~ car.age + type, claims.src)
8942 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
car.age|type
       |A      |B      |C      |D      |RowTotl|
-------+-------+-------+-------+-------+-------+
0-3    | 391   |1538   |1517   | 688   |4134   |
       |0.0946 |0.3720 |0.3670 |0.1664 |0.462  |
       |0.3081 |0.3956 |0.5598 |0.6400 |       |
       |0.0437 |0.1720 |0.1696 |0.0769 |       |
-------+-------+-------+-------+-------+-------+
4-7    | 538   |1746   | 941   | 324   |3549   |
       |0.1516 |0.4920 |0.2651 |0.0913 |0.397  |
       |0.4240 |0.4491 |0.3472 |0.3014 |       |
       |0.0602 |0.1953 |0.1052 |0.0362 |       |
-------+-------+-------+-------+-------+-------+
8-9    | 187   | 400   | 191   |  44   |822    |
       |0.2275 |0.4866 |0.2324 |0.0535 |0.092  |
       |0.1474 |0.1029 |0.0705 |0.0409 |       |
       |0.0209 |0.0447 |0.0214 |0.0049 |       |
-------+-------+-------+-------+-------+-------+
10+    | 153   | 204   |  61   |  19   |437    |
       |0.3501 |0.4668 |0.1396 |0.0435 |0.049  |
       |0.1206 |0.0525 |0.0225 |0.0177 |       |
       |0.0171 |0.0228 |0.0068 |0.0021 |       |
-------+-------+-------+-------+-------+-------+
ColTotl|1269   |3888   |2710   |1075   |8942   |
       |0.14   |0.43   |0.30   |0.12   |       |
-------+-------+-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 588.2952 d.f.=9 (p=0)
        Yates’ correction not used
type=A
age    |car.age                                   8942 cases
       |0-3    |4-7    |8-9    |10+    |RowTotl|  in table
-------+-------+-------+-------+-------+-------+ +----------+
17-20  |  8    |  8    |  4    |  1    |21     | |N         |
       |0.38095|0.38095|0.19048|0.04762|0.0165 | |N/RowTotal|
       |0.02046|0.01487|0.02139|0.00654|       | |N/ColTotal|
       |0.00089|0.00089|0.00045|0.00011|       | |N/Total   |
-------+-------+-------+-------+-------+-------+ +----------+
135



Chapter 6  Cross-Classified Data and Contingency Tables
21-24  | 18    | 31    | 10    |  4    |63     |
       |                                       |
                    .  .  .
       |                                       |
       |                                       |
-------+-------+-------+-------+-------+-------+
35-39  | 43    | 73    | 21    | 14    |151    |
       |0.28477|0.48344|0.13907|0.09272|0.1190 |
       |0.10997|0.13569|0.11230|0.09150|       |
       |0.00481|0.00816|0.00235|0.00157|       |
-------+-------+-------+-------+-------+-------+
40-49  | 90    | 98    | 35    | 22    |245    |
       |0.36735|0.40000|0.14286|0.08980|0.1931 |
       |0.23018|0.18216|0.18717|0.14379|       |
       |0.01006|0.01096|0.00391|0.00246|       |
-------+-------+-------+-------+-------+-------+
50-59  | 69    |120    | 42    | 35    |266    |
       |0.25940|0.45113|0.15789|0.13158|0.2096 |
       |0.17647|0.22305|0.22460|0.22876|       |
       |0.00772|0.01342|0.00470|0.00391|       |
-------+-------+-------+-------+-------+-------+
60+    | 64    |100    | 43    | 53    |260    |
       |0.24615|0.38462|0.16538|0.20385|0.2049 |
       |0.16368|0.18587|0.22995|0.34641|       |
       |0.00716|0.01118|0.00481|0.00593|       |
-------+-------+-------+-------+-------+-------+
ColTotl|391    |538    |187    |153    |1269   |
       |0.308  |0.424  |0.147  |0.121  |       |
-------+-------+-------+-------+-------+-------+

The first argument to crosstabs is a formula that tells which variables
to include in the table. The second argument is the data set where the
variables are found. The complete call to crosstabs is stored in the
resulting object as the attribute "call" and is printed at the top of the
table.

The next item of information is the number of cases, that is, the total
count of all the variables considered. In this example, this is the total
of the number variable; that is, sum(claims.src$number).

Then you get a key which tells you how to interpret the cells of the
table. N is the count; below it are the proportions of the whole that the
count represents: the proportion of the row total, the proportion of
the column total and the proportion of the table total. If there are only
two terms in the formula, the table total will be the same as the
number of cases. A quick look at the counts, and in particular at the
136



Introduction
row totals (4134, 3549, 822, 437), shows that there are fewer older
cars than newer cars; relatively few cars survive to be eight or nine
years old, and the number of cars over ten years old is a tenth that of
cars three years or newer. It is slightly more surprising to note the four
types of cars don’t seem to age equally. You can get an inkling of this
by comparing the cells near the top of the table with those near the
bottom, but if you compare the third figure in each cell, the one the
key tells us is N/ColTotal, the progression becomes clear. Of cars of
type D, 64% are no more than three years old, while only 4% are eight
or nine, and less than 2% are over 10. Compare this to type A cars,
where there are slightly more in the four to seven year age group than
in the under three year, the proportion between eight and nine is
0.147 and the proportion over ten years is 12. It seems as if the the
type of car is related to its age, and if we look below the table where

the results of the χ2 test for independence are written, we see that the
p-value is so small it appears as 0.

Of course, we must remember these data are from insurance claims
forms—this is not a sample of all the cars on the road, just those that
got into accidents and had insurance policies with the company that
collected the data.

There may also be an interaction between car type/car age and the
age of the owner (which seems likely) and between the age of the
owner and the likelihood of a automobile accident.

With crosstabs, it is possible to tabulate all this data at once, and
print the resulting table in a series of layers, each showing two
variables. Thus, when we type crosstabs(number ~ car.age +
type + age, claims.src), we get a series of 8 layers, one for each
factor (age group) in the variable age. The variable represented by
the first term in the formula to the left of the ~, age.car, is
represented by the rows of each layer, the second term, car.age is
represented by the columns, and each level of the third, type,
produces a separate layer. If there were more than three variables,
there would be one layer for each possible combination of levels in
the variables after the first two. Part of the first of these layers is shown
above. Note that the number written in the bottom right margin is the
sum of the row totals, and is not the same as the number of cases in
the entire table, which is still found at the top of the display and which
is used to compute N/Total, the fourth figure in each cell.
137



Chapter 6  Cross-Classified Data and Contingency Tables
CHOOSING SUITABLE DATA SETS

Cross tabulation is a technique for categorical data. You tabulate the
number of cases for each combination of factors between your
variables. In the claims data set these numbers were already
tabulated. However, when looking at data that has been gathered as a
count, you must always keep in mind exactly what is being counted—
thus we can tell that of the 40-49 year old car owners who submitted
insurance claims, 43% owned cars of type B, and of the cars of type B
whose owners submitted insurance claims, 25% were owned by 40-49
year olds.

The data set guayule also has a response variable which is a count,
while all the predictor variables are factors. Here, the thing being
counted is the number of rubber plants that sprouted from seeds of a
number of varieties subjected to a number of treatments. However,
this experiment was designed so that the same number of seeds were
planted for each possible combination of the factors of the controlling
variables. Since we know the exact make-up of the larger population
from which our counts are taken, we can observe the relative size of
counts with complaisance and draw conclusions with great
confidence. The difference between guayule and claims is that with
the former we can view the outcome variable as a binomial response
variable (“sprouted”/“didn’t sprout”) for which we have tabulated one
of the outcomes (“sprouted”), and in the claims data set we can’t.

Another data set in which all the controlling variables are factors is
solder.

> summary(solder)

Opening    Solder      Mask     PadType  Panel       skips
S:300   Thin :450  A1.5:180  L9   : 90  1:300  Min.   : 0.00
M:300   Thick:450  A3  :270  W9   : 90  2:300  1st Qu.: 0.00
L:300              A6  : 90  L8   : 90  3:300  Median : 2.00
                   B3  :180  L7   : 90         Mean   : 5.53
                   B6  :180  D7   : 90         3rd Qu.: 7.00
                             L6   : 90         Max.   :48.00
                           (Other):360
138



Choosing Suitable Data Sets
The response variable is the number of skips appearing on a finished
circuit board. Since any skip on a board renders it unusable, we can
easily turn this into a binary response variable:

> attach(solder)
> good <- factor(skips==0)

Then, when we want to look at the interaction between the variables,
crosstabs counts up all the cases with like levels among the factors:

crosstabs( ~ Opening + Mask + good)
Call:
crosstabs( ~ Opening + Mask + good)
900 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
good=FALSE
Opening|Mask
       |A1.5   |A3     |A6     |B3     |B6     |RowTotl|
-------+-------+-------+-------+-------+-------+-------+
S      |49     |76     |30     |60     |60     |275    |
       |0.1782 |0.2764 |0.1091 |0.2182 |0.2182 |0.447  |
       |0.5326 |0.5033 |0.3371 |0.4444 |0.4054 |       |
       |0.0544 |0.0844 |0.0333 |0.0667 |0.0667 |       |
-------+-------+-------+-------+-------+-------+-------+
M      |22     |35     |59     |39     |51     |206    |
       |0.1068 |0.1699 |0.2864 |0.1893 |0.2476 |0.335  |
       |0.2391 |0.2318 |0.6629 |0.2889 |0.3446 |       |
       |0.0244 |0.0389 |0.0656 |0.0433 |0.0567 |       |
-------+-------+-------+-------+-------+-------+-------+
L      |21     |40     | 0     |36     |37     |134    |
       |0.1567 |0.2985 |0.0000 |0.2687 |0.2761 |0.218  |
       |0.2283 |0.2649 |0.0000 |0.2667 |0.2500 |       |
       |0.0233 |0.0444 |0.0000 |0.0400 |0.0411 |       |
-------+-------+-------+-------+-------+-------+-------+
ColTotl|92     |151    |89     |135    |148    |615    |
       |0.1496 |0.2455 |0.1447 |0.2195 |0.2407 |       |
-------+-------+-------+-------+-------+-------+-------+
139



Chapter 6  Cross-Classified Data and Contingency Tables
good=TRUE
Opening|Mask
       |A1.5   |A3     |A6     |B3     |B6     |RowTotl|
-------+-------+-------+-------+-------+-------+-------+
S      |11     |14     | 0     | 0     | 0     |25     |
       |0.4400 |0.5600 |0.0000 |0.0000 |0.0000 |0.088  |
       |0.1250 |0.1176 |0.0000 |0.0000 |0.0000 |       |
       |0.0122 |0.0156 |0.0000 |0.0000 |0.0000 |       |
-------+-------+-------+-------+-------+-------+-------+
M      |38     |25     | 1     |21     | 9     |94     |
       |0.4043 |0.2660 |0.0106 |0.2234 |0.0957 |0.330  |
       |0.4318 |0.2101 |1.0000 |0.4667 |0.2812 |       |
       |0.0422 |0.0278 |0.0011 |0.0233 |0.0100 |       |
-------+-------+-------+-------+-------+-------+-------+
L      |39     |80     | 0     |24     |23     |166    |
       |0.2349 |0.4819 |0.0000 |0.1446 |0.1386 |0.582  |
       |0.4432 |0.6723 |0.0000 |0.5333 |0.7188 |       |
       |0.0433 |0.0889 |0.0000 |0.0267 |0.0256 |       |
-------+-------+-------+-------+-------+-------+-------+
ColTotl|88     |119    |1      |45     |32     |285    |
       |0.3088 |0.4175 |0.0035 |0.1579 |0.1123 |       |
-------+-------+-------+-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 377.3556 d.f.= 8 (p=0)
        Yates' correction not used

In the first example above we specified where to look for the
variables age, car.age and type by giving the data frame
claims.src as the second argument of crosstabs. In the second
example, we attached the data frame solder and let crosstabs find
the variables in the search list. Both methods work because, when
crosstabs goes to interpret a term in the formula, it looks first in the
data frame specified by the argument data and then in the search list.
You can specifiy the data set with the name of a data frame, or a frame
number in which to find an attached data frame. Using a frame
number gives the advantage of speed that comes from attaching the
data frame, while protecting against the possibility of having masked
the name of one of the variables with something in your .Data
directory:

> attach(guayule)
140



Choosing Suitable Data Sets
> search()

[1] ".Data"
[2] "guayule" . . .

> rubber <- crosstabs(plants~variety+treatment, data=2)

If you specify a data frame and do not give a formula, crosstabs
uses the formula ~ ., that is, it will cross classify all the variables in
the data frame. Any variable names not found in the specified data
frame (which is all of them if you don’t specify any) are sought in the
search list.
141



Chapter 6  Cross-Classified Data and Contingency Tables
CROSS-TABULATING CONTINUOUS DATA

As was seen in the example of the solder data frame above, it is
fairly easy to turn a continuous response variable into a binomial
response variable. Clearly, we could have used any logical expression
that made sense to do so—we could have chosen any cutoff point for
acceptable numbers of skips.

A somewhat harder problem is presented by the case where you want
a multinomial factor from continuous data. You can make judicious
use of the cut function to turn the continuous variables into factors,
but you need to put care and thought into the points at which to
separate the data into ranges. The quartiles given by the function
summary offer a good starting point. The data frame kyphosis
represents data on 81 children who have had corrective spinal
surgery. The variables here are whether a postoperative deformity
(kyphosis) is present, the age of the child in months, the number of
vertebrae involved in the operation, and beginning of the range of
vertebrae involved.

> summary(kyphosis)

  Kyphosis        Age            Number          Start
absent :64  Min.   :  1.00  Min.   : 2.000  Min.   : 1.00
present:17  1st Qu.: 26.00  1st Qu.: 3.000  1st Qu.: 9.00
            Median : 87.00  Median : 4.000  Median :13.00
            Mean   : 83.65  Mean   : 4.049  Mean   :11.49
            3rd Qu.:130.00  3rd Qu.: 5.000  3rd Qu.:16.00
            Max.   :206.00  Max.   :10.000  Max.   :18.00

The summary of these variables suggests that two year intervals might
be a reasonable division for the age. We use the cut function to break
the variable Age into factors at a sequence of points at 24 month
intervals and to label the resulting levels with the appropriate range of
years. Since there are at most nine values for Number we leave it
alone for the moment. Since the mean of the Start variable is close
to the first quartile, a fairly coarse division of Start is probably
sufficient. We could require that cut simply divide the data into four
segments of equal length with the command cut(Start, 4), but the
results of this, while mathematically correct, look a bit bizarre—the
first level thus created is "0.830+ thru 5.165". The pretty
142



Cross-Tabulating Continuous Data
function divides the range of Start into equal intervals with whole
number end points, and the cut function makes them into levels with
reasonable names:

> attach(kyphosis)
> kyphosis.fac <- data.frame(Kyphosis=Kyphosis,
+  Age =  cut(Age, c( seq(0, 144, by=24), 206),
+    labels=
+      c("0-2","2-4","4-6","6-8","8-10","10-12","12+")),
+  Number = Number,
+  Start = cut(Start, pretty(Start, 4) ) )
> detach(2)
> summary(kyphosis.fac)

   Kyphosis       Age         Number               Start
 absent :64   0-2  :20   Min.   : 2.000    0+ thru  5:13
 present:17   2-4  : 7   1st Qu.: 3.000    5+ thru 10:14
              4-6  : 8   Median : 4.000   10+ thru 15:32
              6-8  : 9   Mean   : 4.049   15+ thru 20:22
              8-10 :11   3rd Qu.: 5.000
              10-12:14   Max.   :10.000
              12+  :12
> attach(kyphosis.fac)

The cross-tabulation of this data can then be easily examined:

> crosstabs(~Age+Kyphosis, kyphosis.fac)

Call:
crosstabs( ~ Age + Kyphosis, kyphosis.fac)
81 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
143



Chapter 6  Cross-Classified Data and Contingency Tables
Age    |Kyphosis
       |absent |present|RowTotl|
-------+-------+-------+-------+
0-2    |19     | 1     |20     |
       |0.950  |0.050  |0.247  |
       |0.297  |0.059  |       |
       |0.235  |0.012  |       |
-------+-------+-------+-------+
2-4    | 6     | 1     |7      |
       |                       |
          .  .  .
       |                       |
-------+-------+-------+-------+
10-12  | 9     | 5     |14     |
       |0.643  |0.357  |0.173  |
       |0.141  |0.294  |       |
       |0.111  |0.062  |       |
-------+-------+-------+-------+
12+    |11     | 1     |12     |
       |0.917  |0.083  |0.148  |
       |0.172  |0.059  |       |
       |0.136  |0.012  |       |
-------+-------+-------+-------+
ColTotl|64     |17     |81     |
       |0.79   |0.21   |       |
-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 9.588004 d.f.= 6 (p=0.1431089)
        Yates' correction not used
        Some expected values are less than 5,
             don't trust stated p-value
144



Cross-Classifying Subsets of Data Frames
CROSS-CLASSIFYING SUBSETS OF DATA FRAMES

There are two ways to subset a data frame for cross-classification.
First, the crosstabs function will cross-tabulate only those variables
specified in the formula. If there is one variable in the data frame in
which you are not interested, don’t mention it. Second, you can
choose which rows you want to consider with the subset argument.
You can use anything you would normally use to subscript the rows of
a data frame. Thus, the subset argument can be an expression that
evaluates to a logical vector, or a vector of row numbers or row
names.

As an example, recall the solder data set. You can look at the
relation between the variables without turning skips explicitly into a
binomial variable by using it to subscript the rows of the data frame:

> crosstabs(~Solder+Opening, solder, subset= skips<10)

Call:
crosstabs( ~ Solder+Opening, solder, subset = skips<10)
729 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
Solder |Opening
       |S      |M      |L      |RowTotl|
-------+-------+-------+-------+-------+
Thin   | 50    |133    |140    |323    |
       |0.155  |0.412  |0.433  |0.44   |
       |0.294  |0.494  |0.483  |       |
       |0.069  |0.182  |0.192  |       |
-------+-------+-------+-------+-------+
Thick  |120    |136    |150    |406    |
       |0.296  |0.335  |0.369  |0.56   |
       |0.706  |0.506  |0.517  |       |
       |0.165  |0.187  |0.206  |       |
-------+-------+-------+-------+-------+
145



Chapter 6  Cross-Classified Data and Contingency Tables
ColTotl|170    |269    |290    |729    |
       |0.23   |0.37   |0.40   |       |
-------+-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 20.01129 d.f.= 2 (p=4.514445e-05)
        Yates' correction not used

A more common use of the subscript is to look at some of the
variables while considering only a subset of the levels of another:

> crosstabs( ~ Solder+Opening+good, subset = Panel == "1")

Call:
crosstabs( ~ Solder+Opening+good, subset = Panel == "1")
300 cases in table
+----------+
|N         |
|N/RowTotal|
|N/ColTotal|
|N/Total   |
+----------+
good=FALSE
Solder |Opening
       |S      |M      |L      |RowTotl|
-------+-------+-------+-------+-------+
Thin   |49     |33     |31     |113    |
       |0.4336 |0.2920 |0.2743 |0.59   |
       |0.5444 |0.5410 |0.7949 |       |
       |0.1633 |0.1100 |0.1033 |       |
-------+-------+-------+-------+-------+
Thick  |41     |28     | 8     |77     |
       |0.5325 |0.3636 |0.1039 |0.41   |
       |0.4556 |0.4590 |0.2051 |       |
       |0.1367 |0.0933 |0.0267 |       |
-------+-------+-------+-------+-------+
ColTotl|90     |61     |39     |190    |
       |0.474  |0.321  |0.205  |       |
-------+-------+-------+-------+-------+
146



Cross-Classifying Subsets of Data Frames
good=TRUE
Solder |Opening
       |S      |M      |L      |RowTotl|
-------+-------+-------+-------+-------+
Thin   | 1     |17     |19     |37     |
       |0.0270 |0.4595 |0.5135 |0.34   |
       |0.1000 |0.4359 |0.3115 |       |
       |0.0033 |0.0567 |0.0633 |       |
-------+-------+-------+-------+-------+
Thick  | 9     |22     |42     |73     |
       |0.1233 |0.3014 |0.5753 |0.66   |
       |0.9000 |0.5641 |0.6885 |       |
       |0.0300 |0.0733 |0.1400 |       |
-------+-------+-------+-------+-------+
ColTotl|10     |39     |61     |110    |
       |0.091  |0.355  |0.555  |       |
-------+-------+-------+-------+-------+
Test for independence of all factors
        Chi^2 = 82.96651 d.f.= 2 (p=0)
        Yates' correction not used
147



Chapter 6  Cross-Classified Data and Contingency Tables
MANIPULATING AND ANALYZING CROSS-CLASSIFIED 
DATA

When you apply crosstabs to a data frame you get a
multidimensional array whose elements are the counts and whose
dimensions are the variables involved in the cross-tabulations. The
first factor variable is the first, or row dimension, the second is the
second, or column dimension, the third is the third dimension, etc. If
you wish to do more than tabulate data, say compute means or sums
of cross-classified data, you can apply functions to the elements of the
array with the function tapply.
148



Introduction 150

Power and Sample Size Theory 151

Normally Distributed Data 152
One-Sample Test of Gaussian Mean 152
Comparing Means From Two Samples 155

Binomial Data 157
One-Sample Test of Binomial Proportion 157
Comparing Proportions From Two Samples 159

References 163

POWER AND SAMPLE SIZE 7
149



Chapter 7  Power and Sample Size
INTRODUCTION

When contemplating a study, one of the first statistical questions that
arises is “How big does my sample need to be?” The required sample
size is a function of the alternative hypothesis, the probabilities of
Type I and Type II errors, and the variability of the population(s)
under study. Two new functions are available for computing power
and sample size requirements, normal.sample.size and
binomial.sample.size. Depending on the input, these functions
will provide:

• For given power and alternative hypothesis, the required
sample size

• For given sample size and power, the detectable difference

• For given sample size and alternative hypothesis, the power to
distinguish between the hypotheses

These functions can be applied in one- and two-sample studies, and
will produce a table from vectorized input suitable for passing to
Trellis graphics.
150



Power and Sample Size Theory
POWER AND SAMPLE SIZE THEORY

When designing a study, one of the first questions to arise is “How
large does my sample size need to be?” Intuitively, we have a sense
that this depends on how small a difference we’re trying to detect,
how much variability is inherent in our data, and how certain we
want to be of our results. In a classical hypothesis test of H0 (null
hypothesis) versus Ha (alternative hypothesis), there are four possible
outcomes, two of which are erroneous:

• Don’t reject H0 when is H0 true.

• Reject H0 when H0 is false.

• Reject H0 when H0 is true (type I error).

• Don’t reject H0 when H0 is false (type II error).

To construct a test, the distribution of the test statistic under H0 is used
to find a critical region which will ensure the probability of
committing a type I error does not exceed some predetermined level.
This probability is typically denoted α. The power of the test is its
ability to correctly reject the null hypothesis, or 1 - Pr(type II error),
which is based on the distribution of the test statistic under Ha. The
required sample size then will be a function of

1. The null and alternative hypotheses.

2. The target α.

3. The desired power to detect Ha.

4. The variability within the population(s) under study.

Our objective is, for a given test, to find a relationship between the
above factors and the sample size that will enable us to select a
sample size consistent with the desired α and power.
151



Chapter 7  Power and Sample Size
NORMALLY DISTRIBUTED DATA

One-Sample 
Test of 
Gaussian Mean

When conducting a one-sample test of a normal mean, we start by
writing our assumptions and hypotheses:

where i = 1, ..., n, and σ2 is known. To perform a two-sided test of
equality the hypotheses would be as follows:

Our best estimate of µ is the sample mean, which is normally
distributed:

and the test statistic is

Reject H0 if , which guarantees a level α test. The power
of the test to detect µ = µ0 is

We can think of the left side of the sum as the lower power, or the
power to detect , and the right side as the upper power, or the

power to detect . Solving for n using both upper and lower

power would be difficult, but we note that when , the

upper power is negligible (< α/2) and similarly the lower power is
small when . So the equation can be simplified by using

Xi N µ σ2,( )∼

H0:µ µ0=

Ha:µ µa=

X N µ σ2

n
-----, 

 ∼

Z n X µ0–( ) σ⁄=

Z N µ µ0– 1,( )∼

Z N 0 1,( )∼  for H0

Z Z1 α 2⁄–>

Power Φ
n µ0 µa–( )

σ
----------------------------- Z1 α 2⁄–– 

  Φ
n µa µ0–( )

σ
----------------------------- Z1 α 2⁄–– 

 +=

µa µ0<

µa µ0>

µa µ0– 0<

µa µ0– 0>
152



Normally Distributed Data
the absolute value of the difference between µa and µ0 and
considering only one side of the sum. This results in the following
sample size formula:

Comments • While only one of upper power and lower power is used in
deriving the sample size formula, the S-PLUS functions for
computing power and sample size uses both the upper and
lower power when computing the power of a two-tailed test for
a given sample size.

• In practice, the variance of the population is seldom known
and the test statistic is based on the t-distribution. Using the
t-distribution to derive sample size requires an iterative
approach, since the sample size is needed to specify the
degrees of freedom. The difference between the quantile
value for the t-distribution versus the standard normal is only
significant when small sample sizes are required, so the
standard formula based on the normal distribution was
chosen. Keep in mind that for samples sizes less than 10, the
power of a t-test could be significantly less than the target
power.

• The formula for a one-tailed test is derived along similar lines,
and is exactly the same as the two-tailed formula with the
exception that  is replaced by .

Examples The function for computing sample size for normally distributed data
is normal.sample.size. This function can be used to compute
sample size, power, or minimum detectable difference and will
automatically chose what to compute based on what information is
input. Here are some simple examples:

#
# one-sample case, using all the defaults
#
> normal.sample.size(mean.alt = 0.3)

  mean.null sd1 mean.alt delta alpha power n1
1         0   1      0.3   0.3  0.05   0.8 88

n σ Z1 α 2⁄– ZPower+( )( ) µa µo–⁄[ ]2
=

Z1 α– 2⁄ Z1 α–
153



Chapter 7  Power and Sample Size
#
# reduce output with summary
#
> summary(normal.sample.size(mean.alt = 0.3))

  delta power n1
1   0.3   0.8 88

#
# upper-tail test recomputing power
#
> normal.sample.size(mean = 100, mean.alt = 105, sd1 = 10,
+ power = c(.8, .9, .95, .99), alt = "greater",
+ recompute.power = T)

  mean.null sd1 mean.alt delta alpha     power n1
1       100  10      105     5  0.05 0.8037649 25
2       100  10      105     5  0.05 0.9054399 35
3       100  10      105     5  0.05 0.9527153 44
4       100  10      105     5  0.05 0.9907423 64

#
# calculate power
#
> normal.sample.size(mean = 100, mean.alt = 105, sd1 = 10,
+ n1 = (1:5)*20)

  mean.null sd1 mean.alt delta alpha     power  n1
1       100  10      105     5  0.05 0.6087795  20
2       100  10      105     5  0.05 0.8853791  40
3       100  10      105     5  0.05 0.9721272  60
4       100  10      105     5  0.05 0.9940005  80
5       100  10      105     5  0.05 0.9988173 100

#
# lower-tail test, minimum detectable difference
#
> summary(normal.sample.size(mean = 100, sd1 = 10,
+ n1 = (1:5)*20, power = .9, alt = "l"))

  mean.alt     delta power  n1
1 93.45636 -6.543641   0.9  20
2 95.37295 -4.627053   0.9  40
3 96.22203 -3.777973   0.9  60
154



Normally Distributed Data
4 96.72818 -3.271821   0.9  80
5 97.07359 -2.926405   0.9 100

See the online help files for normal.sample.size and
summary.power.table for more details.

Comparing 
Means From 
Two Samples

Extending this formula to two-sampled tests, is relatively easy. Given
two independent samples from normal distributions

where n2 = kn1, we’ll construct a two-sided test of equality of means

which is more conveniently written

The difference of the sample means is normally distributed

which leads to the test statistic

Derivation of the two-sample formulas proceed along the same lines
as the one-sample case, producing the following formulas:

X1 i, N µ1 σ1
2,( )∼ i 1 … n1, ,=

X2 j, N µ2 σ2
2,( )∼ j 1 … n1, ,=

H0:µ1 µ2=

Ha:µ1 µ2≠

H0:µ2 µ1– 0=

Ha:µ2 µ1– 0≠

X2 X1–( ) N µ2 µ1–
σ1

2

n1
-----

σ2
2

n2
-----+, 

  N µ2 µ1–
1
n1
----- σ1

2 σ2
2

k
-----+ 

 , 
 ∼ ∼

Z

X2 X1–

σ1
2

n1
-----

σ2
2

n2
-----+

---------------------
=

n1 σ1
σ2

2

k
-----+ 

  Z 1 α 2⁄–( ) ZPower+( )
µ2 µ1–

--------------------------------------------------
2

=

n2 kn1=
155



Chapter 7  Power and Sample Size
Examples For two-sample cases, use normal.sample.size with mean2 instead
of mean.alt:

#
# Don't round sample size
#
> summary(normal.sample.size(mean2 = 0.3, exact.n = T))

  delta power       n1       n2
1   0.3   0.8 174.4195 174.4195

#
# round sample size, then recompute power
#
> summary(normal.sample.size(mean2 = 0.3, recompute = T))

  delta     power  n1  n2
1   0.3 0.8013024 175 175

#
# Unequal sample sizes, lower tail test
#
> normal.sample.size(mean = 100, mean2 = 94, sd1 = 15,
+ prop.n2 = 2, power = 0.9, alt = "less")

  mean1 sd1 mean2 sd2 delta alpha power n1  n2 prop.n2
1   100  15    94  15    -6  0.05   0.9 81 162       2
156



Binomial Data
BINOMIAL DATA

One-Sample 
Test of 
Binomial 
Proportion

Another very common test is for a binomial proportion. Say we have
data sampled from a binomial distribution,

Each Xi represents the number of “successes” observed in n Bernoulli
trials, where Pr(success) = π. The mean and variance of the random
variable X is

We wish to test the value of the parameter π, using a two-sided test.

We could use an exact binomial test, but for sufficiently large n, and if
the distribution is not too skewed (π is not too close to 0 or 1), a
normal approximation can be used. A good rule of thumb is that the
normal distribution will be a good approximation to the binomial
distribution if

When using a continuous distribution to approximate a discrete one,
a continuity correction is usually recommended; typically, a value of 1/2
is used to extend the range in either direction, so

using a binomial distribution, becomes

Xi B π n,( )∼ i, 1 … n, ,=

E X( ) nπ=

Var X( ) nπ 1 π–( )=

H0:π π0=

Ha:π πa=

nπ 1 π–( ) 5≥

Pr Xl X Xu≤ ≤( )

Pr Xl
1
2
---– X Xu

1
2
---+≤ ≤ 

 
157



Chapter 7  Power and Sample Size
when using a normal approximation. If the continuity correction is
temporarily suppressed, the sample size formula is derived very much
as in the normal case:

There have been several suggestions concerning how to best
incorporate a continuity correction into the sample-size formula. The
one adopted in the S-PLUS function binomial.sample.size for a
one-sample test is

Examples #
# one-sample case, using all the defaults
#
> binomial.sample.size(p.alt = 0.3)

  p.null p.alt delta alpha power n1
1    0.5   0.3  -0.2  0.05   0.8 37

#
# minimal output
#
> summary(binomial.sample.size(p.alt = 0.3))

  delta power n1
1  -0.2   0.8 37

#
# compute power
#
> binomial.sample.size(p = .2, p.alt = .12, n1 = 250)

  p.null p.alt delta alpha     power  n1
1    0.2  0.12 -0.08  0.05 0.8997619 250

n*
π0 1 π0–( )Z1 α 2⁄– π0 1 π0–( )ZPower+

πa π0–
--------------------------------------------------------------------------------------------------------

2

=

n n
* 2

πa π0–
--------------------+=
158



Binomial Data
Comparing 
Proportions 
From Two 
Samples

The two-sample test for proportions is a bit more involved than the
others we’ve looked at. Say we have data sampled from two binomial
distributions

where n2 = kn1, we’ll construct a two-sided test of equality of means

which is more conveniently written

Using our best estimator of the parameter π, we can begin
constructing a test statistic:

In the case where the null hypothesis is true, so π2 = π1 = π, this can
be written as

X1 i, B π1 n1,( ),∼ i 1 … n1, ,=

X2 j, B π2 n2,( ),∼ j 1 … n2, ,=

H0:π1 π2=

Ha:π1 π2≠

H0:π1 π2– 0=

Ha:π1 π2– 0≠

π1
ˆ 1

n1
----- X1 i,

i 1=

n1

∑=

π2
ˆ 1

n2
----- X2 j,

j 1=

n2

∑=

π2
ˆ π1

ˆ– N π2 π1–
π1 1 π1–( )

n1
-------------------------

π2 1 π2–( )
n2

-------------------------+, 
 ∼

π2
ˆ π1

ˆ– N π2 π1–
1
n1
----- π1 1 π1–( )

π2 1 π2–( )
k

-------------------------+ 
 , 

 ∼

π2
ˆ π1

ˆ– N 0 π 1 π–( )
n1

-------------------- 1 1
k
---+ 

 , 
 ∼
159



Chapter 7  Power and Sample Size
Immediately a problem arises, namely, the variance needed to
construct the test statistic depends on the parameters being tested. It
seems reasonable to use all of the data available to estimate the
variances, and that is exactly what is done. A weighted average of the
two estimates for the proportions is used to estimate the variance
under H0. The test statistic then is

If the null hypothesis is true, this gives . We use this to
derive the formula without continuity correction:

Applying the two-sample adjustment for a continuity correction
produces the final results

Examples #
# for two-sample, use p2 instead of p.alt
#
> summary(binomial.sample.size(p2 = 0.3))

  delta power  n1  n2
1  -0.2   0.8 103 103

π
n1π̂1 n2π̂2+

n1 n2+
----------------------------- π̂1 kπ̂2+

1 k+
--------------------= =

Z
π̂2 π̂1–

π 1 π–( ) 1
n1
----- 1

n2
-----+ 

 
------------------------------------------------

=

Z N 0 1,( )∼

n1
*

π1 1 π1–( )
π2 1 π2–( )

k
-------------------------+ ZPower π 1 π–( ) 1 1

k
---+ 

  Z1 α 2⁄–+

π2 π1–
---------------------------------------------------------------------------------------------------------------------------------------------------

2

=

n1 n1
* k 1+

k π2 π1–
-----------------------+=

n2 kn1=
160



Binomial Data
#
# Don't round sample size and don't use continuity
# correction
#
> summary(binomial.sample.size(p2 = 0.3, exact.n = T,
+ correct = F))

  delta power       n1       n2
1  -0.2   0.8 92.99884 92.99884

#
# round sample size, then recompute power
#
> summary(binomial.sample.size(p2 = 0.3, recompute = T))

  delta     power  n1  n2
1  -0.2 0.8000056 103 103

#
# Unequal sample sizes, lower tail test
#
> binomial.sample.size(p = .1, p2 = .25, prop.n2 = 2,
+ power = 0.9, alt = "less")

   p1   p2 delta alpha power n1  n2 prop.n2
1 0.1 0.25  0.15  0.05   0.9 92 184       2

#
# Compute minimum detectable difference (delta) given 
sample
# size and power.
#
> binomial.sample.size(p = .6, n1 = 500, prop.n2 = .5,
+ power = c(.8, .9, .95))

   p1        p2     delta alpha power  n1  n2 prop.n2
1 0.6 0.7063127 0.1063127  0.05  0.80 500 250     0.5
2 0.6 0.7230069 0.1230069  0.05  0.90 500 250     0.5
3 0.6 0.7367932 0.1367932  0.05  0.95 500 250     0.5
161



Chapter 7  Power and Sample Size
#
# compute power
#
> binomial.sample.size(p = 0.3, p2 = seq(0.31, 0.35,
+ by=0.01), n1 = 1000, prop.n2 = 0.5)

 p1   p2 delta alpha      power   n1  n2 prop.n2
1 0.3 0.31  0.01  0.05 0.06346465 1000 500     0.5
2 0.3 0.32  0.02  0.05 0.11442940 1000 500     0.5
3 0.3 0.33  0.03  0.05 0.20446778 1000 500     0.5
4 0.3 0.34  0.04  0.05 0.32982868 1000 500     0.5
5 0.3 0.35  0.05  0.05 0.47748335 1000 500     0.5
162



References
REFERENCES

Rosner, Bernard (1990). Fundamentals of Biostatistics (Third Edition).
PWS-Kent, Boston.

Fisher, Lloyd D. and Van Belle, Gerald (1993). Biostatistics. Wiley,
New York.

Fleiss, Joseph L. (1981). Statistical Methods for Rates and Proportions.
Wiley, New York.
163



Chapter 7  Power and Sample Size
164



Introduction 167

Simple Least-Squares Regression 169
Diagnostic Plots For Linear Models 171

Multiple Regression 175

Adding and Dropping Terms From a Linear Model 179

Choosing the Best Model—Stepwise Selection 186

Updating Models 189

Weighted Regression 190

Prediction With the Model 194

Confidence Intervals 196

Polynomial Regression 199

Generalized Least Squares Regression 204
Example 206
Manipulating gls Objects 207

Smoothing 213
Locally Weighted Regression Smoothing 213
Using the Super Smoother 215
Using the Kernel Smoother 217
Smoothing Splines 221
Comparing Smoothers 222

Additive Models 225

REGRESSION AND 
SMOOTHING FOR 
CONTINUOUS RESPONSE 
DATA

8

165



Chapter 8  Regression and Smoothing For Continuous Response Data
More on Nonparametric Regression 231
Alternating Conditional Expectations 231
Additive and  Variance Stabilizing  Transformation 236
Projection Pursuit Regression 242

References 253
166



Introduction
INTRODUCTION

Regression is a tool for exploring relationships between variables.
Linear regression explores relationships that are readily described by
straight lines, or their generalization to many dimensions. A
surprisingly large number of problems can be analyzed using the
techniques of linear regression, and even more can be attacked by
means of transformations of the original variables that result in linear
relationships among the transformed variables. In recent years, the
techniques themselves have been extended through the addition of
robust methods and generalizations of the classical linear regression
techniques. These generalizations allow familiar problems in
categorical data analysis such as logistic and Poisson regression to be
subsumed under the heading of the generalized linear model (GLM),
while still further generalizations allow a predictor to be replaced by
an arbitrary smooth function of the predictor in building a generalized
additive model (GAM).

This chapter describes regression and smoothing in the case of a
univariate, continuous response. We start with simple regression, that
is, regression with a single predictor variable: fitting the model,
examining the fitted models, and analyzing the residuals. We then
examine multiple regression, varying models by adding and dropping
terms as appropriate. Again, we examine the fitted models and
analyze the residuals. We then consider the special case of weighted
regression, which underlies many of the robust techniques and
generalized regression methods.

One important reason for performing regression analysis is to get a
model useful for prediction. The section Prediction With the Model
describes how to use S-PLUS to obtain predictions from your fitted
model, and the section Confidence Intervals describes how to obtain
pointwise and simultaneous confidence intervals.

The classical linear regression techniques make several strong
assumptions about the underlying data, and the data can fail to satisfy
these assumptions in different ways—for example, the regression line
may be thrown off by one or more outliers or the data may not be
fitted well by any straight line. In the first case, we can bring robust
regression methods into play; these minimize the effects of outliers
167



Chapter 8  Regression and Smoothing For Continuous Response Data
while retaining the basic form of the linear model. Conversely, the
robust methods are often useful in identifying outliers. We discuss
robust regression in detail in a later chapter.

In the second case, we can expand our notion of the linear model,
either by adding polynomial terms to our straight line model, or by
replacing one or more predictors by an arbitrary smooth function of
the predictor, converting the classical linear model into a generalized
additive model (GAM).

Scatterplot smoothers are useful tools for fitting arbitrary smooth
functions to a scatter plot of data points. The smoother summarizes
the trend of the measured response as a function of the predictor
variables. We describe several scatterplot smoothers available in
S-PLUS, and describe how the smoothed values they return can be
incorporated into additive models.
168



Simple Least-Squares Regression
SIMPLE LEAST-SQUARES REGRESSION

Simple regression uses the method of least squares to fit a continuous,
univariate response as a linear function of a single predictor variable.
In the method of least squares, we fit a line to the data so as to
minimize the sum of the squared residuals. Given a set of n
observations yi of the response variable corresponding to a set of

values xi of the predictor and an arbitrary model , the ith
residual is defined as the difference between the ith observation yi and

the fitted value , that is, .

To do simple regression with S-PLUS, use the function lm (for linear
model) with a simple formula linking your chosen response variable to
the predictor variable. In many cases, both the response and the
predictor are components of a single data frame, which can be
specified as the data argument to lm. For example, consider the air
pollution data in the built-in data set air:

> air[,c(1,3)]

      ozone temperature
 1 3.448217          67
 2 3.301927          72
 3 2.289428          74
 4 2.620741          62
 5 2.843867          65
 . . .

A scatter plot of the data is shown in Figure 8.1.

ŷ f̂ x( )=

ŷi f̂ xi( )= r i yi yi
ˆ–=
169



Chapter 8  Regression and Smoothing For Continuous Response Data
From the scatter plot, we hypothesize a linear relationship between
temperature and ozone concentration. We choose ozone as the
response and temperature as the single predictor. The choice of
response and predictor variables is driven by the subject matter in
which the data arise, rather than by statistical considerations.

To fit the model, use lm as follows:

> ozone.lm <- lm(ozone ~ temperature, data = air)

The first argument, ozone ~ temperature, is the formula specifying
that the variable ozone is modeled as a function of temperature.
The second argument specifies that the data for the linear model is
contained in the data frame air.

Use the summary function to obtain a summary of the fitted model:

> summary(ozone.lm)

Figure 8.1:  Scatter plot of ozone against temperature.

•
•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

••
•

• •

•

•

•

•
••

•

•

•
•

•
•

•

•
•

•

•
•

•

•

•

•

•

•
••

temperature

oz
on

e

60 70 80 90

1
2

3
4

5

170



Simple Least-Squares Regression
Call: lm(formula = ozone ~ temperature)
Residuals:
   Min      1Q  Median     3Q   Max
 -1.49 -0.4258 0.02521 0.3636 2.044

Coefficients:
               Value Std. Error  t value Pr(>|t|)
(Intercept)  -2.2260   0.4614    -4.8243   0.0000
temperature   0.0704   0.0059    11.9511   0.0000

Residual standard error: 0.5885 on 109 degrees of freedom
Multiple R-Squared: 0.5672
F-statistic: 142.8 on 1 and 109 degrees of freedom, the 
p-value is 0

Correlation of Coefficients:
            (Intercept)
temperature -0.9926

The Value column under Coefficients gives the coefficients of the
linear model, allowing us to read off the estimated regression line as
follows:

ozone = -2.2260 + 0.0704 x temperature

The column headed Std. Error gives the estimated standard error
for each coefficient. The Multiple R-Squared term from the lm
summary tells us that the model explains about 57% of the variation
in ozone. The F-statistic is the ratio of the mean square of the
regression to the estimated variance; if there is no relationship
between temperature and ozone, this ratio has an F distribution with
1 and 109 degrees of freedom. The ratio here is clearly significant, so
the true slope of the regression line is probably not 0.

Diagnostic 
Plots For 
Linear Models

Suppose we have the linear model defined as follows:

> ozone.lm <- lm(ozone ~ temperature, data=air)

How good is the fitted linear regression model? Is temperature an
adequate predictor of ozone concentration? Can we do better?
Questions such as these are essential any time you try to explain data
with a statistical model.
171



Chapter 8  Regression and Smoothing For Continuous Response Data
It is not enough to fit a model; you must also assess how well that
model fits the data, being ready to modify the model or abandon it
altogether if it does not satisfactorily explain the data.

The simplest and most informative method for assessing the fit is to
look at the model graphically, using an assortment of plots that, taken
together, reveal the strengths and weaknesses of the model. For
example, a plot of the response against the fitted values gives a good
idea of how well the model has captured the broad outlines of the
data, while examining a plot of the residuals against the fitted values
often reveals unexplained structure left in the residuals, which in a
strong model should appear as nothing but noise. The default plotting
method for lm objects provides these two plots, along with the
following useful plots:

• Square root of absolute residuals against fitted values. This plot is
useful in identifying outliers and visualizing structure in the
residuals.

• Normal quantile plot of residuals. This plot provides a visual test
of the assumption that the model’s errors are normally
distributed. If the ordered residuals cluster along the
superimposed quantile-quantile line, you have strong
evidence that the errors are indeed normal.

• Residual-Fit spread plot, or r-f plot. This plot compares the
spread of the fitted values with the spread of the residuals.
Since the model is an attempt to explain the variation in the
data, you hope that the spread in the fitted values is much
greater than that in the residuals.

• Cook’s distance plot. Cook’s distance is a measure of the
influence of individual observations on the regression
coefficients.

Calling plot as follows yields the six plots shown in Figure 8.2:

> par(mfrow=c(2,3))
> plot(ozone.lm)
172



Simple Least-Squares Regression
The line y =  is shown as a dashed line in the third plot (far right of
top row). In the case of simple regression, this line is visually
equivalent to the regression line. The regression line appears to
model the trend of the data reasonably well. The residuals plots (left
and center, top row) show no obvious pattern, although five
observations appear to be outliers. By default, as in Figure 8.2, the
three most extreme values are identified in each of the residuals plots
and the Cook’s distance plot. You can request a different number of
points by using the id.n argument in the call to plot; for this model,
id.n = 5 is a good choice.

Another useful diagnostic plot is the normal plot of residuals (left plot,
bottom row). The normal plot gives no reason to doubt that the
residuals are normally distributed.

Figure 8.2:  Default plots for lm objects.

•
•

•

• •
•

• •• •

•

•

•

•
•

•

•
••

•

•
•

•

•

•
•

••
•

••

• •

•

••

•
•

• ••

•
•

•

•
•

• ••

•

•
•

•

•
•

•
••

•

•
•

•
•
•

••

•

•

•

• •
•

•
•

•

•

•

•

•

••
•
••
•

•••
••

• •
••

•
•

••

•

•

•

• •
•

•

• •

••

•

Fitted : temperature

R
es

id
ua

ls

2.0 3.0 4.0

-1
0

1
2

45

23
77

•

•
•

• •
•

• •
• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

••
•

•
•

•

•

• •
•

• ••

•
•

•

•
• •

•
•

• •

•
•

•

•

•

••

•

•
• •

•

•

•
••

•
•

•
•
•

•
•

•

•

• •
•

•

•

•

•
••

•
•

•
•

•

• •

•
•

•
• •

•

•

•

•

• •
•

•

•
•

•
•

•

Fitted : temperature

sq
rt

(a
bs

(r
es

id
(o

zo
ne

.lm
))

)

2.0 3.0 4.0

0.
2

0.
6

1.
0

1.
4

4523
77

• •

•
• ••

•
•• •• •

•

•

•

•

•

•
•

•
•

•

•

• •

•

•
••

•
•

• •

•

•
•

•
•

•
••

•

•

•

•
•

•
•

•

•

•
•

•

•
•

•
••

•

•
•

•
•
•

•
•

•

•

•

•
•
•

•
•

•

•

• •
•

•••
••
•

•
•

••••
•

••

••

•

• •
•

••
•

•

•
•

•
••

•

Fitted : temperature

oz
on

e

2.0 3.0 4.0

1
2

3
4

5

•
•

•

••
•

••••

•

•

•

•
•

•

•
• •

•

•
•

•

•

•
•

••
•

••

••

•

••

•
•

••••

•
•

•

•
•

• ••

•

•
•

•

•
•

•
••

•

•
•

•
•

•

••

•

•

•

• •
•

•
•

•

•

•

•

•

• •
•

••
•

•••
••

••
• •

•
•

••

•

•

•

••
•

•

• •

••

•

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-1
0

1
2

45

23
77

••••
••••••
••••••
•••••••••
•••••••
••••••••
••••••••••••••

••••••••••••••••
•••••••••••••

•••••••••••
•••••••
••••••
•••
•

Fitted Values

0.0 0.4 0.8

-1
0

1
2

••
•••
•••••••••••

••••••••
••••••••••

•••••••••••••
•••••••••••

••••••••••••
••••••••••••••••••

•••••••••••
••••
•••
••
••

•
Residuals

0.0 0.4 0.8

-1
0

1
2

f-value

oz
on

e

Index

C
oo

k’
s 

D
is

ta
nc

e

0 20 40 60 80

0.
0

0.
04

17 77
20

ŷ

173



Chapter 8  Regression and Smoothing For Continuous Response Data
The r-f plot, on the other hand (middle plot, bottom row), shows a
weakness in this model; the spread of the residuals is actually greater
than the spread in the original data. However, if we ignore the five
outlying residuals, the residuals are more tightly bunched than the
original data.

The Cook’s distance plot shows four or five heavily influential
observations. As the regression line fits the data reasonably well, the
regression is significant, and the residuals appear normally
distributed, we feel justified in using the regression line as a way to
estimate the ozone concentration for a given temperature. One
important issue remains—the regression line explains only 57% of the
variation in the data. We may be able to do somewhat better by
considering the effect of other variables on the ozone concentration.
See the section Multiple Regression for this further analysis.

At times, you are not interested in all of the plots created by the
default plotting method. To view only those plots of interest to you,
call plot with the argument ask = T. This call brings up a menu
listing the available plots:

> par(mfrow=c(1,1))
> plot(ozone.lm, id.n=5, ask=T)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values
5: plot: Normal QQplot of Residuals
6: plot: r-f spread plot
7: plot: Cook’s Distances
Selection:
Enter the number of the desired plot.

If you want to view all the plots, but want them all to appear in a full
graphics window, do not set par(mfrow = c(2,3)) before calling
plot, and do not use the ask = T argument. Instead, before calling
plot, call par(ask = T). This tells S-PLUS to prompt you before
displaying each additional plot.
174



Multiple Regression
MULTIPLE REGRESSION

You can construct linear models involving more than one predictor as
easily in S-PLUS as models with a single predictor. In general, each
predictor contributes a single term in the model formula; a single term
may contribute more than one coefficient to the fit.

For example, consider the built-in data sets stack.loss and
stack.x. Together, these data sets contain information on ammonia
loss in a manufacturing process. The stack.x data set is a matrix
with three columns representing three predictors: air flow, water
temperature, and acid concentration. The stack.loss data set is a
vector containing the response. To make our computations easier,
combine these two data sets into a single data frame, then attach the
data frame:

> stack.df <- data.frame(stack.loss, stack.x)
> stack.df

   stack.loss Air.Flow Water.Temp Acid.Conc.
 1         42       80         27         89
 2         37       80         27         88
 3         37       75         25         90
 . . .

> attach(stack.df)

For multivariate data, it is usually a good idea to view the data as a
whole using the pairwise scatter plots generated by the pairs
function:

> pairs(stack.df)

The resulting plot is shown in Figure 8.3.
175



Chapter 8  Regression and Smoothing For Continuous Response Data
Call lm as follows to model stack.loss as a linear function of the
three predictors:

> stack.lm <- lm(stack.loss ~ Air.Flow + Water.Temp +
+ Acid.Conc.)

Figure 8.3:  Pairwise scatter plots of stack loss data.

stack.loss

50 55 60 65 70 75 80

•

••

•

••
•

•••
••

•••
•

• •

•

••

•

• • ••

•••
• •

•• • •

•

75 80 85 90

10
20

30
40

•

• •

•

• ••

•• ••
• •

••• • •

• •

50
55

60
65

70
75

80 ••

•

••••

•••••

••••

•

•

Air.Flow

•

•

•• • •

••• • •

• • •

•

•

••

•

• •

•• ••• •

••• • •

•

•

••

•
•

•
•
••

•

•
•

•
•

••
•
• •

•

•
•

•
•
•

•

•
•
•
•

•
•
• • •

Water.Temp

18
20

22
24

26

••

•
•

•
•

•
•

• •
•

•
•

••
• •

• • •

10 20 30 40

75
80

85
90 •

•
•

••

••

•

•

•
•

•

•

•

•

•

•
•

•

•
•
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

18 20 22 24 26

•
•

•

•• •

•

•

•

•
•

•

•

•

•

•

•
•
•

•

Acid.Conc.
176



Multiple Regression
> summary(stack.lm)

Call: lm(formula = stack.loss ~ Air.Flow + Water.Temp +
Acid.Conc.)
Residuals:
   Min     1Q  Median    3Q   Max
-7.238 -1.712 -0.4551 2.361 5.698

Coefficients:
               Value Std. Error  t value Pr(>|t|)
(Intercept) -39.9197  11.8960    -3.3557   0.0038
   Air.Flow   0.7156   0.1349     5.3066   0.0001
 Water.Temp   1.2953   0.3680     3.5196   0.0026
 Acid.Conc.  -0.1521   0.1563    -0.9733   0.3440

Residual standard error: 3.243 on 17 degrees of freedom
Multiple R-Squared: 0.9136
F-statistic: 59.9 on 3 and 17 degrees of freedom, the 
p-value is 3.016e-09

Correlation of Coefficients:
           (Intercept) Air.Flow Water.Temp
  Air.Flow  0.1793
Water.Temp -0.1489     -0.7356
Acid.Conc. -0.9016     -0.3389   0.0002

When the response is the first variable in the data frame, as in
stack.df, and the desired model includes all the variables in the
data frame, the name of the data frame itself can be supplied in place
of the formula and data arguments:

> lm(stack.df)

Call:
lm(formula = stack.df)

Coefficients:
 (Intercept)  Air.Flow Water.Temp Acid.Conc.
   -39.91967 0.7156402   1.295286 -0.1521225

Degrees of freedom: 21 total; 17 residual
Residual standard error: 3.243364
177



Chapter 8  Regression and Smoothing For Continuous Response Data
We examine the default plots to assess the quality of the model (see
Figure 8.4):

> par(mfrow=c(2,3))
> plot(stack.lm, ask=F)

Both the line y =  and the residuals plots give support to the model.

The multiple R2 and F statistic also support the model. But would a
simpler model suffice?

To find out, let’s return to the summary of the stack.lm model. From
the t values, and the associated p-values, it appears that both
Air.Flow and Water.Temp contribute significantly to the fit. But can
we improve the model by dropping the Acid.Conc. term? We
explore this question further in the section Adding and Dropping
Terms From a Linear Model.

ŷ

178



Adding and Dropping Terms From a Linear Model
ADDING AND DROPPING TERMS FROM A LINEAR MODEL

In the section Multiple Regression, we fitted a linear model with three
predictors of which only two appeared to be significant. Can we
improve the model stack.lm by dropping one or more terms?

The drop1 function takes a fitted model and returns an ANOVA
table showing the effects of dropping in turn each term in the model:

> drop1(stack.lm)

Single term deletions
Model:
stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.
           Df Sum of Sq      RSS       Cp
    <none>              178.8300 262.9852
  Air.Flow  1  296.2281 475.0580 538.1745
Water.Temp  1  130.3076 309.1376 372.2541
Acid.Conc.  1    9.9654 188.7953 251.9118

Figure 8.4:  Default plots of fitted model.

•

•

•
•

•
••
•

•

•
••

•
•

•
•

•
••

•

•

Fitted : Air.Flow + Water.Temp + Acid.Conc

R
es

id
ua

ls

10 20 30 40

-6
-2

2
4

6

3
4

21

•

•

•
•

•

•
•
•

•

•

••

•

•

•

•
•

••

•

•

Fitted : Air.Flow + Water.Temp + Acid.Conc

sq
rt

(a
bs

(r
es

id
(s

ta
ck

.lm
))

)

10 20 30 40

0.
5

1.
5

2.
5

3
4
21 •

••

•

••••
•••• ••

•• •••

• •

Fitted : Air.Flow + Water.Temp + Acid.Conc

st
ac

k.
lo

ss

10 20 30 40

10
20

30
40

•

•

•
•

•
• •

•
•

•
• •

•
•

•
•

•
••

•

•

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-6
-2

2
4

6

3
4

21

••
•••

••
••••

••
•••••

•

••
Fitted Values

0.0 0.4 0.8

-1
0

0
10

20

•

•••••
••••••

••••
•••

••

Residuals

0.0 0.4 0.8

-1
0

0
10

20

f-value

st
ac

k.
lo

ss

Index

C
oo

k’
s 

D
is

ta
nc

e

5 10 15 20

0.
0

0.
4

41

21
179



Chapter 8  Regression and Smoothing For Continuous Response Data
The columns of the returned value show the degrees of freedom for
each deleted term, the sum of squares corresponding to the deleted
term, the residual sum of squares from the resulting model, and the Cp
statistic for the terms in the reduced model.

The Cp statistic (actually, what is shown is the AIC statistic, the
likelihood version of the Cp statistic—the two are related by the

equation ) provides a convenient criterion for

determining whether a model is improved by dropping a term. If any
term has a Cp statistic lower than that of the current model (shown on
the line labeled <none>), the term with the lowest Cp statistic is
dropped. If the current model has the lowest Cp statistic, the model is
not improved by dropping any term. The regression literature
discusses many other criteria for adding and dropping terms. See, for
example, Chapter 8 of Weisberg (1985).

In our example, the Cp statistic shown for Acid.Conc. is lower than
that for the current model. So it is probably worthwhile dropping that
term from the model:

> stack2.lm <- lm(stack.loss ~ Air.Flow + Water.Temp)
> stack2.lm

Call:
lm(formula = stack.loss ~ Air.Flow + Water.Temp)

Coefficients:
 (Intercept)  Air.Flow Water.Temp
   -50.35884 0.6711544   1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

A look at the summary shows that we have retained virtually all the
explanatory power of the more complicated model:

> summary(stack2.lm)

AIC σ̂
2

Cp n+( )=
180



Adding and Dropping Terms From a Linear Model
Call: lm(formula = stack.loss ~ Air.Flow + Water.Temp)
Residuals:
    Min    1Q Median    3Q   Max
 -7.529 -1.75 0.1894 2.116 5.659

Coefficients:
               Value Std. Error  t value Pr(>|t|)
(Intercept) -50.3588   5.1383    -9.8006   0.0000
   Air.Flow   0.6712   0.1267     5.2976   0.0000
 Water.Temp   1.2954   0.3675     3.5249   0.0024

Residual standard error: 3.239 on 18 degrees of freedom
Multiple R-Squared: 0.9088
F-statistic: 89.64 on 2 and 18 degrees of freedom, the 
p-value is 4.382e-10

Correlation of Coefficients:
           (Intercept) Air.Flow
  Air.Flow -0.3104
Water.Temp -0.3438     -0.7819

The residual standard error has fallen, from 3.243 to 3.239, while the

multiple R2 has decreased only slightly from 0.9136 to 0.9088.

We create the default set of diagnostic plots as follows:

> par(mfrow=c(2,3))
> plot(stack2.lm, ask=F)

These plots, shown in Figure 8.5, support the simplified model.
181



Chapter 8  Regression and Smoothing For Continuous Response Data
We turn next to the opposite problem—adding terms to an existing
model. Our first linear model hypothesized a relationship between
temperature and atmospheric ozone, based on a scatter plot showing
an apparent linear relationship between the two variables. The air
data set containing the two variables ozone and temperature also
includes two other variables, radiation and wind. Pairwise scatter
plots for all the variables can be constructed using pairs as follows:

> pairs(air)

The resulting plot is shown in Figure 8.6. The plot in the top row,
third column of Figure 8.6 corresponds to the scatter plot shown in
Figure 8.1.

Figure 8.5:  Diagnostic plots for simplified model.

•

•

•
•

•
• •
•

•

••

• •

•
• • •

•

•

Fitted : Air.Flow + Water.Temp

R
es

id
ua

ls

10 20 30

-8
-4

0
2

4
6

3
4

21

•

•

•
•

•

• •
•

•
••

• ••

•
• •

•

•

Fitted : Air.Flow + Water.Temp

sq
rt

(a
bs

(r
es

id
(s

ta
ck

2.
lm

))
)

10 20 30

0.
5

1.
5

2.
5

3
4
21 •

••

•

• • ••
••• • •

•• • •

• •

Fitted : Air.Flow + Water.Temp

st
ac

k.
lo

ss

10 20 30

10
20

30
40

•

•

•
•

•
••
•

•

• • •

••

•
••••

•

•

Quantiles of Standard Normal

R
es

id
ua

ls

-2 -1 0 1 2

-8
-4

0
2

4
6

3
4

21

••••
••

•••••

••
•••••

•

••
Fitted Values

0.0 0.4 0.8

-1
0

0
5

10
20

•

••••
••••

••••
•••••

••
•

Residuals

0.0 0.4 0.8

-1
0

0
5

10
20

f-value

st
ac

k.
lo

ss

Index

C
oo

k’
s 

D
is

ta
nc

e

5 10 15 20

0.
0

0.
4

0.
8

31

21
182



Adding and Dropping Terms From a Linear Model
From the pairwise plots, it appears that the ozone varies somewhat
linearly with each of the variables radiation, temperature, and
wind, and the dependence on wind has a negative slope.

Figure 8.6:  Pairwise scatter plots for ozone data.

ozone

0 50 150 250

••

•
•

••

•

•
••

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

• •

•

•
• •

•

•

•

•

•

•
•••

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
••

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•••
••

•

•
•

••• •

•

•
•

•
•

•

•
•

•
• •

•
•

•

•

•

•
• •

• •

•
•

••

•

•
• •

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

••

•

•
• •

•

•

•

•

•

•
••

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
••

•

•
•

•

•
•

•

•

•

•

•

•
•
•

•

•

•

•

• •

•

•••
••
•

•
•

••••

•

•
•

•
•

•

•
•

•
••

•
•

•

•

•

•
••

5 10 15 20

1
2

3
4

5

• •

•
•

• •

•

•
• •

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

• •

•

•
••

•

•

•

•

•

•
•• •

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
• •

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

•••
••

•

•
•

••••

•

•
•

•
•

•

•
•

•
• •

•
•

•

•

•

•
• •

0
50

15
0

25
0

•

•
•

• •

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•
••

•

•

• ••

•

•

•

•

•• •

•
•

•

•

•

• •

•

•
••

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•
•

••
••

•
•

•• •

••

•
••
•

•
•

•

•

•

••

•

•

•

•

•

•

•
•

••

•

•

radiation
•

•
•

• •

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•
••

•

•

• ••

•

•

•

•

••
•

•
•

•

•

•

• •

•

•
••

•

•

•

•
•
•

•

•

•

•
•

•

•

•

•

•

•
•

• •
• •

•
•
•••

••

•
••

•
•

•
•

•

•

••

•

•

•

•

•

•

•
•

• •

•

•
•

•
•

••

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•
••

•

•

• ••

•

•

•

•

• ••

•
•

•

•

•

• •

•

•
• •

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•
•

• •
• •

•
•

•• •

• •

•
••

•
•
•

•

•

•

• •

•

•

•

•

•

•

•
•

• •

•

•

•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•

• •

•

•
•

•

•

•
•

•

•

•

•

•
•

••
•

••

•
•

•

•

•• ••
•

•
•

•

• •
•

•
•

•
•

••• •

•• •
•

•
•

•
•

•
• ••

•

•
•

•

•
•

•
•

••• •

•
•

•
•
•
•

•

• •

• •

•

•

•

•

•

•

•

•

•

•

•

• •

• •

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•

• •

•

•
•

•

•

•
•

•

•

•

•

•
•

••
•

• •

•
••

•

•

•• • •
•

•
•

•

••
•
•

•
•

•
••• •

•••
•

•
•

•
•

•
•• •

•

•
•

•

•
•
•

•
• •••

•
•

•
•
•

•

•

••

• •

•

•

•

•

•

•

•

•

•

•

•

••

•

temperature

60
70

80
90

•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•

• •

•

•
•

•

•

•
•

•

•

•

•

•
•

• •
•

• •

•
••

•

•

••• •
•

•
•

•

••
•

•
•
•
•

•• ••

• ••
•
•

•
•

•
•

•• •

•

•
•

•

•
•

•
•
••• •

•
•

•
•
•

•

•

••

••

•

•

•

•

•

•

•

•

•

•

•

••

•

1 2 3 4 5

5
10

15
20

••

•
•

•

•

•

••
•

•
• •

•

•
••

•

•

••

•

•
•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
••

•

• ••

•

•

•
•

•

•
• ••

•

•• •
•

•

•

•

•

•

•

••
••

•
•

• •

•
•

•

•

•
•

•

•• •
•

•
•

•

•

••••

••

•

• •

•

•

• •

•

•

•
••

•

•

•

•

•

••

•
•

•

•

•

• •
•

•
••

•

•
••

•

•

••

•

•
•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
••

•

•••

•

•

•
•

•

•
•••

•

• ••
•

•

•

•

•

•

•

• •
••

•
•

••

•
•

•

•

•
•

•

•••
•

•
•

•

•

••• •

• •

•

• •

•

•

• •

•

•

•
••

•

•

•

•

•

60 70 80 90

• •

•
•

•

•

•

••
•

•
• •

•

•
••

•

•

• •

•

•
•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
••

•

• ••

•

•

•
•

•

•
•••

•

•••
•

•

•

•

•

•

•

••
••

•
•

••

•
•

•

•

•
•

•

•••
•

•
•

•

•

•••
•

••

•

••

•

•

••

•

•

•
••

•

•

•

•

• wind
183



Chapter 8  Regression and Smoothing For Continuous Response Data
We can use the add1 function to add the terms wind and radiation
in turn to our previously fitted model:

> ozone.add1 <- add1(ozone.lm, ~ temperature + wind +
+ radiation)
> ozone.add1

Single term additions

Model:
ozone ~ temperature
          Df Sum of Sq      RSS       Cp
   <none>              37.74698 39.13219
     wind  1  5.839621 31.90736 33.98517
radiation  1  3.839049 33.90793 35.98575

The first argument to add1 is a fitted model object, the second a
formula specifying the scope, that is, the possible choices of terms to be
added to the model. No response need be specified in the formula
supplied; the response must be the same as that in the fitted model.
The returned object is an ANOVA table like that returned by drop1,
showing the sum of squares due to the added term, the residual sum
of squares of the new model, and the modified Cp statistic for the
terms in the augmented model. Each row of the ANOVA table
represents the effects of a single term added to the base model. In
general, it is worth adding a term if the Cp statistic for that term is
lowest among the rows in the table, including the base model term. In
our example, we conclude that it is worthwhile adding the wind term.

Our choice of temperature as the original predictor in the model,
however, was completely arbitrary. We can gain a truer picture of the
effects of adding terms by starting from a simple intercept model:

> ozone0.lm <- lm(ozone ~ 1, data=air)
> ozone0.add1 <- add1(ozone0.lm, ~ temperature + wind +
+ radiation)
184



Adding and Dropping Terms From a Linear Model
> ozone0.add1

Single term additions

Model:
ozone ~ 1
            Df Sum of Sq      RSS       Cp
     <none>              87.20876 88.79437
temperature  1  49.46178 37.74698 40.91821
       wind  1  31.28305 55.92571 59.09694
  radiation  1  15.53144 71.67732 74.84855

The obvious conclusion is that we should start with the temperature
term, as we did originally.
185



Chapter 8  Regression and Smoothing For Continuous Response Data
CHOOSING THE BEST MODEL—STEPWISE SELECTION

Adding and dropping terms using add1 and drop1 is a useful method
for selecting a model when only a few terms are involved, but it can
quickly become tedious. The step function provides an automatic
procedure for conducting stepwise model selection. Essentially what
step does is automate the selection process implied in the section
Adding and Dropping Terms From a Linear Model—that is, it
calculates the Cp statistics for the current model, as well as those for
all reduced and augmented models, then adds or drops the term that
reduces Cp the most. The step function requires an initial model,
often constructed explicitly as an intercept-only model, such as the
ozone0.lm model constructed in the last section. Because step
calculates augmented models, it requires a scope argument, just like
add1.

For example, suppose we want to find the “best” model involving the
stack loss data, we could create an intercept-only model and then call
step as follows:

> stack0.lm <- lm(stack.loss ~ 1, data = stack.df)
> step(stack0.lm, ~ Air.Flow + Water.Temp + Acid.Conc.)

Start:  AIC= 2276.162
 stack.loss ~ 1

Single term additions

Model:
stack.loss ~ 1

scale:  103.4619

           Df Sum of Sq      RSS      Cp
    <none>              2069.238 2276.162
  Air.Flow  1  1750.122  319.116  732.964
Water.Temp  1  1586.087  483.151  896.998
Acid.Conc.  1   330.796 1738.442 2152.290
186



Choosing the Best Model—Stepwise Selection
Step: AIC= 732.9637
 stack.loss ~ Air.Flow

Single term deletions

Model:
stack.loss ~ Air.Flow

scale:  103.4619

         Df Sum of Sq      RSS       Cp
  <none>               319.116  732.964
Air.Flow  1  1750.122 2069.238 2276.162
Single term additions

Model:
stack.loss ~ Air.Flow

scale:  103.4619

           Df Sum of Sq      RSS       Cp
    <none>              319.1161 732.9637
Water.Temp  1  130.3208 188.7953 809.5668
Acid.Conc.  1    9.9785 309.1376 929.9090
Call:
lm(formula = stack.loss ~ Air.Flow, data = stack.df)

Coefficients:
 (Intercept) Air.Flow
   -44.13202 1.020309

Degrees of freedom: 21 total; 19 residual
Residual standard error (on weighted scale): 4.098242

The value returned by step is an object of class lm, and the final
result appears in exactly the same form as the output of lm. However,
by default, step displays the output of each step of the selection
process. You can turn off this display by calling step with the
trace = F argument:

> step(stack0.lm, ~ Air.Flow + Water.Temp + Acid.Conc.,
+ trace=F)
187



Chapter 8  Regression and Smoothing For Continuous Response Data
Call:
lm(formula = stack.loss ~ Air.Flow, data = stack.df)

Coefficients:
 (Intercept) Air.Flow
   -44.13202 1.020309

Degrees of freedom: 21 total; 19 residual
Residual standard error (on weighted scale): 4.098242
188



Updating Models
UPDATING MODELS

We built our alternate model for the stack loss data by explicitly
constructing a second call to lm. For models involving only one or
two predictors, this is not usually too burdensome. However, if you
are looking at many different combinations of many different
predictors, constructing the full call repeatedly can be tedious.

The update function provides a convenient way for you to fit new
models from old models, by specifying an updated formula or other
arguments. For example, we could create the alternate model
stack2.lm using update as follows:

> stack2a.lm <- update(stack.lm, .~. - Acid.Conc.,
+ data=stack.df)
> stack2a.lm

Call:
lm(formula = stack.loss ~ Air.Flow + Water.Temp, data =
stack.df)

Coefficients:
 (Intercept)  Air.Flow Water.Temp
   -50.35884 0.6711544   1.295351

Degrees of freedom: 21 total; 18 residual
Residual standard error: 3.238615

The first argument to update is always a model object, and additional
arguments for lm are passed as necessary. The formula argument
typically makes use of the “.” notation on either side of the “~”. The
“.” indicates “as in previous model.” The “-” and “+” operators are
used to delete or add terms. See Chapter 2, Specifying Models in
S-PLUS, for more information on formulas with update.
189



Chapter 8  Regression and Smoothing For Continuous Response Data
WEIGHTED REGRESSION

You can supply weights in fitting any linear model; this can
sometimes improve the fit of models with repeated values in the
predictor. Weighted regression is the appropriate method in those
cases where it is known a priori that not all observations contribute
equally to the fit.

For example, a software company with a successful training
department wanted to estimate the revenue to be generated by an
expanded training schedule. For previous courses, the company had
the data shown in Table 8.1 concerning the number of courses per
month and revenue generated.

Table 8.1:  Revenue and courses per month.

Courses per Month Revenue

2 10030

2 7530

2 10801

3 18005

3 15455

3 14986

3 13926

4 16104

4 19166

4 18578

5 27596
190



Weighted Regression
We create an S-PLUS data frame from the data in Table 8.1 as follows:

> ncourse <- c(2,2,2,3,3,3,3,4,4,4,5)
> revenue <- scan()

 [1] 10030  7530 10801 18005 15455 14986 13926 16104
 [9] 19166 18578 27596

> courserev <- data.frame(revenue, ncourse)
> courserev

   revenue ncourse
 1   10030       2
 2    7530       2
 3   10801       2
 4   18005       3
 5   15455       3
 6   14986       3
 7   13926       3
 8   16104       4
 9   19166       4
10   18578       4
11   27596       5

As a first look at the data, we fit a simple regression model as follows:

> course.lm <- lm(courserev)
> course.lm

Call:
lm(formula = courserev)

Coefficients:
 (Intercept)  ncourse
   -650.3113 5123.726

Degrees of freedom: 11 total; 9 residual
Residual standard error: 2131.713

We then look at the default plots, shown in Figure 8.7:

> par(mfrow=c(2,3))
> plot(course.lm)
191



Chapter 8  Regression and Smoothing For Continuous Response Data
Overall, the model seems to match the data reasonably well, but the
residuals look to be increasing with the predictor. A weighted
regression can help in this case.

Weights are specified by supplying a non-negative vector as the
weights argument to lm. We weight with the number of observations
for each value of the predictor—this gives a higher weight to the lone
observation for 5 courses:

> course1.lm <- lm(revenue ~ ncourse, weights=c(1/3, 1/3,
+ 1/3, 1/4, 1/4, 1/4, 1/4, 1/3, 1/3, 1/3, 1))
> course1.lm

Call:
lm(formula = revenue ~ ncourse, weights = c(1/3, 1/3,
1/3, 1/4, 1/4, 1/4, 1/4, 1/3, 1/3, 1/3, 1))

Figure 8.7:  Default diagnostic plots for unweighted course revenue model.

•

•

•

•

•
•
•

•

•
•

•

Fitted : ncourse

R
es

id
ua

ls

10000 15000 20000 25000

-4
00

0
0

20
00 11

4

8
•

•

•

•

•

•

•

•

•

•

•

Fitted : ncourse

sq
rt

(a
bs

(r
es

id
(c

ou
rs

e.
lm

))
)

10000 15000 20000 25000

20
30

40
50

60

11
4

8

•
•
•

•
•••

•
••

•

Fitted : ncourse

re
ve

nu
e

10000 15000 20000 25000

10
00

0
20

00
0

•

•

•

•

•
•

•

•

•
•

•

Quantiles of Standard Normal

R
es

id
ua

ls

-1 0 1

-4
00

0
0

20
00 11

4

8

• • •

• • • •

• • •

•
Fitted Values

0.2 0.6

-5
00

0
0

50
00

•
•

• • •
• • • •

• •

Residuals

0.2 0.6

-5
00

0
0

50
00

f-value

re
ve

nu
e

Index

C
oo

k’
s 

D
is

ta
nc

e

2 4 6 8 10

0.
0

0.
4

0.
8

2
8

11
192



Weighted Regression
Coefficients:
 (Intercept)  ncourse
   -2226.167 5678.333

Degrees of freedom: 11 total; 9 residual
Residual standard error (on weighted scale): 1297.942

The plots of the weighted regression show again a reasonable fit to the
data and a less obvious pattern to the residuals.
193



Chapter 8  Regression and Smoothing For Continuous Response Data
PREDICTION WITH THE MODEL

Much of the value of a linear regression model is that, if it accurately
models the underlying phenomenon, it can provide reliable predictions
about the response for a given value of the predictor. The predict
function takes a fitted model object and a data frame of new data, and
returns a vector corresponding to the predicted response. The
variable names in the new data must correspond to those of the
original predictors; the response may or may not be present, but if
present is ignored.

For example, suppose we want to predict the atmospheric ozone
concentration from the following vector of temperatures:

> newtemp <- c(60, 62, 64, 66, 68, 70, 72)

Figure 8.8:  Diagnostic plots for weighted course revenue model.

•

•

•

•

••
•

•

•
•

•

Fitted : ncourse

R
es

id
ua

ls

10000 20000

-4
00

0
0

20
00

10

4

8

•

••

•

•

•

•

•

•
•

•

Fitted : ncourse

sq
rt

(a
bs

(r
es

id
(c

ou
rs

e1
.lm

))
)

10000 20000

20
40

60

10

4

8

•
•
•

•
•••

•
••

•

Fitted : ncourse

re
ve

nu
e

10000 20000
10

00
0

20
00

0

•

•

•

•

••
•

•

•
•

•

Quantiles of Standard Normal

R
es

id
ua

ls

-1 0 1

-4
00

0
0

20
00

10

4

8

• • •

• • • •

• • •

•
Fitted Values

0.2 0.6

-5
00

0
0

50
00

•

• • • •
• • • • •

•

Residuals

0.2 0.6

-5
00

0
0

50
00

f-value

re
ve

nu
e

Index

C
oo

k’
s 

D
is

ta
nc

e

2 4 6 8 10

0
1

2
3

4

3
8

11
194



Prediction With the Model
We can obtain the desired predictions using predict as follows:

> predict(ozone.lm, data.frame(temperature=newtemp))

       1        2        3        4        5        6         7
1.995822 2.136549 2.277276 2.418002 2.558729 2.699456  2.840183

The predicted values do not stand apart from the original
observations.

You can use the se.fit argument to predict to obtain the standard
error of the fitted value at each of the new data points. When
se.fit=T, the output of predict is a list, with a fit component
containing the predicted values and an se.fit component
containing the standard errors:

> predict(ozone.lm, data.frame(temperature=newtemp),
+ se.fit=T)

$fit:
       1        2        3        4        5        6        7
1.995822 2.136549 2.277276 2.418002 2.558729 2.699456 2.840183

$se.fit:
        1         2          3          4          5          6          7
0.1187178 0.1084689 0.09856156 0.08910993 0.08027508 0.07228355 0.06544499

$residual.scale:
[1] 0.5884748

$df:
[1] 109

You can use this output list to compute pointwise and simultaneous
confidence intervals for the fitted regression line. See the section
Confidence Intervals for details. See the predict help file for a
description of the remaining components of the return list,
$residual.scale and $df, as well as a description of predict’s
other arguments.
195



Chapter 8  Regression and Smoothing For Continuous Response Data
CONFIDENCE INTERVALS

How reliable is the estimate produced by a simple regression?
Provided the standard assumptions hold (that is, normal, identically
distributed errors with constant variance σ), we can construct
confidence intervals for each point on the fitted regression line based
on the t distribution, and simultaneous confidence bands for the fitted
regression line using the F distribution.

In both cases, we need the standard error of the fitted value, se.fit,
which is computed as follows (Weisberg, 1985, p. 21):

For a fitted object of class lm, you can use the predict function as
follows to calculate se.fit:

> predict(ozone.lm, se.fit=T)

$se.fit:
         1          2          3         4          5
0.08460301 0.06544499 0.06015393 0.1084689 0.09377002 . . .

For any given point x in the predictor space, a 1 - α percent
confidence interval for the fitted value corresponding to x is the set of
values y such that

The pointwise function takes the output of predict (produced with
the se.fit = T flag) and returns a list containing three vectors: the
vector of lower bounds, the fitted values, and the vector of upper
bounds giving the confidence intervals for the fitted values for the
predictor:

> pointwise(predict(ozone.lm, se.fit=T))

se.fit σ̂ 1
n
--- x x–( )2

xi x–( )2

i
∑
------------------------+

 
 
 
 
  1

2
---

=

ŷ t α n 2–,( ) se.fit×– y ŷ t α n 2–,( )+ se.fit×< <
196



Confidence Intervals
$upper:
       1        2        3       4        5        6        7
2.710169 3.011759 3.138615 2.42092 2.593475 2.250401 2.363895 . . .

$fit:
       1        2       3         4        5        6        7
2.488366 2.840183 2.98091  2.136549 2.347639 1.925458 2.066185 ...

$lower:
       1        2        3        4        5        6        7
2.266563 2.668607 2.823205 1.852177 2.101803 1.600516 1.768476 ...

The output from pointwise is suitable, for example, as input for the
error.bar function. It is tempting to believe that the curves resulting
from connecting all the upper points and all the lower points would
give a confidence interval for the entire curve. This, however, is not
the case; the resulting curve does not have the desired confidence
level across its whole range. What is required instead is a simultaneous
confidence interval, obtained by replacing the t distribution with the
F distribution. An S-PLUS function for creating such simultaneous
confidence intervals (and by default plotting the result) can be defined
as follows:

"confint.lm"<-
function(object, alpha = 0.05, plot.it = T, ...)
{
        f <- predict(object, se.fit = T)
        p <- length(coef(object))
        fit <- f$fit
        adjust <- (p * qf(1 - alpha, p, length(fit) -
                p))^0.5 * f$se.fit
        lower <- fit - adjust
        upper <- fit + adjust
        if(plot.it) {
                y <- fit + resid(object)
                plot(fit, y)
                abline(0, 1, lty = 2)
                ord <- order(fit)
                lines(fit[ord], lower[ord])
                lines(fit[ord], upper[ord])
                invisible(list(lower = lower, upper =
                        upper))
        }
        else list(lower = lower, upper = upper)
}

197



Chapter 8  Regression and Smoothing For Continuous Response Data
To see how it works, let’s create a plot of our first model of the ozone
data:

> confint.lm(ozone.lm)

The resulting plot is shown in Figure 8.9.

Figure 8.9:  Simultaneous confidence intervals for ozone data.

•
•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

••
•

• •

•

•

•

•
••

•

•

•
•

•
•

•

•
•

•

•
•

•

•

•

•

•

•
••

fit

y

2.0 2.5 3.0 3.5 4.0 4.5

1
2

3
4

5

198



Polynomial Regression
POLYNOMIAL REGRESSION

Thus far in this chapter, we’ve dealt with data sets for which the
graphical evidence clearly indicated a linear relationship between the
predictors and the response. For such data, the linear model is a
natural and elegant choice, providing a simple and easily analyzed
description of the data. But what about data that does not exhibit a
linear dependence? For example, consider the scatter plot shown in
Figure 8.10. Clearly, there is some functional relationship between the
predictor E (for Ethanol) and the response NOx (for Nitric Oxide), but
just as clearly the relationship is not a straight line.

Figure 8.10:  Scatter plot showing nonlinear dependence.

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

199



Chapter 8  Regression and Smoothing For Continuous Response Data
How should we model such data? One approach is to add polynomial
terms to the basic linear model, then use least-squares techniques as
before. The classical linear model (with the intercept term
represented as the coefficient of a dummy variable X0 of all 1s) is
represented by an equation of the following form:

where the predictors Xk enter the equation as linear terms. More
generally, classical linear regression techniques apply to any equation
of the form

where the Zk are new variables formed as combinations of the
original predictors. For example, consider a cubic polynomial
relationship given by the following equation:

Taking X = X1 = X2 = X3, we can convert this to the desired form by
the following assignments:

(8.1)

(8.2)

(8.3)

Y βk Xk ε+
k 0=

n

∑=

Y βkZk ε+
k 0=

n

∑=

Y βk X
k ε+

k 0=

3

∑=

X0 Z0=

X1 Z1=

X2
2 Z2=

X3
2 Z3=
200



Polynomial Regression
Once these assignments are made, the coefficients βk can be
determined as usual using the classical least-squares techniques.

To perform a polynomial regression in S-PLUS, use lm together with
the poly function. Use poly on the right hand side of the formula
argument to lm to specify the independent variable and degree of the
polynomial. For example, consider the following made-up data:

x <- runif(100, 0, 100)
y <- 50 - 43*x + 31*x^2 - 2*x^3 + rnorm(100)

We can fit this as a polynomial regression of degree 3 as follows:

> xylm <- lm(y ~ poly(x, 3))
> xylm

Call:
lm(formula = y ~ poly(x, 3))

Coefficients:
(Intercept) poly(x, 3)1 poly(x, 3)2 poly(x, 3)3
  -329798.8    -3681644    -1738826   -333975.4

Degrees of freedom: 100 total; 96 residual
Residual standard error: 0.9463133

The coefficients appearing in the object xylm are the coefficients for
the orthogonal form of the polynomial. To recover the simple
polynomial form, use the function poly.transform:

> poly.transform(poly(x,3), coef(xylm))

     x^0       x^1      x^2       x^3
 49.9119 -43.01118 31.00052 -2.000005

These coefficients are very close to the exact values used to create y.

If the coefficients returned from a regression involving poly are so
difficult to interpret, why not simply model the polynomial explicitly?
That is, why not use the formula y ~ x + x^2 + x^3 instead of the
formula involving poly. In our example, there is little difference.
However, in problems involving polynomials of higher degree,
severe numerical problems can arise in the model matrix. Using poly
avoids these numerical problems, because poly uses an orthogonal
set of basis functions to fit the various “powers” of the polynomial.
201



Chapter 8  Regression and Smoothing For Continuous Response Data
As a further example of the use of poly, let us consider the ethanol
data we saw at the beginning of this section. From Figure 8.10, we are
tempted by a simple quadratic polynomial. However, there is a
definite upturn at each end of the data, so we are safer fitting a quartic
polynomial, as follows:

> ethanol.poly <- lm(NOx ~ poly(E,degree=4))
> summary(ethanol.poly)

Call: lm(formula = NOx ~ poly(E, degree = 4))
Residuals:
     Min      1Q   Median     3Q   Max
 -0.8125 -0.1445 -0.02927 0.1607 1.017

Coefficients:
                        Value Std. Error  t value
         (Intercept)   1.9574   0.0393    49.8407
poly(E, degree = 4)1  -1.0747   0.3684    -2.9170
poly(E, degree = 4)2  -9.2606   0.3684   -25.1367
poly(E, degree = 4)3  -0.4879   0.3684    -1.3243
poly(E, degree = 4)4   3.6341   0.3684     9.8644
                     Pr(>|t|)
         (Intercept)   0.0000
poly(E, degree = 4)1   0.0045
poly(E, degree = 4)2   0.0000
poly(E, degree = 4)3   0.1890
poly(E, degree = 4)4   0.0000
Residual standard error: 0.3684 on 83 degrees of freedom
Multiple R-Squared: 0.8991
F-statistic: 184.9 on 4 and 83 degrees of freedom, the 
p-value is 0

Correlation of Coefficients:
(Intercept) poly(E, degree = 4)1
poly(E, degree = 4)1 0
poly(E, degree = 4)2 0           0
poly(E, degree = 4)3 0           0
poly(E, degree = 4)4 0           0
poly(E, degree = 4)2
poly(E, degree = 4)1
poly(E, degree = 4)2
poly(E, degree = 4)3 0
202



Polynomial Regression
poly(E, degree = 4)4 0
poly(E, degree = 4)3
poly(E, degree = 4)1
poly(E, degree = 4)2
poly(E, degree = 4)3
poly(E, degree = 4)4 0

> poly.transform(poly(E,4), coef(ethanol.poly))

      x^0       x^1      x^2       x^3     x^4
 174.3601 -872.2071 1576.735 -1211.219 335.356

The summary clearly shows the significance of the 4th order term.
203



Chapter 8  Regression and Smoothing For Continuous Response Data
GENERALIZED LEAST SQUARES REGRESSION

Generalized least squares models are regression (or ANOVA) models
in which the residuals have a nonstandard covariance structure. Like
simple least squares regression, generalized least squares regression uses
the method of least squares to fit a continuous, univariate response as
a linear function of a single predictor variable, but in this case the
errors are allowed to be correlated and/or to have unequal variances.

To fit a linear model using generalized least squares with S-PLUS, use
the function gls. Several arguments are available in gls, but typical
calls are of the form:

gls(model, data, correlation)         # correlated errors
gls(model, data, weights)        # heteroscedastic errors
gls(model, data, correlation, weights)             # both

The model argument is a two-sided linear formula specifying the
model for the expected value of the response just as needed for lm,
the simple linear model. In many cases, both the response and the
predictor are components of a single data frame, which can be
specified as the data argument to gls. The arguments that exemplify
the flexibility of gls are correlation and weights.

The optional argument correlation is used to specify a correlation
structure for the within-group correlation structure if the data are
grouped, thus having residuals correlated within these groups. The
available correlation structures are organized into a hierarchy of
corStruct classes, as shown in Table 8.2.

Table 8.2:  Classes of correlation structures. 

Class  Description

corAR1  AR(1)

corARMA  ARMA(p,q)

corCAR1  continuous AR(1)

corCompSymm  compound symmetry

corExp  exponential spatial correlation
204



Generalized Least Squares Regression
The optional argument weights can be used to specify the form of
the errors variance-covariance function. The available variance
functions are organized into a hierarchy of varFunc classes, as shown
in Table 8.3.

You can also define your own correlation and variance function
classes by specifying appropriate constructor functions and a few
method functions. For a new correlation structure, method functions
must be defined for at least corMatrix and coef. For examples of
these functions, see the methods for classes corSymm and corAR1. A

corGaus  Gaussian spatial correlation

corHF  Huyn-Feldt correlation

corLin  linear spatial correlation

corRatio  rational quadratic spatial correlation

corSpher  spherical spatial correlation

corSymm  general correlation matrix

Table 8.3:  Classes of variance functions.

Class  Description

varExp exponential of a variance covariate

varPower power of a variance covariate

varConstPower constant plus power of a variance covariate

varIdent different variances per level of a factor

varFixed fixed weights, determined by a variance covariate

varComb combination of variance functions

Table 8.2:  Classes of correlation structures.  (Continued)

Class  Description
205



Chapter 8  Regression and Smoothing For Continuous Response Data
new variance function structure requires methods for at least coef,
coef<-, and initialize. For examples of these functions, see the
methods for class varPower.

Example The Ovary data set has 308 rows and 3 columns giving the number of
ovarian follicles detected in different mares at different times in their
estrus cycles.

> Ovary

Grouped Data: follicles ~ Time | Mare
   Mare        Time follicles 
  1    1 -0.13636360        20
  2    1 -0.09090910        15
  3    1 -0.04545455        19
  4    1  0.00000000        16
  5    1  0.04545455        13
...
305   11  1.00000000         9
306   11  1.05000000         7
307   11  1.10000000         5
308   11  1.15000000         5

Biological models suggest that the number of follicles may be
modeled as a linear combination of the sin and cosine of  2*pi*Time.

follicles ~ sin(2*pi*Time) + cos(2*pi*Time)

Let’s fit a simple linear model first and look at the residuals of this fit
to demonstrate the need for generalizing the fit to consider their
dependences. 

> Ovary.lm <- lm(follicles ~ sin(2*pi*Time) 
+                cos(2*pi*Time), data=Ovary)
> plot(Ovary.lm,which=1)            #Figure 8.11
206



Generalized Least Squares Regression
Looking at the plot of the residuals in Figure 8.11 suggests that we try
a more general variance-covariance structure for the error term in our
model.

We use generalized least squares with a power variance structure (in
which variance increases with a power of the absolute fitted values)
instead of standard linear regression.

> Ovary.fit1 <- gls(
+ follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,
+ weights = varPower())

Manipulating 
gls Objects

The fitted objects returned by the gls function inherit from class gls.
A variety of methods are available to display, update, and evaluate
the estimation results.

A brief description of the estimation results is returned by the print
method. For the Ovary.fit1 object, the results are

> print(Ovary.fit1)

Generalized least squares fit by REML
  Model: follicles ~ sin(2*pi*Time) + cos(2*pi*Time)
  Data: Ovary 
  Log-restricted-likelihood: -895.8303

Figure 8.11:  Residuals plot from a simple linear fit to the Ovary dataset. 

Fitted : sin(2 * pi * Time) + cos(2 * pi * Time)

R
es

id
ua

ls

10 12 14

-1
0

-5
0

5
10

15

47

11

82
207



Chapter 8  Regression and Smoothing For Continuous Response Data
Coefficients:
 (Intercept) sin(2 * pi * Time) cos(2 * pi * Time)
    12.22151          -3.292895         -0.8973728

Variance function:
 Structure: Power of variance covariate
 Formula:  ~ fitted(.) 
 Parameter estimates:
     power 
 0.4535904
Degrees of freedom: 308 total; 305 residual
Residual standard error: 1.451149

A more complete description of the estimation results is returned by
the summary function.

Diagnostic plots for assessing the quality of the fitted model are
obtained using the plot method for class gls.
208



Generalized Least Squares Regression
> plot(Ovary.fit1)                  #Figure 8.12

The plot in Figure 8.12 seems to still have a lot of extra variation. One
possibility, given that time is a covariate in the data, is that there is
some serial correlation present within the groups. To test this
hypothesis, we use the function ACF as follows:

> ACF(Ovary.fit1)

   lag         ACF
 1   0  1.00000000
 2   1  0.66042648
 3   2  0.55104825
 4   3  0.44108949
...

These are the corresponding values of the empirical autocorrelation
function for the residuals of the gls fit. The values are listed for
several lags and there appears to be significant autocorrelation at the
first few lags. These values can then be plotted with a simple call to
the plot method for the result of ACF. 

Figure 8.12:  Residuals plot from Generalized Least Squares fit to Ovary data with 
power variance function.

-2

-1

0

1

2

3

4

10 12 14

Fitted values

St
an

da
rd

ize
d 

re
sid

ua
ls
209



Chapter 8  Regression and Smoothing For Continuous Response Data
> plot(.Last.value)            #Figure 8.13

The resulting plot (Figure 8.13) suggests that an Auto Regressive
process of order 1 may be adequate to model the serial correlation in
the residuals. We use the argument correlation to re-fit the model
using a correlation structure for the residuals of an AR(1). The value
of the first-lag correlation given by ACF is used as an estimate of the
autoregressive coefficient.

> Ovary.fit2 <- gls(follicles ~ sin(2*pi*Time) +
+ cos(2*pi*Time), Ovary,
+ correlation = corAR1(0.66), 
+ weights=varPower())
> plot(Ovary.fit2)
> anova(Ovary.fit1,Ovary.fit2)

           Model df      AIC      BIC    logLik   Test  
L.Ratio p-value 
Ovary.fit1     1  5 1801.661 1820.262 -895.8303                        
Ovary.fit2     2  6 1598.496 1620.818 -793.2479 1 vs 2 
205.1648  <.0001

Figure 8.13:  Empirical autocorrelation function corresponding to the standardized 
residuals of the Ovary.fit1 model object.

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Lag

A
ut

oc
or

re
la

tio
n

210



Generalized Least Squares Regression
The residuals plotted in Figure 8.14 look much tighter than for
Ovary.fit1, indicating that the extra variation we had observed was
adequately modeled. The anova table comparing the two fits shows
great improvement when the serial correlation is considered in the fit.

The final Generalized Least Squares model for the Ovary data then is:

> Ovary.fit2

Generalized least squares fit by REML
  Model: follicles ~ sin(2 * pi * Time) + cos(2 * pi * Time)
  Data: Ovary 
  Log-restricted-likelihood: -793.2479

Coefficients:
 (Intercept) sin(2 * pi * Time) cos(2 * pi * Time) 
    12.30864          -1.647776         -0.8714635

Correlation Structure: AR(1)
 Parameter estimate(s):
       Phi 
 0.7479559

Figure 8.14:  Residuals plot from Generalized Least Squares fit to Ovary data with 
power variance function and Within-group AR(1) serial correlation. 

-2

-1

0

1

2

11 12 13 14

Fitted values

St
an

da
rd

iz
ed

 re
si

du
al

s

211



Chapter 8  Regression and Smoothing For Continuous Response Data
Variance function:
 Structure: Power of variance covariate
 Formula:  ~ fitted(.) 
 Parameter estimates:
      power 
 -0.7613254
Degrees of freedom: 308 total; 305 residual
Residual standard error: 32.15024 
212



Smoothing
SMOOTHING

Polynomial regression can be useful in many situations. However, the
choice of terms is not always obvious, and small effects can be greatly
magnified or lost completely by the wrong choice. Another approach
to analyzing nonlinear data, attractive because it relies on the data to
specify the form of the model, is to fit a curve to the data points locally,
so that at any point the curve at that point depends only on the
observations at that point and some specified neighboring points.
Because such a fit produces an estimate of the response that is less
variable than the original observed response, the result is called a
smooth, and procedures for producing such fits are called scatterplot
smoothers. S-PLUS offers a variety of scatterplot smoothers:

• loess.smooth a locally weighted regression smoother.

• smooth.spline a cubic smoothing spline, with local
behavior similar to that of kernel-type smoothers.

• ksmooth a kernel-type scatterplot smoother.

• supsmu a very fast variable span bivariate smoother.

Halfway between the global parameterization of a polynomial fit and
the local, nonparametric fit provided by smoothers are the parametric
fits provided by regression splines. Regression splines fit a continuous
curve to the data by piecing together polynomials fit to different
portions of the data. Thus, like smoothers, they are local fits. Like
polynomials, they provide a parametric fit. In S-PLUS, regression
splines can be used to specify the form of a predictor in a linear or
more general model, but are not intended for top-level use.

Locally 
Weighted 
Regression 
Smoothing

In locally weighted regression smoothing, we build the smooth
function s(x) pointwise as follows:

1. Take a point, say x0. Find the k nearest neighbors of x0, which
constitute a neighborhood N(x0). The number of neighbors k
is specified as a percentage of the total number of points. This
percentage is called the span.
213



Chapter 8  Regression and Smoothing For Continuous Response Data
2. Calculate the largest distance between x0 and another point in
the neighborhood:

3. Assign weights to each point in N(x0) using the tri-cube weight
function:

where

4. Calculate the weighted least squares fit of y on the

neighborhood N(x0). Take the fitted value .

5. Repeat for each predictor value.

Use the loess.smooth function to calculate a locally weighted
regression smooth. For example, suppose we want to smooth the
ethanol data. The following expressions produce the plot shown in
Figure 8.15:

> plot(E,NOx)
> lines(loess.smooth(E,NOx))

The plot shown in Figure 8.15 shows the default smoothing, which
uses a span of 2/3. For most uses, you will want to specify a smaller
span, typically in the range of 0.3 to 0.5.

∆ x0( ) maxN x0( ) x0 x1–=

W
x0 x1–

∆ x0( )
------------------- 

 

W u( ) 1 u
3

–( )
3

0



= for 0 u 1<≤
otherwise

ŷ0 s x0( )=
214



Smoothing
Using the 
Super 
Smoother

With loess, the span is constant over the entire range of predictor
values. However, a constant value will not be optimal if either the
error variance or the curvature of the underlying function f varies
over the range of x. An increase in the error variance requires an
increase in the span whereas an increase in the curvature of f requires
a decrease. Local cross-validation avoids this problem by choosing a
span for the predictor values xj based on only the leave-one-out
residuals whose predictor values xi are in the neighborhood of xj. The
super smoother, supsmu, uses local cross-validation to choose the
span. Thus, for one-predictor data, it can be a useful adjunct to loess.

For example, Figure 8.16 shows the result of super smoothing the
response NOx as a function of E in the ethanol data (dotted line)
superimposed on a loess smooth. To create the plot, use the
following commands:

> scatter.smooth(E,NOx, span=1/4)
> lines(supsmu(E,NOx), lty=2)

Figure 8.15:  Loess-smoothed ethanol data.

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

215



Chapter 8  Regression and Smoothing For Continuous Response Data
Local Cross-
Validation

Let s(x|k) denote the linear smoother value at x when span k is used.
We wish to choose k = k(X) so as to minimize the mean squared error

where we are considering the joint random variable model for (X, Y).
Since

we would like to choose k = k(x) to minimize

 .

Figure 8.16:  Super smoothed ethanol data (dotted line).

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

e
2

k( ) EXY Y s X k( )–[ ]2
=

EXY Y s X k( )–[ ]2
EXEY X Y s X k( )–[ ]2

=

ex
2

k( ) EY X x Y s X k( )–[ ]2
= =

EY X x Y s x k( )–[ ]2
==
216



Smoothing
However, we have only the data (xi,yi), i = 1, ..., n , and not the true
conditional distribution needed to compute EY|X = x, and so we

cannot calculate . Thus we resort to cross-validation and try to

minimize the cross-validation estimate of :

.

Here s(i)(xi|k) is the “leave-one-out” smooth at xi, that is, s(i)(xi|k) is
constructed using all the data (xj,yj), j = 1, ..., n, except for (xi,yi), and
then the resultant local least squares line is evaluated at xi thereby
giving s(i)(x|k). The leave-one-out residuals

are easily obtained from the ordinary residuals

using the standard regression model relation

.

Here hii, i = 1, ..., n , are the diagonals of the so-called “hat” matrix,

H = X(XTX )-1XT, where, for the case at hand of local straight-line
regression, X is a 2-column matrix.

Using the 
Kernel 
Smoother

A kernel-type smoother is a type of local average smoother that, for

each target point xi in predictor space, calculates a weighted average 
of the observations in a neighborhood of the target point:

ex
2 k( )

ex
2 k( )

êCV
2

k( ) yi s i( ) xi k( )–[ ]2

i 1=

n

∑=

r i( ) k( ) yi s i( ) xi k( )–=

r i k( ) yi s xi k( )–=

r i( ) k( )
r i k( )
hii

-----------=

(8.4)

ŷi

ŷi wij yj
j 1=

n

∑=
217



Chapter 8  Regression and Smoothing For Continuous Response Data
where

.

are weights which sum to one:

.

The function K used to calculate the weights is called a kernel function,
which typically has the following properties:

• (a) 

• (b) 

• (c) 

Note that properties (a) and (b) are those of a probability density
function. The parameter b is the bandwidth parameter, which
determines how large a neighborhood of the target point is used to
calculate the local average. A large bandwidth generates a smoother
curve, while a small bandwidth generates a wigglier curve. Hastie and
Tibshirani (1990), point out that the choice of bandwidth is much
more important than the choice of kernel. To perform kernel
smoothing in S-PLUS, use the ksmooth function. The kernels
available in ksmooth are shown in Table 8.4.

wij K̃
xi xj–

b
-------------- 

 
K

xi xj–

b
-------------- 

 

K
xi xk–

b
--------------- 

 
k 1=

n

∑
-----------------------------------= =

wij 1=
j 1=

n

∑

K t( ) 0 for all t≥

K t( ) td
∞–

∞∫ 1=

K t–( ) K t( ) for all t (symmetry)=
218



Smoothing

regress.fm  Page 219  Wednesday, June 2, 1999  3:34 PM
Of the available kernels, the default "box" kernel gives the crudest
smooth. For most data, the other three kernels yield virtually identical
smooths. We recommend "triangle" because it is the simplest and
fastest to calculate.

Table 8.4:  Kernels available for ksmooth.

Kernel Explicit Form

"box"

"triangle"1

"parzen"2

"normal"

1In convolution form, 

2In convolution form, 

The constants shown in the explicit forms above are used to scale the
resulting kernel so that the upper and lower quartiles occur at ±.25. Also,
the is taken to be 1 and the dependence of the kernel on the bandwidth is
suppressed. 

Kbox t( )
1 ,       t 0.5≤
0 ,       t 0.5>




=

Ktri t( )
1 t C⁄  ,       – t

1
C
----≤

0 ,       t
1
C
---->






=

Kpar t( )

k1 t2–( ) k2⁄  ,       t C1≤

t2 k3⁄( ) k4 t k5 ,       +– C1 t C2≤<

0 ,       C2 t<





=

Knor t( ) 1 2πk6⁄( ) exp t2 2k6
2⁄–( )=

Ktri t( ) Kbox * Kbox t( )=

Kpar t( ) Ktri * Kbox t( )=
219



Chapter 8  Regression and Smoothing For Continuous Response Data
The intuitive sense of the kernel estimate  is clear: Values of yj such
that xj is close to xi get relatively heavy weights, while values of yj such
that xj is far from xi get small or zero weight. The bandwidth
parameter b determines the width of K(t/b), and hence controls the
size of the region around xi for which yj receives relatively large
weights. Since bias increases and variance decreases with increasing
bandwidth b, selection of b is a compromise between bias and
variance in order to achieve small mean squared error. In practice this
is usually done by trial and error. For example, we can compute a
kernel smooth for the ethanol data as follows:

> plot(E,NOx)
> lines(ksmooth(E,NOx, kernel="triangle", bandwidth=.2))
> lines(ksmooth(E,NOx, kernel="triangle", bandwidth=.1),
+ lty=2)
> legend(.54,4.1,c("bandwidth=.2", "bandwidth=.1"),
+ lty=c(1,2))

The resulting plot is shown in Figure 8.17.

Figure 8.17:  Kernel smooth of ethanol data for two bandwidths.

ŷi

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

bandwidth=.2
bandwidth=.1
220



Smoothing
Smoothing 
Splines

A cubic smoothing spline behaves approximately like a kernel smoother,

but it arises as the function  that minimizes the penalized residual sum
of squares given by

over all functions with continuous first and integrable second
derivatives. The parameter λ is the smoothing parameter,
corresponding to the span in loess or supsmu or the bandwidth in
ksmooth.

To generate a cubic smoothing spline in S-PLUS, use the function
smooth.spline smooth to the input data:

> plot(E,NOx)
> lines(smooth.spline(E,NOx))

You can specify a different λ using the spar argument, although it is
not intuitively obvious what a “good” choice of λ might be. When the
data is normalized to have a minimum of 0 and a maximum of 1, and
when all weights are equal to 1, λ = spar. More generally, the

relationship is given by λ = (max(x)-min(x))3·mean(w)·spar. You
should either let S-PLUS choose the smoothing parameter, using either
ordinary or generalized cross-validation, or supply an alternative
argument, df, which specifies the degrees of freedom for the smooth. For
example, to add a smooth with approximately 5 degrees of freedom
to our previous plot, use the following:

> lines(smooth.spline(E,NOx, df=5), lty=2)

f̂

PRSS yi f xi( )–( )2

i 1=

n

∑ λ f″ t( )( )2
td∫+=
221



Chapter 8  Regression and Smoothing For Continuous Response Data
The resulting plot is shown in Figure 8.18.

Comparing 
Smoothers

The choice of a smoother is somewhat subjective. All the smoothers
discussed in this section can generate reasonably good smooths; you
might select one or another based on theoretical considerations or the
ease with which one or another of the smoothing criteria can be
applied. For a direct comparision of these smoothers, consider the
artificial data constructed as follows:

> set.seed(14) # set the seed to reproduce this example
> e <- rnorm(200)
> x <- runif(200)
> y <- sin(2*pi*(1-x)2)+x*e

Figure 8.18:  Smoothing spline of ethanol data with cross-validation (solid line) 
and pre-specified degrees of freedom.

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

222



Smoothing
A “perfect” smooth would recapture the original signal,

f(x) = sin(2π(1-x)2), exactly. The following commands sort the input
and calculate the exact smooth:

> sx <- sort(x)
> fx <- sin(2*pi*(1-sx)2)

The following commands create a scatter plot of the original data,
then superimpose the exact smooth and smooths calculated using
each of the smoothers described in this chapter:

> plot(x,y)
> lines(sx,fx)
> lines(supsmu(x,y),lty=2)
> lines(ksmooth(x,y),lty=3)
> lines(smooth.spline(x,y),lty=4)
> lines(loess.smooth(x,y),lty=5)
> legend(0,2,c("perfect", "supsmu", "ksmooth",
+ "smooth.spline", "loess"), lty=1:5)

The resulting plot is shown in Figure 8.19.

Figure 8.19:  Comparison of S-PLUS smoothers.

•
•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•

•

•

•

•

• •
•

•

•

•
•

•

•

•

•

•

• •

•

•

• •
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•

•

•

••
•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

x

y

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

perfect
supsmu
ksmooth
smooth.spline
loess
223



Chapter 8  Regression and Smoothing For Continuous Response Data
This comparison is crude, at best, because by default each of the
smoothers does a different amount of smoothing. A fairer comparison
would adjust the smoothing parameters to be roughly equivalent.
224



Additive Models
ADDITIVE MODELS

An additive model extends the notion of a linear model by allowing
some or all linear functions of the predictors to be replaced by
arbitrary smooth functions of the predictors. Thus, the standard linear
model

is replaced by the additive model

.

The standard linear regression model is a simple case of an additive
model. Because the forms of the fi are generally unknown, they are
estimated using some form of scatterplot smoother.

To fit an additive model in S-PLUS, use the gam function, where gam
stands for generalized additive model. You provide a formula which may
contain ordinary linear terms as well as terms fit using any of the
following:

• loess smoothers, using the lo function;

• smoothing spline smoothers, using the s function;

• natural cubic splines, using the ns function;

• B-splines, using the bs function;

• polynomials, using poly.

The three functions ns, bs, and poly result in parametric fits; additive
models involving only such terms can be analyzed in the classical
linear model framework. The lo and s functions introduce
nonparametric fitting into the model. For example, the following call
takes the ethanol data and models the response NOx as a function of
the loess-smoothed predictor E:

> attach(ethanol)

Y βi Xi ε+
i 0=

n

∑=

Y α fi Xi( ) ε+
i 1=

n

∑+=
225



Chapter 8  Regression and Smoothing For Continuous Response Data
> ethanol.gam <- gam(NOx ~ lo(E, degree=2))
> ethanol.gam

Call:
gam(formula = NOx ~ lo(E, degree = 2))

Degrees of Freedom: 88 total; 81.1184 Residual
Residual Deviance: 9.1378

In the call to lo, we specify that the smooth is to be locally quadratic
by using the argument degree = 2. For data that is less obviously
nonlinear, we would probably be satisfied with the default, which is
locally linear fitting. The printed gam object closely resembles a
printed lm object from linear regression—the call producing the model
is shown, followed by the degrees of freedom and the residual deviance
which serves the same role as the residual sum of squares in the linear
model. The deviance is a function of the log-likelihood function,
which is related to the probability mass function f(yi; µi) for the
observation yi given µi. The log-likelihood for a sample of n
observations is defined as follows:

The deviance  is then defined as

where µ* maximizes the log-likelihood over µ unconstrained, and φ is
the dispersion parameter. For a continuous response with normal errors,
as in the models we’ve been considering in this chapter, the

dispersion parameter is just the variance σ2, and the deviance reduces
to the residual sum of squares. As with the residual sum of squares,
the deviance can be made arbitrarily small by choosing an
interpolating solution. As in the linear model case, however, we
generally have a desire to keep the model as simple as possible. In the
linear case, we try to keep the number of parameters, that is, the
quantities estimated by the model coefficients, to a minimum.

l m; y( ) log f yi ; µi( )
i 1=

n

∑=

D y; m( )

D y; m( )
φ

-------------------- 2l m∗ ; y( ) 2l m; y( )–=
226



Additive Models
Additive models are generally nonparametric, but we can define for
nonparametric models an equivalent number of parameters, which we
would also like to keep as small as possible.

The equivalent number of parameters for gam models is defined in
terms of degrees of freedom, or df. In fitting a parametric model, one
degree of freedom is required to estimate each parameter. For an
additive model with parametric terms, one degree of freedom is
required for each coefficient the term contributes to the model. Thus,
for example, consider a model with an intercept, one term fit as a
cubic polynomial, and one term fit as a quadratic polynomial. The
intercept term contributes one coefficient and requires one degree of
freedom, the cubic polynomial contributes three coefficients and thus
requires three degrees of freedom, and the quadratic polynomial
contributes two coefficients and requires two more degrees of
freedom. Thus, the entire model has six parameters, and uses six
degrees of freedom. A minimum of six observations is required to fit
such a model. Models involving smoothed terms use both parametric
and nonparametric degrees of freedom—parametric degrees of freedom
result from fitting a linear (parametric) component for each smooth
term, while the nonparametric degrees of freedom result from fitting
the smooth after the linear part has been removed. The difference
between the number of observations and the degrees of freedom
required to fit the model is the residual degrees of freedom. Conversely,
the difference between the number of observations and the residual
degrees of freedom is the degrees of freedom required to fit the
model, which is the equivalent number of parameters for the model.

The summary method for gam objects shows the residual degrees of
freedom, the parametric and nonparametric degrees of freedom for
each term in the model, together with additional information:

> summary(ethanol.gam)

Call: gam(formula = NOx ~ lo(E, degree = 2))
Deviance Residuals:
        Min         1Q      Median        3Q      Max
 -0.6814987 -0.1882066 -0.01673293 0.1741648 0.8479226

(Dispersion Parameter for Gaussian family taken to be 
0.1126477 )

Null Deviance: 111.6238 on 87 degrees of freedom
227



Chapter 8  Regression and Smoothing For Continuous Response Data
Residual Deviance: 9.137801 on 81.1184 degrees of freedom

Number of Local Scoring Iterations: 1

DF for Terms and F-values for Nonparametric Effects

                  Df Npar Df   Npar F        Pr(F)
      (Intercept)  1
lo(E, degree = 2)  2     3.9 35.61398 1.110223e-16

The Deviance Residuals are, for Gaussian models, just the

ordinary residuals . The Null Deviance is the deviance of the

model consisting solely of the intercept term.

The ethanol data set contains a third variable, C, which measures the
compression ratio of the engine. Figure 8.20 shows pairwise scatter
plots for the three variables.

Figure 8.20:  Pairs plot of the ethanol data.

yi µ̂i–

NOx

8 10 14 18

•

•

•

•

•

•

•
•

•

•

•

• • •
•

••
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

••

•

•

•

•

•

•

•

•

•••

•
•

•

•

•

•

•

•

•

• •

•

•

•• • •
• •

•

1
2

3
4

•

•

•

•

•

•

•
•

•

•

•

•••
•

• ••

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

• •

•

•

•

•

•

•

•

•

•• •

•
•

•

•

•

•

•

•

•

••

•

•

••••••

•

8
10

14
18

••• ••

•• •

•• ••

•

•

•

• •

• •

••
••

• •

• •

• •
•

• •• ••

• •
•• •

•• ••

• •• •
• ••

•

• •

••

• ••• • ••

•• •

••

•• •

• • •••

••
•

•

••

•
•

•

•

• •

C •• •• •

• ••

• •• •

•

•

•

• •

••

• •
• •

••

• •

• •
•

•• •• •

••
• ••

• •• •

• •• •
• ••

•

••

••

• •• •• • •

• ••

• •

• ••

• • • • •

• •
•

•

• •

•
•

•

•

• •

1 2 3 4

•

•

•
•

•

•

•
•

•

•

•

••

•
• •

••

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•
•

•
•

•

•
•

•

••

•
•

•

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•••••

•

•

•

•
•

•

•

•
•

•

•

•

• •

•
• •

• •

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•
•

•
•

•

•
•

•

••

•
•

•

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

• • • • •

•

0.6 0.8 1.0 1.2

0.
6

0.
8

1.
0

1.
2

E

228



Additive Models
Let’s incorporate C as a linear term in our additive model:

> attach(ethanol)
> ethanol2.gam <- gam(NOx ~ C + lo(E, degree = 2))
> ethanol2.gam

Call:
gam(formula = NOx ~ C + lo(E, degree = 2))

Degrees of Freedom: 88 total; 80.1184 Residual
Residual Deviance: 5.16751

> summary(ethanol2.gam)

Call: gam(formula = NOx ~ C + lo(E, degree = 2))
Deviance Residuals:
        Min        1Q    Median        3Q       Max
 -0.6113908 -0.166044 0.0268504 0.1585614 0.4871313

(Dispersion Parameter for Gaussian family taken to be 
0.0644985 )

Null Deviance: 111.6238 on 87 degrees of freedom

Residual Deviance: 5.167513 on 80.1184 degrees of freedom

Number of Local Scoring Iterations: 1

DF for Terms and F-values for Nonparametric Effects

                  Df Npar Df   Npar F Pr(F)
      (Intercept)  1
                C  1
lo(E, degree = 2)  2     3.9 57.95895     0
229



Chapter 8  Regression and Smoothing For Continuous Response Data
We can use the anova function to compare this model with the
simpler model involving E only:

> anova(ethanol.gam, ethanol2.gam, test="F")

Analysis of Deviance Table

Response: NOx
                  Terms Resid. Df Resid. Dev Test Df
1     lo(E, degree = 2)   81.1184   9.137801
2 C + lo(E, degree = 2)   80.1184   5.167513   +C  1
  Deviance  F Value        Pr(F)
1
2 3.970288 61.55632 1.607059e-11

The model involving C is clearly better, since the residual deviance is
cut almost in half by expending only one more degree of freedom.

Is the additive model sufficient? Additive models stumble when there
are interactions among the various terms. In the case of the ethanol
data, there is a significant interaction between C and E. In such cases,
a full local regression model, fit using the loess function, is often
more satisfactory. We discuss the ethanol data more thoroughly in
Chapter 11, Local Regression Models.
230



More on Nonparametric Regression
MORE ON NONPARAMETRIC REGRESSION

The additive models fitted by gam in the section Additive Models are
simple examples of nonparametric regression. The machinery of
generalized additive models, proposed by Hastie and Tibshirani
(1990), is just one approach to such nonparametric models. S-PLUS
includes several other functions for performing nonparametric
regression, including the ace function, which implements the first
proposed technique for nonparametric regression—alternating
conditional expectations. S-PLUS also includes AVAS (Additive and
VAriance Stabilizing transformations) and projection pursuit
regression. This section describes these varieties of nonparametric
regression.

Alternating 
Conditional 
Expectations

Alternating conditional expectations or ace, is an intuitively appealing
technique introduced by Breiman and Friedman (1985). The idea is to
find nonlinear transformations θ(y), φ1(x1), φ2(x2), …, φp(xp) of the
response y and predictors x1, x2, …, xp, respectively, such that the
additive model

is a good approximation for the data yi, xi1, …, xip, i = 1, …, n. Let yi,
x1, x2, …, xp be random variables with joint distribution F, and let
expectations be taken with respect to F. Consider the goodness-of-fit
measure

(8.5)

(8.6)

θ y( ) φ1 x1( ) φ2 x2( ) … φp xp( ) ε+ + + +=

e
2

e
2 θ , φ1, ...,φp( )

E θ y( ) φk xk( )
k 1=

p

∑–

2

Eθ2
y( )

------------------------------------------------------= =
231



Chapter 8  Regression and Smoothing For Continuous Response Data
The measure e2 is the fraction of variance not explained by regressing

θ(y) on φ(x1), …,  φ(xp) . The data-based version of e2 is

where  and the , estimates of θ and the φj, are standardized so

that  and the  have mean zero:  and

, k = 1, …, p. For the usual linear regression case,

where

and

with  the least squares regression coefficients, we have

(8.7)ê2

θ̂ yi( ) φ̂k xik( )
k 1=

p

∑–

2

i 1=

n

∑

θ̂2 yi( )
i 1=

n

∑
---------------------------------------------------------------=

θ̂ φ̂j

θ̂ yi( ) φ̂j xij( ) θ̂ yi( )
i 1=

n

∑ 0=

φ̂k xik( )
i 1=

n

∑ 0=

θ̂ yi( ) yi y–=

φ̂1 xi1 x1–( ) xi1 x1–( )β̂1 ,…, φ̂p xip xp–( ) xip xp–( )β̂p==

β̂1 , …, β̂p

êLS
2 RSS

SSY
----------

yi y–( ) xik xk–( )β̂k

k 1=

p

∑–

2

i 1=

n

∑

yi y–( )2

i 1=

n

∑
--------------------------------------------------------------------------------≡=
232



More on Nonparametric Regression
and the squared multiple correlation coefficient is given by

. The transformations , , …,  are chosen to

maximize the correlation between  and .

Although ace is a useful exploratory tool for determining which of
the response y and the predictors x1, …, xp are in need of nonlinear
transformations and what type of transformation is needed, it can

produce anomalous results if errors ε  and the  fail to satisfy the

independence and normality assumptions.

To illustrate the use of ace, construct an artificial data set with additive
errors

with the ε i’s being N(0, 10) random variables (that is, normal random
variables with mean 0 and variance 10 ), independent of the xi’s, with
the xi’s being U(0, 2) random variables (that is, random variables
uniformly distributed on the interval from 0 to 2).

> set.seed(14) # set the seed to reproduce this example
> x <- 2*runif(200)
> e <- rnorm(200, 0, sqrt(10))
> y <- exp(1+2*x) + e

Now use ace:

> a <- ace(x,y)

Set graphics for 3 x 2 layout of plots:

> par(mfrow=c(3,2))

Make plots to do the following:

1. Examine original data;

2. Examine transformation of y;

3. Examine transformation of x;

4. Check linearity of the fitted model;

5. Check residuals versus the fit:

R2 1 eLS
2–= θ̂ φ̂1 φ̂p

θ̂ yi( ) φ̂ xi1( ) … φ̂ xip( )+ +

φ̂1 xi( )

yi e1 2xi+ ε i i  , i=1,…,200+=
233



Chapter 8  Regression and Smoothing For Continuous Response Data
The following S-PLUS commands provide the desired plots:

> plot(x, y, sub="Original Data")
> plot(x, a$tx, sub="Transformed x vs. x")
> plot(y, a$ty, sub="Transformed y vs. y")
> plot(a$tx, a$ty, sub="Transformed y vs.
+ Continue string: Transformed x")
> plot(a$tx, a$ty - a$tx, xlab="tx",
+ ylab="residuals", sub="Residuals vs. Fit")

These plots are displayed in Figure 8.21, where the transformed

values  and  are denoted by ty and tx, respectively. The

estimated transformation tx =  seems close to exponential, and
except for the small bend at the lower left, the estimated

transformation ty =  seems quite linear. The linearity of the plot
of ty versus tx reveals that a good additive model of the type shown in
Equation (8.5) has been achieved. Furthermore, the error variance
appears to be relatively constant, except at the very lefthand end. The

plot of residuals,  versus the fit  gives a

clearer confirmation of the behavior of the residuals’ variance.

θ̂ y( ) φ̂ y( )

φ̂ x( )

θ̂ y( )

r i θ̂ yi( ) φ̂ xi( )–= tx φ̂ xi( )=
234



More on Nonparametric Regression
Figure 8.21:  ace example with additive errors

•

•

••
•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•
•

• •
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

• •

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•

•
•

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

• •

•
•

•

•
•

•

•

•

•

•

Original Data
x

y

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
10

0
12

0
14

0

•

•

•
•

•
•

•

•

•

•
•

•

• •

•
•

•

•

•
•

•

•
•

•
• •

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•• •

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•
•

•

• •

•

•

•

•

•
•

•

• •

•

• •

• •

•

•
•

•

•

•

•

•

Transformed x vs. x
x

a$
tx

0.0 0.5 1.0 1.5 2.0

-1
0

1
2

•

•

••
•

•

•

•

•

•

•

•

••

••
•

•

• •

•

•
•

••
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

••

•

• •

•

••

•

•
••

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•• •

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

••

• •

•

• ••

•

•

•

•

Transformed y vs. y
y

a$
ty

0 20 40 60 80 100 120 140

-1
0

1
2

•

•

••
•

•

•

•

•

•

•

•

••

••
•

•

• •

•

•
•

• •
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

• •

•

• •

•

••

•

•
••

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•••

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•
•

•

••

•

•

•

•

•

•

•

•
•

•

• •

••

•

• ••

•

•

•

•

Transformed y vs. Transformed x
a$tx

a$
ty

-1 0 1 2

-1
0

1
2

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

• •
•

•

•

•

•

•
•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

••
•

••
•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
••

•
•

•

•

•

•

•
•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

Residuals vs. Fit
a$tx

re
si

du
al

s

-1 0 1 2

-0
.1

0.
0

0.
1

0.
2

235



Chapter 8  Regression and Smoothing For Continuous Response Data
Additive and 
Variance 
Stabilizing 
Transformation

The term “avas” stands for additivity and variance stabilizing
transformation. Like ace, avas tries to find transformations θ(y),
φ1(x1), …, φp(xp) such that

provides a good additive model approximation for the data yi, xi1, …,
xip, i = 1, 2, …, n. However, avas differs from ace in that it chooses
θ(y) to achieve a special variance stabilizing feature. In particular the
goal of avas is to estimate transformations θ, φ1, …, φp which have the
properties

and

Here E[z|w] is the conditional expectation of z given w. The additivity
structure of Equation (8.9) is the same as for ace, and
correspondingly the φi’s are calculated by the backfitting algorithm

cycling through k = 1, 2, …, p until convergence. The variance
stabilizing aspect comes from Equation (8.9). As in the case of ace,

estimates  and , k = 1, 2, …, p are computed to

approximately satisfy Equation (8.8) through Equation (8.11), with the
conditional expectations in Equation (8.8) and Equation (8.11)

(8.8)

(8.9)

(8.10)

(8.11)

θ y( ) φ1 x1( ) φ2 x2( ) … φp xp( ) ε+ + + +=

E θ y( ) x1 … xp, ,[ ] φi xi( )
i 1=

p

∑=

var θ y( ) φi xi( )
i 1=

p

∑ constant=

φk xk( ) E θ y( ) φi xi( ) xk
i k≠
∑–=

θ̂ yi( ) φj xik( )
236



More on Nonparametric Regression
estimated using the super smoother scatterplot smoother (see supsmu
function documentation). The equality (8.9) is approximately
achieved by estimating the classic stabilizing transformation.

To illustrate the use of avas, construct an artificial data set with
additive errors

with the ε i’s being N(0, 10) random variables (that is, normal random
variables with mean 0 and variance 10), independent of the xi’s, with
the xi’s being U(0, 2) random variables (that is, random variables
uniformly distributed on the interval from 0 to 2).

> set.seed(14) #set the seed to reproduce this example
> x <- runif(200, 0, 2)
> e <- rnorm(200, 0, sqrt(10))
> y <- exp(1+2*x) + e

Now use avas:

> a <- avas(x, y)

Set graphics for a 3 x 2 layout of plots:

> par(mfrow=c(3,2))

Make plots to: (1) examine original data; (2) examine transformation
of x; (3) examine transformation of y; (4) check linearity of the fitted
model; (5) check residuals versus the fit:

> plot(x, y, sub="Original data")
> plot(x, a$tx, sub="Transformed x vs. x")
> plot(y, a$ty, sub="Transformed y vs. y")
> plot(a$tx, a$ty, sub="Transformed y vs. Transformed x")
> plot(a$tx, a$ty - a$tx, ylab="Residuals",
+ sub="Residuals vs. Fit")

These plots are displayed in Figure 8.18 where the transformed values

 and  are denoted by ty and tx, respectively. The estimated

transformation tx =  seems close to exponential, and the

estimated transformation ty =  seems linear. The plot of ty versus
tx reveals that a linear additive model holds; that is, we have achieved

yi e1 2xi+ ε i i ,+= i 1, ..., 200=

θ̂ y( ) φ̂ x( )

φ̂ x( )

θ̂ y( )
237



Chapter 8  Regression and Smoothing For Continuous Response Data
a good additive approximation of the type in (8.8). In this plot the
error variance appears to be relatively constant. The plot of residuals,

ri = , versus the fit tx =  gives further confirmation

of this.

Figure 8.22:  avas example with additive errors.

θ̂ yi( ) φ̂ xi( )– φ̂ xi( )

•

•

••
•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•
•

• •
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

• •

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

• •

•
•

•

•
•

•

•

•

•

•

x

y

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80
10

0
12

0
14

0

•

•

•

•

•
•

•

•

•

•
•

•

• •

•
•

•

•

•
•

•

•
•

•
• •

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•
•

•

•
•

•

••

•

•

••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•• •

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•
•

•

• •

•

• •

•
•

•

•

•
•

•

•

•

•

x

a$
tx

0.0 0.5 1.0 1.5 2.0

-1
0

1
2

•

•

••
•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•
•

••
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

••

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•

•
•

•

•

••

•

•

•

••

•

••

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

••

•
•

•

•
•

•

•

•

•

•

y

a$
ty

0 20 40 60 80 100 120 140

-1
0

1
2

•

•

••
•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•
•

• •
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

•

•

•

• •

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

•• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•

•
•

•

•

••

•

•

•

• •

•

••

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•
•

•

••

•

•

•

•

•

•

•

•
•

•

• •

•
•

•

•
•

•

•

•

•

•

a$tx

a$
ty

-1 0 1 2

-1
0

1
2

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
• ••

•

•

•

•

•

•

•

•

•

•

•

•• •

•

•
••

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

••

•
•

•

••

•

•

• •

•

•
•

•

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

• •

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

• •

•

•

•

•

• •

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

a$tx

R
es

id
ua

ls

-1 0 1 2

-0
.2

-0
.1

0.
0

0.
1

0.
2

238



More on Nonparametric Regression
Key Properties • Suppose that the true additive model is

with ε  independent of x1, x2, ..., xp, and var(ε ) = constant.
Then the iterative avas algorithm for (8.9) – (8.11), described
below for the data versions of (8.9) – (8.11), yields a sequence

of transformations , , ...,  which converge to the

true transformation , , ..., , as the number of

iterations j tends to infinity. Correspondingly, the data-based
version of this iteration yields a sequence of transformations

, , ..., , which, at convergence, provide estimates

, , ..., , of the true model transformations , , ...,

.

• avas appears not to suffer from some of the anomalies of ace,
for example, not finding good estimates of a true additive
model (Equation (8.12)) when normality of ε  and joint
normality of φ1(x1), …, φp(xp) fail to hold. See the example
below.

• avas is a generalization of the Box and Cox (1964)
maximum-likelihood procedure for choosing power

transformation yl of the response. The function avas also
generalizes the Box and Tidwell (1962) procedure for
choosing transformations of the carriers x1, x2, ..., xp, and is
much more convenient than the Box-Tidwell procedure. See
also Weisberg (1985).

•  is a monotone transformation, since it is the integral of a
nonnegative function (see the section Further Details on page
240). This is important if one wants to predict y by inverting

: monotone transformations are invertible, and hence we

(8.12)θ0
y( ) φi

0
xi( )

i 1=

p

∑ ε+=

θ j( ) φ1
j( ) φp

j( )

θ0 φ1
0 φp

0

θ̂
j( )

φ̂1
j( )

φ̂p
j( )

θ̂ φ̂1 φ̂p θ0 φ1
0

φp
0

θ̂ y( )

θ̂

239



Chapter 8  Regression and Smoothing For Continuous Response Data
can predict y with . This predictor has

no particular optimality property, but is simply one
straightforward way to get a prediction of y once an avas
model has been fit.

Further Details Let

where  is an arbitrary transformation of y,  will be the
“previous” estimate of θ(y) in the overall iterative procedure described
below. Given the variance function v(u), it is known that

will be constant if g is computed according to the rule

for an appropriate constant c. See Box and Cox (1964).

The detailed steps in the population version of the avas algorithm are
as follows:

1. Initialize:

Set  and backfit on x1, ..., xp to

get , ..., . (See description of ace for details of
“backfitting.”)

ŷ θ̂G
1– φ̂i xi( )

i 1=

p

∑=

(8.13)

(8.14)

v u( ) VAR θ̂ y( ) φi xi( ) u=
i 1=

p

∑=

θ̂ y( ) θ̂ y( )

VAR g θ̂ y( )( ) φi xi( ) u=
i 1=

p

∑

t( )
ud

v
1 2⁄

u(
------------------

c

t∫=

y( ) y Ey–( ) VAR1 2⁄
y(⁄=

φ̂1 φ̂p
240



More on Nonparametric Regression
2. Get new transformation of y:

• Compute variance function:

• Compute variance stabilizing transformation:

• Set  and standardize:

3. Get new ’s:

Backfit  on x1, x2, …, xp to obtain new estimates , ...,

.

4. Iterate steps 2 and 3 until

doesn’t change.

Of course the above algorithm is actually carried out using the sample
of data yi, xi1, ..., xip, i = 1, ..., n, with expectations replaced by sample
averages, conditional expectations replaced by scatterplot smoothing
techniques and VAR’s replaced by sample variances.

(8.15)

v u( ) VAR θ̂ y( ) φ̂i xi( ) u=
i 1=

p

∑=

t( )
ud

v
1 2⁄

u(
------------------

c

t∫=

θ̂ y( ) g θ̂ y( )( )–

θ̂ y( ) θ̂ y( ) Eθ̂ y( )–

VAR1 2⁄ θ̂ y( )
-----------------------------------–

φ̂i

θ̂ y( ) φ̂1

φ̂p

R
2 1 ê

2
– 1 E θ̂ y( ) φ̂i xi( )

i 1=

p

∑–

2

–= =
241



Chapter 8  Regression and Smoothing For Continuous Response Data
In particular, super smoother is used in the backfitting step to obtain

, ..., , i = 1, ..., n. An estimate  of v(u) is obtained

as follows: First the scatter plot of 

versus  is smoothed using a running straight lines

smoother. Then the result is exponentiated. This gives an estimate

, and  is truncated below at 10-10 to insure positivity
and avoid dividing by zero in the integral (8.14). The integration in
Equation (8.14) is carried out using a trapezoidal rule.

Projection 
Pursuit 
Regression

The basic idea behind projection pursuit regression, ppreg, is as

follows. Let y and x = (x1, x2, ..., xp)
T denote the response and

explanatory vector, respectively. Suppose you have observations yi

and corresponding predictors xi = (xi1, xi2, ..., xip)T, i = 1, 2, ..., n. Let
a1, a2 , ..., denote p-dimensional unit vectors, as “direction” vectors,

and let . The ppreg function allows you to find M = M0,

direction vectors a1, a2, ...,  and good nonlinear transformations

φ1, φ2, ...,  such that

provides a “good” model for the data yi, xi, i = 1, 2, ..., n. The
“projection” part of the term projection pursuit regression indicates
that the carrier vector x is projected onto the direction vectors a1, a2, ...,

φ̂1 xi1( ) φ̂p xip( ) v̂ u( )

logr i
2 log θ̂ yi( ) φ̂j xij( )

j 1=

p

∑–

2

=

ui φ̂j xij( )
j 1=

p

∑=

v̂ u( ) 0≥ v̂ u( )

(8.16)

y
1
n
--- yi

i 1=

n

∑=

aM0

φM0

y y βmφm am
T

x( )
m 1=

M0

∑+≈
242



More on Nonparametric Regression
 to get the lengths aTx, i = 1, ..., n of the projections, and the

“pursuit” part indicates that an optimization technique is used to find
“good” direction vectors a1, a2, ..., .

More formally, y and x are presumed to satisfy the conditional
expectation model

where µy = E(y), and the φm have been standardized to have mean
zero and unity variance:

The observations yi, xi = (xi1, ..., xip)
T, i = 1, ..., n , are assumed to be

independent and identically distributed random variables like y and x,
that is, they satisfy the model in Equation (8.17).

The true model parameters βm, φm, am, m = 1, ..., M0 in Equation (8.17)
minimize the mean squared error

over all possible βm, φm, and am.

Equation (8.17) includes the additive ace models under the restriction

θ(y) = y. This occurs when M0 = p and a1 = (1, 0, ..., 0)T, a2 = (0, 1, 0,

..., 0)T, ap = (0, 0, ..., 0, 1)T, and the βm’s are absorbed into the φm’s.
Furthermore, the ordinary linear model is obtained when M0 = 1,

(8.17)

       (8.18)

(8.19)

aM0

aM0

E y x1, x2, ..., xp[ ] µy βmφm am
T

x( )
m 1=

M0

∑+=

Eφm am
T

x( ) 0,= Eφm
2

am
T

x( ) 0,= m 1 ... M0, ,=

E y µy– βmφm am
T

x( )
m 1=

M0

∑–

2

243



Chapter 8  Regression and Smoothing For Continuous Response Data
assuming the predictors x are independent with mean 0 and variance

1. Then , φ1(t) = t, and

, where the bj are the regression coefficients.

The projection pursuit model in Equation (8.17) includes the
possibility of having interactions between the explanatory variables.
For example, suppose that

This is described by (8.17) with µy = 0, M0 = 2, ,

, , φ1(t) = t2, and φ2(t) = -t2. For then

so that

.

Neither ace nor avas is able to model interactions. It is this ability to
pick up interactions that led to the invention of projection pursuit
regression by Friedman and Stuetzle (1981), and it is what makes
ppreg a useful complement to ace and avas.

The two variable interactions shown above can be used to illustrate
the ppreg function. The two predictors, x1 and x2 are generated as
uniform random variates on the interval -1 to 1. The response, y, is the
product of x1 and x2 plus a normal error with mean zero and variance
0.04.

> set.seed(14)  #set the seed to reproduce this example
> x1 <- runif(400, -1, 1)
> x2 <- runif(400, -1, 1)
> eps <- rnorm(400, 0, .2)

E[y|x1, x2] = x1x2. (8.20)

a
T

b1, ..., bp( ) b1
2 + … + bp

2⁄=

β1 b1
2 + … + bp

2
=

β1 β2
1
4
---= =

a1
T 1 1,( )= a2

T 1 1–,( )=

φ1 a1
T
x( ) x1 x2+( )2

x1
2 2x1x2 x2

2
+ += =

φ2 a2
T
x( ) x1 x2–( )2

– x– 1
2 2x1x2 x2

2
–+= =

βmφm a
T
x( )

m 1=

2

∑ x1x2=
244



More on Nonparametric Regression
> y <- x1*x2+eps
> x <- cbind(x1, x2)

Now run the projection pursuit regression with max.term set at 3,
min.term set at 2 and with the residuals returned in the ypred
component (the default if xpred is omitted).

> p <- ppreg(x, y, 2, 3)

Make plots (shown in Figure 8.23) to examine the results of the
regression.

> par(mfrow=c(3, 2))
> plot(x1, y, sub="Y vs X1")
> plot(x2, y, sub="Y vs X2")
> plot(p$z[,1], p$zhat[,1], sub="1st Term:
+ Continue string: Smooth vs Projection Values z1")
> plot(p$z[,2], p$zhat[,2], sub="2nd Term:
+ Continue string: Smooth vs Projection Values z2")
> plot(y-p$ypred, y, sub="Response vs Fit")
> plot(y-p$ypred, p$ypred, sub="Residuals vs Fit")

The first two plots show the response plotted against each of the
predictors. It is difficult to hypothesize a function form for the
relationship when looking at these plots. The next two plots show the
resulting smooth functions from the regression plotted against their
respective projection of the carrier variables. Both the plots have a
quadratic shape with one being positive and the other negative, the
expected result for this type of interaction function. The fifth plot
shows clearly a linear relationship between the response and the fitted
values. The residuals shown in the last plot do not display any
unusual structure.
245



Chapter 8  Regression and Smoothing For Continuous Response Data
Figure 8.23:  Projection pursuit example.

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

• ••

•
•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

••

•

•

•

••
•

•

•
• •

•

•

•

•

•

••

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• •• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
•••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

••

•

• •

• •

•

•

•

•

•

•

•

•

•

••
•

•

•
•

•

•
•

•

•

•

•
••

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

• •
•

•

•
• •

•
•

•
•

•

•
•

•

•
•

•

•
•

••
•

•
•

•

•

•

•

•

•

• ••

•

•

•

•

•

•

•

•

•

•

Y vs X1
x1

y

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

• ••

•
•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

••

•

•

•

• •
•

•

•
••

•

•

•

•

•

••

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • •••

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
• ••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

••

•

• •

••

•

•

•

•

•

•

•

•

•

• •
•

•

•
•

•

•
•

•

•

•

•
• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••
•

•

•
• •

•
•

•
•

•

•
•

•

•
•

•

•
•

••
•

•
•

•

•

•

•

•

•

• ••

•

•

•

•

•

•

•

•

•

•

Y vs X2
x2

y

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

•
••
•
••
••

•
•
•
••••
•
••••
••
•••
••
•••

••••••••
••••••••
•••
••••

••••••
••••
••••••••••••••••

••••••••••
••••••••
••••••••••

•••••••••••••••••••••••
•••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••••••••••••••
••••••

••••••••
•••••

•
•••

•

1st Term:
Smooth vs Projection Values z1

p$z[, 1]

p
$
zh

a
t[
, 
1
]

-1.0 -0.5 0.0 0.5 1.0

-4
-3

-2
-1

0
1

•
•
•
••
•
••••••

••
••
•

••••
••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••

•••••••••••••••••••
••••••••

••••••••••••••••••••
••••••

•••••••••
••••••••••

•••••
••••••••

•••••
••••••
•••
•••
•••••
•••
•••
••••
•

•••
•
•••••

•
•••••
•
•

•

2nd Term:
Smooth vs Projection Values z2

p$z[, 2]

p
$
zh

a
t[
, 
2
]

-1.0 -0.5 0.0 0.5 1.0
-1

0
1

2
3

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•••

•
•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

• •

•

•

•

••
•

•

•
••

•

•

•

•

•

••

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• •• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•
• • •

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

• •

•

••

••

•

•

•

•

•

•

•

•

•

••
•

•

•
•

•

•
•

•

•

•

•
• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

••
•

•

•
••

•
•

•
•

•

•
•

•

•
•

•

•
•

••
•

•
•

•

•

•

•

•

•

• ••

•

•

•

•

•

•

•

•

•

•

Response vs Fit
y - p$ypred

y

-1.0 -0.5 0.0 0.5

-1
.0

-0
.5

0
.0

0
.5

1
.0

•

••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

• •

•

•

•

•

• •

•

• •

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•
•

•
•

•

•

• •

• •

•

•

••

•

••

•
•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

• • • •

•

•

•
•

•

•

•

•

•
•

• ••

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•
•

•

•

• •
•

•

•

•

•

•

••
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•

•

••

•

••

•

•

•
•

•

•
•

•
•

•

• •

•
•

•
•

•

•

•

•

•

•
•

•••

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•
•

•
•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•
•

• •
••

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

• •

•

•

•

••

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

••

•

•

• •

Residuals vs Fit
y - p$ypred

p
$
yp

re
d

-1.0 -0.5 0.0 0.5

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6
246



More on Nonparametric Regression
Further Details The forward stepwise procedure

An initial M-term model of the form given by the right-hand side of
Equation (8.17), with the constraints of Equation (8.18) and M > M0, is
estimated by a forward stepwise procedure, as described by Friedman
and Stuetzle (1981).

First, a trial direction a1 is used to compute the values ,

i = 1, ..., n, where xi = (xi1, ..., xip)
T. Then, with , you have

available a scatter plot of data , i = 1, ..., n, which may be

smoothed to obtain an estimate  of the conditional

expectation E[y|z1] = E[yi|zi1] for the identically distributed random

variables yi, . Super Smoother is used for this purpose; see

the documentation for supsmu. This  depends upon the trial

direction vector a1, so we write . Now a1 is varied to

minimize the weighted sum of squares,

where for each a1 in the optimization procedure, a new  is

computed using super smoother. The weights wi are user-specified,

with the default being all weights unitary: . The final results of

this optimization will be denoted simply  and , where  has
been standardized according to Equation (8.18) and the

corresponding value  is computed. We now have the

approximation  i = 1, ..., n.

(8.21)

zi1 a1
T
xi=

ỹi
1

yi y–=

ỹi zi1,( )

φ̂1 zi1( )

zi1 a1
T
xi=

φ̂1

φ1 φ1 a1,=

wi yi φ̂1 a1, zi1( )–[ ]
2

i 1=

n

∑

φ̂1 a1,

wi 1≡

â1 φˆ1 φˆ1

β̂1

yi y β̂1φ̂1 â1
T
xi( )+≈
247



Chapter 8  Regression and Smoothing For Continuous Response Data
Next we treat  as the response, where now

, and fit a second term , where , to

this modified response, in exactly the same manner that we fitted

 to . This gives the approximation 

or .

Continuing in this fashion we arrive at the forward stepwise estimated
model

where , m = 1, ..., M.

The backward stepwise procedure

Having fit the M term model in Equation (8.22) in a forward stepwise
manner, ppreg fits all models of decreasing order m = M - 1, M - 2, ...,
Mmin, where M and Mmin are user-specified. For each term in the
model, the weighted sum of squared residuals

is minimized through the choice of βl, al, φl, l = 1, ..., m. The initial
values for these parameters, used by the optimization algorithm
which minimizes Equation (8.23), are the solution values for the m
most important out of m + 1 terms in the previous order m + 1 model.
Here importance is measured by

, i = 1, ..., n. (8.22)

(8.23)

    l = 1, ..., m + 1 (8.24)

yi
2( )

yi y β̂1φ̂1 zi1( )––=

zi1 â1
T
xi= β̂2φ̂2 zi2( ) zi2 â2

T
xi=

β̂1φ̂1 â1
T
xi( ) yi

1( )
yi

2( ) β̂2φ̂2 zi2( )≈

yi y β̂1φ̂1 zi1( ) β̂2φ̂2 zi2( )+ +≈

yi y β̂mφ̂m zim( )
m 1=

M

∑+≈

zim âm
T

xi=

SSR m( ) wi yi y– β lφl al
T
xi( )

l 1=

m

∑–

2

i 1=

n

∑=

I l β̂ l=
248



More on Nonparametric Regression
where  are the optimal coefficients for the m + 1 term model,
m = M - 1, M - 2, …, Mmin.

Model selection strategy

In order to determine a “good" number of terms M0 for the ppreg
model, proceed as follows. First, run ppreg with Mmin = 1 and M set
at a value large enough for the data analysis problem at hand. For a
relatively small number of variables p, say , you might well

choose . For large p, you would probably choose M < p, hoping
for a parsimonious representation.

For each order m, , ppreg will evaluate the fraction of
unexplained variance

A plot of e2(m) versus m which is decreasing in m may suggest a good

choice of m = M0. Often e2(m) will decrease relatively rapidly when m

is smaller than a good model order M0 (as the (bias)2 component of
prediction mean-squared error is decreasing rapidly), and then tend
to flatten out and decrease more slowly for m larger than M0. You can
choose M0 with this in mind.

β̂l

p 4≤
M p≥

1 m M≤ ≤

e
2

m( ) SSR m( )

wi yi y–[ ]2

i 1=

n

∑
-----------------------------------=

wi yi y– β̂l φ̂l âl
Txi( )

l 1=

m

∑–

2

i 1=

n

∑

wi yi y–[ ]2

i 1=

n

∑
----------------------------------------------------------------------------=
249



Chapter 8  Regression and Smoothing For Continuous Response Data
The current version of ppreg has the feature that when fitting models

having m = Mmin, Mmin + 1, ..., M terms, all of the values , ,

, , i = 1, ..., n , l = 1, ..., m , and e2(m) are returned

for m = Mmin, whereas all of these except the smoothed values 

and their corresponding arguments zil are returned for all m = Mmin,
..., M. This feature conserves storage requirements. As a consequence,
you must run ppreg twice for m = Mmin, ..., M, using two different
values of Mmin: The first time Mmin = 1 is used in order to examine

e2(m), m = 1, ..., M (among other things) and choose a good order M0.
The second time Mmin = M0 is used in order obtain all output,

including  and zil values.

Multivariate response

All of the preceding discussion has been concentrated on the case of a
single response y, with observed values y1, ..., yn. In fact, ppreg is
designed to handle multivariate responses y1, ..., yq with observed
values yij, i = 1, ..., n, j = 1, ..., q. For this case, ppreg allows you to fit
a good model

by minimizing the multivariate response weighted sum of squared
residuals

and choosing a good value m = M0.

(8.25)

(8.26)

β̂l âl

φ̂l zil( ) zil âl
Txi=

φ̂l zil( )

φ̂l zil( )

yj yj β̂mjφ̂m âm
T x( )

m 1=

M0

∑+≈

SSRq m( ) Wj wi yij yj– β̂l j φ̂l al
T
xi( )

l 1=

m

∑–

2

i 1=

n

∑
j 1=

q

∑=
250



More on Nonparametric Regression
Here the Wj are user-specified response weights (with default ),

the wi are user-specified observation weights (with default ), and

. Note that a single set of ’s is used for all responses

yij, j = 1, ..., q, whereas the different behavior of the different

responses is modeled by different linear combinations of the ’s by

virtue of the different sets of coefficients , j = 1,
..., q.

The ppreg procedure for the multivariate response case is similar to
the single response case. For given values of Mmin and M, ppreg first
does a forward stepwise fitting starting with a single term (m = 1), and
ending up with M terms, followed by a backward stepwise procedure
stopping with an Mmin-term model. When passing from an m + 1 term
model to an m-term model in the multivariate response case, the
relative importance of a term is given by

   l = 1, ..., m + 1

The most important terms are the ones with the largest Il, and the

corresponding values of , , and  are used as initial conditions

in the minimization of SSRq(m) . Good model selection; that is, a good
choice m = M0, can be made just as in the case of a single response,
namely, through examination of the multivariate response fraction of
unexplained variation

(8.27)

Wj 1≡

wi 1≡

yj
1
n
--- yij

i 1=

n

∑= φ̂m

φ̂m

β̂j β̂i j , ..., β̂mj( )
T

=

I l Wj β̂ j l
j 1=

q

∑=

β̂j l φ̂l al

eq
2

m( )
SSRq m( )

Wj wi yij yj–[ ]2

i 1=

n

∑
j 1=

q

∑
-------------------------------------------------------=
251



Chapter 8  Regression and Smoothing For Continuous Response Data
by first using ppreg with Mmin = 1 and a suitably large M. Then
ppreg is run again with Mmin = M0 and the same large M.
252



References
REFERENCES

Box, G.E.P. and Tidwell, P.W. (1962). Transformations of independent
variables. Technometrics, 4:531-550.

Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations
(with discussion). Journal of the Royal Statistical Society, Series B, 26:211-
246.

Breiman, L. and Friedman, J.H. (1985). Estimating optimal
transformations for multiple regression and correlation (with
discussion). Journal of the American Statistical Association, 80:580-619.

Friedman, J.H. and Stuetzle, W. (1981). Projection pursuit regression.
Journal of the American Statistical Association, 76:817-823.

Friedman, J.H. (1984). SMART users guide, no. 1. Laboratory for
Computational Statistics, Dept. of Statistics, Stanford University, Stanford,
CA.

Friedman, J.H. (1984). A variable span smoother. Tech. Rept. 5,
Laboratory for Computational Statistics, Dept. of Statistics, Stanford
University, Stanford, CA.

Friedman, J.H. (1985). Classification and multiple regression through
projection pursuit, Tech. Rept. 12, Dept. of Statistics, Stanford
University, Stanford, CA.

Hampel, F.R. and Ronchetti, E.M. and Rousseeuw, P.J. and Stahel,
W.A. (1986). Robust Statistics: The Approach Based on Influence Functions.
Wiley, New York.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models.
Chapman and Hall, London.

Heiberger, R.M. and Becker, R.A. (1992). Design of an S function for
robust regression using iteratively reweighted least squares. Journal of
Computational and Graphical Statistics, 1:181-196.

Huber, P.J. (1973). Robust regression: Asymptotics, conjectures, and Monte
Carlo. Annals of Statistics, 1:799-821.

Huber, P.J. (1981). Robust Statistics. Wiley, New York.

Rousseeuw, P.J. (1984). Least median of squares regression. Journal of
the American Statistical Association, 79:871-888.
253



Chapter 8  Regression and Smoothing For Continuous Response Data
Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and Outlier
Detection. Wiley, New York.

Silverman, B.W. (1986). Density Estimation for Statistics and Data
Analysis. Chapman and Hall, London.

Tibshirani, R. (1988). Estimating transformations for regression via
additivity and variance stabilization. Journal of the American Statistical
Association, 83:394-405.

Watson, G.S. (1966). Smooth regression analysis. Sankhya, Series A,
26:359-378.

Weisberg, S. (1985). Applied Linear Regression, 2nd edition. John Wiley,
New York.
254



Introduction 257

Overview of the Robust MM Regression Method 258
Key Robustness Features of the Method 258
The Essence of the Method: A Special M-Estimate 258
Using the lmRobMM Function to Obtain a Robust Fit 260
Comparison of Least Squares and Robust Fits 260
Robust Model Selection 260

Computing Least Squares and Robust Fits 261
Computing a Least Squares Fit 261
Computing a Robust Fit 262
Least Squares vs. Robust Fitted Model Objects 263

Visualizing and Summarizing the Robust Fit 264
Visualizing the Fit With the plot Function 264
Statistical Inference With the summary Function 266

Comparing Least Squares and Robust Fits 268
Creating a Comparison Object for LS and Robust Fits 268
Visualizing LS vs. Robust Fits 269
Statistical Inference for LS vs. Robust Fits 270

Robust Model Selection 272
Robust F and Wald Tests 272
Robust FPE Criterion 273

Controlling Options For Robust Regression 276
Efficiency at Gaussian Model 276
Alternative Loss Function 276
Confidence Level of Bias Test 278
Resampling Algorithms 280
Random Resampling Parameters 280
Genetic Algorithm Parameters 281

ROBUST REGRESSION 9
255



Chapter 9  Robust Regression
Theoretical Details 282
Initial Estimate Details 282
Optimal and Bisquare Rho and Psi-Functions 283
The Efficient Bias Robust Estimate 284
Efficiency Control 285
Robust R-Squared 285
Robust Deviance 286
Robust F Test 286
Robust Wald Test 286
Robust FPE (RFPE) 286

Other Robust Regression Techniques 288
Least Trimmed Squares Regression 288
Least Median Squares Regression 292
Least Absolute Deviation Regression 293
M-Estimates of Regression 294

Appendix 297

Bibliography 298
256



Introduction
INTRODUCTION

Robust regression techniques are an important complement to the
classical least-squares technique in that they provide answers similar
to the least-squares regression when the data are linear with normally
distributed errors, but differ significantly from the least-squares fit
when the errors don’t satisfy the normality conditions or when the
data contain significant outliers. S-PLUS includes several robust
regression techniques. This chapter focuses on the Robust MM
Regression technique. We recommend this technique, as it provides
both high-quality estimates and a wealth of tools for diagnostics and
inference.

Other robust regression techniques available in S-PLUS are least
trimmed squares (LTS) regression, least median squares (LMS)
regression, least absolute deviations (L1) regression, and M-estimates
of regression. These are discussed briefly in the section Other Robust
Regression Techniques.
257



Chapter 9  Robust Regression
OVERVIEW OF THE ROBUST MM REGRESSION METHOD

This section provides you with an overview of the tools at your
disposal for computing a modern robust linear regression model in
S-PLUS using robust MM regression, including robust inference for
coefficients and robust model selection. You find out how to use the
robust regression tools in detail in the sections that follow.

Key 
Robustness 
Features of the 
Method

You will learn how to fit a linear model using a modern robust
method that has the following general features:

• In data-oriented terms, the robust fit is minimally influenced
by outliers in the independent variables space, in the response
(dependent variable) space, or in both.

• In probability-oriented terms, the robust fit minimizes the
maximum possible (large sample size) coefficients estimate
bias due to a non-Gaussian contamination distribution model
which generates outliers, subject to achieving a desired (large
sample size) coefficient estimates efficiency when the data has
a Gaussian distribution.

• The statistical inference produced by the fit is based on large
sample size approximations for such quantities as standard
errors and “t-statistics” of coefficients, R-squared values, etc.

For further information, read the section Theoretical Details.

The Essence of 
the Method: A 
Special 
M-Estimate

You are fitting a general linear model of the form

with p-dimensional independent predictor (independent) variables xi
and coefficients β, and scalar response (dependent) variable yi. S-PLUS

computes a robust M-estimate  which minimizes the objective
function

yi xi
Tβ ε i  ,+= i 1 ... n, ,=

β̂

ρ
yi xi

Tβ–

ŝ
-------------------

 
 
 

i 1=

n

∑

258



Overview of the Robust MM Regression Method
where  is a robust scale estimate for the residuals and ρ is a
particular optimal symmetric bounded loss function, described in the
section Theoretical Details. The shape of this optimal function is
shown in Figure 9.4.

Alternatively  is a solution of the estimating equation

where  is a redescending (nonmonotonic) function.

A key issue is that since ρ is bounded, it is nonconvex, and the
minimization above can have many local minima. Correspondingly,
the estimating equation above can have multiple solutions. S-PLUS

deals with this by computing highly robust inital estimates  and 
with breakdown point 0.5, using the S-estimate approach described in

the section Theoretical Details, and computes the final estimate  as
the local minimum of the M-estimate objective function nearest to the
initial estimate. We refer to an M-estimate of this type and computed
in this special way as an MM-estimate, a term introduced by Yohai
(1987).

S-PLUS also provides for an automatic choice between the initial and
final estimates based on evaluating the potential bias of the final estimate.

ŝ

β̂

xiψ
yi xi

Tβ̂–

ŝ
-------------------

 
 
 

i 1=

n

∑ 0=

ψ ρ ′=

β̂ ŝ

β̂

Note

The theory for this new robust method is based on Rousseeuw and Yohai (1984), Yohai, Stahel,
and Zamar (1991), and Yohai and Zamar (1998). The code is based on the ROBETH library of
Alfio Marazzi, with additional work by R. Douglas Martin, Douglas B. Clarkson, and Jeffrey
Wang of MathSoft, partially supported by an SBIR Phase I grant entitled “Usable Robust
Methods” funded by the National Institutes of Health.
259



Chapter 9  Robust Regression
Using the 
lmRobMM 
Function to 
Obtain a 
Robust Fit

You will compute a robust regression fit using the lmRobMM function.
The resulting robustly fitted model object is almost identical in
structure to a least squares fitted model object returned by lm, that is,
you will get most of the same fitted model components, such as
coefficient standard errors and t-statistics, etc.

Comparison of 
Least Squares 
and Robust 
Fits

In order to facilitate comparison of least squares and robust fits of a
linear regression model, you use a special function to create an object
with the relevant information from the least squares and robust fits,
for example, t-statistics, residuals, etc. You then use this
object as arguments to the usual S-PLUS printing, summarizing and
plotting functions to get tabular and graphical displays in a form that
makes it easy for you to compare the results of the least squares and
robust fits.

Robust Model 
Selection

It is not enough for you to use a robust linear model fitting method
when you are trying to decide which of several alternative models to
use, based on alternative sets of predictor variables. You also need a
robust model selection criterion. To this end, you may use one of the
following three robust model selection criteria: robust F-test, robust
Wald test, and robust FPE (RFPE) criterion.
260



Computing Least Squares and Robust Fits
COMPUTING LEAST SQUARES AND ROBUST FITS

Computing a 
Least Squares 
Fit

The S-PLUS data frame oil.df contains monthly excess returns on
the stocks of Oil City Petroleum, Inc. from April 1979 to December
1989 and the monthly excess returns of the market of the same
period. “Returns” are defined as the relative change in the price of the
stock over a one-month interval, and “excess” means relative to the
monthly return at the risk-free rate of a 90-day U.S. Treasury bill.

The scatter plot of the data is shown in Figure 9.1. Obviously there is
one big outlier in the data.

Financial economists usually use LS to fit a straight line to a particular
stock return and the market return, and the estimated coefficient of
the market return is called the “beta”, which measures the riskiness of
the stock in terms of standard deviation and the expected returns. The
larger the beta, the more risky the stock is compared with the market,
but the larger the expected returns.

Figure 9.1:  LS fit and robust fit of oil.df.

Market Returns

O
il

C
ity

R
et

ur
ns

-0.2 -0.1 0.0

0
1

2
3

4
5

oil.robust
oil.ls
261



Chapter 9  Robust Regression
For comparison purposes, first fit an LS model to the data as follows:

> oil.ls <- lm(Oil~Market,data=oil.ls)

and print a short summary of the fitted model:

> oil.ls

Call:
lm(formula = Oil ~ Market, data = oil.df)

Coefficients:
 (Intercept)  Market
   0.1474486 2.85674

Degrees of freedom: 129 total; 127 residual
Residual standard error: 0.4866656

Computing a 
Robust Fit

To obtain a robust fit, you use the lmRobMM function just like the lm
function:

> oil.robust <- lmRobMM(Oil~Market,data=oil.df)
> oil.robust

Final M-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oil.df)

Coefficients:
 (Intercept)    Market
 -0.08395777 0.8288791

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446283

Obviously, the robust estimate of beta is dramatically different from
the LS estimate. According to the LS method, the beta of this stock is
2.857, which implies that the stock is 2.857 times as volatile as the
market, and has about 2.857 times the expected return. The robust
estimate of beta is 0.829, which implies that the stock has somewhat
less volatility and expected return than the market.
262



Computing Least Squares and Robust Fits
Also note that the robust scale estimate is 0.14, whereas the scale
estimate from LS is 0.49. The LS scale estimate is based on the sum of
squared residuals and thus considerably inflated by the presence of
outliers in the data.

Least Squares 
vs. Robust 
Fitted Model 
Objects

The object returned by the lm function for LS fit is of class "lm":

> class(oil.ls)

[1] "lm"

On the other hand, the object returned by lmRobMM is of class
"lmRobMM":

> class(oil.robust)

[1] "lmRobMM"

Just as with an object of class “lm”, you can easily visualize, print and
summarize robust fit objects of class “lmRobMM” using the generic
functions plot, print and summary.
263



Chapter 9  Robust Regression
VISUALIZING AND SUMMARIZING THE ROBUST FIT

Visualizing the 
Fit With the 
plot Function

For a simple linear regression, you can easily see outliers in the scatter
plot, as in the above example. However, in multiple regression it is
not so easy to tell if there are some outliers in the data, and what the
outliers are. Nonetheless, S-PLUS makes it easy for you to visualize the
outliers in a multiple regression. To illustrate this point, let us use the
well known “stack loss” data set.

The S-PLUS product includes the stack loss data set which has been
analyzed by a large number of statisticians. The stack loss in this data
set is the percent loss (times 10) of ammonia during 21 days of
operation. The ammonia is lost during the process of producing nitric
acid by dissolving the ammonia in water. Three variables—air flow,
water temperature, and acid concentration—may influence the loss of
ammonia. The stack loss response data is contained in the vector
stack.loss, and the three independent variables are contained in
the matrix stack.x.

First, you combine the response and independent variables into a
data frame stack.df:

> stack.df <- data.frame(Loss=stack.loss,stack.x)

Then you compute an LS fit object stack.ls:

> stack.ls <- lm(Loss ~ Air.Flow + Water.Temp +
+ Acid.Conc., data =stack.df)

and finally compute a robust fit object stack.robust:

> stack.robust <- lmRobMM(Loss ~ Air.Flow + Water.Temp +
+ Acid.Conc., data =stack.df)

Now you use the plot function to visualize the fit:

> plot(stack.robust)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values
264



Visualizing and Summarizing the Robust Fit
5: plot: Normal QQplot of Residuals
6: plot: r-f spread plot
Selection:

Note that Cook's distance is not currently available when a robust
method is used.

Now you can compare the plot of residuals versus fitted values for
both the LS fit and the robust fit using the following commands:

> par(mfrow=c(2,1))
> plot(stack.ls,which.plots=1)
> plot(stack.robust,which.plots=1)

Figure 9.2 shows those two plots. As you can see, the robust fit pushes
the outliers further away from the majority of the data, so that you can
more easily identify the outliers.

Figure 9.2:  Residuals vs. fitted values: stack.loss data.

Fitted : Air.Flow + Water.Temp + Acid.Conc.

R
es

id
ua

ls

10 20 30 40

-6
-4

-2
0

2
4

6

3

4

21

LS Fit

Fitted : Air.Flow + Water.Temp + Acid.Conc.

R
es

id
ua

ls

10 15 20 25 30 35

-5
0

5

3

4

21

Robust Fit
265



Chapter 9  Robust Regression
Statistical 
Inference With 
the summary 
Function

The generic summary function provides you with the usual kinds of
inference output, for example, t-values and p-values along with some
additive and useful information, including tests for bias. For example,
to obtain more information about the robust fit oil.robust, use
summary on this object:

> summary(oil.robust)

Final M-estimates.

Call: lmRobMM(formula = Oil ~ Market, data = oil.df)

Residuals:
     Min       1Q  Median     3Q   Max
 -0.4566 -0.08875 0.03082 0.1031 5.218

Coefficients:
              Value Std. Error t value Pr(>|t|)
(Intercept) -0.0840  0.0281    -2.9929  0.0033
     Market  0.8289  0.2834     2.9245  0.0041

Residual scale estimate: 0.1446 on 127 degrees of freedom
Proportion of variation in response explained by model: 
0.05261

Test for Bias
            Statistics   P-value
 M-estimate       2.16 0.3398475
LS-estimate      22.39 0.0000138

Correlation of Coefficients:
       (Intercept)
Market 0.8169

The seed parameter is : 1313

First note the standard errors, the t-values, and the p-values of the
coefficients. The standard errors are computed from the robust
covariance matrix of the estimates. For technical details about the
computation of robust covariance matrix, refer to Yohai, Stahel and
Zamar (1991).
266



Visualizing and Summarizing the Robust Fit
Second, the summary method provides another piece of useful
information: the “Proportion of variation in response explained by

model,” usually known as R2. S-PLUS calculates a robust version of

R2. The details of how the robust R2 is calculated can be found in the
section Theoretical Details.

Finally, there is a “Test for Bias” section in the summary. This section
provides the test statistics of the bias of the final M-estimates and the
LS estimates against the initial S-estimates. In this case, the test for
bias of the final M-estimates yields a p-value of 0.33, which suggests
that the bias of the final M-estimates relative to the initial S-estimates
is not significant at the usual level. That is why the “Final
M-estimates” is reported in the first line of its summary output instead
of the initial S-estimates. The test for bias of the LS estimates relative
to the S-estimates yields a p-value of 0, which indicates that the LS
estimate is highly biased, so you strongly prefer to use the robust
MM-estimator.

For technical details about how the tests for bias are calculated, see
Yohai, Zamar and Stahel (1991).
267



Chapter 9  Robust Regression
COMPARING LEAST SQUARES AND ROBUST FITS

Creating a 
Comparison 
Object for LS 
and Robust 
Fits

In the section Visualizing the Fit With the plot Function, we
compared the residuals vs. fitted values plot for both the LS and
robust fits. You might have noted that the two plots do not have the
same vertical scale. It would be nice to have the capability of plotting
different fits on the same scale for easy visual comparison and also
making tabular displays of LS and robust fits which are conveniently
aligned for ease of comparing inference results. To this end, S-PLUS

provides a function compare.fits, for creating a models comparison
object, along with appropriate print, plot and summary methods
for this class of object.

For example, to compare the results from the two fits oil.ls and
oil.robust, first create the comparison object oil.cmpr with the
following command:

> oil.cmpr <- compare.fits(oil.ls,oil.robust)

The object returned by compare.fits is of class “compare.fits”.
Now you can print a short summary of the comparison:

> oil.cmpr

Calls:
    oil.ls lm(formula = Oil ~ Market, data = oil.df)
oil.robust lmRobMM(formula = Oil ~ Market, data = oil.df)

Coefficients:
            oil.ls oil.robust
(Intercept) 0.1474   -0.08396
     Market 2.8567    0.82888

Residual Scale Estimates:
    oil.ls : 0.4867 on 127 degrees of freedom
oil.robust : 0.1446 on 127 degrees of freedom
268



Comparing Least Squares and Robust Fits
Visualizing LS 
vs. Robust Fits

You can easily plot a compare.fits object to obtain a visual
comparison of the LS and robust fits:

> plot(oil.cmpr)

Make a plot selection (or 0 to exit):

1: Normal QQ-Plots of Residuals
2: Estimated Densities of Residuals
3: Residuals vs Fitted Values
4: Response vs Fitted Values
Selection:

For example, the normal qq-plot and estimated densities for
oil.cmpr are shown in Figure 9.3. The densities of residuals are
estimated using a kernel type density estimate. For a good model fit,
the probability density estimates for the residuals will be centered at
zero and nearly as narrow as possible. Figure 9.3 shows that the
density of residuals from the LS estimate is shifted to the left of the
origin, whereas that of the robust fit is well centered. Furthermore, the
outlier bumps in the residual density estimates for the MM-estimator
are pushed further from the mode of the density, and thus are a little
more pronounced than those for the LS estimates (because there is
one big outlier in the data).
269



Chapter 9  Robust Regression
Statistical 
Inference for 
LS vs. Robust 
Fits

A more detailed comparison, particularly comparison of t-values and
p-values, can be obtained using the generic summary function on a
“compare.fits” object. For example:

> summary(oil.cmpr)

Calls:
    oil.ls lm(formula = Oil ~ Market, data = oil.df)
oil.robust lmRobMM(formula = Oil ~ Market, data = oil.df)

Residual Statistics:
               Min       1Q   Median      3Q   Max
    oil.ls -0.6952 -0.17323 -0.05444 0.08407 4.842
oil.robust -0.4566 -0.08875  0.03082 0.10314 5.218

Figure 9.3:  Sample plots of oil.cmpr.

-2 -1 0 1 2

0
1

2
3

4
5

oil.ls oil.robust

-1 0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

oil.ls oil.robust
270



Comparing Least Squares and Robust Fits
Coefficients:
    oil.ls
             Value Std. Error t value  Pr(>|t|)
(Intercept) 0.1474    0.07072   2.085 0.0390860
     Market 2.8567    0.73175   3.904 0.0001528

oil.robust
               Value Std. Error t value Pr(>|t|)
(Intercept) -0.08396    0.02805  -2.993 0.003321
     Market  0.82888    0.28342   2.925 0.004087

Residual Scale Estimates:
    oil.ls : 0.4867 on 127 degrees of freedom
oil.robust : 0.1446 on 127 degrees of freedom

Proportion of variation in response(s) explained by 
model(s):
    oil.ls : 0.1071
oil.robust : 0.05261

Correlations:
    oil.ls
               Market
(Intercept) 0.7955736

oil.robust
               Market
(Intercept) 0.8168693

Caveat

When the final M-estimate is not used, that is, p-values of test for bias indicates that the final
M-estimate is highly biased relative to the initial S-estimates, the asymptotic approximations for
the inference may not be very good and you should not trust them very much.
271



Chapter 9  Robust Regression
ROBUST MODEL SELECTION

Robust F and 
Wald Tests

Another important part of statistical inference is hypothesis testing.
S-PLUS provides two robust tests for testing whether or not some of
the regression coefficients are zero: the robust Wald test and the
robust F test. For technical details on how these tests are computed,
see the section Theoretical Details below. Before proceeding, create
the data frame simu.dat:

> simu.dat <- gen.data(1:3)

where the function gen.data is provided in the appendix to this
chapter. This function generates a data frame with five columns: y, x1,
x2, x3 and x4. The variable y is generated according to the following
equation:

where b1, b2, b3 is given by 1:3 in the above S-PLUS command, and u
is sampled from a N(0,3) family with 10% contamination. The term x4
is independent of y, x1, x2, and x3. First, you fit a model with x1, x2,
x3, and x4 as the predictor variables:

> simu.mm4 <- lmRobMM(y~x1+x2+x3+x4-1, data=simu.dat)

To test the hypothesis that the coefficient of x4 is actually zero, you
can fit another model with only x1, x2, and x3 as the predictor
variables, then use anova to test the significance of the coefficient of
x4:

> simu.mm3 <- update(simu.mm4,.~.-x4)
> anova(simu.mm4,simu.mm3)

Response: y
                  Terms     Df       Wald  P(>Wald)
1 x1 + x2 + x3 + x4 - 1
2      x1 + x2 + x3 - 1      1 0.04436687 0.8331725

The p-value in this case is greater than 0.8, which leads you to accept
the null hypothesis that the fourth coefficient value is zero.

y b1x1 b2x2 b3x3 u+ + +=
272



Robust Model Selection
The default test used by anova is the Wald test based on robust
estimates of the coefficients and covariance matrix (a robust Wald
test). To use the robust F test instead, specify the optional argument
test to anova:

> anova(simu.mm4,simu.mm3,test="RF")

Response: y
                  Terms     Df    RobustF P(>RobustF)
1 x1 + x2 + x3 + x4 - 1
2      x1 + x2 + x3 - 1      1 0.03374514   0.8507404

which gives a quite similar result to that of the robust Wald test.

Robust FPE 
Criterion

Although many robust estimators have been constructed in the past,
the issue of robust model selection has not received its due attention.
For robust model selection, S-PLUS provides Robust Final Prediction
Errors (RFPE) as a criterion, which is a robust analogue to the
classical Final Prediction Errors (FPE) criterion. RFPE is defined as:

,

where β(1) is the final M-estimate of β, ’s are the values you are

trying to predict using β(1), and the expectation is taken with respect

to both β(1) and ’s. When considering a variety of model choices
with respect to different choices of predictor variables, you choose the
model with the smallest value of RFPE.

Note that when , RFPE reduces to the classical FPE. RFPE
can also be shown to be asymptotically equivalent to the robust
version of AIC proposed by Ronchetti (1985). The section
Theoretical Details provides a sketch of technical details supporting
the use of RFPE.

RFPE Eρ
yi

*
xi

Tβ 1( )
–

ρ
--------------------------

 
 
 

i 1=

n

∑=

yi
*

yi
*

ρ u( ) u
2=
273



Chapter 9  Robust Regression
The RFPE criterion is used as the robust method, invoked by use of
the generic functions, of drop1 and add1. For example, use of drop1
on the robustly fitted model simu.mm4 in the previous section gives:

> drop1(simu.mm4)

Significant test at level  10 %.
for  x3

Single term deletions

Model:
y ~ x1 + x2 + x3 + x4 - 1
       Df     RFPE
<none>     24.24174
    x1  1  24.46596
    x2  1  52.19800
    x3  1  64.32633
    x4  1  23.95825

The output indicates that dropping x4 gives a better model.

You can also use add1 to explore the relevance of other variables. For
example, if you fit simu.mm3 first, you can use the following
command to investigate if x4 helps predict y:

> add1(simu.mm3,"x4")

Single term additions

Model:
y ~ x1 + x2 + x3 - 1
       Df     RFPE
<none>    24.10184
    x4  1 24.38769

Since addition of x4 causes RFPE to increase, addition of x4 results in
a poor model.
274



Robust Model Selection
Caveat

If the test for bias of final M-estimates is significant for any of the models considered by drop1
and add1, you should not trust the corresponding RFPE very much.
275



Chapter 9  Robust Regression
CONTROLLING OPTIONS FOR ROBUST REGRESSION

In this section, you will learn how to change the default settings of
some control parameters for the MM-estimator so as to obtain
particular estimates that fit your purpose. Most of the default settings
can be changed through the functions lm.robust.control and
lm.genetic.control. Only the commonly used control parameters
are introduced in this section. For the default settings of other
parameters and how to change them, see the online help file for
lm.robust.control and lm.genetic.control.

Efficiency at 
Gaussian 
Model

If the final M-estimates are accepted, they have a default asymptotic
efficiency of 85% compared with the LS estimates, when the errors
are normally distributed.

Sometimes an asymptotic efficiency of 85% may not be what you
exactly want. To change the efficiency of the final M-estimates, the
lmRobMM optional argument robust.control should be generated
from lmRobMM.robust.control with desired efficiency:

> oil.tmp <- lmRobMM(Oil~Market,data=oil.df,
+ robust.control=lmRobMM.robust.control(efficiency=0.95))
> coef(oil.tmp)

 (Intercept)    Market
  -0.07398806  0.8491126

Alternative 
Loss Function

As mentioned in the introduction, the final M-estimates are based on
the initial S-estimates of regression coefficients and scale parameter.
For both the initial S-estimate and the final M-estimate, S-PLUS uses a
loss function for the estimation. Two different loss functions are
available in S-PLUS: Tukey’s bisquare function and the optimal loss
function recently discovered by Yohai and Zamar (1998). Figure 9.4
shows the Tukey bisquare function on the left and the optimal loss
function on the right.
276



Controlling Options For Robust Regression
The exact forms of these functions can be found in the section
Theoretical Details.

Since the optimal loss function above has better combined Gaussian
efficiency and non-Gaussian bias control properties, it is used as the
default for robust regression. However, you can choose to use the
Tukey bisquare function or a combination of those two functions by
controlling the weight argument to lmRobMM.robust.control as
follows:

> control <- lmRobMM.robust.control(weight=c(“Bisquare”,
+ “Optimal”))
> oil.tmp <- lmRobMM(Oil~Market,data=oil.df,
+ robust.control=control)

Figure 9.4:  Available loss functions.

Bisquare (Rho)

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Optimal (Rho)

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bisquare (Psi)

-4 -2 0 2 4

-2
-1

0
1

2

Optimal (Psi)

-4 -2 0 2 4

-2
-1

0
1

2

277



Chapter 9  Robust Regression
> coef(oil.tmp)

 (Intercept)     Market
  -0.08371818  0.8291069

In the above commands, the rescaled bisquare function is used for the
initial S-estimates, and the optimal loss function is used for the final
M-estimates.

Confidence 
Level of Bias 
Test

In the oil.robust example shown above, the final M-estimates are
accepted over the initial S-estimates because the p-value of the test for
bias is 0.33. The default level of this test is set at 10%, so whenever the
p-value of the test is greater than 10%, the final M-estimates are
returned; otherwise, the initial S-estimates are returned.

To change the level of the test for bias of the final M-estimates to a
different value, you should specify the argument level for the
lmRobMM.robust.control function. A higher value of level will
reject the final M-estimates more often, and a lower value of level
will reject the final M-estimates less often. For example, you can force
the procedure to return the initial S-estimates by using the following
commands:

> control.s <- lmRobMM.robust.control(level=1)
> oil.s <- lmRobMM(Oil~Market,data=oil.df,
+ robust.control=control.s)

Significant test at level  100 %

> oil.s

Initial S-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oil.df,

robust.control = control.s)

Coefficients:
 (Intercept)     market
  -0.06244374  0.8273216

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446283
278



Controlling Options For Robust Regression
Similarly, using level=0 forces lmRobmm to return the final
M-estimates:

> control.mm <- lmRobMM.robust.control(level=0)
> oil.mm <- lmRobMM(Oil ~ Market, data = oil.df,
+ robust.control = control.mm)

Sometimes you may want to change the level of the test after fitting a
robust regression model. For this purpose, you can use the generic
function update, which has a method for "lmRobMM" objects. For
example, to change the level of test for bias for oil.s, use the
following command:

> oil.tmp <- update(oil.s,level=0.2)
> oil.tmp

Final M-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oil.df,
 robust.control = control.s)

Coefficients:
 (Intercept)     Market
  -0.08395777  0.8288791

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1478398

Warning

The bias is high; inference based on final estimates is not recommended; use initial estimates as
exploratory tools.

Caveat

The above warning is only relevant when you use levels in the range of 1% to 10%, and the
choice of level in this range is a rather subjective choice of the user.
279



Chapter 9  Robust Regression
Now the final M-estimates are returned. Also, if both the formula
and the level arguments are missing for update, the function
alternates between the initial S-estimates and final M-estimates.

Note: If you only want to compute the S-estimates and do not care
about the final M-estimates, you can do so by specifying the estim
argument to lmRobMM.robust.control as follows:

> control.s <- lmRobMM.robust.control(estim="S")
> oil.s <- lmRobMM(Oil ~ Market, data = oil.df,
+ robust.control = control.s)
> oil.s

Initial S-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oil.df, 
    robust.control = control.s)

Coefficients:
 (Intercept)     Market
  -0.06244374  0.8273216

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446283

Similarly, you can get the final M-estimates if you use estim=“MM”.

Resampling 
Algorithms

When computing the initial S-estimates, a resampling scheme is used.
S-PLUS provides three resampling algorithms for the initial
S-estimates: random resampling, exhaustive resampling and genetic
algorithm. These algorithms can be selected by using the sampling
argument to the function lmRobMM.robust.control, for which the
valid choices are "Random", "Exhaustive" and "Genetic". Note
that exhaustive resampling is only used/recommended when the
sample size is small and there are less than 10 predictor variables.

Random 
Resampling 
Parameters

Random resampling is controlled by two paramemters: a random
seed and the number of subsamples to draw. By default, the number

of subsamples is set at , where p is the number of explanatory
variables, and  denotes the operation of rounding a number to its

4.6 2p⋅[ ]
 [ ]
280



Controlling Options For Robust Regression
closest integer. Note that this number will work fine if you have less
than 13 predictor variables. However, if you have more than 13
predictor variables, the default number may be too big for computing
in a reasonable time. To choose a different value for the number of
subsamples to draw, use the optional argument nrep as follows:

> oil.tmp <- lmRobMM(Oil~Market,data=oil.df,nrep=10)

The seed of the random resampling can be controlled by specifying
the argument seed to lmRobMM.robust.control.

Genetic 
Algorithm 
Parameters

If you choose to use the genetic algorithm, the parameters for genetic
algorithm can be changed through the lmRobMM optional argument
genetic.control, the default of which is NULL. The optional
argument genetic.control should be a list, usually returned by a
call to the function lmRobMM.genetic.control. To look at the
arguments of the function lmRobMM.genetic.control, use the
following command:

> args(lmRobMM.genetic.control)
function(popsize = NULL, mutate.prob = NULL,
random.n = NULL, births.n = NULL, stock = list(),
maxslen = NULL, stockprob = NULL, nkeep = 1)

For an explanation of the various arguments above, you should read
the help file for the function ltsreg.default.
281



Chapter 9  Robust Regression
THEORETICAL DETAILS

Initial 
Estimate 
Details

The key to obtaining a good local minimum of the M-estimation
objective function when using a bounded, nonconvex loss function is

to compute a highly robust initial estimate β0. S-PLUS does this by
using the S-estimate method introduced by Rousseeuw and Yohai
(1984), as part of an overall MM-estimate computational strategy
proposed by Yohai, Stahel and Zamar (1991), and supported by a
number of robustness experts who participated in the 1989 IMA
summer conference on “Directions in Robust Statistics and
Diagnostics.”

The S-estimate approach has as its foundation an M-estimate  of an
unknown scale parameter for observations y1, y2, ..., yn, assumed to be
robustly centered (that is, by subtracting a robust location estimate).

The M-estimate  is obtained by solving the equation

where ρ is a symmetric, bounded function. It is known that such a
scale estimate has a breakdown point of one-half (Huber, 1981), and
that one can find min-max bias robust M-estimates of scale (Martin
and Zamar, 1989, 1993).

The following regression S-estimate method was introduced by
Rousseeuw and Yohai (1984). Consider the linear regression model
modification of (3.7):

(9.1)

(9.2)

ŝ

ŝ

1
n
--- ρ

yi

ŝ
---- 

 
i 1=

n

∑ .5=

1
n p–
------------ ρ

yi xi
Tβ–

ŝ β( )
-------------------

 
 
 

i 1=

n

∑ .5=
282



Theoretical Details
For each value of β, we have a corresponding robust scale estimate

. The regression S-estimate (which stands for “minimizing a

robust scale estimate”) is the value  that minimizes :

This presents another nonlinear optimization, one for which the
solution is traditionally found by a random resampling algorithm,
followed by a local search, as described in Yohai, Stahel and Zamar
(1991). S-PLUS allows you to use a genetic algorithm in place of the
resampling algorithm, and also to use an exhaustive form of sampling

algorithm for small problems. Once the initial S-estimate  is
computed, the final M-estimate is obtained as the nearest local
minimum of the M-estimate objective function.

For details on the numerical algorithms used, see Marazzi (1993),
whose algorithms, routines and code were used in creating lmRobMM.

Optimal and 
Bisquare Rho 
and Psi-
Functions

A robust M-estimate of regression coefficient β is obtained by
minimizing

,

where  is a convex weight function of the residuals with tuning

constant c. The derivative of  is usually denoted by . For
both the initial S-estimate and the final M-estimate in S-PLUS, two
different weight functions can be used: Tukey’s bisquare function and
an optimal weight function introduced in Yohai and Zamar (1998).

Tukey’s bisquare functions  and  are as follows:

(9.3)

ŝ β( )

β̂
0

ŝ β( )

β̂
0

argminβŝ β( )=

β̂
0

ρ
yi xi

Tβ–

σ
------------------- c;

 
 
 

i 1=

n

∑

ρ . c;( )

ρ . c;( ) ψ . c;( )

ρ . c;( ) ψ . c;( )

ρ r c;( )
r
c
-- 

  6
3 r

c
-- 

  4
– 3 r

c
-- 

  2
+ if r c≤

1 if r c>





=

283



Chapter 9  Robust Regression

robust.fm  Page 284  Wednesday, June 2, 1999  4:04 PM
The Yohai and Zamar optimal functions  and  are as
follows:

where

     .

ψ r c;( )
6
c
--- r

c
-- 

  12
c

------ r
c
-- 

  3
–

6
c
--- r

c
-- 

  5
+ if r c≤

1 if r c>





=

ρ . c;( ) ψ . c;( )

ρ r c;( )

3.25c2 if r
c
-- 3>

c2 1.792 h1
r
c
-- 

  2
h2

r
c
-- 

  4
h3

r
c
-- 

  6
h4

r
c
-- 

  8
+ + + + if 2 r

c
-- 3≤<

r 2

2
---- if r

c
-- 2≤












=

ψ r c;( )

0 if r
c
-- 3>

c g1
r
c
-- g2

r
c
-- 

  3
g3

r
c
-- 

  5
g4

r
c
-- 

  7
+ + + if 2 r

c
-- 3≤<

r if r
c
-- 2≤











=

g1 1.944–=

g2 1.728=

g3 0.312–=

g4 0.016=

h1
g1

2
-----=

h2
g2

4
-----=

h3
g3

6
-----=

h4
g4

8
-----=
284



Theoretical Details

robust.fm  Page 285  Wednesday, June 2, 1999  4:04 PM
The Efficient 
Bias Robust 
Estimate

Yohai and Zamar (1998) showed that the ρ and ψ functions given
above are optimal in the following highly desirable sense: the final
M-estimate has a breakdown point of one-half, and minimizes the
maximum bias under contamination distributions (locally for small
fractions of contamination), subject to achieving a desired efficiency
when the data is Gaussian.

Efficiency 
Control

The Gaussian efficiency of the final M-estimate is controlled by the
choice of the tuning constant c. As discussed in the earlier sections,
you can specify a desired Gaussian efficiency and S-PLUS will
automatically use the correct c for achieving that efficiency.

Robust 
R-Squared

The robust R2 is calculated as follows:

• Initial S-estimator 

If an intercept term is included in the model, then

where  and sy is the minimized , for a regression
model with only an intercept term with parameter µ. If there

is no intercept term, replace  in the above formula

with .

• Final M-estimator 

If an intercept term µ is included in the model, then

β̂
0

R
2 n 1–( )sy

2
n p–( )se

2–

n 1–( )sy
2

--------------------------------------------------=

se ŝ0= ŝ µ( )

n 1–( )sy
2

nŝ 0( )2

β̂
1

R
2

ρ
yi µ̂–

ŝ
0

-------------
 
 
 

ρ
yi xi

Tβ̂–

ŝ
0

-------------------
 
 
 

∑–∑

ρ
yi µ̂–

ŝ
0

-------------
 
 
 

∑
-----------------------------------------------------------------------=
285



Chapter 9  Robust Regression
where  is the location M-estimate corresponding to the local
minimum of

such that

where  is the sample median estimate. If there is no

intercept, replace  with zero in the formula.

Robust 
Deviance

For an M-estimate, the deviance is defined as the optimal value of the

objective function on the σ2-scale; that is:

• Initial S-estimator 

• Final M-estimator 

Robust F Test See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986),
where this test is referred to as the “tau” test.

Robust Wald 
Test

See Chapter 7 of Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

Robust FPE 
(RFPE)

Ronchetti (1985) proposed to generalize the Akaike Information
Criterion (AIC) to robust model selection. However, the results
therein are subject to certain restrictions, such as they only apply to
M-estimates with zero breakdown point and the density of the errors

µ̂

Qy µ( ) ρ
yi µ–

ŝ
0

-------------
 
 
 

∑=

Qy µ̂( ) Qy µ*( )≤

µ*

µ̂

β̂
0

D ŝ
2 β̂

0
( ) ŝ

0( )
2

= =

β̂
1

D 2 ŝ
0( )

2
ρ

yi xi
Tβ̂

1
–

ŝ
0

---------------------
 

 

∑⋅ ⋅=
286



Theoretical Details
has to be in a certain form. Yohai (1997) proposed the following
RFPE criterion which is not subject to the restrictions that apply to
Ronchetti's robust version of AIC.

where

.

Since the first term in equation Equation (9.4) can be approximated
by

where , Equation (9.4) can be estimated by

with

The approximation on the right-hand side of Equation (9.5) is used as
our RFPE.

(9.4)

(9.5)

RFPE nEρ ε
σ
--- 

  p
A

2B
-------+=

A Eψ2 ε
σ
--- 

 = B Eψ′ ε
σ
--- 

 =

nEρ ε
σ
--- 

  ρ
r i

σ
--- 

  p
A

2B
-------+

i 1=

n

∑≈

r i yi xi
Tβ̂

1
–=

RFPE ρ
yi xi

Tβ̂
1

–

ŝ
0

---------------------
 
 
 

i 1=

n

∑ p
Â

B̂
---+≈

Â
1
n
--- ψ2

r i

ŝ
0

----
 
 
 

i 1=

n

∑= B̂
1
n
--- ψ′

r i

ŝ
0

----
 
 
 

i 1=

n

∑=
287



Chapter 9  Robust Regression
OTHER ROBUST REGRESSION TECHNIQUES

Least Trimmed 
Squares 
Regression

Least trimmed squares regression (LTS) regression, introduced by
Rousseeuw, 1984, is a highly robust method for fitting a linear

regression model. The LTS estimate  minimizes the sum of the q
smallest squared residuals

where riβ is the ith ordered residual. The value of q is often set to be
slightly larger than half of n.

By contrast, the ordinary least squares estimate  minimizes the
sum of all of the squared residuals.

The least squares estimator lacks robustness because a single

“observation” (yi,xiT ) can cause  to take on any value. The same
is true of M-estimators of regression, which are discussed in the
section M-Estimates of Regression.

To compute the least trimmed squares regression, use the ltsreg
function. For example, for the stack loss data, we can compute the
LTS estimate as follows:

> stack.df <- data.frame(stack.loss, stack.x)
> stack.lts <- ltsreg(stack.loss ~ ., stack.df)

(9.6)

(9.7)

β̂LTS

r i
2β

i 1=

q

∑

β̂LS

r i
2β

i 1=

n

∑

β̂̂LS
288



Other Robust Regression Techniques
> stack.lts

Method:
Least Trimmed Squares Robust Regression.

Call:
ltsreg.formula(stack.loss ~ ., stack.df)

Coefficients:
 Intercept Air.Flow Water.Temp Acid.Conc.
 -36.2921    0.7362   0.3691     0.0081

Scale estimate of residuals:  1.038

Total number of observations:  21

Number of observations that determine the LTS estimate:  13

Comparing the coefficients to those for the least-squares fit, we
observe that the LTS values are noticeably different:

> stack.lm <- lm(stack.loss ~ ., stack.df)
> coef(stack.lm)

 (Intercept)  Air.Flow Water.Temp Acid.Conc.
   -39.91967 0.7156402   1.295286 -0.1521225

> coef(stack.lts)

 Intercept  Air Flow Water Temp  Acid Conc.
 -36.29212 0.7361645  0.3691111 0.008085206

A plot of the residuals versus the fitted values for the two fits is also
revealing:

> par(mfrow=c(1,2))
> plot(fitted(stack.lm), resid(stack.lm),
+ ylim=range(resid(stack.lts)))
> plot(fitted(stack.lts), resid(stack.lts))

The resulting plot is shown in Figure 9.5.
289



Chapter 9  Robust Regression
The plot on the left shows the residuals scattered with no apparent
pattern; the plot on the right shows four clear outliers—three at the top
and one at the bottom.

The LTS estimator has the highly attractive robustness property that
its breakdown point is approximately 1/2 (if q is the right fraction of n).
The breakdown point of a regression estimator is the largest fraction of
data which may be replaced by arbitrarily large values without

making the Euclidean norm  of the resulting estimate tend to ∞.
The Euclidean norm is defined as follows:

.

To illustrate the concept of breakdown point, consider the simple
problem of estimating location, where often the estimator is the

sample mean . The breakdown point of the mean

estimator is 0, since if any single , then . On the

other hand, the sample median has breakdown point approximately
1/2, since, taking the case of an odd sample size n for convenience,
one can move (n - 1)/2 of the observations yi to ±∞ without taking the
median to ±∞.

Figure 9.5:  Residual plots for least-squares (left) and least trimmed squares 
regression.

•

•

•
•

•
••
•

•

•
••

•
•

•
•

•
••

•

•

fitted(stack.lm)
re

si
d(

st
ac

k.
lm

)
10 20 30 40

-5
0

5

•

•

••

•••
•

••••
••

••••
•

•

•

fitted(stack.lts)

re
si

d(
st

ac
k.

lts
)

10 15 20 25 30

-5
0

5

β̂

β̂
2

β̂i
2

i 1=

p

∑=

y
1
n
--- yi

i 1=

n

∑=

yi ∞±→ y ∞±→
290



Other Robust Regression Techniques
Any estimator with breakdown point approximately 1/2 is called a
high breakdown point estimator. Thus, the LTS estimator is a high
breakdown point regression estimator.

The high breakdown point of the LTS estimator means that the values

, i = 1, ..., n , fit the bulk of the data well, even when the bulk

of the data may consist of only somewhat more than 50% of the data.

Correspondingly, the residuals  will reveal the

outliers quite clearly. Least squares residuals  and

M-estimate residuals  often fail to reveal problems

in the data. This can be illustrated as follows.

First construct an artificial data set with 60 percent of the data
scattered about the line yi = xi and the remaining 40 percent in an
outlying cluster centered at (6,2).

> set.seed(14) #set the seed to reproduce this example
> x30 <- runif(30, .5, 4.5)
> e30 <- rnorm(30, 0, .2); y30 <- 2+x30+e30
> x20 <- rnorm(20, 6, .5); y20 <- rnorm(20, 2, .5)
> x <- c(x30, x20)
> y <- c(y30, y20)

Plot the data, then fit and label 3 different regression lines: the
ordinary least squares line, an M-estimate line, and the least trimmed
squared residuals line.

> plot(x, y)
> abline(lm(y ~ x))
> text(5, 3.4, "LS")
> abline(rreg(x, y))
> text(4, 3.2, "M")
> abline(ltsreg(x, y))
> text(4, 6.5, "LTS")

The resulting plot is shown in Figure 9.6.

xi
Tβ̂LTS

r i β̂LTS yi xi
TβLTS–=

r i β̂LS yi xi
Tβ̂LS–=

r i β̂M yi xi
Tβ̂M–=
291



Chapter 9  Robust Regression
The outlying points pull both the ordinary least squares line and the
M-estimate away from the bulk of the data. Neither of these two
fitting methods is robust to outliers in the x direction. (Such outliers
are called leverage points in the literature.) The LTS line recovers the
linear structure in the bulk of the data and essentially ignores the
outlying cluster. In higher dimensions such outlying clusters are very
hard to identify using classical regression techniques.

Least Median 
Squares 
Regression

An idea quite similar to LTS regression is least median squares or
LMS regression. Rather than minimizing the sum of the squared
residuals as least squares regression does, least median of squares
(Rousseeuw, 1984) minimizes the median of the squared residuals.
The lmsreg function performs LMS regression.

Least median of squares regression has a very high breakdown point
of almost 50%. That is, almost half of the data can be corrupted in an
arbitrary fashion and the least median of squares estimates continue

Figure 9.6:  Least trimmed squares regression, compared to least-squares and 
M-estimates.

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
••

••
•

•
•

•

•

•

•

•

•

•

•

•

•
•

x

y

1 2 3 4 5 6 7

1
2

3
4

5
6

LS
M

LTS
292



Other Robust Regression Techniques
to follow the majority of the data. At the present time this property is
virtually unique among the robust regression methods that are
publicly available.

However, least median of squares is statistically very inefficient. It is
due to this inefficiency that we recommend lmRobMM and ltsreg
over lmsreg.

Least Absolute 
Deviation 
Regression

The idea of least absolute deviation regression, or L1 regression, is
actually older than that of least-squares, but until the development of
high-speed computers, it was too cumbersome to have wide
applicability. S-PLUS has the function l1fit (note that the second
character in the function name is the number “1”, not the letter “l”)
for computing least absolute deviation regression. As its name

implies, least absolute deviation regression finds the estimate 
that minimizes the sum of the absolute values of the residuals

.

As an example, consider again the stack loss data. We construct the
L1 regression using l1fit as follows:

> stack.l1 <- l1fit(stack.x, stack.loss)
> stack.l1

$coefficients:
 Intercept  Air Flow Water Temp  Acid Conc.
 -39.68984 0.8318844 0.5739114 -0.06086962

$residuals:
 [1]  5.06086922  0.00000000  5.42898512  7.63478470
 [5] -1.21739304 -1.79130435 -1.00000000  0.00000000
 [9] -1.46376634 -0.02029470  0.52752948  0.04057107
[13] -2.89855528 -1.80290544  1.18260598  0.00000000
[17] -0.42608732  0.00000000  0.48695821  1.61739087
[21] -9.48116493

β̂L1

r iβ
i 1=

n

∑

293



Chapter 9  Robust Regression
Plotting the residuals against fitted values and comparing the plot to
the corresponding plot for the least-squares fit shows the outliers
clearly, though not so clearly as for the ltsreg plot.

> plot(fitted(stack.lm), resid(stack.lm))
> plot(stack.loss - resid(stack.l1), resid(stack.l1))

The plot is shown in Figure 9.7.

M-Estimates of 
Regression

The M-estimator of regression was introduced by Huber in 1973. An

M-estimate  of regression is the β which minimizes

for a given ρ. Least squares corresponds to ρ(x) = x2 and least absolute
deviation regression corresponds to ρ(x) = |x|. Generally, although not

in the two cases mentioned above, the value of  is dependent on
the value of σ, which is usually unknown.

Although M-estimates are protected against wild values in the
response y, they are susceptible to high leverage points—that is, points
which have quite different x values relative to the other observations.
In particular, a typographical error in an explanatory variable can
have a dramatic affect on an M-estimate, while least trimmed squares

Figure 9.7:  Residual plots for least squares (left) and least absolute deviation 
regression.

•

•

•
•

•
••
•

•

•
••

•
•

•
•

•
••

•

•

fitted(stack.lm)

re
si

d(
st

ac
k.

lm
)

10 20 30 40

-6
-2

2
4

6

•

•

•
•

•••
•

•
•••

•
•

•
• •••

•

•

stack.loss - resid(stack.l1)

re
si

d(
st

ac
k.

l1
)

10 20 30

-1
0

-5
0

5

(9.8)

β̂M

ρ
r iβ
σ

------- 
 

i 1=

n

∑

β̂M
294



Other Robust Regression Techniques
regression handles this situation easily. One advantage of M-estimates
is that they can be computed in much less time than least trimmed
squares or other high-breakdown estimates.

M-estimates in S-PLUS are calculated using the rreg function to
perform an iteratively reweighted least-squares fit. What this means is that
S-PLUS calculates an initial fit (using traditional weighted least-
squares, by default), then calculates a new set of weights based on the
results of the initial fit. The new weights are then used in another
weighted least-squares fit, new weights are calculated, and so on,
iteratively, until either some convergence criteria are satisfied or a
specified maximum number of iterations is reached.

The only required arguments to rreg are x, the vector or matrix of
explanatory variables, and y, the vector response:

> stack.M1 <- rreg(stack.x, stack.loss)
> stack.M1

$coefficients:
 (Intercept)  Air Flow Water Temp Acid Conc.
   -42.07438 0.8978265   0.731816 -0.1142602

$residuals:
 [1]   2.65838630  -2.45587390   3.72541082   6.78619020
 [5]  -1.75017776  -2.48199378  -1.52824862  -0.52824862
 [9]  -1.89068795  -0.03142924   0.99691253   0.61446835
[13]  -2.80290885  -1.27786270   2.17952419   0.83674360
[17]  -0.49471517   0.30510621   0.68755039   1.52911203
[21] -10.01211661
$w:
 [1] 0.87721539 0.91831885 0.77235329 0.41742415 0.95387576
 [6] 0.90178786 0.95897484 0.99398847 0.93525890 0.99958817
[11] 0.97640677 0.98691782 0.89529949 0.98052477 0.92540436
[16] 0.98897286 0.99387986 0.99933718 0.99574820 0.96320721
[21] 0.07204303

You control the choice of ρ in rreg by specifying a weight function as
the method argument. There are eight weight functions built into
S-PLUS; there is not yet a consensus on which is “best.” See the rreg
help file for details on the weight functions. The default weight
function uses Huber’s weight function until convergence, then a
295



Chapter 9  Robust Regression
bisquare weight function for two more iterations. The following call to
rreg defines a simple weight function that corresponds to the least-

squares choice ρ = x2:

> stack.MLS <- rreg(stack.x,stack.loss,
+ method=function(u) 2*abs(u),iter=100)

Warning messages:
failed to converge in 100 steps in:
rreg(stack.x, stack.loss, method = function(u) ....

> stack.MLS$coef

 (Intercept)  Air Flow Water Temp Acid Conc.
   -39.70404 0.7165807   1.298218 -0.1561163

> coef(stack.lm)

 (Intercept)  Air.Flow Water.Temp Acid.Conc.
   -39.91967 0.7156402   1.295286 -0.1521225
296



Appendix
APPENDIX

The function gen.data used in the section Robust Model Selection is
as follows:

> gen.data <- function(coeff, n = 100, eps = 0.1,
+ sig = 3, snr = 1/20, seed = 837)
+ {
+ # coeff : 3 x 1 vector of coefficients
+ # eps   : the contamination ratio, between 0 and 0.5
+ # sig   : standard deviation of most observations
+ # snr   : signal-to-noise ratio, well, not really
+ # Note  : the regressors are generated as: rnorm(n,1),
+ #         rnorm(n,1)^3, exp(rnorm(n,1)). It also
+ #         generates an unused vector x4.
+ set.seed(seed)
+ x <- cbind(rnorm(n, 1), rnorm(n, 1)^3, exp(rnorm(n, 1)))
+ ru <- runif(n)
+ n1 <- sum(ru < eps)
+ u <- numeric(n)
+ u[ru < eps] <- rnorm(n1, sd = sig/snr)
+ u[ru > eps] <- rnorm(n - n1, sd = sig)
+ data.frame(y = x %*% matrix(coeff, ncol = 1) + u,
+ x1 = x[,1], x2 = x[,2], x3 = x[,3],
+ x4 = rnorm(n, 1))
+ }
297



Chapter 9  Robust Regression
BIBLIOGRAPHY

Hampel, F., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986):
Robust Statistics: the Approach Based on Influence Functions, John Wiley &
Sons.

Huber, P.J. (1981). Robust Statistics. John Wiley & Sons.

Marazzi, A. (1993): Algorithms, Routines, and S Functions for Robust
Statistics, Wadsworth & Brooks/Cole, Pacific Grove, CA.

Martin, R.D. and Zamar, R.H. (1989). Asymptotically Min-Max
Robust M-estimates of Scale for Positive Random Variables. J. Amer.
Statist. Assoc., 84, 494-501.

Martin, R.D. and Zamar, R.H. (1993). Bias Robust Estimates of Scale.
Annals of Statistics.

Ronchetti, E. (1985): Robust Model Selection in Regression, S-PLUS
Statistics & Probability Letters, 3, 21-23.

Rousseeuw, P.J. (1984). Least median of squares regression. Journal of
the American Statistical Association, 79, 871-881.

Rousseeuw, P.J. and Yohai, V. (1984): Robust Regression by Means of
S-estimators. In Robust and Nonlinear Time Series Analysis, J. Franke, W.
Hardle, and R. D. Martin (eds.), Lecture Notes in Statistics, 26, 256-
272, Springer-Verlag.

Yohai, V.J. (1987): High Breakdown-Point and High Efficiency
Estimates for Regression, Annals of Statistics, 15, 642-665.

Yohai, V.J. (1997): A New Robust Model Selection Criterion for
Linear Models: RFPE, unpublished note.

Yohai, V., Stahel, W.A. and Zamar, R.H. (1991): A Procedure for
Robust Estimation and Inference in Linear Regression, in Stahel,
W.A. and Weisberg, S.W., Eds., Directions in Robust Statistics and
Diagnostics, Part II, Springer-Verlag, New York.

Yohai, V.J. and Zamar (1998). “Optimal locally robust M-estimates of
regression”, Jour. of Statist. Inf. and Planning.
298



Introduction 300

Logistic Regression 301
Fitting a Linear Model 302
Fitting an Additive Model 307
Returning to the Linear Model 311

Poisson Regression 315

Generalized Linear Models 322

Generalized Additive Models 326

Quasi-Likelihood Estimation 328

Residuals 331

Prediction From the Model 333
Predicting the Additive Model of Kyphosis 333
Safe Prediction 335

References 337

GENERALIZING THE LINEAR 
MODEL 10
299



Chapter 10  Generalizing the Linear Model
INTRODUCTION

The use of least squares estimation of regression coefficients for linear
models dates back to the early nineteenth century. It met with
immediate success as a simple way of mathematically summarizing
relationships between observed variables of real phenomena. It
quickly became and remains one of the most widely used statistical
methods of practicing statisticians and scientific researchers.

Because of the simplicity, elegance, and widespread use of the linear
model, researchers and practicing statisticians have tried to adapt its
methodology to different data configurations. For example, there is
no reason conceptually why a categorical response or some
transformation of it could not be related to a set of predictor variables
in a similar way to the continuous response of the linear model.
Although conceptually plausible, developing regression models for
categorical responses lacked solid theoretical foundation until the
introduction of the generalized linear model by Nelder and
Wedderburn (1972).

This chapter focuses on generalized linear models and their
generalization, generalized additive models, as they apply to
categorical responses. In particular, we focus on logistic and Poisson
regressions and also include a brief discussion of the fitting of models
when you can’t specify an exact likelihood, using the quasi-likelihood
method.
300



Logistic Regression
LOGISTIC REGRESSION

To fit a logistic regression model, use either the glm function or the
gam function with a formula to specify the model and the family
argument set to binomial. In this case the response variable is
necessarily binary or two-valued. As an example, consider the built-in
data frame kyphosis. A summary of the data frame produces the
following:

> attach(kyphosis)
> summary(kyphosis)

  Kyphosis         Age            Number         Start
absent :64     Min. : 1.00     Min. : 2.000    Min. : 1.00
present:17   1st Qu.: 26.00  1st Qu.: 3.000  1st Qu.: 9.00
             Median : 87.00  Median : 4.000  Median :13.00
             Mean   : 83.65    Mean : 4.049    Mean :11.49
             3rd Qu.:130.00  3rd Qu.: 5.000  3rd Qu.:16.00
             Max.   :206.00    Max. :10.000    Max. :18.00

The four variables in kyphosis are defined as follows:

• Kyphosis

A binary variable indicating the presence/absence of a
postoperative spinal deformity called Kyphosis.

• Age

The age of the child in months.

• Number

The number of vertebrae involved in the spinal operation.

• Start

The beginning of the range of the vertebrae involved in the
operation.

A convenient way of examining the bivariate relationship between
each predictor and the binary response, Kyphosis, is with a set of
boxplots produced by plot.factor:

> par(mfrow=c(1,3), cex = .7)
> plot.factor(kyphosis)
301



Chapter 10  Generalizing the Linear Model
Setting the mfrow parameter to c(1,3) produces three plots in a row.
The character expansion is set to 0.7 times the normal size using the
cex parameter of the par function. Figure 10.1 displays the result.

Both Start and Number show strong location shifts with respect to
the presence or absence of Kyphosis. Age does not show such a shift
in location.

Fitting a 
Linear Model

The logistic model we start with relates the probability of developing
Kyphosis to the three predictor variables, Age, Number, and Start.
We fit the model using glm as follows:

> kyph.glm.all <- glm(Kyphosis ~ Age + Number + Start,
+ family = binomial, data = kyphosis)

The summary function produces a summary of the resulting fit:

> summary(kyph.glm.all)

Call: glm(formula = Kyphosis ~ Age + Number + Start,
family = binomial, data = kyphosis)
Deviance Residuals:
      Min         1Q     Median         3Q     Max
-2.312363 -0.5484308 -0.3631876 -0.1658653 2.16133

Coefficients:
                  Value Std. Error   t value
(Intercept) -2.03693225 1.44918287 -1.405573
Age          0.01093048 0.00644419  1.696175
Number       0.41060098 0.22478659  1.826626

Figure 10.1:  Boxplots of the predictors of kyphosis versus Kyphosis.

0
50

10
0

15
0

20
0

A
ge

absent present

Kyphosis

2
4

6
8

10

N
um

be
r

absent present

Kyphosis

5
10

15

S
ta

rt

absent present

Kyphosis
302



Logistic Regression
Start       -0.20651000 0.06768504 -3.051043

(Dispersion Parameter for Binomial family taken to be 1 )

    Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 61.37993 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 5

Correlation of Coefficients:
       (Intercept)        Age     Number
   Age -0.4633715
Number -0.8480574   0.2321004
 Start -0.3784028  -0.2849547  0.1107516

The summary includes:

1. a replica of the call that generated the fit,

2. a summary of the deviance residuals (more on these later),

3. a table of estimated regression coefficients, their standard
errors, and the partial t-test of their significance,

4. estimates of the null and residual deviances (more on these
later), and

5. a correlation matrix of the coefficient estimates.

The partial t-tests indicate that Start is important even after
adjusting for Age and Number, but they provide little information on
the other two variables.

You can produce an analysis of deviance for the sequential addition of
each variable by using the anova function, specifying the chi-square
test to test for differences between models:

> anova(kyph.glm.all, test = "Chi")

Analysis of Deviance Table

Binomial model

Response: Kyphosis
303



Chapter 10  Generalizing the Linear Model
Terms added sequentially (first to last)
       Df Deviance Resid. Df Resid. Dev   Pr(Chi)
  NULL                    80   83.23447
   Age  1  1.30198        79   81.93249 0.2538510
Number  1 10.30593        78   71.62656 0.0013260
Start   1 10.24663        77   61.37993 0.0013693

Here we see that Number is important after adjusting for Age. We
already know that Number loses its importance after adjusting for Age
and Start. Age does not appear to be important as a linear predictor.

You can examine the bivariate relationships between the probability
of Kyphosis and each of the predictors by fitting a “null” mode and
then adding each of the terms, one at a time:

> kyph.glm.null <- glm(Kyphosis ~ 1, family = binomial,
+ data = kyphosis)
> add1(kyph.glm.null, ~ . + Age + Number + Start)

Single term additions

Model: Kyphosis ~ 1
              Df Sum of Sq      RSS       Cp
<none>                     81.00000 83.02500
Age            1   1.29546 79.70454 83.75454
Number         1  10.55222 70.44778 74.49778
Start          1  16.10805 64.89195 68.94195

The Cp statistic is used to compare models that are not nested. A
small Cp corresponds to a better model in the sense of smaller
residual deviance penalized by the number of parameters that are
estimated in fitting the model.

Clearly Start is the best single variable to use in a linear model.
These statistical conclusions, however, should be verified by looking
at graphical displays of the fitted values and residuals.

The plot method for generalized linear models produces four plots:

1. a plot of deviance residuals versus the fitted values.

2. a plot of the square root of the absolute deviance residuals
versus the linear predictor values.

3. a plot of the response versus the fitted values.

4. a Normal quantile plot of the Pearson residuals.
304



Logistic Regression
This set of plots is similar to those produced by the plot method for
lm objects.

Systematic curvature in the residual plots could be indicative of
problems in the choice of link, wrong scale of one of the predictors, or
omission of a quadratic term in a predictor. Large residuals can be
also be detected with these plots. These may be indicative of the need
to remove the corresponding observations and re-fit the model. The
plot of the absolute residuals against predicted values gives a visual
check on the adequacy of the assumed variance function.

The Normal quantile plot is also generated for glm objects. This plot
could be useful in the detection of extreme observations deviating
from a general trend but one should exercise caution in not over-
interpreting its shape, which is not necessarily of interest in the
nonlinear context.

Figure 10.2 results from simply plotting the fit.

Figure 10.2:  Plots of the generalized linear model of Kyphosis predicted by Age, 
Start, and Number.

••

•

•

•••••

••

•

•

•••
•

•
• •

•

•

•

•

•

• ••• •• • •
•

•
••

•

•

•

•

•

•

•

•

•

• •

•

• •
•

•
•

•••

•

•
•

••

•

•••• •
••

••
•

•

•
•

•

••

•

•

Fitted : Age + Number + Start

D
ev

ia
nc

e 
R

es
id

ua
ls

0.0 0.2 0.4 0.6 0.8

-2
-1

0
1

2

•
•

••

•
• • • •

•
•

•

•

••

•

•

•

•
•

•

•

•

• •

•
•

•

•
•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

••
•

•
•

•

•
•
•

• •••

•

•
•

••

•

•

•

•

•

•
•

•

•

Predicted : Age + Number + Start

sq
rt

(a
bs

(r
es

id
(k

yp
h.

gl
m

.a
ll)

))

-4 -2 0 2

0.
4

0.
8

1.
2

••

•

••••••

••

• •••• • •• ••

••

•

•

• ••• •• • •• •••

•

•

• •

• •••

•

• •

•

• ••

•

• •••

•

••

••

••••• ••• ••• •• •

•

••

•

•

Fitted : Age + Number + Start

K
yp

ho
si

s

0.0 0.4 0.8

0.
0

0.
4

0.
8

• •

•

•
• ••••

•
•

•
•

•• ••• •• •
•

•

•

•

•• • •• ••• •
•

••

•

•

•

•
•

•

•
•

•

••

•

••
•
••• • •

•

•
•

• •

•
••• •• • •• • •

•
••

•

• •

•

•

Quantiles of Standard Normal

P
ea

rs
on

 R
es

id
ua

ls

-2 -1 0 1 2

-2
0

2

305



Chapter 10  Generalizing the Linear Model
Residual plots are not useful for binary data, such as Kyphosis,
because all of the points line on one of two curves depending on
whether the response is 0 or 1.

> par(mfrow=c(2,2))
> plot(kyph.glm.all, ask=F)

A more useful diagnostic plot is produced by plot.gam. By default,
plot.gam plots the estimated relationship between the individual
fitted terms and each of the corresponding predictors. You can request
that partial residuals be added to the plot by specifying the argument
resid=T. The scale argument can be used to keep all of the plots on
the same scale to ease comparison. Figure 10.3 is produced by
plot.gam:

> par(mfrow=c(1,3))
> plot.gam(kyph.glm.all, resid = T, scale = 6)

These plots give a quick assessment of how well the model fits the
data through examination of the fit of each term in the formula. The
plots are of the adjusted relationship for each predictor versus each
predictor. When the relationship is specified as linear the label on the
vertical axis reduces to the variable name. We will see the utility of
this plot method and the reason for the labels when we plot additive
models produced by gam.

Both plot.glm (the underlying plotting method for generalized
linear models) and plot.gam produce multiple plots; you can,
however, choose which plots you look at by using the argument

Figure 10.3:  Additional plots of the generalized linear model of Kyphosis 
predicted by Age, Number, and Start.

Age

A
ge

0 100 200

-2
0

1
2

3

•

•

•

•
••

••
•

•
•

•

•
•

•

•
•

•
•

••

•

•

•
•

••

•
•

•

•
••• ••

•

•

•

•

•

•
••

•

•

••

•

•

••

•

•

•
•

•

•

•

•

••

•

••

•

•
•

••

•••
•

•

•

•

•

•
•

•

Number

N
um

be
r

2 4 6 8 10

-2
0

1
2

3

••

•

•
•

••
•

•

••

• •
•

••

•
•
•

•
•

••

•

•

•

••••
•

•

•
• •••

•

•

•

•

•
•

•
•

•

• •

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•
• ••

•
••

•
•••

•
• •

•

•

•

•

•

Start

S
ta

rt
0 5 10

-2
0

1
2

3

•

•

•

•

•••••

• •

•

•

•

•
••• •

•

•

• •

•

•

•

•

• •••
•

• •
•

•

•

•

•

•

•

••

•

•

•

••

•

•
•

•

•

•••
•

•

• •

•

•

•

••

•

•
•

•

••
•

•
• •

•

•

••

•

•

306



Logistic Regression
ask=T (the default). This produces a menu of available plots; you
then select the number of the desired plot. For example, here is the
menu of default GLM plots for the function kyph.glm.all:

> plot(kyph.glm.all, ask=T)

Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Predictions
4: plot: Response vs Fitted Values
5: plot: Normal QQplot of Std. Residuals
Selection:

Fitting an 
Additive Model

So far we have examined only linear relationships between the
predictors and the probability of developing Kyphosis. We can assess
the validity of the linear assumption by fitting an additive model with
relationships estimated by smoothing operations (cubic splines or
local regression) and comparing it to the linear fit. We use the gam
function to fit additive models.

> kyph.gam.all <-
+ gam(Kyphosis ~ s(Age) + s(Number) + s(Start),
+ family = binomial, data = kyphosis)

Including each variable as an argument to the s function instructs gam
to estimate the “smoothed” relationships with each predictor by using
cubic B-splines. Alternatively we could have used the lo function for
local regression smoothing (loess). A summary of the fit is:

> summary(kyph.gam.all)

Call: gam(formula = Kyphosis ~ s(Age) +s(Number)+ s(Start),
family = binomial, data = kyphosis)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.351358 -0.4439636 -0.1666238 -0.01061843 2.10851

(Dispersion Parameter for Binomial family taken to be 1 )

    Null Deviance: 83.23447 on 80 degrees of freedom
307



Chapter 10  Generalizing the Linear Model
Residual Deviance: 40.75732 on 68.1913 degrees of freedom

Number of Local Scoring Iterations: 7

DF for Terms and Chi-squares for Nonparametric Effects

            Df Npar Df Npar Chisq    P(Chi)
(Intercept)  1
     s(Age)  1     2.9   5.782245 0.1161106
  s(Number)  1     3.0   5.649706 0.1289318
   s(Start)  1     2.9   5.802950 0.1139286

The summary of a gam fit is similar to the summary of a glm fit. One
noticeable difference is the analysis of deviance table. For the additive
fit the tests correspond to approximate partial tests for the importance
of the smooth for each term in the model. These tests are typically
used for screening variables for inclusion in the model. The
approximate nature of these tests is discussed in detail in Hastie and
Tibshirani (1990). For a single variable in the model, this is equivalent
to testing for a difference between a linear fit and a smooth fit which
includes a linear term along with the smooth term.

Now let’s fit two additional models, adding a smooth of each of Age
and Number to the base model which has a smooth of Start.

> kyph.gam.start.age <-
+ gam(Kyphosis ~ s(Start) + s(Age),
+ family = binomial, data = kyphosis)
> kyph.gam.start.number <-
+ gam(Kyphosis ~ s(Start) + s(Number),
+ family = binomial, data = kyphosis)

We produce the following analysis of deviance tables:

> anova(kyph.gam.start, kyph.gam.start.age, test="Chi")

Analysis of Deviance Table

Response: Kyphosis

              Terms Resid. Df Resid. Dev
1          s(Start)  76.24543   59.11262
2 s(Start) + s(Age)  72.09458   48.41713
308



Logistic Regression
     Test        Df  Deviance   Pr(Chi)
1
2 +s(Age)  4.150842  10.69548  0.0336071

> anova(kyph.gam.start, kyph.gam.start.number,
+ test="Chi")

Analysis of Deviance Table

Response: Kyphosis

               Terms Res.Df Res.Dev
1           s(Start) 76.245 59.1126
2 s(Start)+s(Number) 72.180 54.1790
        Test       Df Deviance   Pr(Chi)
1
2 +s(Number) 4.064954 4.933668 0.3023856

The indication is that Age is important in the model even with Start
included whereas Number isn’t important under the same conditions.

You can plot the fit with a smooth on Age and Start adding partial
residuals while maintaining all figures on the same scale as follows:

> par(mfrow = c(2,2))
> plot(kyph.gam.start.age, resid = T, scale = 8)

Or you can simply plot the fit adding pointwise confidence intervals
for the fit.

> plot(kyph.gam.start.age, se = T, scale = 10)

Figure 10.4 displays the resulting plots produced by plot.gam.
309



Chapter 10  Generalizing the Linear Model
Notice the vertical axes labels now. They reflect the smoothing
operation included in the modeling.

The summary of the additive fit with smooths of Age and Start
included appears as follows:

> summary(kyph.gam.start.age)

Figure 10.4:  The partial fits for the generalized additive logistic regression model of 
Kyphosis with Age and Start as predictors.

Start

s(
S

ta
rt

)

5 10 15

-6
-4

-2
0

2

•

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•••

•
•

•

•

•

•

•

•
•

•

•
••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•

••

•

•
•

•

•

Age

s(
A

ge
)

0 50 100 150 200

-4
-2

0
2

4

•
•

•

•••

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•
••

•

•

•

•

•

•

•
•

• ••

•
•

•
•

•

•
•

•

•

•

•
•

•

•

•

•

••

•

•

•
•

•

••

••

•

•
•

•

•

•

•
•

•

Start

s(
S

ta
rt

)

5 10 15

-1
0

-5
0

Age

s(
A

ge
)

0 50 100 150 200

-6
-4

-2
0

2

310



Logistic Regression
Call: gam(formula = Kyphosis ~ s(Start) + s(Age),
family = binomial, data = kyphosis)
Deviance Residuals:
       Min         1Q     Median          3Q      Max
 -1.694389 -0.4212112 -0.1930565 -0.02753535 2.087434

(Dispersion Parameter for Binomial family taken to be 1 )

    Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 48.41713 on 72.09458 degrees of freedom

Number of Local Scoring Iterations: 6

DF for Terms and Chi-squares for Nonparametric Effects
            Df Npar Df Npar Chisq    P(Chi)
(Intercept)  1
   s(Start)  1     2.9   7.729677 0.0497712
     s(Age)  1     3.0   6.100143 0.1039656

Returning to 
the Linear 
Model

The plots of the fits of the additive model displayed in Figure 10.4
suggest a quadratic relationship for Age and a piecewise linear
relationship for Start. It is useful to fit these suggested relationships
as a linear model if the model is further simplified without losing too
much precision in predicting the response.

For Age we fit a second degree polynomial. For Start, recall that its
values indicate the beginning of the range of the vertebrae involved
in the operation. Values less than or equal to 12 correspond to the
thoracic region of the spine and values greater than 12 correspond to
the lumbar region. Since the relationship for Start is fairly flat for
values of Start approximately less than or equal to 12, and then
drops off linearly for values greater than 12, we will try fitting a linear
model with the term I((Start - 12) * (Start > 12)). The I
function is used here to prevent the "*" from being used for factor
expansion in the formula sense.

Figure 10.5 displays the resulting fit along with the partial residuals as
well as the fit along with two standard errors bands.
311



Chapter 10  Generalizing the Linear Model
The summary of the fit follows:

> summary(kyph.glm.istart.age2)

Call: glm(formula = Kyphosis ~ poly(Age, 2) +
   I((Start - 12) * (Start > 12)), family = binomial,
   data = kyphosis)

Figure 10.5:  The partial fits for the generalized linear logistic regression model of 
Kyphosis with quadratic fit for Age and piecewise linear fit for Start.

Age

po
ly

(A
ge

, 2
)

0 50 100 150 200

-4
-2

0
2

4

• •

•

•••

•
•

•
•

•

•

•
•

•

•

•

•

•

••

••

•

•

••

•

•

•
• •

•

•

•

•

•

•

•

••

• ••

•
•

•
•

•

•
•

•

•

•

••

•

•

•

•

••

•

•

• •

•

••

••

•

•

•
•

•

•

•

•

•

Start

I(
(S

ta
rt

 -
 1

2)
 *

 (
S

ta
rt

 >
 1

2)
)

0 5 10 15

-6
-4

-2
0

2
4

•

•

•

•

•

•

•

••

•

•

•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

•••

•
•

•

•

•

•

•

•

••

•
••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•

Age

po
ly

(A
ge

, 2
)

0 50 100 150 200

-8
-6

-4
-2

0
2

4

Start

I(
(S

ta
rt

 -
 1

2)
 *

 (
S

ta
rt

 >
 1

2)
)

5 10 15

-8
-6

-4
-2

0
2

4

312



Logistic Regression
Deviance Residuals:
     Min         1Q     Median          3Q      Max
-1.42301 -0.5014355 -0.1328078 -0.01416602 2.116452
Coefficients:
                               Value Std. Error   t value
             (Intercept)  -0.6849607  0.4570976 -1.498500
           poly(Age, 2)1   5.7719269  4.1315471  1.397038
           poly(Age, 2)2 -10.3247767  4.9540479 -2.084109
I((Start-12)*(Start>12))  -1.3510122  0.5072018 -2.663658

(Dispersion Parameter for Binomial family taken to be 1 )

    Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 51.95327 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 6

Correlation of Coefficients:
                        (Intercept) poly(Age,2)1 poly(Age,2)2
           poly(Age, 2)1 -0.1133772
           poly(Age, 2)2  0.5625194  0.0130579
I((Start-12)*(Start>12)) -0.3261937 -0.1507199 -0.0325155

Contrasting the summary of this linear fit (kyph.glm.istart.age2)
with the additive fit with smooths of Age and Start
(kyph.gam.start.age) we can see the following important details:

1. The linear fit is more parsimonious; the effective number of
parameters being estimated is approximately 5 less than for
the additive model with smooths.

2. The residual deviance has increased by only about 3.5 even
with a decrease in the effective number of parameters in
fitting the linear model by about five. We use the anova
function to verify that there is no difference between these
models.

> anova(kyph.glm.istart.age2, kyph.gam.start.age,
+ test="Chi")
313



Chapter 10  Generalizing the Linear Model
Analysis of Deviance Table

Response: Kyphosis

                                 Terms  Res. Df Res. Dev
1 poly(Age,2)+I((Start-12)*(Start>12)) 77.00000 51.95327
2                    s(Start) + s(Age) 72.09458 48.41713

     Test       Df Deviance   Pr(Chi)
1
2 1 vs. 2 4.905415 3.536134 0.6050618

3. Having fit a linear model, we can produce an analytical
expression for the model, which we can’t do for an additive
model with smooth fits. This is because for a linear model,
coefficients are estimated for a parametric relationship whereas
for an additive model with smooth fits, the smooths are
nonparametric estimates of the relationship. In general, these
nonparametric estimates have no analytical form and are
based on an iterative computer algorithm. This is an
important distinction between linear models and additive
models with smooth terms.
314



Poisson Regression
POISSON REGRESSION

To fit a Poisson regression model use either the glm function or the
gam function with a formula to specify the model and the family
argument set to poisson. In this case the response variable is discrete
taking on non-negative integer values. Count data is frequently
modeled as a Poisson distribution. As an example, consider the built-
in data frame solder.balance. A summary of the data frame
produces the following:

> attach(solder.balance)
> summary(solder.balance)

Opening   Solder    Mask   PadType  Panel        skips
S:240  Thin :360 A1.5:180  L9 : 72  1:240  Min.   : 0.000
M:240  Thick:360 A3  :180  W9 : 72  2:240  1st Qu.: 0.000
L:240            B3  :180  L8 : 72  3:240  Median : 2.000
                 B6  :180  L7 : 72           Mean : 4.965
                           D7 : 72         3rd Qu.: 6.000
                           L6 : 72           Max. :48.000
                       (Other):288

The solder experiment, contained in solder.balance, was designed
and implemented in one of AT&T’s factories to investigate
alternatives in the “wave-soldering” procedure for mounting
electronic components on circuit boards. Five different factors were
considered as having an effect on the number of solder skips. A brief
description of each of the factors follows. For more details, see the
paper by Comizzoli, Landwehr, and Sinclair (1990).

• Opening: amount of clearance around the mounting pad

• Solder: amount of solder

• Mask: type and thickness of the material used for the solder
mask

• PadType: the geometry and size of the mounting pad

• Panel: each board was divided into three panels, with three
runs on a board

• skips: number of visible solder skips on a circuit board.
315



Chapter 10  Generalizing the Linear Model
Two useful preliminary plots of the data are a histogram of skips, the
response, and plots of the mean response for each level of the
predictor. Figure 10.6 and Figure 10.7 display the resulting plots.

> par(mfrow=c(1,1))
> hist(skips)
> plot(solder.balance)

The histogram of skips in Figure 10.6 shows the skewness and long-
tailedness typical of count data. We will model this using a Poisson
distribution.

Figure 10.6:  A histogram of skips for solder data.

0 10 20 30 40 50

0
10

0
20

0

skips
316



Poisson Regression
The plot of the mean skips for different levels of the factors displayed
in Figure 10.7 shows a very strong effect due to Opening. For levels M
and L, only about two skips were seen on average, whereas for level
S, more then 10 skips were seen. Effects almost as strong were seen
for different levels of Mask.

If we do boxplots of skips for each level of the two factors, Opening
and Mask, we get an idea of the distribution of the data across levels
of the factors. Figure 10.8 displays the results of doing “factor” plots
on these two factors.

> par(mfrow=c(1,2))
> plot.factor(skips ~ Opening + Mask)

On examining Figure 10.8, it is clear that the variance of skips
increases as its mean increases. This is typical of Poisson distributed
data.

Figure 10.7:  A plot of the mean response for each level of each factor.

Factors

m
ea

n 
of

 s
ki

ps

2
4

6
8

10

S

M
L

Thin

Thick

A1.5

A3

B3

B6

W4
D4

L4

D6

L6

D7

L7

L8

W9

L9
1

2
3

Opening Solder Mask PadType Panel
317



Chapter 10  Generalizing the Linear Model
We proceed now to model skips, using glm, as a function of the
controlled factors in the experiment declaring family = poisson.
We start with a simple-effects model for skips as follows:

> paov <- glm(skips ~ . , family = poisson,
+ data = solder.balance)
> anova(paov, test = "Chi")

Analysis of Deviance Table

Poisson model

Response: skips

Terms added sequentially (first to last)
        Df Deviance Resid. Df Resid. Dev      Pr(Chi)
   NULL                   719   6855.690
Opening  2 2524.562       717   4331.128 0.000000e+00
 Solder  1  936.955       716   3394.173 0.000000e+00
   Mask  3 1653.093       713   1741.080 0.000000e+00
PadType  9  542.463       704   1198.617 0.000000e+00
  Panel  2   68.137       702   1130.480 1.554312e-15

Figure 10.8:  Boxplots for each level of the two factors Opening and Mask.

0
10

20
30

40

sk
ip

s

S M L

Opening

0
10

20
30

40

sk
ip

s

A1.5 A3 B3 B6

Mask
318



Poisson Regression
The chi-squared test is requested in this case because glm assumes
φ = 1 (no under- or over-dispersion). We use the quasi-likelihood
family, quasi, when we want to estimate the scale parameter as part
of the model fitting computations for binomial or Poisson families. We
could also set the argument disp in the summary function to 0 to
obtain this estimate while summarizing the fitted model.

According to the analysis of deviance, it appears that all of the factors
considered have a very significant influence on the number of solder
skips. The solder experiment contained in solder.balance is
balanced, so we need not be concerned with the sequential nature of
the analysis of deviance table above; the tests of a sequential analysis
are identical to the partial tests of a regression analysis when the
experiment is balanced.

Now let’s fit a second order model. We fit all the simple effects and all
the second order terms except those including Panel (we have
looked ahead and discovered that the interactions with Panel are
non-significant, marginal, or of less importance than the other
interactions). The analysis of deviance table follows:

> paov2 <- glm(skips ~ . +
+ (Opening + Solder + Mask + PadType) 2,
+ family = poisson, data = solder.balance)
> anova(paov2, test = "Chi")

Analysis of Deviance Table

Poisson model

Response: skips

Terms added sequentially (first to last)
               Df Deviance Res.Df Resid. Dev      Pr(Chi)
           NULL               719   6855.690
        Opening  2 2524.562   717   4331.128 0.0000000000
         Solder  1  936.955   716   3394.173 0.0000000000
           Mask  3 1653.093   713   1741.080 0.0000000000
        PadType  9  542.463   704   1198.617 0.0000000000
          Panel  2  68.137    702   1130.480 0.0000000000
 Opening:Solder  2  27.978    700   1102.502 0.0000008409
   Opening:Mask  6  70.984    694   1031.519 0.0000000000
Opening:PadType 18  47.419    676    984.100 0.0001836068
319



Chapter 10  Generalizing the Linear Model
    Solder:Mask  3  59.806    673    924.294 0.0000000000
 Solder:PadType  9  43.431    664    880.863 0.0000017967
   Mask:PadType 27  61.457    637    819.407 0.0001694012

All of the interactions estimated in paov2 are quite significant.

To verify the fit we do several different kinds of plots. The first four
result from doing the standard plot for a "glm" object.

> par(mfrow=c(2,2))
> plot(paov2)

The resulting plot is displayed in Figure 10.9.

The plot of the observations versus the fitted values shows no great
departures from the model. The plot of the absolute deviance
residuals shows striations due to the discrete nature of the data.
Otherwise the deviance residual plot doesn’t reveal anything to make
us uneasy about the fit.

The other set of plots useful for examining the fit is produced by
plot.gam. These are plots of the adjusted fit with partial residuals
overlaid for each predictor variable. Since all the variables are factors,
the resulting fit is a step function; a constant is fitted for each level of a
factor. Figure 10.10 displays the resulting plots.

Figure 10.9:  Plots of the second order model of skips.

•••••••
••••••••••••••••••••••

•

••

•
•

••••••

•

•

••

••••

•

•••••

•

•

•

••

•

•

•

••

•

•

••

••
•
•••

••

••

•

•••

•••••
•
••

•

•••

••••

•

••

•

•

•

•••

••

•
•

•••

•

•

•

•••••

•
•••

•

•

•

•

•

•
•
•

•

•

•

•

•

••••

•
•

•
••
• •

•

•

•

••

•

•
•

•

•

•

•
•

••
•

•
•

•
•

•

•
•

••

•

•

•

••••

•

•
•••••••••••

•

••••••••

•

•

••••

•
•

•
••••

•

••

•

••

•

•

•

•

•

•

•

•
••

•
••
•
•

•

•
•

•

•
••

•
••
•

•

•
•
•

•••

•
••

••
•••

•

•

••
•
•
•
•

•
••

•

•••

••

•

•

•

••••

•••
•
•

••
•
•

•

•

•

•
•

•

•

•

•

•
•

•

••

•

•••

•

•

••

••

•

•

•

•

•

•
•

••• •

••
•
••
••
• ••

•

•

•
•

•

•

•

•

•

•
••

••

•

•••
•

•

•

•

•

•••

•

••

•

•

•

•

•

••

•••••••

•

•

•

•••

•

••••

••
•
••
•

•

•

•

••

•

••

•
•
•
•

•

••

•
•
•

• •

•

•

••

•
•

••
•

•

•

•
•

•

••

•

•• ••
•

•
•
•

•

••

•

•
•

•

••

•

•
•

•

•

•
•
•

•

•

••
•

••

•••
•
•

•

•

•

•

•

•
•••

•

•

•
•••
••••
•

•

••••
••

•

•
•

•

•
••

• •••
•

•

•

•
•

•
••

•

•

•

• •

•

•

•
•

•
•

•

••

•
•

•

•

•••

••••••••••••

•

••

••

••

•

•
•

•••

•

•

•
•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•
••

•
•

•

••
•

•

•

•

•

•

• •••
•

•

•
•

••
••

•

•
• •

•

•

•

•

•

•

•

•
•
•

•
••

•

•
••

•
•

•
•

•
•

•

••

••

•• •
•

•

•

•
•

••

•

•

•

•

•• •

•

•

•
•

•

•

•

•
••
•

•

•
• •

••
•

•
•

•

•
•

• •

•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•

•

•

•

 Opening + Solder + Mask + PadType + Panel + 

D
ev

ia
nc

e 
R

es
id

ua
ls

0 10 20 30 40 50

-2
0

2

• ••• ••
• ••

• •• • ••• ••• ••• ••

• •• • •• • •• •

•

•
•

•

•

• •• • ••

•

•
•

•

••• •
•

• •• • •

•

•

•

•
•

•

•

•

•

•

•

•

••

••

•

•
••

••

•

•

•

• ••
•

••• •

•

•
•

•

•

••
•
•••

•

•
•

•

••

•••

•••

•

•
• •
•

•
•
•

• •••

•

•• •

•

•
•

•

•

••
•

••

•

•

•• ••
• •

•
•

•

•

• •

•

•

•••
•

•

• •

•

•

•

•
•
•

•
•

•
•

•

•

•

•
••

•

•

•

• ••
•
••

• •• • ••• ••• •

•

• ••

• ••
• ••

•

•

••
•• •

•

•
• ••

•
•
••

•

•
•
•

•

•

•

•

•

•

•

• •

•

•
••

• •

•

•

•

•
• •

•

•

••

•

•

•

•
•••
•

••

••

• ••

•

•

•
•

•
•

•

•

•

• ••

•
••

• •

•
•
•
• • ••

• ••
•

•

•
•

•

•

•

•

••
•
•

•

••

•

•

•

•
•

•
• ••

•

•

••
••

•

•

•
•

•
•

•

•••
•
•

•
•
•

•

••

• ••

•

•

•
•

•

•

•

•

•

•

•
•

• •

•
• ••

•

•

••
•

• • •

•
• •
•
•
••

•

••

• ••
• •• •

•
•
• ••

•

•
•• ••

•
•

•

•
•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

• • ••

•

•
•

•
•

•

•

•
•

•

•
•

•

•
••

•• • •

•

•
•

•

•

••
•
•

•

• ••

•

•

•

•

•
•

•
•

•
•

•
•

• ••

• ••
•

•

•

•

•

•
•

•

••

•
•

•

••
•
•
•

•

••

• •
•

• ••
• ••

•

•
•

• •
•

•
••

•

•

•

• •

••
•
•

•

•

•

• ••
• •

•
• •
•

• •

•

•

•

•

•
••

• •••
••• ••

• ••

•

••
• •
•

•

•

•

•

••• •

•

• •
•

•

•

••
•• •

•

•

•

•

•

•

•
••

•

••

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

•
••

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•
•

•
•

•

•

••

•

•
•

•

•
•

•

•• •
•

•
• ••

•
•

•

•

•
•

•

•

•

•
•
• •

••
•

•••

•
•

• •

•

•

•

• •

••
•

•

••

•

••

•

•

•
•

•

•

•

•

•

•
•

•

•
•

•

•

•

• ••

d : Opening + Solder + Mask + PadType + Panel

sq
rt(

ab
s(

re
si

d(
pa

ov
2)

))

-4 -2 0 2 4

0.
0

1.
0

•••••••••••••••••••••••••
•••••••••••••••••
•

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
• ••• •

•

• •
•

•
••••• •

••

•••• •

•

•
••
•••••••••••••••••••••

••••••••••••••••••••••••••• •••••••••••••••••
•••••••••••••
•
•••••••••••••••••••••••
••• •

•

••
••••••
•

•••••
•

•• ••
• •

•

••

•••
•

•

•
•••

•••
•••

•••
•
•

•••
•

••

•••••••
•••••••••••••••••••••••••••••••••••••••••••••••••• •

••
• •• •

•
•

•
••

• •
•• ••
•

••• ••
••• •••••••

•••
••••••

••••
•••••••••••••••

•
••
•
••
••••••••••••••
•••••••

•

•

•••
•

••

••

•

•
•

•
••

•
••• •

•

•
•

•

•••

• ••

••••••••••••••••••••••••••••••••
•
•
•
••

•••
•••
••••••
•
•

•••••••

•
•••

•
•

• ••

• •
•

•
•

•
•

••
•

•

•• •
•

•••
• ••

• •
•

•
•
•

•

•
•

••
••••
•

••
••••

••

•••
•••• •••

•
•

•

••

•
••••• •

•
••••

• •
•

••••
••

• ••
•

••
• ••

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

•

•

•

 Opening + Solder + Mask + PadType + Panel + 

sk
ip

s

0 10 20 30 40 50

0
10

30
50

••••••••• •••••••••••••• ••••••••••

•

••

•
•

••••••

•

•

•
•

••••

•

•••••

•

•
•

••
•

•
•

••
•

•
••

•• ••••
••

••

•

•••
•••••

•••
•

•••

••••

•
••

•

•

•
•••

••

•

•

•••

•

•

•

•••••
•

•••

•

•

•
•

•
•

•
•

•

•
•

•

•
••••

•
•

• ••
••

•

•
•

••

•
•

•

•
•

•
• •

••
•

•
•

••

•

• •

••

•

•

•

••••

•

• •••••••••••

•

••• ••••••

•

•

••••

•
•

•
••••

•
••

•
• •

•

•

•
•

•

•

•

•••

•
••

•
•

•
••

•
•

••

•
••

•

•

••
•

•••
•

• •

•••••

•

•

•• •
•

•
•

•••

•

•••
••

•
•

•

••••
••• •

•

•• •
•

•

•
•

••

•
•

•

•

•
•

•
••

•

•••
•

•

••

••
•

•
•

•

•

•
•

••••
••

•
• • ••
•••

•

•
•

•

•
•

•
•

•
•

••
••

•
•••

•

•

•
•

•

•
•

•

•
••

•

•

•

•

•

••

•••••••
•

•

•

•••

•
• •••

••
•

••
•

•
•

•
••

•
••

•
•

•
•

•
••

•
• •

••

•

•
• •

••

••
•

•

•

••

•
• •

•
••• •

•

• • ••

••
•

•
•

•

•••

••

•
•

•
••

•

•
•••

••

••• • •

•

•
•

•

•
•

•••
•

•
•

•• •
••••

•

•

••••••

•

•
•

•
•

••
••••

•
•

•

•
• •••

•

•
•

••

•

•

•
• •

•
•

••

••
•

•
•••

••••••••• •••
•

••

••

••
•

•
•

•••
•

•

•
•

••
•

•

•

••

•
•

•

•
•

•

•

•

• •

•

••
•

•

•

•
• •

•
•

•

••
•

•

•

•
•

•
•• ••

•

•
•

•
••

••

•

• ••

•

•

•

•

•

•

•
•••

•
••

•
• ••

••
••

••
•

••

••

•••
•

•

•

•
•

••
•

•
•

•
• ••

•

•

•
•

•
•

•

•
••

•

•

•
••

••
•

•
•

•

•
•

••

•
•

•
•

•
•

•
•

•
•

•

•• •
•

•

•

•

•

Quantiles of Standard Normal

Pe
ar

so
n 

R
es

id
ua

ls

-3 -2 -1 0 1 2 3

-2
0

2
4

6
8

320



Poisson Regression
> par(mfrow=c(2,3))
> plot.gam(paov2, resid = T)

The plot.gam function adds a bit of random noise to the coded
factor levels to spread the plotted points out so that it is easier to see
their vertical locations.

These plots also indicate that the data is modeled reasonably well.
Please note, however, that the default plots will show only glaring lack
of fit.

Figure 10.10:  Partial residual plots of the second order model of skips.

O
pe

ni
ng

-2
0

2
4

Opening

S M L

•••••••••
•• •••••••••• •• •••••••

••••

•

••

•

•

••••••

•

•

••

••••

•

•••••

•
•

•

••

•

•

•

••

•

•

••

••
•
•••

••

•
•

•

•••

•••

•
•

•
••

•

•
••

••••

•

••

•

•

•

•••

••

•

•

•
••

•

•

•

•
••••

•
•••

•

•

•

•

•

•
•

•

•

•

•

•

•

••••

•

•

•
••

••

•

•

•

••

•

•
•

•

•

•

•
•
••

•

•
•

•
•

•

•
•

••

•

•

•

••••

•

•
••• •••• ••••

•

•••
••••••

•

•

••••

•
•

•
•• ••

•

• •

•

••

•

•

•

•

•

•

•

•
• •

•

•
•

•

•

•

•

•

•

•
••

•

•
•

•

•

•
•
•

•••

•
••

••
•• • •

•

••
•
•

•

•

•
••

•

•
••

••

•

•

•

••••

•••
•
•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•

• ••

•

•

••

••

•

•

••

•

•

•

• •••

••
•

••
••
•••

•

•

•
•

•

•

•

•

•

•

•
•

••

•

•••

•

•

•

•

•

•
•
•

•

••

•

•

•

•

•

••

•••• ••
•

•

•

•

••
•

•

••••

••

•
•
•
•

•

•

•

•
•

•

• •

•
•
•

•
•

••

•

•
•

••

•

•

••

•
•

••

•

•

•

•
•

•

••

•

•••
•
•

•
•

•

•

••

•

•

•
•

••

•

•
•

•

•

•

•
•

•

•

•
•
•

••

•••

•

•

•

•

•

•

•

•
••

•

•

•

•
•
••
••• •

•

•

••• •
••

••

•
•

•
•

•
••••

•
•

•

•

•
•
••

•

•

•

••

•

•

•
•
•
•

•
••

•
•

•

•

•
••

•••••• •••
•••

•

• •

••

••

•

••

•••

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•

••

•
•

•

••

•

•

•

•

•

•

••
••
•

•

•

•
••

••

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•
••

•

•
••

•
•

•
•

•
•

•

••

•
•

•
••

•

•

•

•

•

••

•

•

•

•

•••

•

•

•
•

•

•

•

•

••
•

•

•
•

•

••
•

•
•

•

•
•

•
•

•

•

•
•
•

•
•

•

•

•

•

•
•

•
•

•

•

•

• S
ol

de
r

-2
0

2
4

Solder

Thin Thic
k

• •••• ••••
••••••••••••••• ••••• •••• •

•

••

•

•

• •• •• •

•

•

••

••• •

•

•••• •

•

•

•

• •

•

•

•

••

•

•

••

••
•
•• •

••

•
•

•

•••

•••

••

•
••

•

•
••

• •••

•

••

•

•

•

•••

••

•

•

•
••

•

•

•

•
• •••

•
•••

•

•

•

•

•

•
•

•

•

•

•

•

•

••••

•
•

•
••

• •

•

•

•

••

•

•
•

•

•

•

•
•

••

•

•
•

•
•

•

•
•

••

•

•

•

• •••

•

•
••• •••• ••••

•

•••
• •••••

•

•

••••

•
•

•
• •••

•

••

•

••

•

•

•

•

•

•

•

•
••

•

•
•
•

•

•

•
•

•

•
••

•
•
•

•

•

•
•

•

•••

•
• •

••
• ••

•

•

••
•

•

•

•

•
••

•

• ••

••

•

•

•

••••

•••
•
•

•
•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

• ••

•

•

••

••

•

•

•

•

•

•

•

••••

••
•
••

• •
•• •

•

•

•
•

•

•

•

•

•

•

••

••

•

•••

•

•

•

•

•

• •
•

•

••

•

•

•

•

•

••

•••••••

•

•

•

• •
•

•

•• ••

••

•
•
•
•

•

•

•

•
•

•

••

•
•
•

•

•

••

•

•
•

••

•

•

••

•
•

••

•

•

•

•
•

•

• •

•

•••
•

•

•
•
•

•

••

•

•

•
•

••

•

•
•

•

•

•

•
•

•

•

•
•
•

••

•••
•

•

•

•

•

•

•

•
••
•

•

•

•
•
••

•• ••

•

•

•• ••
••

•

•

•
•

•
••

••••
•
•

•

•

•
•

• •

•

•

•

••

•

•

•
•

•
•
• ••

•
•

•

•

•
••

•• •••••••
• ••

•

••

••

••

•

•

•

•••

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

• •

•

••

•

•

•

•

••

•
•

•

• •

•

•

•

•

•

•

••
••

•

•

•

•
••

••

•

•
•

•

•

•

•

•

•

•

•

•
•
•

•
• •

•

•
••

•
•

•
•

•
•

•

••

••

•• •

•

•

•

•
•

••

•

•

•

•

• ••

•

•

•
•

•

•

•

•

••
•

•

•
• •

••
•

•
•

•

•
•

•
•

•

•

•
•

•

•
•
•

•

•
•

•
•

•
•

•

•

•

•

M
as

k

-2
0

2
4

Mask

A1.
5

A3 B3 B6

••• ••••••
•• ••••••••••• ••••••••••••

•

••

•

•

••••••

•

•

••

••••

•

•••••

•

•

•

••

•

•

•

••

•

•

••

••
•

•••

••

•
•

•

•••

•••••

•
••

•

•
••

••••

•

••

•

•

•

•••

••

•

•

•
••

•

•

•

•
••••

•
•••

•

•

•

•

•

•
•

•

•

•

•

•

•

••••

•

•
•
••

••

•

•

•

••

•

•
•

•

•

•

•
•
••

•

•
•

•
•

•

•
•

••

•

•

•

••••

•

•
•••••••••••

•

•••
••••••

•

•

••••

•
•

•
•• ••

•

••

•

••

•

•

•

•

•

•

•

•
••

•

•
•
•

•

•

•

•

•

•
••

•

•
•

•

•

•
•
•

•••

•
••

••
•••

•

•

••
•

•

•

•

•
••

•

•
••

••

•

•

•

••••

•••
•
•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•••

•

•

••

••

•

•

•

•

•

•

•

••••

••
•
••

••
•••

•

•

•
•

•

•

•

•

•

•

•
•

••

•

•••

•

•

•

•

•

•
•
•

•

••

•

•

•

•

•

••

•••••••

•

•

•

••
•

•

••••

•
•

•
•
•

•

•

•

•

•
•

•

••

•
•
•

•

•

••

•

•
•

••

•

•

••

•
•

••

•

•

•

•
•

•

••

•

•••
•

•

•
•

•

•

••

•

•

•
•

••

•

•
•

•

•

•

•
•

•

•

•
•
•

••

•••
•

•

•

•

•

•

•

•
••
•

•

•

•
•
••
••••

•

•

••••
••

•

•

•
•

•
•

•
••••
•
•

•

•

•
•

••

•

•

•

••

•

•

•
•
•
•

•

••

•
•

•

•

•
••

•••••••••
•••

•

••

••

••

•

•

•

•••

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•

••

•
•

•

••

•

•

•

•

•

•

••
••
•

•

•

•
••

••

•

•
••

•

•

•

•

•

•

•

•
•
•

•
••

•

•
••

•
•

•
•

•
•

•

••

•
•

•••

•

•

•

•

•

••

•

•

•

•

•••

•

•

•
•

•

•

•

•

••
•

•

•
••

••
•

•
•

•

•
•

•
•

•

•

•
•

•

•
•
•

•

•

•

•
•

•
•

•

•

•

•

P
ad

T
yp

e

-4
-2

0
2

4

PadType

W
4

L4 L6 L7 W
9

••• •••
•••

••• •••
••• •••

•••

•••

•••••• •

•

•
•

•

•

••• •••

•

•

• •

••
••

•

•••

••

•

•

•

• •

•

•

•

••

•

•

•
•

••

•
••

•

••

•
•

•

•••

•••
•
•

•
••

•

•
•• ••• •

•

• •

•

•

•

•• •

••

•

•

•

••

•

•

•

• •••
•

•
•

••

•

•

•

•

•

•
•

•

•

•
•

•

•

•••

•

•

•
•
••

••

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

•
•

•

•

•

•

•

••

•

•

•

•••
•

•

•
••• •••

••• ••

•

•••

•••

•••

•

•

• •••

•
•

•

••• •

•

•
•

•

• •

•

•

•

•

•

•

•

•
••

•
•
•
•

•

•

• •

•

•
••

•
•
•

•

•

•
• •

••
•

•
•

•

••
•••

•

•

• •
•
•

•

•

•

••

•

•
••

••

•

•

•

• •••
•••

•
•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•••

•

•

•

•

•• •

•

•

•

•

•

•

••
••

•

•
•
•

•
•• •••

•

•

• •

•

•

•

•

•

•

•
•

••

•

•••

•

•

•

•

•

• •
•

•

••

•

•

•

•

•

••

•••

••••

•

•

•

•• •

•

•

•••

•
•

•

•
•
•

•

•

•

•
•

•
••

•
•
•

•

•

••

•

•
•

••

•

•

••

•
•

• •

•

•

•

•
•

•

•• •

••

•
•
•

•
•

•

•

••
•

•

•
•

••

•

•
•

•

•

•

•
•

•

•

•
•

•

••

•••
•

•

•

•

•

•

•

•
•

•
•

•

•

•
• ••

• •
••

•

•

•

•••
••

•

•

•
•

•
•
•

•••

•
•
•

•

•

•

•
••

•

•

•

••

• •

•
•

•
•

•

••

• •

•

•

•
•• ••• •••

••• •••

•

••

••

•

•

•

•
•

•• •

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

••
•

•

•

•

•

•

••
• •

•

•

•

•
•

•

••

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
••

•

•
••

•
•

• •

•
•

•

••

•
•

•••

•

•

•

• •

••

•

•

•

•

••
•

•

•

•
•

•

•

•

•

••
•

•

•
•

•

••
•

•
•

•

•
• •

•

•

•

•
•

•

•
•

•

•

•
•

•
•

•
•

•
•

•

•

P
an

el

-2
0

2
4

Panel

1 2 3

• • •• • •
• • ••

• •
• • •• • •• • •• • ••

• •
• • •

• • •
•

•

•
•

•

•

• • •
• • •

•

•

••

• •• •

•

• • •
• •

•

•

•

•
•

•

•

•

• •

•

•

••

• •• • •
•

• •

• •

•

• • •

• • •
• •

•

• •

•

• • •

• • •
•

•

•
•

•

•

•

• •
•

• •

•

•

•
• •

•

•

•

•
• • ••

•

•
• •

•

•

•

•

•

•

•
•

•

•

•

•

•

• • •
•

•

•

•

• •

•
•

•

•
•

•
•

•

•
•

•

•

•

•
•

•
•

•

•
•

•

•

•

••

• •

•

•

•

• • •
•

•

•• • •
• • •• • •• •

•

• • ••
• •

• • •

•

•

•
• • •

•

•

•

• • •
•

•

••

•

••

•

•

•

•

•

•

•

•
• •

•

• •

•
•

•

•

•

•

•
• •

•

• •

•

•

•
•

•

• ••

•
••

• •

• • •

•

•

•
•

•

•
•

•

•

• •

•

• • •

• •

•

•

•

•
• • •

• • •
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•

• • •

•

•

•
•

• •

•

•

•

•

•

•
•

• •
•

•

••

•

••

• •

•
• •

•

•

•

•

•

•

•

•

•

•

•
•

• •

•

• • •
•

•

•

•

•

•
• •

•

• •

•

•

•

•

•

• •

• • •
• • •
•

•

•

•

• •
•

•

•• • •

• •

•
• •

•

•

•

•

• •

•

• •

•

•

•

•

•

• •

•
•

•

• •

•

•

• •

•
•

•
•

•

•

•

•
•

•

• •

•

• ••
•

•

•

•
•

•

• •

•

•

•
•

• •

•

•
•

•

•

•

• •

•

•

•
•

•

• •

• • ••

•

•

•

•

•

•

•
•• •

•

•

•

•
•

•
•• • •

•

•

•
• • •

• •

•

•

•
•

•
•

•
•

• •
•

•
•

•

•

•
• • •

•

•

•

•
•

•

•

•
••

•

•

•
•

•
•

•

•

• • •

• • •
• • •• • •• • •

•

• •

• •

•
•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

••

•
•

•

• •
•

•

•

•

•

•

•
• ••

•

•

•
•

••

• •

•

•
••

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

• •

• •

•
•

•
•

•

• •

• •

•
• •

•

•

•

•

•

• •

•

•

•

•

• •
•

•

•

•
•

•

•

•

•

• •
•

•

•
••

• •
•

•
•

•

•
•

• •

•

•

•

•
•

•

•

•

•

•

•

•
••

•

•

•

•

•

Note

The warning message about interaction terms not being saved can be safely ignored here.
321



Chapter 10  Generalizing the Linear Model
GENERALIZED LINEAR MODELS

The linear model discussed in Chapter 8, Regression and Smoothing
For Continuous Response Data, is a special case of the generalized
linear model. A linear model provides a way of estimating the
response variable, Y, conditional on a linear function of the values, x1,
x2, ..., xp, of some set of predictors variables, X1, X2, ..., Xp.
Mathematically, we write this as:

For the linear model, the variance of Y is assumed constant and

denoted by var(Y) = σ2.

A generalized linear model provides a way to estimate a function (called
the link function) of the mean response as a linear function of the
values of some set of predictors. This is written as:

where g is the link function. The linear function of the predictors, η(x),
is called the linear predictor. For the generalized linear model, the
variance of Y may be a function of the mean response µ:

The logistic regression and Poisson regression examples we have seen
are special cases of the generalized linear model. To do a logistic
regression we declare the binomial family which uses the logit link
function defined by

(10.1)

(10.2)

E Y x( ) β0 β ixi
i 1=

p

∑+=

g E Y x( )( ) g µ( ) β0 β i xi
i 1=

p

∑+ η x( )= = =

var Y( ) φV µ( )=

g p( ) logit p( ) p
1 p–
------------log= =
322



Generalized Linear Models
and variance function defined by

where p is the probability of an event occurring. The parameter p
corresponds to the mean response of a binary (0-1) variable. In
logistic regression, we model the probability of some event occurring
as a linear function of a set of predictors. Usually, for the logistic
regression problem φ is fixed to be 1 (one).

When we cannot assume that φ = 1 (this is the case of over- or under-
dispersion discussed in McCullagh and Nelder (1989)), we must use
the quasi family for quasi-likelihood estimation. The quasi-likelihood
“family” allows us to estimate the parameters in the model without
specifying what the distribution function is. In this case the link and
variance functions are all that is used for fitting the model. Once these
are known, the same iterative procedure that is used for fitting the
other families can be used to estimate the model parameters. For
more detail, see Chambers and Hastie (1992) and McCullagh and
Nelder (1989).

The Poisson regression example declares a poisson family with the
log link function

and the variance defined by

The binomial and Poisson families are for fitting regression models to
categorical response data. For the binomial case, the response is a
binary variable indicating whether or not some event has occurred.
The most common example of using the binomial family is the
logistic regression problem where we try to predict the probability of
the event occurring as a function of the predictors. Some examples of
a binary response are presence/absence of AIDS, presence/absence
of a plant species in a vegetation sample, failure/non-failure of a
electronic component in a radio.

The Poisson family is useful for modeling counts which typically
follow a Poisson distribution. Our earlier example modeled the
number of soldering skips as a function of various controlled factors
in the solder experiment.

var Y( ) φ p
1 p–
------------=

g µ( ) µ( )log=

var Y( ) φµ=
323



Chapter 10  Generalizing the Linear Model
Other families are available for modeling other kinds of data. For
example normal (the linear model special case) and inverse normal
distributions are modeled with the gaussian and
inverse.gaussian families. Table 10.1 lists the distribution families
available for use with either the glm or the gam function.

Each of these families represents an exponential family of
distributions of a particular form. The link function for each family
listed in Table 10.1 is referred to as the canonical link because it relates
the canonical parameter of the distribution family to the linear
predictor, η(x). For more details, on the parameterization of these
distributions, see McCullagh and Nelder (1989).

The estimates of the regression parameters in a glm are maximum
likelihood estimates, produced by iteratively reweighted least-squares
(IRLS). Essentially, the log-likelihood, l(β,y), is maximized by solving
the score equations, defined by:

Table 10.1:  Link and variance functions for the generalized linear and generalized 
additive models.

Distribution Family Link Variance

Normal/Gaussian gaussian µ 1

Binomial binomial log(µ/(1-µ)) µ(1-µ)/n

Poisson poisson log(µ) µ

Gamma gamma 1/µ µ2

Inverse Normal/
Gaussian

inverse.gaussian 1/µ2 µ3

Quasi quasi g(µ) V(µ)

(10.3)∂l β y,( ) ∂β⁄ 0=
324



Generalized Linear Models
Since the score equations are nonlinear in β, they are solved
iteratively. This iterative procedure is what is referred to as IRLS. For
more details, see Chambers and Hastie (1992) or McCullagh and
Nelder (1989).
325



Chapter 10  Generalizing the Linear Model
GENERALIZED ADDITIVE MODELS

The section Generalized Linear Models discusses an extension of
linear models to data with error distributions other than normal or
Gaussian. By using glm, we can fit data with Gaussian, binomial,
Poisson, gamma, or inverse Gaussian errors, which extends
dramatically the kind of data for which we can build regression
models. The primary restriction of a glm is the fact that it is still a
linear model. The linear predictor is just that, a linear function of the
parameters of the model.

The generalized additive model, gam, extends the glm by fitting
nonparametric functions to estimate the relationships between the
response and the predictors. The nonparametric functions are
estimated from the data using smoothing operations.

The general form of a gam is:

where g is the link function, α is a constant intercept term, fi
corresponds to the nonparametric function describing the
relationship between the transformed mean response (the link
transform function) and the ith predictor. In this context, η(x) is
referred to as the additive predictor and is entirely analogous to the
linear predictor of a glm defined in Equation (10.2). As for a glm, the
variance of Y may be function of the mean response µ:

All of the distribution families listed in Table 10.1 are available for
gams. Thus fully nonparametric, nonlinear additive regression models
can be fit to binomial data (logistic regression) and count data
(Poisson regression) as presented in the section Logistic Regression
and the section Poisson Regression, as well as to data with error
distributions that are modeled by the other families listed in Table
10.1.

(10.4)g E Y( x)( ) g µ( ) α fi xi( )
i 1=

p

∑+ η x( )= = =

VAR Y( ) φV µ( )=
326



Generalized Additive Models
Two functions that are useful for fitting a gam are s and lo. Both of
these functions are for fitting smooth relationships between the
transformed response and the predictors. The s function fits cubic B-
splines to estimate the smooth and lo fits a locally weighted least-
squares regression to estimate the smooth. For more detail on using
these functions, see their help files.
327



Chapter 10  Generalizing the Linear Model
QUASI-LIKELIHOOD ESTIMATION

Quasi-likelihood estimation allows you to estimate regression
relationships without fully knowing the error distribution of the
response variable. Essentially, you provide link and variance
functions which are used in the estimation of the regression
coefficients. Although the link and variance functions are typically
associated with a theoretical likelihood, the likelihood need not be
specified and fewer assumptions are made in estimation and
inference.

As a simple analogy, there is a connection between normal-theory
regression models and least-squares regression estimates. Least-
squares estimation gives identical parameter estimates to those
produced from normal-theory models. However, least-squares
estimation assumes far less; only second moment assumptions are
made by least-squares compared to full distribution assumptions of
normal-theory models.

Quasi-likelihood estimation for the distributions of Table 10.1 is
analogous to least-squares estimation for the normal distribution. For
the Gaussian family, IRLS is equivalent to standard least-squares
estimation. Used in this context, quasi-likelihood estimation allows us
to estimate the dispersion parameter in under- or over-dispersed
regression models. For example, an under- or over-dispersed logistic
or Poisson regression model can be estimated by using quasi-
likelihood methodology and supplying the appropriate link and
variance functions for the binomial and Poisson families, respectively.

However, quasi-likelihood estimation extends beyond the families
represented in Table 10.1. Any modeling situation for which suitable
link and variance functions can be derived can be modeled using the
quasi-likelihood methodology. Several good examples of this kind of
application are presented in McCullagh and Nelder (1989).

For our example of quasi-likelihood estimation, let’s go back to the
the Poisson regression example using the solder.balance data
frame. Recall that we modeled skips as a function of all the factors
328



Quasi-Likelihood Estimation
plus all the two-way interactions except those including Panel. The
modeling call was:

> glm(formula = skips ~ . +
+ (Opening + Solder + Mask + PadType)^2,
+ family = poisson, data = solder.balance)

When we declare the family argument to be either Poisson or
binomial, the dispersion parameter is set to a constant equal to one.
In many problems this assumption is not valid. We can use quasi-
likelihood estimation to force the estimation of the dispersion
parameter for these families. For the solder experiment we do it as
follows:

> paov3 <-glm(formula = skips ~ . +
+ (Opening + Solder + Mask + PadType) ^ 2,
+ family = quasi(link = "log", var = "mu"),
+ data = solder.balance)

A summary of the fit reveals that the dispersion parameter is
estimated to be 1.4, suggesting over-dispersion. We now recompute
the ANOVA table, computing F-statistics for testing for effects:

> anova(paov3, test = "F")

Analysis of Deviance Table

Quasi-likelihood model

Response: skips

Terms added sequentially (first to last)
                Df Deviance R.Df Res. Dev  F Value      Pr(F)
           NULL              719 6855.690
        Opening  2 2524.562  717 4331.128 901.1240 0.00000000
         Solder  1  936.955  716 3394.173 668.8786 0.00000000
           Mask  3 1653.093  713 1741.080 393.3729 0.00000000
        PadType  9  542.463  704 1198.617  43.0285 0.00000000
          Panel  2   68.137  702 1130.480  24.3210 0.00000000
 Opening:Solder  2   27.978  700 1102.502   9.9864 0.00005365
   Opening:Mask  6   70.984  694 1031.519   8.4457 0.00000001
Opening:PadType 18   47.419  676  984.100   1.8806 0.01494805
    Solder:Mask  3   59.806  673  924.294  14.2316 0.00000001
 Solder:PadType  9   43.431  664  880.863   3.4449 0.00036929
   Mask:PadType 27   61.457  637  819.407   1.6249 0.02466031
329



Chapter 10  Generalizing the Linear Model
All of the factors and interactions are still significant even when we
model the over-dispersion. This gives us more assurance in our
previous conclusions.
330



Residuals
RESIDUALS

Residuals are our principal tool for assessing how well a model fits the
data. For regression models, residuals are used to assess the
importance and relationship of a term in the model as well as to
search for anomalous values. For generalized models we have the
additional task of assessing and verifying the form of the variance as a
function of the mean response.

Generalized models require a generalization of the residual which will
be applicable to all the distributions which replace the normal or
Gaussian distribution and which can be used in the same way as the
normal residuals of the linear model. In fact, four different kinds of
residuals are defined for use in assessing how well a model fits, in
determining the form of the variance function, and in diagnosing
problem observations.

• "deviance": Deviance residuals are defined as:

where di is the contribution of the ith observation to the
deviance.

The deviance itself is . Consequently, these

residuals are reasonable for use in detecting observations with
unduly large influence in the fitting process, since they reflect
the same criterion as used in the fitting.

• "working": Working residuals are the difference between the
working response and the linear predictor at the final iteration
of the IRLS algorithm. They are defined as:

These residuals are the ones you get when you extract the
residuals component directly from the glm object.

r i
D sign yi µ̂i–( ) di=

D i r i
D( )

2
∑=

r i
W

yi µ̂i–( )
η̂i∂
µ̂i∂

-------=
331



Chapter 10  Generalizing the Linear Model
• "pearson": The Pearson residuals are defined as:

Their sum-of-squares

is the chi-squared statistic. Pearson residuals are a rescaled
version of the working residuals. When proper account is

taken of the associated weights, .

•  "response": The response residuals are simply .

You compute residuals for "glm" and "gam" objects with the
residuals function, abbreviated resid (or resid for short)
function. The type argument allows you to specify one of
"deviance", "working", "pearson", or "response". By default
you get the deviance residuals, so to plot the deviance residuals versus
the fitted values of a model you just do:

> plot(fitted(glmobj), resid(glmobj))

Alternatively, to plot the Pearson residuals versus the fitted values you
do:

> plot(fitted(glmobj), resid(glmobj, type = "pearson"))

Selecting which residual to plot is somewhat a matter of personal
preference. The deviance residual is the default because a large
deviance residual corresponds to an observation which does not fit
the model well in the same sense that a large residual for the linear
model doesn’t fit well. You can find additional detail on residuals in
McCullagh and Nelder (1989).

r i
P yi µ̂i–

V µ̂i( )
------------------=

X
2 yi µ̂i–( )

2

V µ̂i( )
----------------------

i 1=

n

∑=

r i
P

wir i
W

=

yi µ̂i–
332



Prediction From the Model
PREDICTION FROM THE MODEL

Prediction for generalized linear models, glm, and generalized
additive models, gam, is similar to prediction for linear models. The
only important point to remember is that for either of the generalized
models predictions can be on one of two scales. You can predict:

1. on the scale of the linear predictor, which is the transformed/
scale after applying the link function, or

2. on the scale of the original response variable.

Since prediction is based on the linear predictor, η(x), computing
predicted values on the scale of the original response effectively
transforms the linear predictor evaluated at the predictor data back to
the scale of the response via the inverse link function.

The type argument to either predict.glm or predict.gam allows
you to choose one of three options for predictions:

• "link": Computes predictions on the scale of the linear
predictor (the link scale).

• "response": Computes predictions on the scale of the
response.

• "terms": Computes a matrix of predictions on the scale of
the linear predictor, one column for each term in the model.

Specifying type = "terms" allows you to compute the component
of the prediction for each term separately. Summing the columns of
the matrix and adding the constant (intercept) term is equivalent to
specifying type = "link".

Predicting the 
Additive Model 
of Kyphosis

As an example, consider the generalized additive model of Kyphosis
modeled as smooths of Start and Age. Recall the fit was saved as
kyph.gam.start.age:

> kyph.gam.start.age

Call:
gam(formula = Kyphosis ~ s(Start) + s(Age),
family = binomial, data = kyphosis)
Degrees of Freedom: 81 total; 72.09458 Residual
Residual Deviance: 48.41713
333



Chapter 10  Generalizing the Linear Model
If we are interested in plotting the prediction surface over the range of
the data we start by generating appropriate sequences of values for
each predictor and storing them in a data frame with variable labels
that correspond to the variables in the model:

> attach(kyphosis)
> kyph.margin <-
+ data.frame(Start = seq(from = min(Start),
+ to = max(Start), len = 40), Age =
+ seq(from = min(Age), to = max(Age), len = 40) )

Since a gam is additive, we need to do predictions only at the margins
and then sum them together to form the entire prediction surface. We
produce the marginal fits by specifying type = "terms".

> margin.fit <- predict(kyph.gam.start.age, kyph.margin,
+ type="terms")

Now generate the surface for the marginal fits.

> kyph.surf <- outer(margin.fit[,1], margin.fit[,2], "+")
> kyph.surf <- kyph.surf + attr(margin.fit, "constant")
> kyph.surf <- binomial()$inverse(kyph.surf)

The first line adds the marginal pieces of the predictions together to
create a matrix of surface values, the second line adds in the constant
intercept term, and the third line applies the inverse link function to
transform the predictions back to the scale of the original response.
Now we produce the plot using the persp function (or contour or
image if we wish):

> persp(kyph.margin[,1], kyph.margin[,2], kyph.surf,
+ xlab = "Start", ylab = "Age", zlab = "Kyphosis")

Figure 10.11 displays the resulting plot.
334



Prediction From the Model
Safe Prediction Prediction for linear and generalized linear models is a two-step
procedure.

1. Compute a model matrix using the new data where you want
predictions.

2. Multiply the model matrix by the coefficients extracted from
the fitted model.

This procedure works perfectly fine as long as the model has no
composite terms which are dependent on some overall summary of a
variable such as any of the following:

(x - mean(x))/sqrt(var(x))
(x - min(x))/diff(range(x))
poly(x)
bs(x)
ns(x)

The reason the procedure doesn’t work for such composite terms is
that the resulting coefficients are dependent on the summaries used in
computing the terms. If the new data are different from the original
data used to fit the model (which is more than likely when you
provide new data), the coefficients are inappropriate. One way

Figure 10.11:  Plot of the probability surface for developing Kyphosis based age in 
months and start position.

5
10

15

Start
50

100

150

200

Age

 0
0.

2
0.

4
0.

6
0.

8
1

K
yp

ho
si

s

335



Chapter 10  Generalizing the Linear Model
around this problem is to eliminate such dependencies on data
summaries. For example, change mean(x) and var(x) to their
numeric values rather than computing them from the data at the time
of fitting the model. For the spline functions, bs and ns, provide the
knots explicity in the call to the function rather than letting the
function compute them from the overall data. If the removal of
dependencies on the overall data is possible, prediction can be made
safe for new data. However, when the dependencies cannot be
removed (for example, using s or lo in a gam), there is a function for
doing prediction in as safe a way as possible given the need for
generality. The function is predict.gam, which works as follows
when new data is supplied:

1. A new data frame, both.data, is constructed by combining
the data used to produce the fit, say old.data, and the new
data in new.data.

2. The model frame and model matrix are constructed from the
combined data frame both.data. The model matrix is

separated into two pieces X0 and Xn corresponding to the old
and new data.

3. The parametric part of fit is refit using X0.

4. The coefficients from this new fit are then applied to Xn to
obtain the new predictions.

5. For "gam" objects with both parametric and nonparametric
components, an additional step is taken to evaluate the fitted
nonlinear functions at the new data values.

This procedure works perfectly for terms with mean and var in them
as well as for poly. For other kinds of composite therms, it works
approximately. For example, for bs knots are placed at equally
spaced (in terms of percentiles) quantiles of the distribution of the
predictor. Because the knots produced by the combined data will, in
general, be different from the knots produced by the original data
there will be some error in predicting the new data. If the old data
and the new data have roughly the same distribution the error in
predicting the new data should be small.
336



References
REFERENCES

Chambers, J.M. and Hastie, T.J. (1992). Statistical Models in S.
Wadsworth and Brooks Cole Advanced Books and Software, Pacific
Grove, CA.

Comizzoli, R.B. and Landwehr, J.M. and Sinclair, J.D. (1990). Robust
Materials and Processes: Key to Reliability, 6:113-128.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models.
Chapman and Hall, London.

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models, 2nd
edition. Chapman and Hall, London.

Nelder, J.A. and Wedderburn, R.W.M. (1972). Generalized linear models.
Journal of the Royal Statistical Society, Series A, 135:370-384.
337



Chapter 10  Generalizing the Linear Model
338



Introduction 340

Fitting a Simple Model 341

Diagnostics: Evaluating the Fit 342

Exploring Data With Multiple Predictors 345
Conditioning Plots 345
Creating Conditioning Values 347
Constructing a Conditioning Plot 347
Analyzing Conditioning Plots 349

Fitting a Multivariate Loess Model 352

Looking at the Fitted Model 359

Improving the Model 363

LOCAL REGRESSION MODELS 11
339



Chapter 11  Local Regression Models
INTRODUCTION

In both Chapter 8, Regression and Smoothing For Continuous
Response Data, and Chapter 10, Generalizing the Linear Model, we
discuss fitting curves or surfaces to data. In both of these earlier
chapters, a significant limitation on the surfaces considered was that
the effects of the terms in the model were expected to enter the model
additively, without interactions between terms.

Local regression models provide much greater flexibility in that the
model is fitted as a single smooth function of all the predictors. There
are no restrictions on the relationships among the predictors.

Local regression models in S-PLUS are created using the loess
function, which uses locally weighted regression smoothing, as
described in the section Smoothing on page 213. In that section, the
focus was on the smoothing function as an estimate of one predictor’s
contribution to the model. In this chapter, we use locally weighted
regression to fit the complete regression surface.
340



Fitting a Simple Model
FITTING A SIMPLE MODEL

As a simple example of a local regression model, we return to the
ethanol data discussed in Chapter 8, Regression and Smoothing For
Continuous Response Data. We start by considering only the two
variables NOx and E. We smoothed these data with loess.smooth in
the section Smoothing on page 213. Now we use loess to create a
complete local regression model for the data.

We fit an initial model to the ethanol data as follows, using the
argument span = 1/2 to specify that each local neighborhood
should contain about half of the observations:

> ethanol.loess <- loess(NOx ~ E, data = ethanol,
+ span = 1/2)
> ethanol.loess

Call:
loess(formula = NOx ~ E, data = ethanol, span = 1/2)

Number of Observations:          88
Equivalent Number of Parameters: 6.2
Residual Standard Error:         0.3373
Multiple R-squared:              0.92
Residuals:
    min   1st Q   median  3rd Q    max
-0.6656 -0.1805 -0.02148 0.1855 0.8656

The equivalent number of parameters gives an estimate of the complexity
of the model. The number here, 4.3, indicates that the local regression
model is somewhere between a cubic polynomial and a quartic
polynomial in complexity. The default print method for "loess"

objects also includes the residual standard error, multiple R2, and a
five number summary of the residuals.
341



Chapter 11  Local Regression Models
DIAGNOSTICS: EVALUATING THE FIT

How good is our initial fit? The following function calls plot the
loess object against a scatter plot of the original data:

> attach(ethanol)
> plot(ethanol.loess, xlim=range(E),
+ ylim=range(NOx,fitted(ethanol.loess)))
> points(E, NOx)

The resulting figure, shown in Figure 11.1, captures the trend
reasonably well. The following expressions plot the residuals against
the predictor E to check for lack of fit:

> scatter.smooth(E, resid(ethanol.loess), span=1,
+ degree =1)
> abline(h=0)

Figure 11.1:  Locally weighted smooth of ethanol data.

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•••
•

•
•

•

342



Diagnostics: Evaluating the Fit
The resulting plot, shown in Figure 11.2, indicates no lack of fit.

Is there a surplus of fit? That is, can we increase the span of the data
and still get a good fit? To see, let’s refit our model, using update:

> ethanol.loess2 <- update(ethanol.loess, span=1)
> ethanol.loess2

Call:
loess(formula = NOx ~ E, data = ethanol, span = 1)
Number of Observations:          88
Equivalent Number of Parameters: 3.5
Residual Standard Error:         0.5126
Multiple R-squared:              0.81
Residuals:
    min   1st Q median  3rd Q    max
-0.9791 -0.4868 -0.064 0.3471 0.9863

Figure 11.2:  Residual plot for loess smooth.

•
• •

• ••
•

•• ••
•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

••
•

•
•

•

••

•

•

•

•

•

•
•

•

•

•

•

•

•
••

•

•

•
•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

E

re
si

d(
et

ha
no

l.l
oe

ss
)

0.6 0.8 1.0 1.2

-0
.5

0.
0

0.
5

343



Chapter 11  Local Regression Models
By increasing the span, we reduce somewhat the equivalent number
of parameters; this model is thus more parsimonious than our first
model. We do seem to have lost some fit and gained some residual
error. The diagnostic plots, shown in Figure 11.3, reveal a less
satisfying fit in the main plot, and much obvious structure left in the
residuals.

The residuals are also more broadly spread than those of the first
model. We confirm this with a call to anova as follows:

> anova(ethanol.loess2, ethanol.loess)

Model 1:
loess(formula = NOx ~ E, data = ethanol, span = 1)
Model 2:
loess(formula = NOx ~ E, data = ethanol, span = 1/2)
Analysis of Variance Table
      ENP     RSS     Test     F Value      Pr(F)
1     3.5 22.0840   1 vs 2       32.79 8.2157e-15
2     6.2  9.1685

The difference between the models is highly significant, so we stick
with our original model.

Figure 11.3:  Diagnostic plots for loess fit with span 1.

E

N
O

x

0.6 0.8 1.0 1.2

1
2

3
4

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
••

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

• •

•

•

•

•

•

•

•

•

••
•

•
•

•

•

•

•

•

•

•

••

•

•

••••••

•

•

•
•

• •
•

•

•

•

••

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

••

•

•

••

•

•

••

•

••

•

•

•

•

•

•

•

•

•
•

••

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

E

re
si

d(
et

ha
no

l.l
oe

ss
2)

0.6 0.8 1.0 1.2

-1
.0

0.
0

1.
0

344



Exploring Data With Multiple Predictors
EXPLORING DATA WITH MULTIPLE PREDICTORS

Conditioning 
Plots

The ethanol data set actually has three variables, with the
compression ratio, C, of the engine as another predictor joining the
equivalence ratio E and the response, nitric oxide emissions, NOx. A
summary of the data is shown below:

> summary(ethanol)

      NOx               C                E
Min.   :0.370   Min.   : 7.500   Min.   :0.5350
1st Qu.:0.953   1st Qu.: 8.625   1st Qu.:0.7618
Median :1.754   Median :12.000   Median :0.9320
Mean   :1.957   Mean   :12.030   Mean   :0.9265
3rd Qu.:3.003   3rd Qu.:15.000   3rd Qu.:1.1100
Max.   :4.028   Max.   :18.000   Max.   :1.2320

A good place to start an analysis with two or more predictors is a
pairwise scatter plot, as generated by the pairs function:

> pairs(ethanol)

The resulting plot is shown in Figure 11.4. The top row shows the
nonlinear dependence of NOx on E, and no apparent dependence of
NOx on C. The middle plot in the bottom row shows E plotted against
C—this plot reveals no apparent correlation between the predictors,
and shows that the compression ratio C takes on only 5 distinct values.

Another useful plot for data with two predictors is the perspective
plot. This lets us view the response as a surface over the predictor
plane.

> persp(interp(E, C, NOx))

The resulting plot is shown in Figure 11.5.
345



Chapter 11  Local Regression Models
Figure 11.4:  Pairs plot of ethanol data.

Figure 11.5:  Perspective plot of ethanol data.

NOx

8 10 14 18

•

•

•

•

•

•

•
•

•

•

•

• • •
•

••
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

••

•

•

•

•

•

•

•

•

•••

•
•

•

•

•

•

•

•

•

• •

•

•

•• • •
• •

•

1
2

3
4

•

•

•

•

•

•

•
•

•

•

•

•••
•

• ••

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

• •

•

•

•

•

•

•

•

•

•• •

•
•

•

•

•

•

•

•

•

••

•

•

••••••

•

8
10

14
18

••• ••

•• •

•• ••

•

•

•

• •

• •

••
••

• •

• •

• •
•

• •• ••

• •
•• •

•• ••

• •• •
• ••

•

• •

••

• ••• • ••

•• •

••

•• •

• • •••

••
•

•

••

•
•

•

•

• •

C •• •• •

• ••

• •• •

•

•

•

• •

••

• •
• •

••

• •

• •
•

•• •• •

••
• ••

• •• •

• •• •
• ••

•

••

••

• •• •• • •

• ••

• •

• ••

• • • • •

• •
•

•

• •

•
•

•

•

• •

1 2 3 4

•

•

•
•

•

•

•
•

•

•

•

••

•
• •

••

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•
•

•
•

•

•
•

•

••

•
•

•

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•••••

•

•

•

•
•

•

•

•
•

•

•

•

• •

•
• •

• •

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
••

•
•

•
•

•

•
•

•

••

•
•

•

•

•
•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

• • • • •

•

0.6 0.8 1.0 1.2

0.
6

0.
8

1.
0

1.
2

E

0.6
0.7

0.8
0.9

1
1.1 1.2

E8

10

12

14

16

18

C

 0
1

2
3

4
5

N
O

x

346



Exploring Data With Multiple Predictors
One conclusion we cannot draw from the pairwise scatter plot is that
there is no effect of C on NOx. Such an effect might well exist, but be
masked by the strong effect of E. Another type of plot, the conditioning
plot, or coplot, can reveal such hidden effects.

A coplot shows how a response depends upon a predictor given other
predictors. Basically, the idea is to create a matrix of conditioning
panels; each panel graphs the response against the predictor for those
observations whose value of the given predictor lie in an interval.

To create a coplot:

1. (Optional) Create the conditioning values. The coplot
function creates default values if conditioning values are
omitted, but they are not usually as good as those created
specifically for the data at hand.

2. Use the coplot function to create the plot.

We discuss these steps in detail in the following subsections.

Creating 
Conditioning 
Values

How you create conditioning values depends on the nature of the
values taken on by the predictor, whether continuous or discrete.

For continuous data, the conditioning values are intervals, created
using the function co.intervals. For example, the following call
creates nine intervals for the predictor E:

> E.intervals <- co.intervals(E, number = 9, overlap = 1/4)

For data taking on discrete values, the conditioning values are the
sorted, unique values. For example, the following call creates the
conditioning values for the predictor C:

> C.points <- sort(unique(C))

Constructing a 
Conditioning 
Plot

To construct a conditioning plot, use coplot using a formula with the
special form A ~ B | C, where A is the response, B is the predictor of
interest, and C is the given predictor. Thus, to see the effect of C on
NOx given E, use the formula NOx ~ C | E.

In most cases, you also want to specify one or both of the following
arguments:

• given.values: The conditioning values created above.
347



Chapter 11  Local Regression Models
• panel: A function of x and y used to determine the method of
plotting in the dependence panels. The default is points.

To create the conditioning plot shown in Figure 11.6:

> coplot(NOx ~ C | E, given.values = E.intervals)

Figure 11.6:  Conditioning plot of ethanol data.

•
•

••

••

•
• • •

• •

•

8 10 12 14 16 18

1
2

3
4

•

•

•
•

•

•
•••

•

•
•

•
•

•

•
•

•

•
•

•
•

•

•

•

8 10 12 14 16 18

•
•••

•

•

•

•

• •
• ••

•

•

•
•
••

•
••

•
•

•
•

•
•

•

•• •

•
•

•
•

•

•

•

1
2

3
4

•
•

•

• ••

•

•
•

•

•

•

1
2

3
4

•
• • ••

••
••

•

•
••

8 10 12 14 16 18

•• • •
•

•
•
••

•
• •

•

0.6 0.8 1.0 1.2

C

N
O

x

Given :  E
348



Exploring Data With Multiple Predictors
Analyzing 
Conditioning 
Plots

To read the coplot, move from left to right, bottom to top. The scatter
plots on the bottom row show an upward trend, while those on the
upper two rows show a flat trend. We can more easily see the trend by
using a smoothing function inside the conditioning panels, which we
can do by specifying the panel argument to coplot as follows:

> coplot(NOx ~ C | E, given.values = E.intervals,
+ panel = function(x, y) panel.smooth(x, y,
+ degree = 1, span = 1))

The resulting plot is shown in Figure 11.7.

Figure 11.7:  Smooth conditioning plot of ethanol data.

•
•

••

••

•
• • •

• •

•

8 10 12 14 16 18

1
2

3
4

•

•

•
•

•

•
•••

•

•
•

•
•

•

•
•

•

•
•

•
•

•

•

•

8 10 12 14 16 18

•
•••

•

•

•

•

• •
• ••

•

•

•
•
••

•
••

•
•

•
•

•
•

•

•• •

•
•

•
•

•

•

•

1
2

3
4

•
•

•

• ••

•

•
•

•

•

•

1
2

3
4

•
• • ••

••
••

•

•
••

8 10 12 14 16 18

•• • •
•

•
•
••

•
• •

•

0.6 0.8 1.0 1.2

C

N
O

x

Given :  E
349



Chapter 11  Local Regression Models
This plot clearly shows that for low values of E, NOx increases linearly
with C, while for higher values of E, NOx remains constant with C.

Conversely, the coplot for the effects of E on NOx given C is created
with the following call to coplot, and shown in Figure 11.8:

> coplot(NOx ~ E | C, given.values = C.points,
+ panel = function(x, y) panel.smooth(x,y, degree =2,
+ span = 2/3))

Figure 11.8:  Smooth conditioning plot of ethanol data, conditioned on C.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0.6 0.8 1.0 1.2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

0.6 0.8 1.0 1.2

1
2

3
4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1
2

3
4

•

•

•

•

•

•

•

•

•
•

•

• •

••

•

0.6 0.8 1.0 1.2

8 10 12 14 16 18

E

N
O

x
Given :  C
350



Exploring Data With Multiple Predictors
Comparing the two coplots, we can see that NOx changes more
rapidly as a function of E with C fixed than as a function of C with E
fixed. Also, the variability of the residuals is small compared to the
effect of E, but noticeable compared to the effect of C.
351



Chapter 11  Local Regression Models
FITTING A MULTIVARIATE LOESS MODEL

We have learned quite a bit about the ethanol data without fitting a
model: there is a strong nonlinear dependence of NOx on E and there
is an interaction between C and E. We can use this knowledge to shape
our initial local regression model. First, we specify a formula that
includes as predictors both E and C, namely NOx ~ C * E. Then, we
accept the default of local quadratic fitting to better model the
nonlinear dependence.

> ethanol.m <- loess(NOx ~ C * E, data = ethanol)
> ethanol.m

Call:
loess(formula = NOx ~ C * E, data = ethanol)

Number of Observations:          88
Equivalent Number of Parameters: 9.4
Residual Standard Error:         0.3611
Multiple R-squared:              0.92
Residuals:
    min   1st Q   median 3rd Q    max
-0.7782 -0.3517 -0.05283 0.195 0.6338

We search for lack of fit by plotting the residuals against each of the
predictors:

> par(mfrow=c(1,2))
> scatter.smooth(C, residuals(ethanol.m),span=1, deg=2)
> abline(h=0)
> scatter.smooth(E, residuals(ethanol.m),span=1, deg=2)
> abline(h=0)

The resulting plot is shown in Figure 11.9.
352



Fitting a Multivariate Loess Model
The right-hand plot shows considerable lack of fit, so we reduce the
span from the default 0.75 to 0.4:

> ethanol.m2 <- update(ethanol.m, span = .4)
> ethanol.m2

Call: loess(formula = NOx ~ C * E, data = ethanol,
span = 0.4)

Number of Observations:          88
Equivalent Number of Parameters: 15.3
Residual Standard Error:         0.2241
Multiple R-squared:              0.97
Residuals:
    min   1st Q   median  3rd Q    max
-0.4693 -0.1865 -0.03518 0.1027 0.3739

Repeating the commands for generating the diagnostic plots with
ethanol.m2 replacing ethanol.m yields the plot shown in Figure
11.10.

Figure 11.9:  Diagnostic plot for loess model of ethanol data.

•

•

•

••
•
•

•

•

•
•
•

•

•
• •• •

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•••
•

••

•

•

•

•

•

•

•

• •
•

••

•
•

•

•••

•

• •
•
••

•

•

•
•

•

•

•

•

•

••

•

•

•

•

• • •

•

•

•

C

re
si

d(
et

ha
no

l.m
)

8 10 14 18

-0
.8

-0
.2

0.
4

•

•

•

• •
•

•

•

•

•
•

•

•

•
•• ••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

• ••
•

••

•

•

•

•

•

•

•

••
•

••

•
•

•

• ••

•

••
•

••
•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•••

•

•

•

E

re
si

d(
et

ha
no

l.m
)

0.6 0.8 1.0 1.2

-0
.8

-0
.2

0.
4

353



Chapter 11  Local Regression Models
The right-hand plot looks better but still has some quadratic structure,
so we shrink the span still further, and try again:

> ethanol.m3 <- update(ethanol.m, span = .25)
> ethanol.m3

Call:
loess(formula = NOx ~ C * E, data = ethanol, span = 0.25)

Number of Observations:          88
Equivalent Number of Parameters: 21.6
Residual Standard Error:         0.1761
Multiple R-squared:              0.98
Residuals:
    min    1st Q  median   3rd Q    max
-0.3975 -0.09077 0.00862 0.06205 0.3382

Again, we create the appropriate residuals plots to check for lack of
fit. The result is shown in Figure 11.11. This time the fit is much better.

Figure 11.10:  Diagnostic plot for first revised model.

•

•

•

•
•

•

•
•

•••
•

• ••
•

•

•

•
•

•

•

• ••
•

•

•
•

•

•

•

•

•

•••
••• •

••

•

•

•

•

•
•

•

•

•

•
•

•
•

•

••

•

•

• •••

••

•

•
• •

•

•

•

••
•

•

•

•

•

•

•

•

•

•

•

C

re
si

d(
et

ha
no

l.m
2)

8 10 14 18
-0

.4
0.

0
0.

4

•

•

•

•
•

•

•
•

• ••
•

•• •
•

•

•

•
•

•

•

• ••
•

•

•
•

•

•

•

•

•

•••
• •••

••

•

•

•

•

•
•

••

•

•

•
•

•
•

•

• •

•

•

•• ••

• •

•

•
••

•

•

•

••
•

•

•

•

•

•

•

•

•

•

•

E

re
si

d(
et

ha
no

l.m
2)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
4

354



Fitting a Multivariate Loess Model
Another check on the fit is provided by coplots using the residuals as
the response variable:

> coplot(residuals(ethanol.m3) ~ C | E,
+ given = E.intervals,
+ panel= function(x,y)
+ panel.smooth(x,y, degree=1, span=1, zero.line=TRUE))
> coplot(residuals(ethanol.m3) ~ E | C, given = C.points,
+ panel= function(x,y)
+ panel.smooth(x,y, degree=1, span=1, zero.line=TRUE))

The resulting plots are shown in Figure 11.12 and Figure 11.13. The
middle row of Figure 11.12 shows some anomalies—the residuals are
virtually all positive. However, the effect is small, and limited in
scope, so it can probably be ignored.

Figure 11.11:  Diagnostic plot for second revised model.

•

•

••
•

•

•• •
••
•

•

•
•

•

•

•
•

•

•

••

•

••

•

•
• •

•

•

•

•

•
•••

•

• •

•
•

•

•

•

•

•
•
•

•

•

•

•
•

•••

•
•

•

•

• •
••

•

•

•

••

•

•
•

•

•

•• •

•

•

•

•
•

•

• •

•

C

re
si

d(
et

ha
no

l.m
3)

8 10 14 18
-0

.4
0.

0
0.

2

•

•

••
•

•

•••
••

•

•

•
•

•

•

•
•

•

•

• •

•

••

•

•
••

•

•

•

•

•
••

•

•

••

•
•

•

•

•

•

•
•

•

•

•

•

•
•

• • •

•
•

•

•

••
•••

•

•

••

•

•
•

•

•

• ••

•

•

•

•
•

•

••

•

E

re
si

d(
et

ha
no

l.m
3)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
2

355



Chapter 11  Local Regression Models
Figure 11.12:  Conditioning plot on E for second revised model.

•

•

•

•

•

•

•

•
•

•

• •

•

8 10 12 14 16 18

-0
.4

0.
0

0.
2

•

•

•

•

•

•

•

•••

• •

•

•

•
•

•
•

•

•

•

•

• •

•

8 10 12 14 16 18

•

•
•
•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

-0
.4

0.
0

0.
2

•

• •
•

•

•
•

•

•

•
•

•

-0
.4

0.
0

0.
2

•
•

•

•

•
•

•
•

•
••

•

•

8 10 12 14 16 18

•
• •

•

••

•

••

•

• •

•

0.6 0.8 1.0 1.2

C

re
si

du
al

s(
et

ha
no

l.m
3)

Given :  E
356



Fitting a Multivariate Loess Model
As a final test, we make several more diagnostic plots to check the
distribution of the error terms (Figure 11.14):

> par(mfrow=c(2,2))
> plot(fitted(ethanol.m3), sqrt(abs(resid(ethanol.m3))))
> plot(C, sqrt(abs(resid(ethanol.m3))))
> plot(E, sqrt(abs(resid(ethanol.m3))))
> qqnorm(resid(ethanol.m3))

Figure 11.13:  Conditioning plot on C for second revised model.

•

• •
•

•

•

•

•

•
•

•• •

•

•

•

•

•
• •

•

•

0.6 0.8 1.0 1.2

•

••

•

•

•

•
•

•

•

•

•

•

•• •

• •

•

••
•

•
•

•

•

•

•

•

•

•

0.6 0.8 1.0 1.2

-0
.4

-0
.2

0.
0

0.
2

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

-0
.4

-0
.2

0.
0

0.
2

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

0.6 0.8 1.0 1.2

8 10 12 14 16 18

E

re
si

du
al

s(
et

ha
no

l.m
3)

Given :  C
357



Chapter 11  Local Regression Models
> qqline(resid(ethanol.m3))

NULL

The model passes these checks—the errors appear to be Gaussian, or
nearly so.

Figure 11.14:  Diagnostic plots for second revised model.

•

•

• •

•

•

•
•

•

•
•

•

•

•

•
• •

•

•

•
•

•
•

•

•
•

•

•

• •

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
• •

•

•

•

•

•
•

•
•

•

•

•

•
•

• •

•

•

•

•••

•

•

•

•

•
•

•

•

•

fitted(ethanol.m3)

sq
rt

(a
bs

(r
es

id
(e

th
an

ol
.m

3)
))

1 2 3 4

0.
1

0.
3

0.
5

•

•

••

•

•

•
•

•

•
•

•

•

•

•
•• •

•

•
•

•
•

•

•
•

•

•

• •

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
••

•

•

•

•

•
•

•
•

•

•

•

•
•

••

•

•

•

•• •

•

•

•

•

•
•

•

•

•

C

sq
rt

(a
bs

(r
es

id
(e

th
an

ol
.m

3)
))

8 10 12 14 16 18

0.
1

0.
3

0.
5

•

•

••

•

•

•
•

•

•
•

•

•

•

•
• •

•

•

•
•

•
•

•

•
•

•

•

••

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
• •

•

•

•

•

•
•

•
•
•

•

•

•
•

• •

•

•

•

• ••

•

•

•

•

•
•

•

•

•

E

sq
rt

(a
bs

(r
es

id
(e

th
an

ol
.m

3)
))

0.6 0.8 1.0 1.2

0.
1

0.
3

0.
5

•

•

••
•

•

•••
••
•

•

•
•

•

•

•
•

•

•

••

•

••

•

•
••

•

•

•

•

•
• •

•

•

••

•
•

•

•

•

•

•
•

•

•

•

•

•
•

• ••

•
•

•

•

••••
•

•

•

••

•

•
•

•

•

•••

•

•

•

•
•

•

••

•

Quantiles of Standard Normal

re
si

d(
et

ha
no

l.m
3)

-2 -1 0 1 2

-0
.4

0.
0

0.
2

358



Looking at the Fitted Model
LOOKING AT THE FITTED MODEL

Examining the fitted model graphically is no less important than
graphically examining the data. One way to test the model is to
compare the predicted surface with the data surface shown in Figure
11.5 . We can create the corresponding perspective plot for the model
as follows. First, define an evenly-spaced grid of points spanning the
range of E and C:

> newC <- seq(from = min(C), to = max(C), length = 40)
> newE <- seq(from = min(E), to = max(E), length = 40)
> new.ethanol <- expand.grid(E = newE, C = newC)

The expand.grid function returns a data frame with 1600 rows and
2 columns, corresponding to all possible combinations of newC and
newE. We can then use predict with the fitted model and these new
data points to calculate predicted values for each of these grid points:

> eth.surf <- predict(ethanol.m3, new.ethanol)

The perspective plot of the surface is then created readily as follows:

> persp(newE, newC, eth.surf, xlab = "E",
+ ylab = "C")

Figure 11.15:  Perspective plot of the model.

0.6
0.7

0.8
0.9

1
1.1 1.2

E8

10

12

14

16

18

C

 0
1

2
3

4
5

Z

359



Chapter 11  Local Regression Models
The resulting plot is shown in Figure 11.15. Not surprisingly, the
surfaces look quite similar, with the model surface somewhat
smoother than the data surface. The data surface has a noticeable
wrinkle for E < 0.7, C < 14. This wrinkle is smoothed out in the
model surface. Another graphical view is probably worthwhile.

The default graphical view for "loess" objects with multiple
predictors is a set of coplots, one per predictor, created using the
plot function.

> par(ask=T)
> plot(ethanol.m3, confidence = 7)

The resulting plots are shown in Figure 11.16 and Figure 11.17. One
feature that is immediately apparent, and somewhat puzzling, is the
curvy form of the bottom row of Figure 11.16. Our preliminary
coplots revealed that the dependence of NOx on C was approximately
linear for small values of E. Thus, the model as fitted has a noticeable
departure from our understanding of the data.
360



Looking at the Fitted Model
Figure 11.16:  Default conditioning plot of the model, first predictor.

8 10 12 14 16 18 8 10 12 14 16 18

-1
0

1
2

3
4

-1
0

1
2

3
4

8 10 12 14 16 18

0.6 0.8 1.0 1.2

C

N
O

x

Given :  E
361



Chapter 11  Local Regression Models
Figure 11.17:  Default conditioning plot of the model, second predictor.

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

-1
0

1
2

3
4

0.6 0.8 1.0 1.2

8 10 12 14 16 18

N
O

x

Given :  C
362



Improving the Model
IMPROVING THE MODEL

The model in ethanol.m3 is fit using local quadratic fitting for all
terms corresponding to C*E. This means that the model contains the

following fitting variables: a constant, E, C, EC, C2, and E2. However,
our original look at the data led us to believe that the effect of C was
piecewise linear; it thus makes sense to fit C parametrically, and drop
the quadratic term. We can make these changes using the update
function as follows:

> ethanol.m4 <- update(ethanol.m3, drop.square="C",
+ parametric = "C")
> ethanol.m4

Call:
loess(formula = NOx ~ C * E, span = 0.25, parametric = "C", 
drop.square = "C")

Number of Observations:          88
Equivalent Number of Parameters: 18.2
Residual Standard Error:         0.1808
Multiple R-squared:              0.98
Residuals:
    min    1st Q    median   3rd Q    max
-0.4388 -0.07358 -0.009093 0.06616 0.5485

The offending coplot, Figure 11.18 and Figure 11.19, now shows the
appropriate linear fit, and we have introduced no lack of fit, as shown
by the residuals plots in Figure 11.20.
363



Chapter 11  Local Regression Models
Figure 11.18:  Default conditioning plot of improved model, first predictor.

8 10 12 14 16 18 8 10 12 14 16 18

-2
-1

0
1

2
3

4
8 10 12 14 16 18

0.6 0.8 1.0 1.2

C

N
O

x

Given :  E
364



Improving the Model
Figure 11.19:  Default conditioning plot of improved model, second predictor.

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2
-2

0
2

4

-2
0

2
4

0.6 0.8 1.0 1.2

8 10 12 14 16 18

N
O

x

Given :  C
365



Chapter 11  Local Regression Models
In fact, comparing the plot of residuals against E for the latest model
with that for ethanol.m3 (Figure 11.21) indicates we may be able to
increase the span for the latest model and not introduce any lack of
fit:

> ethanol.m5 <- update(ethanol.m4, span = 1/2)
> ethanol.m5

Call:
loess(formula = NOx ~ C * E, span = 1/2, parametric = "C", 
drop.square = "C")

Number of Observations:          88
Equivalent Number of Parameters: 9.2
Residual Standard Error:         0.1842
Multiple R-squared:              0.98
Residuals:
    min   1st Q  median   3rd Q    max
-0.5236 -0.0972 0.01386 0.07326 0.5584

Figure 11.20:  Residual plot of improved model.

•
•
•
••

•
•• •

••

•

•
•

•

•

•
••

•

•••

•

•

•
•

•
•

•
•

•

•

•

••
•

•

••

•

•
•

•

•

•

•••
•
•

•
•
•

•
••

•

•

••

•

• •
••

•

•

••
•

•

••

•

•

•
•

•

•

•

•

•
•

•

•

•
•

C

re
si

d(
et

ha
no

l.m
4)

8 10 14 18

-0
.4

0.
0

0.
4

•
•

•
• •
•

•••
••

•

•
•

•

•

•
••

•

•• •

•

•

•
•

•
•

•
•

•

•

•

••
•

•

••

•

•
•

•

•

•

• •
•

•
•

•
•

•
•

• •
•

•

••

•

••
••

•

•

• •
•

•

• •

•

•

•
•

•

•

•

•

•
•

•

•

•
•

E

re
si

d(
et

ha
no

l.m
4)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
4

366



Improving the Model
We gain a much more parsimonious model—the Equivalent Number of
Parameters drop from approximately 18 to about 9. An F-test using
anova shows no significant difference between our first acceptable
model and the latest, more parsimonious model:

> anova(ethanol.m3,ethanol.m5)

Model 1:
loess(formula = NOx ~ C * E, span = 0.25)
Model 2:
loess(formula = NOx ~ C * E, span = 1/2, parametric = "C", 
drop.square = "C")
Analysis of Variance Table
      ENP     RSS     Test      F Value     Pr(F)
1    21.6  1.7999   1 vs 2         1.42   0.16486
2     9.2  2.5433

Figure 11.21:  Comparison of residual plots for original and improved models.

•

•

••
•

•

•••
••

•

•

•
•

•

•

•
•

•

•

• •

•

••

•

•
••

•

•

•

•

•
••

•

•

••

•
•

•

•

•

•

•
•

•

•

•

•

•
•

• • •

•
•

•

•

••
•••

•

•

••

•

•
•

•

•

• ••

•

•

•

•
•

•

••

•

E

re
si

d(
et

ha
no

l.m
3)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
2

Fitted model ethanol.m3

•
•

•
• •
•

•••
••

•

•
•

•

•

•
••

•

•• •

•

•

•
•

•
•

•
•

•

•

•

••
•

•

••

•

•
•

•

•

•

• •
•

•
•

•
•

•
•

• •
•

•

••

•

••
••

•

•

• •
•

•

• •

•

•

•
•

•

•

•

•

•
•

•

•

•
•

E

re
si

d(
et

ha
no

l.m
4)

0.6 0.8 1.0 1.2

-0
.4

0.
0

0.
4

Fitted model ethanol.m4
367



Chapter 11  Local Regression Models
368



Introduction 370

Growing Trees 372
Numeric Response and Predictor 372
Factor Response and Numeric Predictor 374

Displaying Trees 378

Prediction and Residuals 381

Missing Data 382

Pruning and Shrinking 385
Pruning 385
Shrinking 387

Graphically Interacting With Trees 390
Subtrees 390
Nodes 392
Splits 394
Manual Splitting and Regrowing 396
Leaves 399

References 401

CLASSIFICATION AND 
REGRESSION TREES 12
369



Chapter 12  Classification and Regression Trees
INTRODUCTION

Tree-based modeling is an exploratory technique for uncovering
structure in data, increasingly used for:

• devising prediction rules that can be rapidly and repeatedly
evaluated

• screening variables

• assessing the adequacy of linear models

• summarizing large multivariate datasets

Tree-based models are useful for both classification and regression
problems. In these problems, there is a set of classification or
predictor variables (x), and a single-response variable (y).

If y is a factor, classification rules are of the form:

if  and 

then y is most likely to be in level 5.

If y is numeric, regression rules for description or prediction are of the
form:

if  and  and 

then the predicted value of y is 4.75.

A classification or regression tree is the collection of many such rules
displayed in the form of a binary tree, hence the name. The rules are
determined by a procedure known as recursive partitioning. Tree-based
models provide an alternative to linear and additive models for
regression problems, and to linear and additive logistic models for
classification problems.

Compared to linear and additive models, tree-based models have the
following advantages:

• Easier to interpret when the predictors are a mix of numeric
variables and factors.

• Invariant to monotone re-expressions of predictor variables.

• More satisfactorily treat missing values.

x1 2.3≤ x3 A B,{ }∈

x2 2.3≤ x9 C D F, ,{ }∈ x5 3.5≤
370



Introduction
• More adept at capturing nonadditive behavior.

• Allow more general (that is, other than of a particular
multiplicative form) interactions between predictor variables.

• Can model factor response variables with more than two
levels.
371



Chapter 12  Classification and Regression Trees
GROWING TREES

We describe the tree-growing function tree by presenting several
examples. The tree function generates objects of class "tree". This
function automatically decides whether to fit a regression or
classification tree, according to whether the response variable is
numeric or a factor. We also show two types of displays, generated by
generic functions: a tree display produced by plot and a table
produced by print.

In general, the response y and predictors x may be any combination
of numeric or factor types. In fact, the predictors can be a mix of
numeric and factor. However, no factor predictor can have no more
than 32 levels, and no factor response can have more than 128 levels.
In both of the examples below, the predictors are all numeric. The
numeric response example illustrates a regression tree. The factor
response example illustrates a classification tree.

Numeric 
Response and 
Predictor

In the first example, we grow a regression tree relating the numeric
response Mileage to the predictor variable Weight from the data
frame car.test.frame. The resulting tree is given the name
auto.tree, which is then plotted by the generic plot function and
labeled by the generic text function (see Figure 12.1).

> attach(car.test.frame)
> auto.tree <- tree(Mileage ~ Weight, car.test.frame)
> plot(auto.tree,type="u")
> text(auto.tree)
> title("A Tree-Based Model\nfor Mileage versus Weight")
372



Growing Trees
In describing tree-based models, the terminology mimics real trees:

• rootThe top node of the tree

• leafA terminal node of the tree

• splitA rule for creating new branches

In growing a tree, the binary partitioning algorithm recursively splits
the data in each node until either the node is homogeneous or the
node contains too few observations (# 5, by default).

Figure 12.1:  Display of a tree-based model with a numeric response, Mileage, 
and one numeric predictor, Weight.

|Weight<2567.5

Weight<2280 Weight<3087.5

Weight<2747.5

Weight<2882.5

Weight<3637.5

Weight<3322.5

Weight<3197.5

34.00 28.89

25.62

23.33 24.11

20.60 20.40

22.00

18.67

A Tree-Based Model
for Mileage versus Weight
373



Chapter 12  Classification and Regression Trees
In order to predict mileage from weight, one follows the path from the
root, to a leaf, according to the splits at the interior nodes. The tree in
Figure 12.1 is interpreted in the following way:

• Automobiles are first split according to whether they weigh
less than 2567.5 pounds.

• If so, they are again split according to weight being less than
2280 pounds.

• Lighter cars (< 2280 pounds) have a predicted mileage of 34
mpg.

• Heavier cars (2280 # Weight # 2567.5) have a mileage of
28.9 mpg.

• For those automobiles weighing more than 2567.5 pounds,
seven weight classes are formed.

• The predicted mileage ranges from a high of 25.6 mpg to a
low of 18.7 mpg.

• Overall, heavier cars get poorer mileage than lighter cars.

• It appears that doubling the weight of an automobile
approximately halves its mileage.

Factor 
Response and 
Numeric 
Predictor

In this classification example, we model the probability of developing
Kyphosis, using the kyphosis data frame with predictors Age,
Start, and Number.

First, use boxplots to plot the distributions of the predictor variables
as a function of Kyphosis in Figure 12.2. Start appears to be the
single best predictor of Kyphosis since Kyphosis is more likely to be
present among individuals with Start # 12.

> kyph.tree <- tree(Kyphosis ~ Age + Number + Start,
+ data = kyphosis)
374



Growing Trees
Since Kyphosis is a factor response, the result kyph.tree is a
classification tree.

Either the formula or data arguments to the tree function may be
missing. Without the formula argument, a tree is constructed from
the data frame using the first variable as the response. Hence, the
Kyphosis example could have been constructed as follows:

> auto.tree <- tree(car.test.frame)

Without the data argument, the variables named in formula are
expected to be in the search list. The Kyphosis tree could also have
been grown with

> attach(car.test.frame)
> auto.tree <- tree(Mileage ~ Weight)

The only meaningful operator on the right side of a formula is "+".
Since tree-based models are invariant to monotone re-expressions of
individual predictor variables, functions like log, I, and ^ have little
use. Also, tree-based models capture interactions without explicit
specification.

Figure 12.2:  Boxplots of the predictors of Kyphosis.

0
50

10
0

15
0

20
0

A
ge

absent present

Kyphosis
2

4
6

8
10

N
um

be
r

absent present

Kyphosis

5
10

15

S
ta

rt

absent present

Kyphosis
375



Chapter 12  Classification and Regression Trees
This time, we display the fitted tree using the generic function, print,
which is called automatically simply by typing the name of the tree
object. This tabular representation is most useful when the details of
the fitting procedure are of interest. Indentation is added as a key to
the underlying structure.

> kyph.tree

node), split, n, deviance, yval, (yprob)
      * denotes terminal node
1) root 81 83.230 absent ( 0.7901 0.20990 )
  2) Start<12.5 35 47.800 absent ( 0.5714 0.42860 )
    4) Age<34.5 10 6.502 absent ( 0.9000 0.10000 )
    8) Age<16 5 5.004 absent ( 0.8000 0.20000 ) *
    9) Age>16 5 0.000 absent ( 1.0000 0.00000 ) *
  5) Age>34.5 25 34.300 present ( 0.4400 0.56000 )
   10) Number<4.5 12 16.300 absent ( 0.5833 0.41670 )
     20) Age<127.5 7 8.376 absent ( 0.7143 0.28570 ) *
     21) Age>127.5 5 6.730 present ( 0.4000 0.60000 ) *
   11) Number>4.5 13 16.050 present ( 0.3077 0.69230 )
     22) Start<8.5 8 6.028 present ( 0.1250 0.87500 ) *
     23) Start>8.5 5 6.730 absent ( 0.6000 0.40000 ) *
3) Start>12.5 46 16.450 absent ( 0.9565 0.04348 )
  6) Start<14.5 17 12.320 absent ( 0.8824 0.11760 )
   12) Age<59 5 0.000 absent ( 1.0000 0.00000 ) *
   13) Age>59 12 10.810 absent ( 0.8333 0.16670 )
     26) Age<157.5 7 8.376 absent ( 0.7143 0.28570 ) *
     27) Age>157.5 5 0.000 absent ( 1.0000 0.00000 ) *
  7) Start>14.5 29 0.000 absent ( 1.0000 0.00000 ) *

The first number in each row of the output is a node number. The
nodes are numbered to index the tree for quick identification. For a

full binary tree, the nodes at depth d are integers n, .
Usually, a tree is not full, but the numbers of the nodes that are present
are the same as they would be in a full tree.

In the print output, the nodes are ordered according to a depth-first
traversal of the tree, printed output.

Let us first examine one row of the output:

2) Start<12.5 35 47.800 absent ( 0.5714 0.42860 )

2d n 2d 1+<≤
376



Growing Trees
This row is for node 2. Following the node number is the split,
Start < 12.5. This states the the observations in the parent (root)
node with Start < 12.5 were put into node 2.

The next number after the split is the number of observations, 35.
The number 47.8 is the deviance, the measure of node heterogeneity
used in the tree-growing algorithm. A perfectly homogeneous node
has deviance zero. The fitted value, yval, of the node is absent.
Finally, the numbers in parentheses (0.5714 0.42860), yprob, are the
estimated probabilities of the observations in that node not having,
and having, kyphosis. Therefore, the observations with
Start < 12.5 have a 0.5714 chance of not having kyphosis under
this tree model.

An interpretation of the table follows:

• The split on Start partitions the 81 observations into groups
of 35 and 46 individuals (nodes 2 and 3) with probability of
Kyphosis 0.429 and 0.043, respectively.

• The group at node 2 is then partitioned into groups of 10 and
25 individuals (nodes 4 and 5) depending on whether Age is
less than 34.5 years or not.

• The group at node 4 is divided in half depending on whether
Age is less than 16 or not. If Age > 16 none of the individuals
have Kyphosis (probability of Kyphosis is 0). These subgoups
are divided no further.

• The group at node 5 is subdivided into groups of size 12 and
13 depending on whether or not Number is less than 4.5. The
respective probabilities of Kyphosis for these groups is 0.417
and 0.692.

• The procedure continues, yielding 10 distinct groups with
probabilities of Kyphosis ranging from 0.0 to 0.875.

• Asterisks signify terminal nodes; that is, those that are not split.
377



Chapter 12  Classification and Regression Trees
DISPLAYING TREES

The generic functions print, plot, and summary work as expected
for "tree" objects. We have already encountered the first two
functions in the examples above. A further interesting feature of plot
is that an optional type argument controls node placement. The
type argument can have either of the two values:

• "" produces nonuniform spacing as the default. The more
important the parent split, the further the children node pairs
are spaced from their parents.

• "u" produces uniform spacing.

In the car mileage example, we used uniform spacing in order to label
the tree. However, if the goal is tree simplification, we gain insight
into the relative importance of the splits by using the default type,
that is, nonuniform spacing. This is shown in Figure 12.3.

When you first plot the tree using plot, the nodes and splits will be
displayed without any text labels. The generic text function,
described in the User’s Guide, uses the same arguments to rotate and
adjust text in tree plots that it uses with most other types of plots.

The summary function has a tree-specific method which indicates the
tree type (regression/classification), a record of how the tree was
created, the residual mean deviance, and other information.

The residual deviance is the sum, over all the observations, of terms
which vary according to type (regression/classification) of tree. The
residual mean deviance is then obtained after dividing by the degrees
of freedom (number of observations minus the number of terminal
nodes).
378



Displaying Trees
The following summary is typical for regression:

> summary(auto.tree)

Regression tree:
tree(formula = Mileage ~ Weight, data = car.test.frame) 
Number of terminal nodes: 9
Residual mean deviance: 4.289 = 218.7 / 51
Distribution of residuals:
   Min. 1st Qu. Median Mean 3rd Qu. Max.
 -3.889 -1.111 0 0 1.083 4.375

The regression tree has nine terminal nodes. Under a normal
(Gaussian) assumption, the terms in the residual mean deviance are
the squared differences between the observations and the predicted

Figure 12.3:  Plot of the car mileage tree with non-uniform node placement.

|

379



Chapter 12  Classification and Regression Trees
values. See the section Prediction and Residuals for a discussion of
prediction and residuals. The summary function also summarizes the
distribution of residuals.

The following summary is typical for classification trees:

> summary(kyph.tree)

Classification tree:
tree(formula = Kyphosis ~ Age + Number + Start)
Number of terminal nodes: 10
Residual mean deviance: 0.5809 = 41.24 / 71
Misclassification error rate: 0.1235 = 10 / 81

Note that, for classification trees, the summary function gives the
misclassification error rate instead of distribution of residuals. First,
predicted classifications are obtained as described in the section
Prediction and Residuals. The error rate is then obtained by counting
the number of misclassified observations, and dividing by the number
of observations. The terms in the residual mean deviance are based
on the multinomial distribution (see Chambers and Hastie (1992)).
380



Prediction and Residuals
PREDICTION AND RESIDUALS

Once a tree is grown, an important use of the fitted tree is to predict
the value of the response variable for a set of predictor variables.

For concreteness, consider just one observation x on the predictor
variables. In prediction, the splits direct x through the tree. The
prediction is taken to be the the yval at the deepest node reached.
Usually this corresponds to a leaf node. However, in certain
situations, a prediction may reside in a nonterminal node (Chambers
and Hastie (1992)). In particular this may happen if missing values
occur in x, and the tree was grown with only complete observations.

The generic function predict has a tree-specific method. It takes a
tree object and, optionally, a data frame as arguments. If the data
frame is not supplied, predict returns the fitted values for the data
originally used to construct the tree. The function returns predicted
values either as a vector (the default) or a tree object
(type = "tree").

The residuals can then be obtained either by subtracting the fitted
values from the response variable, or directly using the function
residuals. Figure 12.4 presents a plot of the residuals versus the
predicted values and a normal probability of the residuals for the
auto.tree model.

Figure 12.4:  Residuals versus predicted values and a normal probability plot of the residuals for a "tree" 
object.

••

•

•

•

•

••

•

••
•

•

•

•

•

•

•

•
•

•

•

•

•

•
••

•

•

•

•

•
•
•

•

•

•
•

• •

•

••
•

••

•

•

• ••

•

•

•

••
•

•

•
•

predict(auto.tree)

re
si

du
al

s(
au

to
.tr

ee
)

20 25 30

-4
-2

0
2

4 • •

•

•

•

•

••

•

••
•

•

•

•

•

•

•

•
•

•

•

•

•

•
••

•

•

•

•

•
•

•
•

•

•
•

• •

•

••
•

••

•

•

• ••

•

•

•

••
•

•

•
•

Quantiles of Standard Normal

re
si

du
al

s(
au

to
.tr

ee
)

-2 -1 0 1 2

-4
-2

0
2

4

381



Chapter 12  Classification and Regression Trees
MISSING DATA

Missing values, NAs, can occur either in data used to build trees, or in
a set of predictors for which the value of the response variable is to be
predicted.

For data used to build trees, the tree function permits NAs only in
predictor variables, but only if the argument na.action =
na.tree.replace or na.action = na.tree.replace.all. For
any predictor with missing values, the na.tree.replace function
creates a new factor variable, with an added level named "NA" for the
NAs. However, it leaves numeric predictors alone even if they have
NAs. The na.tree.replace.all function behaves like
na.tree.replace for factor predictors, and for numeric predictors
with NAs, it converts them to factors (based on quantiles) and then
adds a separate level for NAs.

In prediction, suppose an observation is missing a value for the
variable V. Further, suppose there were no missing values for V in the
training data. The observation follows its path down the tree until it
encounters a node whose split is based upon V. The prediction is then
taken to be the yval at that node. If values of several variables are
missing, the observation stops at the first such variable split
encountered.

To clarify this, let us return to the automobile example, where some of
the data are missing values on the variable Reliability. We first fit a
tree on the data with no missing values. The resulting tree is displayed
in Figure 12.5. Notice the split on the variable Reliability.
382



Missing Data
To create the tree shown in Figure 12.5, first create a new data set
from car.test.frame, omitting those observations which are
missing data for Reliability:

> car.test.no.miss <-
+ car.test.frame[!is.na(car.test.frame[,3]),]

Figure 12.5:  Display of tree relating Mileage to Weight and Reliability. 
All of the data used to fit the data are complete.

|
Weight<2600

Weight<2280 Weight<3087.5

Reliability:b

Weight<2777.5

Weight<3637.5

Weight<3322.5

34.00 29.00

22.60

26.40 24.11 20.86 22.40

18.60
383



Chapter 12  Classification and Regression Trees
Now grow the tree using the cleansed data:

> car.tree <- tree(Mileage ~ Weight + Reliability,
+ car.test.no.miss)

Next, we predict the data with values missing on Reliability, by
extracting those observations that were omitted from
car.test.no.miss, and then calling predict on the resulting data
set:

> car.test.miss <-
+ car.test.frame[is.na(car.test.frame[,3]),]
> pred.miss <-
+ predict(car.tree,car.test.miss,type="tree")
> pred.miss

node), split, n, deviance, yval
      * denotes terminal node
1) root 11 245.300 24.80
  2) Weight<2600 3 65.940 30.92
    4) Weight<2280 1 0.000 34.00 *
    5) Weight>22figz80 2 26.000 29.00 *
  3) Weight>2600 8 81.060 22.58
    6) Weight<3087.5 3 11.770 24.32
     12) Reliability:2 0 0.000 22.60 *
     13) Reliability:1,3,4,5 0 0.000 24.93
       26) Weight<2777.5 0 0.000 26.40 *
       27) Weight>2777.5 0 0.000 24.11 *
    7) Weight>3087.5 5 10.680 20.65
     14) Weight<3637.5 4 17.000 21.50
       28) Weight<3322.5 3 8.918 20.86 *
       29) Weight>3322.5 1 5.760 22.40 *
     15) Weight>3637.5 1 0.160 18.60 *

Notice that there are no observations in the nodes (12, 13, 26, 27) at or
below the split on Reliability.
384



Pruning and Shrinking
PRUNING AND SHRINKING

Since tree size is not limited in the growing process, a tree may be
more complex than necessary to describe the data. Two functions
assess the degree a tree can be simplified without sacrificing
goodness-of-fit. The prune.tree function achieves parsimonious
description by reducing the nodes on a tree, whereas the
shrink.tree function shrinks each node towards its parent.

Both functions take the following arguments:

• treeFitted model object of class tree.

• kcost complexity parameter (for prune.tree); shrinkage
parameter (for shrink.tree).

• newdataa data frame containing the values at which
predictions are required. if missing, the data used to grow the
tree are used.

Pruning Pruning successively snips off the least important splits. Importance of a
subtree is measured by the cost-complexity measure:

where

Cost-complexity pruning determines the subtree T that minimizes

 over all subtrees. The larger the k, the fewer nodes there will

be.

The prune.tree function takes a cost-complexity parameter
argument k, which can be either a scalar or a vector. A scalar k
defines one subtree of tree whereas a vector k defines a sequence of
subtrees minimizing the cost-complexity measure. If the k argument
is not supplied, a nested sequence of subtrees is created by recursively
snipping off the least important splits.

Dk T'( ) D T'( ) k size T'( )⋅+=

Dk T'( ) the deviance of the subtree T',=

size T'( ) the number of terminal nodes of T',=

k the cost-complexity parameter. =

Dk T'( )
385



Chapter 12  Classification and Regression Trees
Figure 12.6 shows the deviance decreasing as a function of the
number of nodes and the cost-complexity parameter k.

> plot(prune.tree(kyph.tree))

Since over one half of the reduction in deviance is explained by the
first three nodes, we limit the tree to three nodes.

> plot(prune.tree(kyph.tree, k = 5))
> text(prune.tree(kyph.tree, k = 5))

Figure 12.6:  A sequence of plots generated by the prune.tree function.

size

de
vi

an
ce

40
50

60
70

80

2 4 6 8 10

19.0  7.0  4.1  2.6  2.0  1.5  1.2 -Inf

Reduction in Deviance
With the Addition of Nodes

|
Start<12.5

Age<34.5

absent present

absent

k=5

|
Start<12.5

Age<34.5

Number<4.5
Start<8.5

Start<14.5

absent
absent

presentabsent

absentabsent

k=2
386



Pruning and Shrinking
> summary(prune.tree(kyph.tree, k = 5))

Classification tree:
prune.tree(tree = kyph.tree, k = 5)
Variables actually used in tree construction:
[1] "Start" "Age"
Number of terminal nodes: 3
Residual mean deviance: 0.734 = 57.25 / 78
Misclassification error rate: 0.1728 = 14 / 81

By comparing this to the summary of the full tree in the section
Displaying Trees, we see that reducing the number of nodes from 10
to 3 simplifies the model, but at the cost of increased misclassification.

Increasing the complexity of the tree to 6 nodes drops the
misclassification to a rate comparable to that of the full tree with 10
nodes:

> summary(prune.tree(kyph.tree, k = 2))

Classification tree:
prune.tree(tree = kyph.tree, k = 2)
Number of terminal nodes: 6
Residual mean deviance: 0.6383 = 47.88 / 75
Misclassification error rate: 0.1358 = 11 / 81

Figure 12.6 shows kyph.tree pruned to 3 and 6 nodes.

Shrinking Shrinking reduces the number of effective nodes by shrinking the fitted
value of each node towards its parent node. Shrunken fitted values,
for a shrinking parameter k, are computed according to the recursion:

where

The shrink.tree function optimally shrinks children nodes to their

parent, based on the magnitude of the difference between 

and . The shrinkage parameter argument (0 < k < 1) may
be a scalar or a vector. A scalar k defines one shrunken version of

node( ) k y node( ) 1 k–( ) ŷ parent(⋅+⋅=

y node( ) the usual fitted value for a node,=

ŷ parent( ) the shrunken fitted value for the node ′ s parent.=

y node( )

y parent( )
387



Chapter 12  Classification and Regression Trees
tree, whereas a vector k defines a sequence of shrunken trees
obtained by optimal shrinking for each value of k. If the k argument is
not supplied, a nested sequence of subtrees is created by recursively
shrinking the tree for a default sequence of values (roughly .05 to .91)
of k.

Figure 12.7 shows the deviance decreasing as a function of the
number of effective nodes and the shrinkage parameter, k.

> plot(shrink.tree(kyph.tree))

Limit the tree to three effective nodes as done with pruning as follows:

> kyph.tree.sh.25 <- shrink.tree(kyph.tree, k = 0.25)
> plot(kyph.tree.sh.25)
> text(kyph.tree.sh.25)
> title("k = 0.25")
> summary(kyph.tree.sh.25)

Classification tree:
shrink.tree(tree = kyph.tree, k = 0.25)
Number of terminal nodes: 10
Effective number of terminal nodes: 2.8
Residual mean deviance: 0.7385 = 57.75 / 78.2
Misclassification error rate: 0.1358 = 11 / 81

The lower misclassification rate is maintained even with only three
effective nodes.

Expand the tree to three effective nodes as follows:

> kyph.tree.sh.47 <- shrink.tree(kyph.tree, k = 0.47)
> plot(kyph.tree.sh.47)
> text(kyph.tree.sh.47)
> title("k = 0.47")
> summary(kyph.tree.sh.47)

Classification tree:
shrink.tree(tree = kyph.tree, k = 0.47)
Number of terminal nodes: 10
Effective number of terminal nodes: 6
Residual mean deviance: 0.6281 = 47.11 / 75
Misclassification error rate: 0.1358 = 11 / 81
388



Pruning and Shrinking
Note that no change other than a decrease in the residual mean
deviance and an increase in the number of effective nodes.

Figure 12.7:  A sequence of plots generated by the shrink.tree function.

size

de
vi

an
ce

40
50

60
70

80

2.0000 4.0000 6.0000 8.0000 9.7057

0.16 0.34 0.47 0.62 0.91

Reduction in Deviance
With Sequential Shrinking of Nodes

|Start<12.5

Age<34.5

Age<16 Number<4.5Age<127.5 Start<8.5

Start<14.5
Age<59 Age<157.5

absent absent absent absent present absent

absent absent absent absent

k = 0.25

|Start<12.5

Age<34.5

Age<16 Number<4.5
Age<127.5 Start<8.5

Start<14.5

Age<59 Age<157.5

absent absent
absent absent

present absent

absent

absent absent

absent

k = 0.47
389



Chapter 12  Classification and Regression Trees
GRAPHICALLY INTERACTING WITH TREES

A number of S-PLUS functions use the tree metaphor to diagnose tree-
based model fits. The functions are naturally grouped by components
of trees: subtrees, nodes, splits, and leaves. Except for the leaves
functions, these functions allow you to interact graphically with trees,
to perform a what-if analysis. You can also use these functions
noninteractively by including a list of nodes as an argument. The goal
is to better understand the fitted model, examine alternatives, and
interpret the data in light of the model.

You can select subtrees from a large tree, and apply a common
function (such as a plot) to the stand of resulting trees. Similarly, you
can snip subtrees from the large tree, in order to gain resolution and
label the top of the tree.

You can browse nodes to obtain important information too bulky to
be usefully placed on a tree plot. You can obtain the names of
observations which occur in a node. By examining the path (that is,
the sequence of splits) that lead to a node, you can characterize the
observations in that node.

You may compare optimal splits (generated by the tree-growing
algorithm) to other potential splits. This helps to discover splits on
variables that may shed light on the nature of the data. Any split
divides the observations in a node into two groups. Therefore, you
can compare the distribution of observations of a chosen variable in
each of the two groups. This helps characterize the two groups, and
also find variables with good discriminating abilities. You may regrow
the tree, after designating a different split at a node.

The leaves of the trees represent the most homogeneous partitions of
the data. You can investigate the differences across leaves by studying
the distribution or summary statistics of chosen variables.

Subtrees You can select or delete subtrees by subscripting the original tree, or by
using one of the two functions described below.

The function snip.tree function deletes subtrees; that is, it snips
branches off a specified tree. One goal may be to gain resolution at
the top of the tree so that it can be labeled.
390



Graphically Interacting With Trees
The graphical interface, using a mouse, proceeds as follows:

• first click informs you of the change in tree deviance if that
branch is snipped off.

• second click removes the branch from the tree.

Figure 12.8 shows the result of snipping three branches off
kyph.tree.

> par(mfrow=c(3,1))
> plot(kyph.tree)
> plot(kyph.tree)
> kyph.tree.sn <- snip.tree(kyph.tree)

node number: 4
   tree deviance = 41.24
   subtree deviance = 42.74
node number: 10
   tree deviance = 42.74
   subtree deviance = 43.94
node number: 6
   tree deviance = 43.94
   subtree deviance = 47.88

> plot(kyph.tree.sn)
> text(kyph.tree.sn,cex=1)

For noninteractive use, we can equivalently supply the node numbers
in snip.tree(kyph.tree,c(4,10,6)). Negative subscripting is a
convenient shorthand: kyph.tree[-c(4,10,6)].

Similarly, the function select.tree function selects subtrees of a
specified tree. For each node specified in the argument list or selected
interactively, the function returns a tree object rooted at that node.
These can in turn be plotted, etc.
391



Chapter 12  Classification and Regression Trees
Nodes Several S-PLUS functions encourage the user to obtain more detailed
information about nodes. Each of them take a tree object as a
required argument, and an optional list of nodes. If the node list is
omitted, graphical interaction is expected. The functions return a list,
with one component for each node.

The browser function returns a summary of the information
contained in a node. Interactively, you obtain information on the
second and fifth nodes of kyph.tree by:

> browser(kyph.tree)

Figure 12.8:  A sequence of plots created by snipping branches from the top tree.

|

|

|Start<12.5

Age<34.5

Number<4.5
Start<8.5

Start<14.5

absent
absent

present absent

absent absent
392



Graphically Interacting With Trees
node number: 2
 split: Start<12.5
 n: 35
 dev: 47.800
 yval: absent
        absent present
[1,] 0.5714286 0.4285714
node number: 5
 split: Age>34.5
 n: 25
 dev: 34.300
 yval: present
     absent present
[1,]   0.44    0.56

Alternatively, provide a list of nodes as an argument:

> browser(kyph.tree,c(2,5))

     var  n      dev   yval splits.cutleft splits.cutright
2    Age 35 47.80357 absent          <34.5           >34.5
5 Number 25 34.29649 present          <4.5            >4.5
  yprob.absen yprob.present
2   0.5714286     0.4285714
5   0.4400000     0.5600000

The identify function is another generic function with a tree-
specific method. The following noninteractive call lists the
observations in the eighth and ninth nodes of kyph.tree:

> identify(kyph.tree,nodes=c(8,9))

$"8":
[1] "4" "14" "26" "29" "39"
$"9":
[1] "13" "21" "41" "68" "71"

The function path.tree returns the path (sequence of splits) from the
root to any node of a tree. This is useful in those cases where
overplotting results if the tree is labeled indiscriminately. As an
example, we interactively look at the path to the rightmost terminal
node of the kyphosis tree:

> path.tree(kyph.tree)
393



Chapter 12  Classification and Regression Trees
 node number: 27
   root
   Start>12.5
   Start<14.5
   Age>59
   Age>157.5

By examining the path, we can determine that the children in this
node are more than 157.5 months old, and the beginnings of the range
of vertebrae involved are between 12.5 and 14.5.

Splits The recursive partitioning algorithm underlying the tree function
chooses the “best” set of splits that partition the predictor variable
space into increasingly homogeneous regions. However, it is
important to remember that this is just an algorithm. There may be
other splits that also help you understand the data. The functions in
this section help to examine alternative splits.

Using the burl.tree function, you can select a node either
interactively or through the argument list, and observe the goodness-of-
split for each predictor in the model formula. The goodness-of-split
criterion is the difference in deviance between the node and its
children (defined by the tentative split). Large differences correspond
to important splits. Reduction in deviance is plotted against a quantity
which depends upon the form of the predictor:

• numeric: each possible cut-point split.

• factor: a decimal equivalent of the binary representation of
each possible subset split. The plotting character is a string
labeling the left split.

In the following example and Figure 12.9, competing splits are
plotted for each of the four predictor variables in the cu.summary
data frame.

> reliab.tree <- tree(Reliability ~
+ Price + Country + Mileage + Type,
+ na.action = na.tree.replace.all, data = cu.summary)
> tree.screens() #establish plotting regions

[1] 1 2

> plot(reliab.tree,type="u")
> text(reliab.tree)
394



Graphically Interacting With Trees
> burl.tree(reliab.tree) # Now click at the root node

The burl.tree function returns a list. For each variable there is a
component which contains the necessary information for doing each
of the plots.

The burl plots show that the most important splits involve the
variable Country. The candidate splits on this variable divide into
two groups; the top group discriminates better than the bottom. The
very best split is the one labeled ef = Japan, Japan/USA.
Moreover, this occurs in all candidate splits in the top group.
Therefore, we conclude that this is a meaningful split.

Figure 12.9:  A tree for Reliability in the cu.summary data frame with a burl plot of the four 
predictors for the root node.

|Country:ef

Price<12197

Type:ae

Type:ad

Country:dh

Mileage:cd

Price<9420

Type:e

Type:c

Mileage:ab Price<15770

Much better

better Much better average

better

Much worse worse

Much worse

worse average average average

Price Country

de
e

ef

def

df

f
fg
dfg

defg
efg

eg
deg

dgghdgh
deghegh

efgh
defgh

dfgh
fgh

fh
dfh

defh
efh

eh
deh

dhhidhi

dehi
ehi

efhi
defhi

dfhi
fhifghidfghi

defghi
efghi

eghideghidghighigidgidegi
egi

efgi
defgi

dfgi
fgifi

dfi

defi

efi

ei
dei

di

Mileage

a ab
b

bcabcac c

cdacd
abcdbcd

bdabdad d

Type

a
ab

b
bc
abcacccd

acd
abcd

bcdbd

abd

ad

dde

ade
abde

bdebcdeabcde
acde

cde
ce
aceabce

bcebe

abeae
e

395



Chapter 12  Classification and Regression Trees
The function hist.tree requires a list of variable names, in addition
to the tree object (and, optionally, a list of nodes). Unlike burl.tree,
the variables need not be predictors. For a given node, a side-by-side
histogram is plotted for each variable. The histogram on the left
displays the distribution of the observations following the left split;
similarly the histogram on the right displays the distribution of the
observations following the right split.

Figure 12.10 is produced by the following expression:

> reliab.tree.2 <- tree(Reliability ~
+ Country + Mileage + Type,
+ na.action = na.tree.replace.all, data = cu.summary)
> tree.screens() #establish plotting regions

[1] 1 2

> plot(reliab.tree.2, type="u")
> text(reliab.tree.2)
> hist.tree(reliab.tree.2, Price, Mileage, nodes=1)

The figure shows that Japanese cars manufactured here or abroad
tend to be less expensive and more fuel efficient than others. The
lower portion of the plot displays a side-by-side histogram for each of
the variables Price and Mileage. Note that it is possible to get a
histogram of this variable even though the formula for this tree does
not include Price.

Manual 
Splitting and 
Regrowing

After examining competitor splits at a node, you may wonder what
the tree would look like if the node were split differently. You can
achieve this by using the edit.tree function.

The arguments to edit.tree are:

• object: Fitted model object of class "tree".

• node: Number of the node to edit.

• var: Character string naming variable to split on.

• split: Left split. Numeric for continuous variables; character
string of levels that go left for a factor.

• split: Right split. Character string of levels that go right for a
factor.
396



Graphically Interacting With Trees
As an example, look at a burl of kyph.tree at the root node for the
variable Start.

> kyph.burl <- burl.tree(kyph.tree, node = 1)
> kyph.burl$Start

   Start       dev numl
 1   1.5  1.001008    5
 2   2.5  1.887080    7
 3   4.0  2.173771   10
 4   5.5  5.098140   13
 5   7.0 11.499747   17
 6   8.5 17.946393   19
 7   9.5 12.812267   23
 8  10.5 12.821041   27

Figure 12.10:  A tree for Reliability in the cu.summary data frame.

|Country:ef

Type:ce

Mileage:bcd Type:a

Type:ad

Country:dh

Mileage:cd

Country:gi

Type:e

Type:c

Mileage:ab Mileage:ab

Much betterMuch betterMuch betterMuch better average

better

worse Much worse

Much worse

worse average average average

PricePrice MileageMileage
397



Chapter 12  Classification and Regression Trees
 9  11.5 10.136948   30
10  12.5 18.977175   35
11  13.5 13.927629   47
12  14.5 17.508746   52
13  15.5 12.378558   59
14  16.5  2.441679   76

Use edit.tree to regrow the tree with a designated split at
Start = 8.5. The result is shown in Figure 12.11.

> kyph.tree.edited <- edit.tree(kyph.tree, node = 1,
+ var = "Start", splitl = 8.5)

Figure 12.11:  kyph.tree regrown at the root node with a split at 
Start = 8.5.

|
Start<8.5

Age<93

Age<47

Start<14.5

Age<55

Age<98

Number<3.5

absent absent present

absent

present

absent absent

absent
398



Graphically Interacting With Trees
Leaves Two noninteractive functions show the distribution of a variable over
all terminal nodes of a tree.

The function tile.tree plots histograms of a specified variable for
observations in each leaf. This function can be used, for example, to
display class probabilities across the leaves of a tree. Figure 12.12
shows the distribution across leaves for Kyphosis.

> tree.screens() #split plotting screen
> plot(kyph.tree,type="u")
> text(kyph.tree)

Figure 12.12:  A tree of the kyphosis data with a tile plot of Kyphosis.

|Start<12.5

Age<34.5

Age<16 Number<4.5

Age<127.5 Start<8.5

Start<14.5

Age<59

Age<157.5

absent absent

absent present

present absent

absent

absent absent

absent
399



Chapter 12  Classification and Regression Trees
> tile.tree(kyph.tree, Kyphosis)

A related function, rug.tree, shows the average value of a variable over the
leaves of a tree. The optional argument FUN allows you to summarize the
variable with something other than the mean (for example, trimmed means,
medians).

> rug.tree(kyph.tree, Start, FUN = median)

 Figure 12.13 shows the rug plot of medians for Start.

Figure 12.13:  A tree of the kyphosis data with a rug plot of Start.

|Start<12.5

Age<34.5

Age<16 Number<4.5

Age<127.5 Start<8.5

Start<14.5

Age<59

Age<157.5

absent absent

absent present

present absent

absent

absent absent

absent
400



References
REFERENCES

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984).
Classification and Regression Trees. Wadsworth and Brooks/Cole,
Monterey, CA.

Chambers, J.M. and Hastie, T.J. (1992). Statistical Models in S.
Wadsworth and Brooks Cole Advanced Books and Software, Pacific
Grove, CA.
401



Chapter 12  Classification and Regression Trees
402



Introduction 404

Representing Grouped Data Sets 406
The groupedData Class 406
Example: The Orthodont Data Set 407
Example: The Pixel Data Set 410
Example: The CO2 Data Set 412

Fitting Models Using the lme Function 417
Model Definitions 417
Arguments 419

Manipulating lme Objects 421
The print Method 421
The summary Method 422
The anova Method 424
The plot method 425
Other Methods 427

Fitting Models Using the nlme Function 430
Model Definition 430
Arguments 430

Manipulating nlme Objects 434
The print Method 434
The summary Method 436
The anova Method 438
The plot Method 438
Other Methods 439

Advanced Model Fitting 442
Positive-Definite Matrix Structures 442
Correlation Structures and Variance Functions 444
Self-Starting Functions 449

References 457

LINEAR AND NONLINEAR 
MIXED-EFFECTS MODELS 13
403



Chapter 13  Linear and Nonlinear Mixed-Effects Models
INTRODUCTION

Mixed-effects models provide a powerful and flexible tool for
analyzing grouped data, that is, data that can be classified according
to one or more grouping variables. Mixed-effects models incorporate
both fixed and random effects:

• Fixed effects are parameters associated with an entire
population, or with repeatable levels of experimental factors. 

• Random effects are instead associated with experimental units
drawn at random from a population.

Such models typically describe relationships between a response
variable and some covariates in data grouped according to one or
more classification factors. Common applications are longitudinal
data, repeated measures data, multilevel data, and block designs.
Mixed-effects models flexibly represent the covariance structure
induced by the grouping of the data by associating common random
effects to observations sharing the same level of a classification factor.

This chapter describes a set of functions, classes, and methods for the
analysis of linear and nonlinear mixed-effects models in S-PLUS.
These provide a comprehensive set of tools for analyzing linear and
nonlinear mixed-effects models with an arbitrary number of nested
grouping levels. They supersede the modeling facilities available in
release 3 of S (Chambers and Hastie, 1992) and releases 3.4 (Unix)
and 4.5 (Windows) of S-PLUS.

This chapter will teach you:

• How to represent grouped data sets using the groupedData
class.

• How to fit basic linear mixed-effects models using the lme
function, and how to manipulate the returned lme objects.

• How to fit basic nonlinear mixed-effects models using the
nlme function, and how to manipulate the returned nlme
objects.

• How to fit advanced linear and nonlinear mixed-effects
models by defining positive-definite matrices, correlation
structures, and variance functions.
404



Introduction
The analysis of several sample data sets will illustrate many of the
available features. A detailed description of all functions, classes, and
methods can be found in the online help files.

The code was contributed by Douglas M. Bates, of the University of
Wisconsin, and José C. Pinheiro of Bell Laboratories. Their book,
Mixed Effects Models in S, Springer-Verlag, 1999, contains a careful
description of the statistical theory behind mixed-effects models, as
well as detailed examples of the software for fitting and displaying
them herein introduced.
405



Chapter 13  Linear and Nonlinear Mixed-Effects Models
REPRESENTING GROUPED DATA SETS

The datasets used for fitting mixed-effects models have several
characteristics in common. They consist of measurements of a
continuous response, at several levels of a covariate (for example,
time, dose, or treatment), grouped according to one or more
factors. Additional covariates may also be present, some of which
may vary within a group (inner covariates) and some of which may
not (outer covariates).

A natural way to represent such data in S-PLUS is as a data.frame
containing the response, the primary covariate, the grouping factor(s),
and any additional factors or continuous covariates. The different
roles of the variables in the data frame can be described by a formula
of the form

response ~ primary | grouping1/grouping2/...

which is similar to the display formula in a Trellis plot (Becker,
Cleveland, and Shyu, 1996).

The 
groupedData 
Class

The formula and the data frame are packaged together in a
groupedData class. The constructor (the function used to create
objects of a given class) for groupedData takes a formula and data
frame as arguments. The call to the constructor establishes the roles of
the variables, converts the grouping factors to ordered factors so
panels in plots are ordered in a natural way, and stores descriptive
labels for data plots and plots of derived quantities.

By default, the grouping factors are converted to ordered factors with
the order determined by a summary function applied to the response
split according to the groups, taking into account the nesting order.
(The default summary function is the maximum.) Additionally, labels
can be given for the response and the primary covariate and their
units can be specified as arbitrary strings. The reason for separating
the labels and the units is to allow propagation of the units to derived
quantities such as the residuals from a fitted model.

When outer factors are present, they are given by formula such as
outer = ~ Sex or outer = ~ Treatment * Type. When multiple
grouping factors are present, a list of such formulas must be supplied.
Inner factors are described in a similar way. When establishing the
406



Representing Grouped Data Sets
order of the levels of the grouping factor, and hence the order of
panels in a plot, re-ordering is only permitted within combinations of
levels for the outer factors.

Example: The 
Orthodont 
Data Set

As a first example of grouped data, consider the data from an
orthodontic study presented in Porthoff and Roy (1964). These data,
displayed in Figure 13.1, consist of four measurements of the distance
(in millimeters) from the center of the pituitary to the
pterygomaxillary fissure made at ages 8, 10, 12, and 14 years on 16
boys and 11 girls.

In the Orthodont data set, subjects are classified into two groups by
Sex, an indicator variable assuming the value “Male” for boys and
“Female” for girls. Each subject has four measures of distance, and
the 108 total records are grouped into 27 groups by Subject. This is
an example of balanced repeated measures data, with a single level of
grouping (Subject).
407



Chapter 13  Linear and Nonlinear Mixed-Effects Models
Figure 13.1:  Orthodontic growth patterns in 16 boys (M) and 11 girls (F) between 
8 and 14 years of age. Panels within each gender group are ordered by maximum 
response.

20

25

30

M11

8 10 12 14

M16 M08

8 10 12 14

M05 M14

8 10 12 14

M02 M07

8 10 12 14

M03

M04 M12 M06 M13 M15 M01 M09

20

25

30

M10

20

25

30

F10 F09 F06 F01 F05 F08 F07 F02

F03 F04

8 10 12 14

20

25

30

F11

Age (yr)

D
is

ta
nc

e 
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y 
fis

su
re

 (
m

m
)

408



Representing Grouped Data Sets
To create a new groupedData object, use the class constructor.

> Orthodont <- groupedData(distance ~ age | Subject,
+ data = Orthodont, outer = ~ Sex,
+ labels = list(x = "Age",
+ y="Distance from pituitary to pterygomaxillary fissure"),
+ units = list(x = "(yr)", y = "(mm)"))

The print method will print the display formula and the data frame
associated with a groupedData object.

> print(Orthodont)

Grouped Data: distance ~ age | Subject
    distance age Subject    Sex 
  1     26.0   8     M01   Male
  2     25.0  10     M01   Male
  3     29.0  12     M01   Male
  4     31.0  14     M01   Male
...
105     24.5   8     F11 Female
106     25.0  10     F11 Female
107     28.0  12     F11 Female
108     28.0  14     F11 Female

You can also use the names and formula methods to return the
variable names and their roles for an existing groupedData object.

> names(Orthodont)

[1] "distance" "age" "Subject" "Sex"

> formula(Orthodont)

distance ~ age | Subject

An advantage of using a formula to describe the roles of the variables
in the groupedData class is that this information can be used within
the model-fitting functions to make the specification of the model
easier. For example, getting preliminary simple linear regression fits
by subject for this example is as simple as

> Ortho.lis <- lmList(Orthodont)
409



Chapter 13  Linear and Nonlinear Mixed-Effects Models
Plot the grouped data with

> plot(Orthodont, layout = c(8,4),         #Figure 13.1
+ between = list(y = c(0, 0.5, 0)))

When establishing the order of the levels of the grouping factor, and
hence the order of panels in a plot, re-ordering is only permitted
within combinations of levels for the outer factors. That is why the
panels from boys and girls are grouped together in Figure 13.1.

The plot method for the groupedData class allows an optional
argument outer which can be given a logical value or a formula. A
logical value of TRUE (or T) indicates that the outer formula stored
with the data should be used in the plot. The right hand side of the
explicit or inferred formula replaces the grouping factor in the trellis
formula. The grouping factor is then used to determine which points
to join with lines. For example

> plot(Orthodont, outer = T)           #Figure 13.2

Example: The 
Pixel Data Set

An example of grouped data with two levels of grouping is given by a
study in radiology consisting of repeated measures of mean pixel
values from CT scans of the right and the left lymph nodes in the

Figure 13.2:  Orthodontic growth patterns in 16 boys (M) and 11 girls (F) between 
8 and 14 years of age, with different panels per gender.

20

25

30

Male

8 9 10 11 12 13 14

Female

8 9 10 11 12 13 14

Age (yr)

D
is

ta
nc

e 
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y 
fis

su
re

 (
m

m
)

410



Representing Grouped Data Sets
axillary region of 10 dogs over a period of 14 days after application of
a contrast. The purpose of the experiment was to model the mean
pixel value as a function of time, in order to estimate the time when
the maximum mean pixel value was attained. The data are shown in
Figure 13.3.

Create a new groupedData object using the class constructor like this

> Pixel <- groupedData(pixel ~ day | Dog/Side,
+ data = Pixel, labels =
+ list(x="Time post injection",y="Pixel intensity"),
+ units = list(x = "(days)"))

Plot the grouped data with

> plot(Pixel, display = 1, inner = ~Side)    #Figure 13.3

An inner factor is used to determine which points within a panel are
joined by lines, as in the plot for the Pixel data set above. When
multiple levels of grouping are present, the plot method allows two

Figure 13.3:  Mean pixel intensity of the right (r) and left (l) lymph nodes in the 
axillary region versus time from intravenous application of a contrast. The pixel 
intensities were obtained from CT scans.

1040

1060

1080

1100

1120

1140

1160
1

0 5 10 15 20

2 3

0 5 10 15 20

9

8 6 4

1040

1060

1080

1100

1120

1140

1160
5

1040

1060

1080

1100

1120

1140

1160
7 10

0 5 10 15 20

Time post injection (days)

P
ix

el
 in

te
ns

ity
 

l r
411



Chapter 13  Linear and Nonlinear Mixed-Effects Models
optional arguments: displayLevel and collapseLevel, specifying
the grouping level to be used to determine the panels of the Trellis
plot and the grouping level over which to collapse the data. 

Example: The 
CO2 Data Set

As an example of grouped data with a nonlinear response, consider
an experiment on the cold tolerance of a C4 grass species, Echinochloa
crus-galli, described in Potvin, Lechowicz, and Tardif (1990). A total of
twelve four-week-old plants, six from Quebec and six from
Mississippi, were divided into two groups: control plants that were
kept at 26° C and chilled plants that were subject to 14 h of chilling at

7° C. After 10 h of recovery at 20° C, CO2 uptake rates (in µmol/m2s)
were measured for each plant at seven concentrations of ambient
CO2 (100, 175, 250, 350, 500, 675, 1000 µL/L). Each plant was
subjected to the seven concentrations of CO2 in increasing,
consecutive order. The objective of the experiment was to evaluate
the effect of plant type and chilling treatment on the CO2 uptake. The
data are shown in Figure 13.4.

Figure 13.4:  CO2 uptake versus ambient CO2 concentration by treatment and type 
for Echinochloa crus-galli plants, six from Quebec and six from Mississippi. Half 
the plants of each type were chilled overnight before the measurements were taken.

10

20

30

40

Qn1

200 400 600 800

Qn2 Qn3

200 400 600 800

Qc1 Qc3

200 400 600 800

Qc2

Mn3 Mn2

200 400 600 800

Mn1 Mc2

200 400 600 800

Mc3

10

20

30

40

Mc1

200 400 600 800

Ambient carbon dioxide concentration (uL/L)

C
O

2 
up

ta
ke

 r
at

e 
(u

m
ol

/m
^2

 s
)

412



Representing Grouped Data Sets
Create a new groupedData object using the class constructor like this

> CO2 <- groupedData(uptake ~ conc | Plant, data = CO2,
+ outer = ~ Treatment * Type,
+ labels = list(x = "Ambient carbon dioxide concentration",
+ y = "CO2 uptake rate"),
+ units = list(x = "(uL/L)", y = "(umol/m^2 s)"))

Plot the grouped data with

> plot(CO2)                           #Figure 13.4

As in the Orthodont example, you can use the optional argument
outer=T to indicate that the outer formula stored with the data
should be used in the plot. For example

> plot(CO2, outer = T)                #Figure 13.5 

Trellis parameters can be used to control the graphical presentation of
grouped data. See the online help files for the family of functions
related to plot.xxGroupedData for details.

Extractor functions can be used on groupedData objects to obtain
the different components of the display formula. Functions such as
getGroups, getCovariate, and getResponse can be applied to
extract the corresponding model element.

In addition to the usual summarizing functions in S-PLUS,
groupedData objects can be summarized by group using the function
gsummary, as follows:

> gsummary(CO2)

    Plant        Type  Treatment conc   uptake 
Qn1   Qn1      Quebec nonchilled  435 33.22857
Qn2   Qn2      Quebec nonchilled  435 35.15714
Qn3   Qn3      Quebec nonchilled  435 37.61429
Qc1   Qc1      Quebec    chilled  435 29.97143
Qc3   Qc3      Quebec    chilled  435 32.58571
Qc2   Qc2      Quebec    chilled  435 32.70000
Mn3   Mn3 Mississippi nonchilled  435 24.11429
Mn2   Mn2 Mississippi nonchilled  435 27.34286
Mn1   Mn1 Mississippi nonchilled  435 26.40000
Mc2   Mc2 Mississippi    chilled  435 12.14286
Mc3   Mc3 Mississippi    chilled  435 17.30000
Mc1   Mc1 Mississippi    chilled  435 18.00000
413



Chapter 13  Linear and Nonlinear Mixed-Effects Models
Example: The 
Soybean Data Set

The Soybean data come from an experiment to compare growth
patterns of two genotypes of soybean as described in Davidian and
Giltinan (1995). One genotype is a commercial variety, Forrest (F),
and the other is an experimental strain, Plant Introduction #416937

Figure 13.5:  CO2 uptake versus ambient CO2 by treatment and type for 
Echinochloa crus-galli plants, six from Quebec and six from Mississippi. Half the 
plants of each type were chilled overnight before the measurements were taken.

10

20

30

40

nonchilled
Quebec

200 400 600 800

chilled
Quebec

nonchilled
Mississippi

10

20

30

40

chilled
Mississippi

200 400 600 800

Ambient carbon dioxide concentration (uL/L)

C
O

2 
up

ta
ke

 r
at

e 
(u

m
ol

/m
^2

 s
)

414



Representing Grouped Data Sets
(P). The data were collected in the three years from 1988 to 1990. At
the beginning of the growing season in each year, 16 plots were
planted with seeds; 8 plots with each genotype. Each plot was
sampled eight to ten times at approximately weekly intervals. At each
sampling time, six plants were randomly selected from each plot,
leaves from these plants were weighed, and the average leaf weight
per plant was calculated for the plot. Different plots in different sites
were used in different years. The data are stored in the data frame
Soybean shown below.

> Soybean

   Plot Variety Year Time   weight
  1    1       F 1988   14  0.10600
  2    1       F 1988   21  0.26100
  3    1       F 1988   28  0.66600
  . . .
410   48       P 1990   51  6.131667
411   48       P 1990   64 16.411667
412   48       P 1990   79 16.946667

Create a new groupedData object using the class constructor like this

> Soybean <- groupedData(weight ~ Time | Plot, 
+ data = Soybean,
+ outer = ~ Variety * Year
+ labels = list(x = "Time since planting",
+ y = "Leaf weight/plant"),
+ units = list(x = "(days)", y = "(g)”))

Plot the grouped data with

> plot(Soybean, outer= ~ Year * Variety)     #Figure 13.6

The objective is to model the growth pattern in terms of average leaf
weight. Davidian and Giltinan (1995) suggest a logistic function as
appropriate. Later in the chapter, you will learn to use the S-PLUS
function nlsList to create a list of logistic fits, one for each group, to
test this hypothesis.
415



Chapter 13  Linear and Nonlinear Mixed-Effects Models
Figure 13.6:  Average leaf weight per plant versus time since planting for plots of soybeans. The plots are from 
two different years and represent two different genotypes of soybeans.

0

5

10

15

20

25

30

1988
F

20 40 60 80

1989
F

1990
F

20 40 60 80

1988
P

1989
P

20 40 60 80

0

5

10

15

20

25

30

1990
P

Time since planting (days)

Le
af

 w
ei

gh
t/p

la
nt

 (
g)
416



Fitting Models Using the lme Function
FITTING MODELS USING THE LME FUNCTION

The S-PLUS function lme fits a linear mixed-effects model (as
described in Laird and Ware, 1982), or a multilevel linear mixed-
effects model (as described, for example, in Longford, 1993, or
Goldstein, 1995), using either maximum likelihood or restricted
maximum likelihood. It produces an object of class lme.

Model 
Definitions

The plot of the individual growth curves in Figure 13.1 suggests that a
linear model might adequately explain the orthodontic distance as a
function of age, but the intercept and the slope seem to vary with the
individual. The corresponding linear mixed-effects model is

where dij represents the distance for the ith individual at age j, β0 and
β1 are the population average intercept and the population average
slope respectively, bi0 and bi1 are the effects in intercept and slope
associated with the ith individual, and ε ij is the within-subject error

term. It is assumed that the bi = (bi0,bi1)T are independent and

identically distributed with a N(0,σ2D) distribution and the ε ij are

independent and identically distributed with a N(0,σ2) distribution,
independent of the bi.

One of the questions of interest for these data is whether the curves
show significant differences between boys and girls. Model (13.1) can
be modified as

(13.1)

(13.2)

dij β0 bi0+( ) β1 bi1+( )agej ε i j++=

dij β00 β01sexi bi0+ +( ) +=

β10 β11sexi bi1+ +( )agej ε ij+
417



Chapter 13  Linear and Nonlinear Mixed-Effects Models
to test for sex related differences in intercept and slope. In model
(13.2), sexi is an indicator variable assuming the value zero if the ith
individual is a boy and one if she is a girl. β00 and β10 represent the
population average intercept and slope for the boys and β01 and β11
are the changes in population average intercept and slope for girls.
Differences between boys and girls can be evaluated by testing
whether β01 and β11 are significantly different from zero. The
remaining terms in (13.2) are defined as in (13.1).

In the Pixel example, a second order polynomial seems adequate to
explain the evolution of pixel intensity with time since the contrast
was injected. Preliminary analyses indicated that the intercept varies
with dog, as well as with side within dog, and the linear term varies
with dog, but not with side.

The corresponding multilevel linear mixed-effects model is 

where i refers to the dog number (1 through 10), j to the lymph node
side (1 -- right, 2 -- left), and k refers to time; β0, β1, and β2 denote
respectively the intercept, the linear term, and the quadratic term
fixed effects; b0i denotes the intercept random effect at the dog level,
b0i,j denotes the intercept random effect at the side within dog level,
and b1i denotes the linear term random effect at the dog level; y
denotes the pixel intensity, t denotes the time since contrast injection,

and ε ijk denotes the error term. It is assumed that the bi = (b0i,b1i)
T are

independent and identically distributed with common distribution

N(0,σ2D1), the bi,j = [b0i,j] are independent and identically distributed

with common distribution N(0,σ2D2) and independent of the bi and
the ε ijk are independent and identically distributed with common

distribution N(0,σ2) and independent of the bi and the bi,j.

(13.3)

yijk β0 b0 i b0i j,+ +( ) β1 b1i+( ) tijk+ +=

β2tijk
2 ε i jk+
418



Fitting Models Using the lme Function
Arguments The typical call to the lme function is of the form

lme(fixed, data, random)

Only the first argument is required. The arguments fixed and
random are generally given as formulas. Any linear model formula is
allowed, giving the model formulation considerable flexibility. For
model (13.1) and the Orthodont data, these formulas would be
written as

fixed = distance ~ age, random = ~ age

For model (13.2), they would be written as

fixed = distance ~ age * Sex, random = ~ age 

Note that the response variable is given only in the formula for the
fixed argument and that random is usually given as a one-sided
linear formula. If the random argument is omitted, it is assumed to be
the same as the right hand side of the formula given in fixed.

Because Orthodont is a groupedData object, no grouping structure
is explicitly given in random, as it is extracted from the groupedData
display formula. Alternatively, the grouping structure can be included
in the formula as conditioning expression. 

random = ~ age | Subject

When multiple levels of grouping are present, as in the Pixel
example, random must be given as a list of formulas, as below. 

fixed = pixel ~ day + day^2 
random = list(Dog = ~ day, Side = ~ 1)

Note that the names of the elements in the random list correspond to
the names of the grouping factors and are assumed to be in outermost
to innermost order. A model with a single intercept is represented by
~ 1.

The optional argument data specifies the data frame in which the
variables used in the model are available.
419



Chapter 13  Linear and Nonlinear Mixed-Effects Models
Examples

A simple call to lme to fit model (13.1) is

> Ortho.fit1 <- lme(fixed = distance ~ age,
+ data = Orthodont, random = ~ age | Subject)

To fit model (13.2), use 

> ## set contrasts for desired parameterization
> options(contrasts = c("contr.treatment", "contr.poly"))
> Ortho.fit2 <- update(Ortho.fit1,
+ fixed = distance ~ age*Sex) 

The multilevel model (13.3) is fitted by: 

> Pixel.fit1 <- lme(fixed = pixel ~ day + day^2,
+ data=Pixel, random = list(Dog = ~ day, Side = ~1))

Other arguments of the lme function allow for flexible definitions of
the within-group correlation and heteroscedasticity structures, subset
of the data to be modeled, method to use when fitting the model, and
a list of control values for the estimation algorithm. See the lme online
help file for specific details on each argument.
420



Manipulating lme Objects
MANIPULATING LME OBJECTS

A call to the lme function returns an object of class lme. The online
help file for lmeObject contains a description of the returned object
and each of its components. There are several methods available for
lme objects, including print, summary, anova, and plot. These are
described in the following sections.

The print 
Method

A brief description of the estimation results is returned by the print
method. It gives estimates of the standard errors and correlations of
the random effects, the within-group variance, and the fixed effects.
For the Ortho.fit1 object, the results are

> print(Ortho.fit1)

Linear mixed-effects model fit by REML
  Data: Orthodont 
  Log-restricted-likelihood: -221.3183
  Fixed: distance ~ age 
 (Intercept)       age 
    16.76111 0.6601852

Random effects:
 Formula:  ~ age | Subject
 Structure: General positive-definite
              StdDev   Corr 
(Intercept) 2.327037 (Inter
        age 0.226427 -0.609
   Residual 1.310040       

Number of Observations: 108
Number of Groups: 27
421



Chapter 13  Linear and Nonlinear Mixed-Effects Models
The summary 
Method

A more complete description of the estimation results is returned by
the summary function.

> summary(Ortho.fit2)

Linear mixed-effects model fit by REML
 Data: Orthodont 
       AIC      BIC    logLik 
  448.5817 469.7368 -216.2908

Random effects:
 Formula:  ~ age | Subject
 Structure: General positive-definite
               StdDev   Corr 
(Intercept) 2.4055382 (Inter
        age 0.1803496 -0.668
   Residual 1.3100369       

Fixed effects: distance ~ age + Sex + age:Sex 
                Value Std.Error DF   t-value p-value 
(Intercept)  16.34063  1.018536 79  16.04325  <.0001
        age   0.78438  0.086000 79   9.12065  <.0001
        Sex   1.03210  1.595739 25   0.64679  0.5237
    age:Sex  -0.30483  0.134736 79  -2.26242  0.0264
 Correlation: 
        (Intr)    age    Sex 
    age -0.880              
    Sex -0.638  0.562       
age:Sex  0.562 -0.638 -0.880

Standardized Within-Group Residuals:
       Min         Q1        Med        Q3     Max 
 -3.168056 -0.3859336 0.00710403 0.4451484 3.84947

Number of Observations: 108
Number of Groups: 27 

The approximate standard errors for the fixed effects are derived
using an algorithm based on the asymptotic theory described in
Pinheiro (1994). The results above indicate that the measurement
422



Manipulating lme Objects
increases faster in boys than in girls (significant, negative age:Sex
fixed effect), but the average intercept is common to boys and girls
(non-significant Sex fixed effect).

To summarize the estimation results for model (13.3) use

> summary(Pixel.fit1)

Linear mixed-effects model fit by REML
 Data: Pixel 
       AIC      BIC    logLik 
  841.2102 861.9712 -412.6051

Random effects:
 Formula:  ~ day | Dog
 Structure: General positive-definite
              StdDev   Corr 
(Intercept) 28.36994 (Inter
        day  1.84375 -0.555

 Formula:  ~ 1 | Side %in% Dog
        (Intercept) Residual 
StdDev:    16.82424 8.989609

Fixed effects: pixel ~ day + day^2 
                Value Std.Error DF   t-value p-value 
(Intercept)  1073.339  10.17169 80  105.5222  <.0001
        day     6.130   0.87932 80    6.9708  <.0001
   I(day^2)    -0.367   0.03395 80  -10.8218  <.0001
 Correlation: 
         (Intr)    day 
     day -0.517       
I(day^2)  0.186 -0.668

Standardized Within-Group Residuals:
       Min         Q1        Med       Q3      Max 
 -2.829056 -0.4491807 0.02554919 0.557216 2.751964

Number of Observations: 102
Number of Groups: 
 Dog Side %in% Dog 
  10            20
423



Chapter 13  Linear and Nonlinear Mixed-Effects Models
The anova 
Method

A likelihood ratio test can be used to test the difference between the
fixed effects models represented by Ortho.fit1 and Ortho.fit2.
The anova method provides that capability.

Use the update function to re-fit the two objects using maximum
likelihood (ML)

> Ortho.fit1.ML <- update(Ortho.fit1, method = "ML")
> Ortho.fit2.ML <- update(Ortho.fit2, method = "ML")

then call anova

> anova(Ortho.fit1.ML, Ortho.fit2.ML)

              Model df      AIC      BIC    logLik 
Ortho.fit1.ML     1  6 451.2116 467.3044 -219.6058
Ortho.fit2.ML     2  8 443.8060 465.2630 -213.9030
                Test  L.Ratio p-value 
Ortho.fit1.ML                        
Ortho.fit2.ML 1 vs 2 11.40565  0.0033

The likelihood ratio test strongly rejects the null hypothesis of no sex
differences. For small sample sizes, likelihood ratio tests tend to be too
liberal when comparing models with nested fixed effects structures
and should be used with caution. We recommend using the Wald-type
tests provided by the anova method with a single argument, as these
tend to have significance levels close to nominal, even for small
samples.

Warning: 

Likelihood comparisons between restricted maximum likelihood (REML) fits with different
fixed effects structures are not meaningful. Re-fit the objects using maximum likelihood (ML),
before calling anova.
424



Manipulating lme Objects
The plot 
method

Diagnostic plots for assessing the quality of the fitted model are
obtained using the plot method for class lme. This method takes
several optional arguments, but a typical call is of the form. 

plot(object, formula)

where the first argument is the lme object and the second is a display
formula for the Trellis plot to be produced. The fitted object can be
referenced by the symbol ‘‘.’’ in the formula argument. For example,
to produce a plot of the standardized residuals versus fitted values by
gender for the Ortho.fit2 object included in Figure 13.7, use

> plot(Ortho.fit2,                         # Figure 13.7
+ resid(., type = "p") ~ fitted(.) | Sex) 

The expression above introduces two other common methods: resid
and fitted. The argument type= for the method residuals.lme
accepts the strings “pearson” (or “p”) for standardized residuals,
“normalized”, and “response”. By default the raw or response
residuals (observed - fitted) are calculated, so we must set type=”p”
in the call above.

Figure 13.7:  Standardized residuals versus fitted values by gender, for the lme fit 
of model (13.2).

-2

0

2

4
Male

18 20 22 24 26 28 30 32

Female

18 20 22 24 26 28 30 32

Fitted values (mm)

St
an

da
rd

ize
d 

re
sid

ua
ls
425



Chapter 13  Linear and Nonlinear Mixed-Effects Models
There is evidence that the variability of the orthodontic distance is
greater in boys than in girls and that some possible outliers are
present in the data. To assess the predictive power of the fitted model,
consider the plot of the observed versus fitted values by individual,
presented in Figure 13.8 and obtained with.

> plot(Ortho.fit2,                        #Figure 13.8
+ distance ~ fitted(.) | Subject, layout = c(4, 7),
+ between = list(y = c(0, 0, 0, 0.5)), aspect = 1.0,
+ abline = c(0,1))

For most of the subjects, there is very good agreement between the
observed and fitted values, indicating that the fit is adequate. 

The formula argument to the plot method gives virtually unlimited
flexibility for generating customized diagnostic plots.

Figure 13.8:  Observed distances versus fitted values by subject, for the lme fit of 
model (13.2).

20

25

30

M16

18 22 26 30

M05 M02

18 22 26 30

M11

M07 M08 M03

20

25

30

M12

20

25

30

M13 M14 M09 M15

M06 M04 M01

20

25

30

M10

20

25

30

F10 F09 F06 F01

F05 F07 F02

20

25

30

F08

20

25

30

F03 F04

18 22 26 30

F11

Fitted values (mm)

D
is

ta
nc

e 
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y 
fis

su
re

 (
m

m
)

426



Manipulating lme Objects
As a final example, consider the plot of the standardized residuals (at
the side within dog level) for the Pixel.fit1 object by dog. 

> plot(Pixel.fit1, Dog~resid(., type="p"))  #Figure 13.9

The residuals seem symmetrically scattered around zero, with similar
variabilities (except, possibly, for dog number 4).

Other Methods Standard S-PLUS methods for extracting components of fitted objects,
such as residuals, fitted, and coefficients, can be also be used
on lme objects. In addition, lme includes the methods
fixed.effects and random.effects for extracting the fixed effects
and the random effects estimates. (Short names for the last two
functions are fixef and ranef, respectively.) 

> coef(Ortho.fit2)

    (Intercept)       age       Sex    age:Sex
M16    15.55739 0.6957259 1.032102 -0.3048295
M05    14.69527 0.7759020 1.032102 -0.3048295
...
F04    18.00174 0.8125874 1.032102 -0.3048295
F11    18.53691 0.8858564 1.032102 -0.3048295

Figure 13.9:  Standardized residuals by dog, for the lme fit of model (13.3).

1

10

2

3

4

5

6

7

8

9

-3 -2 -1 0 1 2

Standardized residuals

D
og
427



Chapter 13  Linear and Nonlinear Mixed-Effects Models
> fixef(Pixel.fit1)

 (Intercept)      day   I(day^2) 
    1073.339 6.129597 -0.3673503

> ranef(Pixel.fit1, level=1)  #random effects at Dog level

   (Intercept)         day
 1  -24.714229 -1.19537074
10   19.365854 -0.09936872
 2  -23.582059 -0.43243128
 3  -27.080310  2.19475596
 4  -16.658544  3.09597260
 5   25.299771 -0.56127136
 6   10.823243 -1.03699983
 7   49.353938 -2.27445838
 8   -7.053961  0.99025533
 9   -5.753702 -0.68108358

Random effects estimates can be visualized by plotting them using the
S-PLUS function plot.ranef.lme, designed specifically for this
purpose. This function offers great flexibility for the display of
random effects, its simplest display produces a dotplot of the different
coefficients.

Predicted values are returned by the predict method. For example,
if you are interested in predicting the average measurement for both
boys and girls at ages 14, 15, and 16, as well as for subjects M01 and
F10 at age 13, based on model (13.2), you can create a new data
frame, as follows

> Orthodont.new <- data.frame(
+ Sex = c(“Male”, “Male”, “Male”, “Female”, “Female”,
+ “Female”, “Male”, “Female”), 
+ age = c(14, 15, 16, 14, 15, 16, 13, 13),
+ Subject = c(NA, NA, NA, NA, NA, NA, "M01", "F10"))
428



Manipulating lme Objects
and then use

> predict(Ortho.fit2, Orthodont.new, level = c(0,1))

  Subject predict.fixed predict.Subject
1              27.32188              NA
2              28.10625              NA
3              28.89063              NA
4              24.08636              NA
5              24.56591              NA
6              25.04545              NA
7     M01      26.53750        29.17264
8     F10      23.60682        19.80758

to get the subject-specific and population predictions. The level
argument is used to define the desired prediction levels, with 0 (zero)
referring to the population predictions.

The models considered so far do not assume any special form for the
random effects variance-covariance matrix. See the section Advanced
Model Fitting in this chapter for a variety of specifications for the
structure of this, and the within-group correlation structure. Beyond
the available covariance structures, customized structures can also be
designed by the user. This topic is also addressed in the section
Advanced Model Fitting.
429



Chapter 13  Linear and Nonlinear Mixed-Effects Models
FITTING MODELS USING THE NLME FUNCTION

Nonlinear mixed-effects models, which generalize nonlinear models
as well as linear mixed-effects models can be analyzed with the
S-PLUS function nlme. 

There are many advantages to using nonlinear mixed-effects models.
For example, the model or expectation function is usually based on
sound theory about the mechanism generating the data hence, the
model parameters usually have a physical meaning of interest to the
investigator.

The nlme function is used to fit nonlinear mixed-effects models, as
defined in Lindstrom and Bates (1990), using either maximum
likelihood or restricted maximum likelihood. These models are of
class nlme and inherit from the lme class, so methods for the lme
class apply to the nlme class as well.

Model 
Definition

Recall the CO2 data set introduced before as an example of grouped
data with a nonlinear response. The objective of the data collection
was to evaluate the effect of plant type and chilling treatment on their
CO2 uptake. The model used in Potvin, et al. (1990) is

where Uij denotes the CO2 uptake rate of the ith plant at the jth CO2
ambient concentration; φ1i, φ2i, and φ3i denote respectively the
asymptotic uptake rate, the uptake growth rate, and the maximum
ambient CO2 concentration at which no uptake is verified for the ith
plant; Cj denotes the jth ambient CO2 level; and the ε ij are
independent and identically distributed error terms with distribution

N(0,σ2).

Arguments Several optional arguments can be used with the nlme function, but a
typical call is

nlme(model, data, fixed, random, start)

(13.4)Uij φ1 i 1 exp φ– 2 i Cj φ3 i–( )[ ]–{ } ε i j+=
430



Fitting Models Using the nlme Function
The model argument is required and consists of a formula specifying
the nonlinear model to be fitted. Any S-PLUS nonlinear formula can
be used, giving the function considerable flexibility. For the CO2
uptake data, we have

uptake ~ A * (1 - exp(-B * (conc - C)))

from (13.4), where A = φ1, B = φ2, and C = φ3. To enforce the rate
parameter φ2 to be positive, while preserving an unrestricted
parametrization, you can re-parametrize the model above using lB =
log(B)

uptake ~ A * (1 - exp(-exp(lB) * (conc - C)))

Alternatively, you can define an S-PLUS function

> CO2.func <- 
+ function(conc, A, lB, C) A*(1 - exp(-exp(lB)*(conc - C)))

then write the model argument as 

uptake ~ CO2.func(conc, A, lB, C) 

The advantage of this latter approach is that the analytic derivatives
of the model function can be passed to the nlme function as the
gradient attribute of the returned value from CO2.func and used in
the optimization algorithm. The S-PLUS function deriv can be used
to create expressions for the derivatives. 

> CO2.func <- 
+ deriv(~ A * ( 1 - exp(-exp(lB) * (conc - C))),
+ c("A", "lB", "C"), function(conc, A, lB, C){})

If the value returned by the model function does not have a
gradient attribute, numerical derivatives are used in the
optimization.

The arguments fixed and random are formulas, or lists of formulas,
that define the structures of the fixed and random effects in the
model. The first argument is required. In these formulas a 1 on the
right hand side of a formula indicates that a single parameter is
associated with the effect, but any linear formula in S-PLUS could be
used instead. Again, this gives considerable flexibility to the model, as
time-dependent parameters can be easily incorporated (for example,
when a formula in fixed involves a covariate that changes with time).
431



Chapter 13  Linear and Nonlinear Mixed-Effects Models
Usually every parameter in the model will have an associated fixed
effect, but it may, or may not, have an associated random effect. Since
we assumed that all random effects have mean zero, the inclusion of a
random effect without a corresponding fixed effect would be unusual.
Note that the fixed and random formulas could be directly
incorporated in the model declaration. The approach used in nlme
allows for more efficient calculation of derivatives.

For the CO2 uptake data, if you want to fit a model in which all
parameters are random and no covariates are included, use 

fixed = A + lB + C ~ 1, random = A + lB + C ~ 1

By default, random = fixed, so the random argument can be omitted.
Because CO2 is a groupedData object, no grouping structure need be
explicitly given in random, as it is extracted from the groupedData
display formula.

Alternatively, the grouping structure can be included in the formula
as a conditioning expression. 

random = A + lB + C ~ 1 | Plant 

If you want to estimate the (fixed) effects of plant type and chilling
treatment on the parameters in the model, use 

fixed = A + lB + C ~ Type * Treatment,
random = A + lB + C ~ 1

data is an optional argument to nlme that names a data frame in
which the variables in model, fixed, and random are found, and
start provides a list of starting values for the iterative algorithm.
Only the fixed effects starting estimates are required. The default
starting estimates for the random effects are zero. 

Examples

A simple call to nlme to fit model (13.4), without any covariates and
with all parameters as mixed effects, is

> CO2.fit1 <- 
+ nlme(model = uptake ~ CO2.func(conc, A, lB, C), 
+ fixed = A + lB + C ~ 1, data = CO2, 
+ start = c(30, log(0.01), 50)) 
432



Fitting Models Using the nlme Function
The initial values for the fixed effects were obtained from Potvin, et al.
(1990).
433



Chapter 13  Linear and Nonlinear Mixed-Effects Models
MANIPULATING NLME OBJECTS

Objects returned by the nlme function are of class nlme which
inherits from lme. All methods described for the lme class are also
available for the nlme class. In fact, with the exception of the
predict method, all methods are common to both classes. We
illustrate their use here with the CO2 uptake data described above.

The print 
Method

The print method provides a brief description of the estimation
results. It gives estimates of the standard errors and correlations of the
random effects, of the within-group variance, and of the fixed effects. 

> print(CO2.fit1)

Nonlinear mixed-effects model fit by maximum likelihood
  Model: uptake ~ CO2.func(conc, A, lB, C) 
  Data: CO2 
  Log-likelihood: -201.3102
  Fixed: A + lB + C ~ 1 
        A        lB        C 
 32.47374 -4.636226 43.54071

Random effects:
 Formula: list(A ~ 1, lB ~ 1, C ~ 1)
 Level: Plant
 Structure: General positive-definite
             StdDev   Corr        
       A  9.5099518 A      lB    
      lB  0.1282905 -0.160       
       C 10.4078430  0.999 -0.139
Residual  1.7663862              

Number of Observations: 84
Number of Groups: 12 
434



Manipulating nlme Objects
Note that there is strong correlation between the A and the C random
effects and that these have small correlations with the lB random
effect. The scatter plot matrix of the random effects, obtained using
the pairs method:

> pairs(CO2.fit1, ~ranef(.))

and shown in Figure 13.10, gives a graphical description of the
random effects correlation structure.

The correlation between A and C may be due to the fact that the plant
type and the chilling treatment, which were not included in the
CO2.fit1 model, are affecting A and C in the similar ways.

The plot method for the ranef.lme class can be used to explore the
dependence of the individual parameters A, lB, and C in model (13.4)
on plant type and chilling factor.

> plot(ranef(CO2.fit1, augFrame = T),       #Figure 13.11
+ outer = ~Treatment*Type,
+ layout = c(3,1))

Figure 13.10:  Scatterplot matrix of the estimated random effects in model (13.4).

-15 -10  -5

  0   5  10

  0

  5

 10

-15

-10

 -5A

-0.2 -0.1

 0.0  0.1

 0.0

 0.1

-0.2

-0.1

lB

-20 -10

  0  10

  0

 10

-20

-10

C

435



Chapter 13  Linear and Nonlinear Mixed-Effects Models
These plots indicate that chilled plants tend to have smaller values of
A and C, but the Mississippi plants seem to be much more affected
than the Quebec plants, suggesting an interaction effect between plant
type and chilling treatment. There is no clear pattern of dependence
between lB and the treatment factors, suggesting that this parameter is
not significantly affected by either plant type or chilling treatment. 

We can then update the fitted object letting the A and C fixed effects
depend on the treatment factors, as below. 

> CO2.fit2 <- update(CO2.fit1,
+ fixed = list(A+C ~ Treatment * Type, lB ~ 1),
+ start = c(32.55, 0, 0, 0, 41.56, 0, 0, 0, -4.6))

The summary 
Method

The summary method provides more detailed information on the new
fitted object.

> summary(CO2.fit2)

Nonlinear mixed-effects model fit by maximum likelihood
  Model: uptake ~ CO2.func(conc, A, lB, C) 
 Data: CO2 
       AIC      BIC    logLik 
  392.4074 431.3004 -180.2037

Figure 13.11:  Estimated random effects versus plant type and chilling treatment.

Quebec nonchilled

Quebec chilled

Mississippi nonchilled

Mississippi chilled

A

-15 -5 0 5 10

lB

-0.2 -0.1 0.0 0.1

C

-20 -10 0 10

Random effects
436



Manipulating nlme Objects
Random effects:
 Formula: list(A ~ 1, lB ~ 1, C ~ 1)
 Level: Plant
 Structure: General positive-definite
                 StdDev   Corr        
A.(Intercept) 2.3709586 A.(In) lB    
           lB 0.1475551 -0.336       
C.(Intercept) 8.1632925  0.355  0.761
     Residual 1.7113001              

Fixed effects: list(A + C ~ Treatment * Type, lB ~ 1) 
                     Value Std.Error DF   t-value 
   A.(Intercept)  32.47034  0.787419 64  41.23641
     A.Treatment  -4.23974  0.735246 64  -5.76642
          A.Type  -7.93288  0.737964 64 -10.74969
A.Treatment:Type  -2.39355  0.735683 64  -3.25352
   C.(Intercept)  39.96569  6.411938 64   6.23301
     C.Treatment  -7.83988  4.399918 64  -1.78182
          C.Type -10.75033  4.435898 64  -2.42348
C.Treatment:Type -12.25407  4.420052 64  -2.77238
              lB  -4.65064  0.080102 64 -58.05876
                 p-value 
   A.(Intercept)  <.0001
     A.Treatment  <.0001
          A.Type  <.0001
A.Treatment:Type  0.0018
   C.(Intercept)  <.0001
     C.Treatment  0.0795
          C.Type  0.0182
C.Treatment:Type  0.0073
              lB  <.0001
 Correlation:
... 

The small p-values of the t-statistics associated with the
Treatment:Type effects indicate that both factors have a significant
effect on parameters A and C and their joint effect is not just the sum
of the individual effects.
437



Chapter 13  Linear and Nonlinear Mixed-Effects Models
The anova 
Method

You can investigate the joint effect of Treatment and Type on A and
C using the anova method.

> anova(CO2.fit2,
+ terms = c("A.Treatment", "A.Type", "A.Treatment:Type"))

F-test for: A.Treatment, A.Type, A.Treatment:Type 
  numDF denDF  F-value p-value 
1     3    64 51.77681  <.0001

> anova(CO2.fit2,
+ terms = c("C.Treatment", "C.Type", "C.Treatment:Type"))

F-test for: C.Treatment, C.Type, C.Treatment:Type 
  numDF denDF  F-value p-value 
1     3    64 2.939707  0.0397

The p-values of the Wald F-tests suggest that Treatment and Type
have a stronger influence on A than on C.

The plot 
Method

Diagnostic plots can be obtained using the plot method, in the same
way as for lme objects. For example, plots of the standardized
residuals versus fitted values broken up by Treatment and Type,
shown in Figure 13.12, are obtained with 

> plot(CO2.fit2,                          #Figure 13.12
+ resid(., type = "p") ~ fitted(.) | Treatment * Type) 

The plots do not indicate any departures from the assumptions in the
model—no outliers seem to be present and the residuals are
symmetrically scattered around the y = 0 line, with constant spread
for different levels of the fitted values.
438



Manipulating nlme Objects
Other Methods Predictions are returned by the predict method. For example, to
obtain the population predictions of the CO2 uptake rate for Quebec
and Mississippi plants under chilling and no chilling, at ambient CO2
concentrations of 75, 100, 200, and 500 µL/L, first define 

> CO2.new <- data.frame(
+ Type = rep(c("Quebec","Mississippi"), c(8, 8)),
+ Treatment =rep(rep(c("chilled","nonchilled"),c(4,4)),2),
+ conc = rep(c(75, 100, 200, 500), 4))

Figure 13.12:  Standardized residuals versus fitted values for the CO2.fit2 fit, by 
plant type and chilling treatment.

-3

-2

-1

0

1

2

3

Quebec
nonchilled

10 20 30 40

Mississippi
nonchilled

Quebec
chilled

-3

-2

-1

0

1

2

3

Mississippi
chilled

10 20 30 40

Fitted values (umol/m^2 s)

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

439



Chapter 13  Linear and Nonlinear Mixed-Effects Models
and then use the following to obtain the predictions:

> predict(CO2.fit2, CO2.new, level = 0)

 [1]  6.667665 13.444049 28.898573 38.007578 10.133070
 [6] 16.957681 32.522196 41.696029  8.363814 10.391107
[11] 15.014640 17.739783  6.785150 11.967006 23.784979
[16] 30.750575
attr(, "label"):
[1] "Predicted values (umol/m^2 s)"

The augPred method can be used for plotting smooth fitted curves
by calculating fitted values at closely spaced concentrations. Figure
13.13 presents the individual fitted curves for all twelve plants
evaluated at 51 concentrations between 50 and 1000 µL/L, obtained
with

> plot(augPred(CO2.fit2))                   #Figure 13.13

The CO2.fit2 model explains the data reasonably well, as evidenced
by the close agreement between its fitted values and the observed
uptake rates.

Figure 13.13:  Individual fitted curves for the twelve plants in the CO2 uptake data 
based on the CO2.fit2 object.

10

20

30

40

Qn1

200 400 600 800 1000

Qn2 Qn3

200 400 600 800 1000

Qc1

Qc3 Qc2 Mn3

10

20

30

40

Mn2

10

20

30

40

Mn1 Mc2

200 400 600 800 1000

Mc3 Mc1

200 400 600 800 1000

Ambient carbon dioxide concentration (uL/L)

C
O

2 
up

ta
ke

 r
at

e 
(u

m
ol

/m
^2

 s
)

440



Manipulating nlme Objects
Methods for extracting components from a fitted nlme object are also
available and parallel those for lme objects. Some of the most
commonly used are coef, fitted, fixef, ranef, and resid.
441



Chapter 13  Linear and Nonlinear Mixed-Effects Models
ADVANCED MODEL FITTING

In many practical applications, we want to restrict the random-effects
variance-covariance matrix to special forms parameterized by fewer
parameters. For example, we may want to assume that the random
effects are independent and their variance-covariance matrix is then a
diagonal matrix. We may also want to make specific assumptions
about the within-group error structure.

Both the lme function and the nlme function include advanced
options for defining positive-definite matrices, correlation structures,
and variance functions.

Positive-
Definite Matrix 
Structures

Different positive-definite matrix structures can be used to represent
the random effects variance-covariance matrix. These are organized
in the code as different pdMat classes. Table 13.1 lists the available
pdMat classes.

By default, the pdSymm class is used to represent a random effects
covariance matrix. The desired pdMat class must be specified with
the random argument.

You can define your own pdMat classes by specifying a constructor
function and, at a minimum, methods for the functions pdConstruct,
pdMatrix and coef. For examples of these functions, see the
methods for classes pdSymm and pdDiag.

Table 13.1:  Classes of positive-definite matrices.

Class Description

pdSymm general positive-definite

pdDiag diagonal

pdIdent multiple of an identity

pdCompSymm compound symmetry

pdBlocked block diagonal
442



Advanced Model Fitting
Examples

To fit a model with independent intercept and slope random effects in
model (13.2), use

>  Ortho.fit3 <- update(Ortho.fit2, random = pdDiag(~ age))
>  Ortho.fit3

Linear mixed-effects model fit by REML
  Data: Orthodont 
  Log-restricted-likelihood: -216.5755
  Fixed: distance ~ age + Sex + age:Sex 
 (Intercept)      age      Sex    age:Sex 
    16.34062 0.784375 1.032102 -0.3048295

Random effects:
 Formula:  ~ age | Subject
 Structure: Diagonal
        (Intercept)        age Residual 
StdDev:    1.554633 0.08801454   1.3655

Number of Observations: 108
Number of Groups: 27 

The grouping structure is inferred from the groupedData display
formula. Alternatively, random could have been passed to the
function as

random = list(Subject = pdDiag(~ age))

To test if the random effects in CO2.fit2 can be assumed to be
independent, use 

> CO2.fit3 <- update(CO2.fit2, random = pdDiag(A+lB+C~1))
> anova(CO2.fit2, CO2.fit3)

         Model df      AIC      BIC    logLik   Test 
CO2.fit2     1 16 392.4074 431.3004 -180.2037       
CO2.fit3     2 13 391.3930 422.9936 -182.6965 1 vs 2
          L.Ratio p-value 
CO2.fit2                 
CO2.fit3 4.985649  0.1729

Note that because the two models have the same fixed effects
structure, the likelihood ratio test based on REML is meaningful. 
443



Chapter 13  Linear and Nonlinear Mixed-Effects Models
As evidenced by the large p-value for the likelihood ratio test in the
anova output, the independence between the random effects seems
plausible. 

Correlation 
Structures and 
Variance 
Functions 

The within-group error covariance structure can be flexibly modeled
by combining correlation structures and variance functions.
Correlation structures are used to model within-group correlations,
not captured by the random effects. These are generally associated
with temporal or spatial dependencies. The variance function
structures are used to model heteroscedasticity in the within-group
errors.

Similar to the positive-definite matrix structures described in pdMat,
the different correlation and variance functions structures are
organized into corStruct and varFunc classes. Table 13.2 and Table
13.3 list the standard classes for each structure.

Table 13.2:  Classes of correlation structures. 

Class  Description

corAR1  AR(1)

corARMA  ARMA(p,q)

corCAR1  continuous AR(1)

corCompSymm  compound symmetry

corExp  exponential spatial correlation

corGaus  Gaussian spatial correlation

corHF  Huyn-Feldt correlation

corLin  linear spatial correlation

corRatio  rational quadratic spatial correlation

corSpher  spherical spatial correlation

corSymm  general correlation matrix
444



Advanced Model Fitting
The optional argument correlation is used to specify a correlation
structure and the optional argument weights is used for variance
functions. By default, the within-group errors are assumed to
independent and homoscedastic.

You can define your own correlation and variance function classes by
specifying appropriate constructor functions and a few method
functions. For a new correlation structure, method functions must be
defined for at least corMatrix and coef. For examples of these
functions, see the methods for classes corSymm and corAR1. A new
variance function structure requires methods for at least coef,
coef<-, and initialize. For examples of these functions, see the
methods for class varPower.

Examples

The residual versus fitted values plot of the residuals on Figure 13.7
suggests that different variances should be allowed for boys and girls.
You can test that by updating the fit using the varIdent variance
function structure. 

> Ortho.fit4 <- update(Ortho.fit3,
+ weights = varIdent(form = ~1|Sex))

Table 13.3:  Classes of variance functions.

Class  Description

varExp exponential of a variance covariate

varPower power of a variance covariate

varConstPower constant plus power of a variance covariate

varIdent different variances per level of a factor

varFixed fixed weights, determined by a variance covariate

varComb combination of variance functions
445



Chapter 13  Linear and Nonlinear Mixed-Effects Models
> Ortho.fit4

Linear mixed-effects model fit by REML
  Data: Orthodont 
  Log-restricted-likelihood: -207.4704
  Fixed: distance ~ age + Sex + age:Sex 
 (Intercept)       age       Sex    age:Sex 
    16.85668 0.6319602 0.5160511 -0.1524148

Random effects:
 Formula:  ~ age | Subject
 Structure: Diagonal
        (Intercept)       age Residual 
StdDev:    1.448708 0.1094044  1.65842

Variance function:
 Structure: Different standard deviations per stratum
 Formula:  ~ 1 | Sex 
 Parameter estimates:
 Male   Female 
    1 0.425368
Number of Observations: 108
Number of Groups: 27

> anova(Ortho.fit3, Ortho.fit4)

           Model df      AIC      BIC    logLik 
Ortho.fit3     1  7 449.9235 468.4343 -217.9618
Ortho.fit4     2  8 430.9407 452.0958 -207.4704
             Test  L.Ratio p-value 
Ortho.fit3                        
Ortho.fit4 1 vs 2 20.98281  <.0001

There is strong indication that the orthodontic distance is less variable
in girls than in boys.

The fitted object can be referenced in the form argument to the
varFunc constructors through the symbol ‘‘.’’. For example, to use a
variance function that is an arbitrary power of the fitted values in
model (13.3), update Pixel.fit1 as below.

> Pixel.fit2 <- update(Pixel.fit1,
+ weights = varPower(form=~fitted(.)))
446



Advanced Model Fitting
> Pixel.fit2

Linear mixed-effects model fit by REML
  Data: Pixel 
  Log-restricted-likelihood: -412.4592
  Fixed: pixel ~ day + day^2 
 (Intercept)      day   I(day^2) 
    1073.312 6.101551 -0.3663839

Random effects:
 Formula:  ~ day | Dog
 Structure: General positive-definite
               StdDev   Corr 
(Intercept) 28.498576 (Inter
        day  1.871504 -0.565

 Formula:  ~ 1 | Side %in% Dog
        (Intercept)      Residual 
StdDev:    16.65769 4.534689e-006

Variance function:
 Structure: Power of variance covariate
 Formula:  ~ fitted(.) 
 Parameter estimates:
    power 
 2.074139
Number of Observations: 102
Number of Groups: 
 Dog Side %in% Dog 
  10            20

> anova (Pixel.fit1, Pixel.fit2)

           Model df      AIC      BIC    logLik 
Pixel.fit1     1  8 841.2102 861.9712 -412.6051
Pixel.fit2     2  9 842.9184 866.2744 -412.4592
             Test   L.Ratio p-value 
Pixel.fit1                         
Pixel.fit2 1 vs 2 0.2918317   0.589
447



Chapter 13  Linear and Nonlinear Mixed-Effects Models
There is no evidence of heteroscedasticity in this case, as evidenced
by the large p-value of the likelihood ratio test in the anova output.
Because the default value for form in varPower is ~fitted(.), it
suffices to use weights = varPower() in this example. 

We can test for the presence of an autocorrelation of lag 1 in the
orthodontic growth example by updating Ortho.fit4 as below. 

> Ortho.fit5 <- update(Ortho.fit4, corr = corAR1())
> Ortho.fit5

Linear mixed-effects model fit by REML
  Data: Orthodont 
  Log-restricted-likelihood: -207.4233
  Fixed: distance ~ age + Sex + age:Sex 
 (Intercept)       age       Sex    age:Sex 
    16.84766 0.6325383 0.5303993 -0.1534489

Random effects:
 Formula:  ~ age | Subject
 Structure: Diagonal
        (Intercept)       age Residual 
StdDev:    1.451008 0.1121105 1.630654

Correlation Structure: AR(1)
 Parameter estimate(s):
         Phi 
 -0.05702521
Variance function:
 Structure: Different standard deviations per stratum
 Formula:  ~ 1 | Sex 
 Parameter estimates:
 Male    Female 
    1 0.4250633
Number of Observations: 108
Number of Groups: 27
448



Advanced Model Fitting
> anova(Ortho.fit4, Ortho.fit5)

           Model df      AIC      BIC    logLik 
Ortho.fit4     1  8 430.9407 452.0958 -207.4704
Ortho.fit5     2  9 432.8467 456.6462 -207.4233
             Test  L.Ratio p-value 
Ortho.fit4                        
Ortho.fit5 1 vs 2 0.094035  0.7591

The large p-value of the likelihood ratio test indicates that the
autocorrelation is not present. Note that the correlation structure is
used together with the variance function, representing an
heterogeneous AR(1) process (Littel et al., 1996}. Because the two
structures are defined and constructed separately, any correlation
structure can be combined with any variance function.

As a final example, you can test for the presence of serial correlation
in the within-group errors of the nonlinear CO2 model like this: 

> CO2.fit4 <- update(CO2.fit3, correlation = corAR1())
> anova(CO2.fit3, CO2.fit4)

         Model df      AIC      BIC    logLik   Test 
CO2.fit3     1 13 391.3930 422.9936 -182.6965       
CO2.fit4     2 14 393.2968 427.3283 -182.6484 1 vs 2
            L.Ratio p-value 
CO2.fit3                   
CO2.fit4 0.09616825  0.7565

There does not appear to be evidence of within-group serial
correlation.

Self-Starting 
Functions

The S-PLUS function nlsList can be used to create a list of fits to
each group of a groupedData object. This function is an extension of
the nls function, discussed in detail in a later chapter. To call
nlsList, as well as when using nlme, the user must provide either
initial estimates for the fixed-effects parameters to be fitted or a self-
starting function.

One way to provide initial values to nls and hence to nlsList is to
include them in the data frame as a parameters attribute. Both
nlsList and nlme function also have an argument start to be used
when providing the initial estimates as input. Alternatively, the
function to derive initial estimates can be added to the model function
449



Chapter 13  Linear and Nonlinear Mixed-Effects Models
itself as an attribute. This constitutes a selfStart function in S-PLUS.
When a self-starting function is used in calls to nlsList and nlme,
initial estimates for the parameters are taken directly from the
“initial” attribute of the self-starting function. A self-starting
function is a class of models useful for particular applications. Several
self-starting functions are provided with S-PLUS. The following four
self-starting functions are useful in Biostatistics.

• Biexponential model: SSbiexp(input, A1, lrc1, A2,
lrc2)

,

where input = t is a covariate, and A1 = α1, A2 = α2,
lrc1 = β1, and lrc2 = β2 are parameters.

• First Order Compartment model: SSfol(Dose, input,
lCl, lKa, lKe)

,

where Dose = d is a covariate representing the initial dose,
input = t is a covariate at which to evaluate the model , and
lCl = α, lKa = β, and lKe = γ  are parameters.

• Four-Parameter Logistic model: SSfpl(input, A, B,
xmid, scal)

,

where input = x is a covariate, and A = α, B = β,
xmid = γ , and scal = θ are parameters.

• Logistic model: SSlogis(time, Asym, xmid, scal)

,

where time = t is a covariate, and Asym = α, xmid = β,
and scal = γ  are parameters.

α1e
e–

β1t α2e
e–

β2t
+

e
β

e
γ

e
eγ t–

e
eβ–

–(⋅ ⋅

e
α

e
β

e
γ

–( )⋅
----------------------------------------------------------

α β α–

1 e
x γ–( )– θ⁄

+
-----------------------------------+

α
1 e

t β–( )– γ⁄
+

----------------------------------
450



Advanced Model Fitting
Other self-starting functions already built-in S-PLUS are listed in Table
13.4 below and details about them can be found in their
corresponding online help files. You can define your own self-starting
function by using the function selfStart. 

Examples

We can apply the self-starting function SSlogis to the Soybean data
introduced above, to verify the hypothesis that a logistic model can
be used represent leaf growth. The nlsList call is as follows.

> Soybean.nlsList <- nlsList(weight ~
+ SSlogis(Time, Asym, xmid, scal) | Plot, data = Soybean)

Error in nls(y ~ 1/(1 + exp((xmid - x)/scal)), data ..: 
singular gradient matrix
Dumped

The error message indicates that a group could not be fitted by nls.
The object Soybean.nlsList is still created.

Table 13.4:  Additional self-starting models in S-PLUS.

Function Model

SSasymp Asymptotic Regression

SSasympOff Asymptotic Regression with an Offset

SSasympOrig Asymptotic Regression through the Origin

SSmicmen Michaelis-Menten

Warning: 

On occasion nlsList will give one or more errors as a result of one or more groups not being
fitted adequately with nls. The remaining groups are still fitted.
451



Chapter 13  Linear and Nonlinear Mixed-Effects Models
The results in Soybean.nlsList below show that one of the groups
below (1989P8) could not be fitted appropriately with the logistic
model, if the within-group variations are not adjusted.

> coef(Soybean.nlsList)

             Asym      xmid      scal 
1988F4  15.151338  52.83361  5.176641
1988F2  19.745503  56.57514  8.406720
1988F1  20.338576  57.40265  9.604870
1988F7  19.871706  56.16236  8.069718
1988F5  30.647205  64.12857 11.262351
1989P2  28.294391  67.17185 12.522720
...
1989P8         NA        NA        NA
1990F2  19.459767  66.28652 13.158397
...
1990P5  19.543787  51.14830  7.291976
1990P2  25.787317  62.35974 11.657019
1990P4  26.132712  61.20345 10.973765

There exists an nlme method for nlsList objects. Population
parameters and individual random-effects can be fitted to the
Soybean data even when a group could not be fitted above by using
the simple call:

> Soybean.fit1 <- nlme(Soybean.nlsList)

Again, we use the summary method to obtain more detailed
information on the fitted object.

> summary(Soybean.fit1)

Nonlinear mixed-effects model fit by maximum likelihood
  Model: weight ~ SSlogis(Time, Asym, xmid, scal) 
 Data: Soybean 
       AIC      BIC    logLik 
  1499.671 1539.881 -739.8353

Random effects:
 Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
 Level: Plot
452



Advanced Model Fitting
 Structure: General positive-definite
           StdDev  Corr       
    Asym 5.201130 Asym  xmid 
    xmid 4.197413 0.721      
    scal 1.404698 0.711 0.958
Residual 1.123465            

Fixed effects: list(Asym ~ 1, xmid ~ 1, scal ~ 1) 
        Value Std.Error  DF  t-value p-value 
Asym 19.25303 0.8031850 362 23.97086  <.0001
xmid 55.01986 0.7272665 362 75.65296  <.0001
scal  8.40334 0.3152861 362 26.65306  <.0001
 Correlation: 
      Asym  xmid 
xmid 0.724      
scal 0.620 0.807

Standardized Within-Group Residuals:
       Min         Q1         Med        Q3     Max 
 -6.086891 -0.2216123 -0.03390552 0.2974126 4.84693

Number of Observations: 412
Number of Groups: 48 

Soybean.fit1 does not incorporate covariates or within-group
errors. Comparing the estimated standard deviations and means of
Asym, xmid, and scal, the asymptotic weight Asym has the highest
coefficient of variation (5.2/19.25 = 0.27). Modeling this random-
effects parameter is the focus of the following analyses.

We can try to model the asymptotic weight Asym as a function of the
variety of the genotype and planting year. To model the within-group
errors, we will assume the serial correlation follows an AR(1). Given
that the observations are not equally spaced in time, we need to use
the continuous form of the AR process, and provide the time
variable. From Figure 13.14, obtained with a simple call to the plot
method for the object Soybean.fit1, the within-group variance is
assumed to be proportional to some power of the absolute value of
the predictions.
453



Chapter 13  Linear and Nonlinear Mixed-Effects Models
The improved nlme model is fitted to the Soybean data below. In
fitting the full model, the results from Soybean.nlsList are used to
derive initial estimates in the parametrization of Asym.

> Soybean.fit2 <- nlme(weight ~ SSlogis(Time, Asym, xmid,
+ scal), data = Soybean, fixed = list(Asym ~ Variety * Year,
+ xmid ~ 1, scal ~1), random = list(Asym ~ 1, xmid ~ 1,
+ scal ~ 1), start = c(20.08425, 2.03699,-3.785161,
+ 0.3036094, 1.497311,-1.084704, 55.02058, 8.402632),
+ correlation = corCAR1(~Time), weights = varPower())
> plot(Soybean.fit2)             #Figure 13.15
> anova(Soybean.fit1,Soybean.fit2)

             Model df      AIC      BIC    logLik  
Soybean.fit1     1 10 1499.671 1539.881 -739.8353  
Soybean.fit2     2 17  678.619  746.976 -322.3093  

             Test  L.Ratio  p-value 
                                    
            1 vs 2  835.052  <.0001 

Figure 13.14:  Standardized residuals plot used to diagnose model Soybean.fit1.

-6

-4

-2

0

2

4

0 5 10 15 20 25

Fitted values (g)

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

454



Advanced Model Fitting
The anova function is used to compare these fits. The progress in
each of the log likelihood, AIC, and BIC is tremendous. Figure 13.15
shows the residuals plots.

These residuals confirm the selection of variance-covariance function.
We conclude that the variety of the genotype and the year of planting
have a large impact on the limiting leaf weight. The experimental
strain gains 2.5 grams in the limit.

Modeling Spatial 
Dependence

Two main classes of dependence among the within-group errors can
be modeled using the tools in the Mixed-effects library of S-PLUS:
temporal and spatial. To model serial correlation (temporal
dependence), several correlation structures were already introduced
in Table 13.2. To assess and model spatial dependence among the
within-group errors we use the Variogram function in S-PLUS.

The Variogram method for the lme class estimates the sample
semivariogram from the residuals of the lme object. The
semivariogram can then be plotted using its corresponding plot

Figure 13.15:  Standardized residuals plot used to diagnose model 
Soybean.fit2.

-2

-1

0

1

2

3

4

0 5 10 15 20

Fitted values (g)

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

455



Chapter 13  Linear and Nonlinear Mixed-Effects Models
method. If the residuals present spatial dependence then you will
need to determine a model for this dependence or its correlation
structure. 

We use the corSpatial function to model spatial dependence in the
within-group errors. This function is a constructor for the
corSpatial class, representing a spatial correlation structure. This
class is “virtual,” having five “real” classes, corresponding to specific
spatial correlation structures, associated with it: corExp, corGaus,
corLin, corRatio, and corSpher. The returned object will inherit
from one of these “real” classes, determined by the type argument,
and from the “virtual” corSpatial class. Objects created using this
constructor need to be later initialized using the appropriate initialize
method.

A typical call to the variogram function for a mixed-effects model
would be, for example :

> plot(Variogram(Soybean.fit1, form= ~Time))

The resulting plot (not shown) does not show a strong pattern in the
semivariogram of the residuals from model Soybean.fit1 in terms
of time distance. Refitting the model without the AR(1) term for the
within-error correlation shows that Soybean.fit2 may indeed be
over-parameterized and that only the change in the fixed-effects
model and the use of weights explain the improvement. 

> anova(Soybean.fit1,Soybean.fit3,Soybean.fit2)

             Model df      AIC      BIC    logLik
Soybean.fit1    1  10 1499.671 1539.881 -739.8353
Soybean.fit3    2  16  674.669  739.005 -321.3345
Soybean.fit2    3  17  678.619  746.976 -322.3093

                 Test  L.Ratio p-value 
                 
                1 vs 2 837.0015  <.0001
                2 vs 3   1.9496  0.1626
456



References
REFERENCES

Becker, R.A., Cleveland, W.S., and Shyu, M.-J. (1996). The visual
design and control of trellis graphics displays. J. of Computational and
Graphical Statistics, 5(2): 123-156.

Chambers, J.M. and Hastie, T.J. (eds.) (1992). Statistical Models in S.
Wadsworth, Belmont, CA.

Davidian, M. and Giltinan, D.M. (1995). Nonlinear Models for Repeated
Measurement Data. Chapman & Hall, London.

Goldstein, H. (1995). Multilevel Statistical Models. Halsted Press, New
York.

Laird, N.M. and Ware, J.H. (1982). Random-effects models for
longitudinal data. Biometrics, 38: 963-974.

Lindstrom, M.J. and Bates, D.M. (1990). Nonlinear mixed effects
models for repeated measures data. Biometrics, 46: 673-687.

Littel, R.C., Milliken, G.A., Stroup, W.W. and Wolfinger, R.D. (1996).
SAS Systems for Mixed Models. SAS Institute Inc., Cary, NC.

Longford, N.T. (1993). Random Coefficient Models. Oxford University
Press, New York.

Milliken, G.A. and Johnson, D.E. (1992). Analysis of Messy Data, Volume
1: Designed Experiments. Chapman & Hall.

Pinheiro, J.C. (1994). Topics in Mixed Effect Models. Unpublished Ph.D.
thesis, University of Wisconsin-Madison.

Potthoff, R.F. and Roy, S.N. (1964). A generalized multivariate
analysis of variance model useful especially for growth curve
problems. Biometrika, 51: 313-326.

Potvin, C., Lechowicz, M.J., and Tardif, S. (1990). The statistical
analysis of ecophysiological response curves obtained from
experiments involving repeated measures. Ecology, 71: 1389-1400.

Venables, W.N. and Ripley, B.D. (1997) Modern Applied Statistics with
S-PLUS, 2nd Edition. Springer-Verlag, New York.
457



Chapter 13  Linear and Nonlinear Mixed-Effects Models
458



Introduction 460

Optimization Functions 461
Finding Roots 462
Finding Local Maxima and Minima of Univariate

        Functions 463
Finding Maxima and Minima of Multivariate Functions 464
Solving Nonnegative Least Squares Problems 469
Solving Nonlinear Least Squares Problems 471

Examples of Nonlinear Models 474
Maximum Likelihood Estimation 474
Nonlinear Regression 477

Inference for Nonlinear Models 479
Likelihood Models 479
Least Squares Models 479
The Fitting Algorithms 479
Specifying Models 480
Parametrized Data Frames 482
Derivatives 483
Fitting Models 488
Profiling the Objective Function 496

NONLINEAR MODELS 14
459



Chapter 14  Nonlinear Models
INTRODUCTION

This chapter covers the fitting of nonlinear models such as in
nonlinear regression, likelihood models, and Bayesian estimation.
Nonlinear models are more general than the linear models usually
discussed. Specifying nonlinear models typically requires one or
more of the following: more general formulas, extended data frames,
starting values and derivatives.

The two most common fitting criteria for nonlinear models
considered are Minimum sum and Minimum sum-of-squares.
Minimum sum minimizes the sum of contributions from observations
(the maximum likelihood problem). Minimum sum-of-squares
minimizes the sum of squared residuals (the nonlinear least-squares
regression problem).

The first sections of this chapter summarizes the use of the nonlinear
optimization functions. Starting with the section Examples of
Nonlinear Models, the use of the ms and nls functions are examined,
along with corresponding examples and theory, in much more detail.
460



Optimization Functions
OPTIMIZATION FUNCTIONS

S-PLUS has several functions for finding roots of equations and local
maxima and minima of functions, as shown in Table 14.1.

Table 14.1:  The range of S-PLUS functions for finding roots, maxima, and minima.

Function Description

polyroot Finds the roots of a complex polynomial equation.

uniroot Finds the root of a univariate real-valued function in a user-supplied interval.

peaks Finds local maxima in a set of discrete points.

optimize Approximates a local optimum of a continuous univariate function within a
given interval.

ms Finds a local minimum of a multivariate function.

nlmin Finds a local minimum of a nonlinear function using a general quasi-Newton
optimizer.

nlminb Local minimizer for smooth nonlinear functions subject to bound-constrained
parameters.

nls Finds a local minimum of the sums of squares of one or more multivariate
functions. 

nlregb Local minimizer for sums of squares of nonlinear functions subject to bound-
constrained parameters.

nnls Finds least-squares solution subject to the constraint that the coefficients be
nonnegative. 
461



Chapter 14  Nonlinear Models
Finding Roots The function polyroot finds the roots (zeros) of the complex-valued

polynomial equation . The input to

polyroot is the vector of coefficients c(a0, ..., ak). For example, to
solve the equation z^2+5z+6=0, use polyroot as follows:

> polyroot(c(6,5,1))

[1] -2+2.584939e-26i -3-2.584939e-26i

The function uniroot finds a zero of a continuous, univariate, real-
valued function within a user-specified interval for which the function
has opposite signs at the endpoints. The input to uniroot includes
the function, the lower and upper endpoints of the interval, and any
additional arguments to the function. For example, suppose you have
the function:

> my.fcn

function(x, amp=1, per=2*pi, horshft=0, vershft=0)
{
  amp * sin(((2*pi)/per) * (x-horshft)) + vershft
}

This is the sine function with amplitude abs(amp), period abs(per),
horizontal (phase) shift horshft and vertical shift vershft. To find a
root of the function my.fcn in the interval [π/2, 3π/2] using its default
arguments, type:

> uniroot(my.fcn, interval = c(pi/2, 3*pi/2))

$root
[1] 3.141593
. . .

To find a root of my.fcn in the interval [π/4, 3π/4] with the period set
to π, type:

> uniroot(my.fcn, interval = c(pi/4, 3*pi/4), per=pi)

$root:
[1] 1.570796
. . .

akz
k … a1z a0+ + + 0=
462



Optimization Functions
> pi/2

[1] 1.570796

See the help file for uniroot for information on other arguments to
this function.

Finding Local 
Maxima and 
Minima of 
Univariate 
Functions

The peaks function takes a data object x and returns an object of the
same type with logical values: T if a point is a local maximum;
otherwise, F:

> peaks(corn.rain)

1890: F T F F F F T F T F T F T F F F F T F F F F T F F T F
1917: T F F F T F F T F T F

Use peaks on the data object -x to find local minima:

> peaks(-corn.rain)

1890: F F F F T F F F F F F T F F F T F F F F F T F T F F T
1917: F T F F F T F F T F F

To find a local optimum (maximum or minimum) of a continuous
univariate function within a particular interval, use the optimize
function. The input to optimize includes the function to optimize,
the lower and upper endpoints of the interval, which optimum to look
for (maximum versus minimum) and any additional arguments to the
function.

> optimize(my.fcn, c(0, pi), maximum=T)

$maximum:
[1] 1.570799

$objective:
[1] -1

$nf:
[1] 10

$interval:
[1] 1.570759 1.570840
. . .
463



Chapter 14  Nonlinear Models
> pi/2

[1] 1.570799

> optimize(my.fcn, c(0, pi), maximum=F, per = pi)

$minimum:
[1] 2.356196

$objective:
[1] -1

$nf:
[1] 9

$interval:
[1] 2.356155 2.356236
. . .

> 3*pi/4

[1] 2.356194

See the help file for optimize for information on other arguments to
this function.

Finding 
Maxima and 
Minima of 
Multivariate 
Functions

S-PLUS has two functions to find the local minimum of a multivariate
function: nlminb (Nonlinear Minimization with Box Constraints) and
ms (Minimize Sums).

The two required arguments to nlminb are objective (the function f
to minimize) and start (a vector of starting values for the
minimization). The function f must take as its first argument a vector
of parameters over which the minimization is carried out. By default,
there are no boundary constraints on the parameters. The nlminb
function, however, also takes the optional arguments lower and
upper that specify the bounds on the parameters. (Other arguments
to f can be passed in the call to nlminb.)
464



Optimization Functions
1. Example: Using nlminb to find a local minimum

> my.multvar.fcn

function(xvec, ctr = rep(0, length(xvec)))
{
  if(length(xvec) != length(ctr))
     stop("lengths of xvec and ctr do not match")
  sum((xvec - ctr)^2)
}

> nlminb(start = c(0,0), objective = my.multvar.fcn,
+ ctr = c(1,2))

$parameters:
[1] 1 2

$objective:
[1] 3.019858e-30

$message:
[1] "ABSOLUTE FUNCTION CONVERGENCE"
. . .

To find a local maximum of f, use nlminb on -f. Since unary minus
cannot be performed on a function, you must define a new function
that returns -1 times the value of the function you want to maximize:

2. Example: Using nlminb to find a local maximum

> fcn.to.maximize

function(xvec)
{
 - xvec[1]^2 + 2 * xvec[1] - xvec[2]^2 + 20 * xvec[2] + 40
}

> fcn.to.minimize

function(xvec)
{
 - fcn.to.maximize(xvec)
}

465



Chapter 14  Nonlinear Models
> nlminb(start = c(0, 0), objective = fcn.to.minimize)

$parameters:
[1] 1 10

$objective:
[1] -141

$message:
[1] "RELATIVE FUNCTION CONVERGENCE"
. . .

See the help file for nlminb for information on other arguments to
this function. To find the local minimum of a multivariate function
subject to constraints, use nlminb with the lower and/or upper
arguments.

3. Example: Using nlminb to find a constrained minimum

As an example of using nlminb to find a constrained minimum,
consider the following function norm.neg.2.ll, which is (minus a
constant) -2 times the log-likelihood function of a normal (Gaussian)
distribution:

> norm.neg.2.ll <-
+ function(theta, y)
+ {
+ length(y) * log(theta[2]) +
+ (1/theta[2]) * sum((y - theta[1])^2)
+ }

This function assumes that observations from a normal distribution
are stored in the vector y. The vector theta contains the mean
(theta[1]) and variance (theta[2]) of this distribution. To find the
maximum likelihood estimates of the mean and variance, we need to
find the values of theta[1] and theta[2] that minimize
norm.neg.2.ll for a given set of observations stored in y. We must
use the lower argument to nlminb because the estimate of variance
(theta[2]) must be greater than zero:

> set.seed(12)
> my.obs <- rnorm(100, mean = 10, sd = 2)
466



Optimization Functions
> nlminb(start = c(0,1), objective = norm.neg.2.ll,
+ lower = c(-Inf, 0), y = my.obs)

$parameters:
[1] 9.863812 3.477773

$objective:
[1] 224.6392

$message:
[1] "RELATIVE FUNCTION CONVERGENCE"
. . .

> mean(my.obs)

[1] 9.863812

> (99/100) * var(my.obs)

[1] 3.477774

The Minimum Sums function ms also minimizes a multivariate
function, but in the context of the modeling paradigm, so it expects a
formula rather than a function as its main argument. Here is the last
example redone with ms (mu is the estimate of the population mean µ,

and ss is the estimate of the population variance σ2):

4. Example: Using ms

> ms( ~length(y) * log(ss) + (1/ss) * sum((y - mu)^2),
+ data = data.frame(y = my.obs),
+ start = list(mu = 0, ss = 1))

value: 224.6392
parameters:
      mu       ss
9.863813 3.477776

formula:  ~length(y) * log(ss) + (1/ss) * sum((y-mu)^2)

1 observations
467



Chapter 14  Nonlinear Models
call: ms(formula = ~length(y) * log(ss) + (1/ss) *
        sum((y - mu)^2),
data = data.frame(y=my.obs), start=list(mu=0, ss=1))

5. Example: Using ms with several observations

> ms( ~log(ss) + (1/ss) * (y - mu)^2,
+ data = data.frame(y = my.obs),
+ start = list(mu = 0, ss = 1))

value: 224.6392

parameters:
      mu       ss
9.863813 3.477776

formula:  ~log(ss) + (1/ss) * (y - mu)^2

100 observations
call: ms(formula =  ~log(ss) + (1/ss) * (y - mu)^2,
data = data.frame(y=my.obs), start=list(mu=0,ss=1))

If the function you are trying to minimize is fairly complicated, then it
is usually easier to write a function to supply as the formula:

6. Example: Using ms with a formula function

> ms( ~norm.neg.2.ll(theta,y), data=data.frame(y=my.obs),
+ start = list(theta = c(0,1)))

value: 224.6392

Hint

The ms function does not do minimization subject to constraints on the parameters.

If there are multiple solutions to your minimization problem, you may not get the answer you
want using ms. In the above example, the ms function tells us we have “1 observations” because
the whole vector y was used at once in the formula. The Minimum Sum function minimizes the
sum of contributions to the formula, so we could have gotten the same estimates mu and ss with
the formula shown in example 5.
468



Optimization Functions
parameters:
  theta1   theta2
9.863813 3.477776

formula:  ~norm.neg.2.ll(theta, y)

1 observations

call: ms(formula = ~norm.neg.2.ll(theta, y), data =
  data.frame(y = my.obs),
start = list(theta = c(0, 1)))

Solving 
Nonnegative 
Least Squares 
Problems

Given an m x n matrix A and a vector b of length m, the linear
nonnegative least squares problem is to find the vector x of length n
that minimizes , subject to the constraint that  for i in

1, ..., n.

To solve nonnegative least squares problems in S-PLUS, use the
nnls.fit function. For example, consider the following fit using the
stack data:

$coefficients
  Air Flow Water Temp Acid Conc.
0.2858057  0.05715152          0

$residuals:
[1]  17.59245246 12.59245246 14.13578403
[4]   8.90840973 -0.97728723 -1.03443875
[7]  -0.09159027  0.90840973 -2.89121593
[10] -3.60545832 -3.60545832 -4.54830680
[13] -6.60545832 -5.66260984 -7.31901267
[16] -8.31901267 -7.37616419 -7.37616419
[19] -6.43331572 -2.14814995 -6.14942983

$dual:
    Air Flow   Water Temp Acid Conc.
3.637979e-12 5.400125e-13 -1438.359
$rkappa:
     final    minimum
0.02488167 0.02488167

Ax b– xi 0≥
469



Chapter 14  Nonlinear Models
$call:
nnls.fit(x = stack.x, y = stack.loss)

You can also use nlregb to solve the nonnegative least squares
problem, since the nonnegativity constraint is just a simple box
constraint. To pose the problem to nlregb, define two functions
(lin.res and lin.jac) of the form f(x,params), to represent the
residual function and the Jacobian of the residual function,
respectively:

> lin.res <- function(x, b, A) A%*% x - b
> lin.jac <- function(x, A) A
> nlregb(n = length(stack.loss), start = rnorm(3),
+ res = lin.res, jac = lin.jac, lower = 0,
+ A = stack.x, b = stack.loss)

$parameters:
[1] 0.28580571 0.05715152 0.00000000

$objective:
[1] 1196.252
. . .

Generally, nnls.fit should be preferred to nlregb for reasons of
efficiency, since nlregb is primarily designed for nonlinear
problems. However, nlregb can solve degenerate problems that can
not be handled by nnls.fit. You may also want to compare the
results of nnls.fit with those of lm. Remember that lm requires a
formula, and also that it fits an intercept term by default (which
nnls.fit does not). Keeping this in mind, you can construct the
comparable call to lm as follows:

> lm(stack.loss ~ stack.x - 1)

Call:
lm(formula = stack.loss ~ stack.x - 1)
Coefficients:
stack.xAir Flow stack.xWater Temp
      0.7967652          1.111422 -0.6249933

Degrees of freedom: 21 total; 18 residual
Residual standard error: 4.063987
470



Optimization Functions
For the stack loss data, the results of the constrained optimization
methods nnls.fit and nlregb agree completely. The linear model
produced by lm includes a negative coefficient.

You can use nnls.fit to solve the weighted nonnegative least
squares problem by providing a vector of weights as the weights
argument. The weights used by lm are the square roots of the weights
used by nnls.fit; you must keep this in mind if you are trying to
solve a problem using both functions.

Solving 
Nonlinear 
Least Squares 
Problems

Two functions, nls and nlregb, are available for solving the special
minimization problem of nonlinear least squares. The function nls is
used in the context of the modeling paradigm, so it expects a formula
rather than a function as its main argument. The function nlregb
expects a function rather than a formula (the argument name is
residuals), and, unlike nls, it can perform the minimization subject
to constraints on the parameters.

1. Example: Using nls

In this example, we create 100 observations where the underlying
signal is a sine function with an amplitude of 4 and a horizontal
(phase) shift of π. Noise is added in the form of normal (Gaussian)
random numbers. We then use the nls function to estimate the true
values of amplitude and horizontal shift.

> set.seed(20)
> noise <- rnorm(100, sd = 0.5)
> x <- seq(0, 2*pi, length = 100)
> my.nl.obs <- 4 * sin(x - pi) + noise
> plot(x, my.nl.obs)
> nls(y ~ amp * sin(x - horshft),
+ data = data.frame(y = my.nl.obs, x = x),
+ start = list(amp = 1, horshft = 0))

Residual sum of squares : 20.25668
parameters:
       amp    horshft
 -4.112227 0.01059317
formula: y ~ amp * sin(x - horshft)
100 observations
471



Chapter 14  Nonlinear Models
The above example illustrates the importance of finding appropriate
starting values. The nls function returns an estimate of amp close to
-4 and an estimate of horshft close to 0 because of the cyclical
nature of the sine function: sin(x - pi) = -sin(x). If we start
with initial estimates of amp and horshft closer to their true values,
nls gives us the estimates we want.

2. Example: Using nls with better starting values

> nls(y ~ amp * sin(x - horshft),
+ data = data.frame(y = my.nl.obs, x = x),
+ start = list(amp = 3, horshft = pi/2))

Residual sum of squares : 20.25668
parameters:
      amp horshft
 4.112227  -3.131
formula: y ~ amp * sin(x - horshft)
100 observations

We could use the nlregb function to redo the above example, and
specify that the value of amp must be greater than 0:

3. Example: Creating my.new.func and using nlregb

> my.new.fcn

function(param, x, y)
{
  amp <- param[1]
  horshft <- param[2]
  y - amp * sin(x - horshft)
}

> nlregb(n = 100, start = c(3,pi/2),
+ residuals = my.new.fcn,
+ lower = c(0, -Inf), x = x, y = my.nl.obs)

$parameters:
[1] 4.112227 3.152186

$objective:
[1] 20.25668
472



Optimization Functions
$message:
[1] "BOTH X AND RELATIVE FUNCTION CONVERGENCE"

$grad.norm:
[1] 5.960581e-09
473



Chapter 14  Nonlinear Models
EXAMPLES OF NONLINEAR MODELS

Maximum 
Likelihood 
Estimation

Parameters are estimated by maximizing the likelihood function.
Suppose n independent observations are distributed with probability
densities pi(θ) = p(yi; θ) where θ is a vector of parameters. The
likelihood function is defined as:

The problem is to find the estimate  of that maximizes the
likelihood function for the observed data. Maximizing the likelihood
is equivalent to minimizing the negative of the log-likelihood:

Example One: 
Ping-Pong

Each member of the U.S. Table Tennis Association is assigned a rating
based on the member’s performance in tournaments. Winning a
match boosts the winner’s rating and lowers the loser’s rating some
number of points depending on the current ratings of the two players.
Using this data, two questions we might like to ask are:

1. Do players with a higher rating tend to win over players with
a lower rating?

2. Does a larger difference in rating imply that the higher-rated
player is more likely to win?

(14.1)

(14.2)

L y θ;( ) pi θ( )
i 1=

n

∏=

θ̃

l θ( ) L y θ;( )( )log– pi θ( )( )log–
i 1=

n

∑= =
474



Examples of Nonlinear Models
Assuming a logistic distribution in which log(p/(1-p)) is
proportional to the difference in rating between the winner and loser
and the average rating of the two players:

where Di = Wi - Li is the difference in rating between the winner and
loser and Ri = 1/2(Wi + Li) is the average rating for the two players.

To fit the model, we need to find α and β which minimize the
negative log-likelihood:

Example Two: 
Wave-Soldering 
Skips

In a 1988 AT&T wave-soldering experiment, several factors were
varied:

The results of the experiment gave the number of visible soldering
skips (faults) on a board. Physical theory and intuition suggest a
model in which the process is in one of two states:

1. A “perfect” state where no defects occur

(14.3)

(14.4)

pi
e

Diα Ri β+

1 e
Diα Riβ+

+

------------------------------=

pi( )log–∑ D– iα Riβ 1 e
Diα Riβ+

+( )log+–
 
 
 

∑=

Factor Description

opening amount of clearance around the mounting pad

solder amount of solder

mask type and thickness of the material used for the solder mask

padtype the geometry and size of the mounting pad

panel each board was divided into three panels, with three runs on a board
475



Chapter 14  Nonlinear Models
2. An “imperfect” state where there may or may not be defects

Both the probability of being in the imperfect state and the
distribution of skips in that state depend on the factors in the
experiment. Assume that some “stress,” S, induces the process to be
in the imperfect state and also increases the tendency to generate
skips when in the imperfect state.

Assume S depends linearly on the levels of the factors, xj, j = 1, ... ,p:

where β is the vector of parameters to be estimated.

Assume the probability Pi of being in the imperfect state is
monotonically related to the stress by a logistic distribution:

As the stress increases, the above function approaches 1.

Given that the process is in an imperfect state, assume the probability
of ki skips is modeled by the Poisson distribution with mean λi:

(14.5)

(14.6)

(14.7)

Si xij βj
j 1=

p

∑=

Pi
1

1 e
τ–( )Si+

------------------------=

P ki( ) e
λ– i λ

ki
i

ki!
--------⋅=
476



Examples of Nonlinear Models
The probability of zero skips is the probability of being in the perfect
state plus the probability of being in the imperfect state and having
zero skips. The probability of one or more skips is the probability of
being in the imperfect state and having one or more skips.
Mathematically the probabilities may be written as:

The mean skips in the imperfect state is always positive and modeled

in terms of the stress by: . The parameters, τ  and β, can be

estimated by minimizing the negative log-likelihood. The ith element
of the negative log-likelihood can be written to within constants as:

The model depicted above does not reduce to any simple linear
model.

Nonlinear 
Regression

Parameters are estimated by minimizing the sum of squared residuals.
Suppose n independent observations y can be modeled as a nonlinear
parametric function f of a vector x of predictor variables and a vector
of parameters, β.

(14.8)

(14.9)

P y yi=( )

e
τ–( )Si

1 e
τ–( )Si

+

------------------------ e
λ– i

1 e
τ–( )Si+

------------------------+ if yi 0=

1

1 e
τ–( )Si+

------------------------e
λ– i λ

yi
i

yi!
-------- if yi 0>











=

λ i e
Si=

l i β τ,( ) 1 e
τ–( )Si+( )log

e
τ–( )Si

e
e–
Si

+ 
 log if yi 0=

yi Si e–
Si if yi 0>









–=

y f x β;( ) ε+=
477



Chapter 14  Nonlinear Models
where the errors, ε , are assumed normally distributed. The nonlinear

least-squares problem finds parameter estimates  that minimize:

Example Three: 
Puromycin

A biochemical experiment measured reaction velocity in cells with
and without treatment by Puromycin. There are three variables in the
Puromycin data frame.

Assume a Michaelis-Menten relationship between velocity and
concentration:

where V is the velocity, c is the enzyme concentration, Vmax is a
parameter representing the asymptotic velocity as c –> ∞, K is the
Michaelis parameter, and ε  is experimental error. Assuming the
treatment with the drug would change Vmax but not K, the
optimization function is:

where I{treated} is the function indicating if the cell was treated with
Puromycin.

(14.10)

β̃

yi f x β;( )–( )2

i 1=

n

∑

Variable Description

conc the substrate concentration

vel the reaction velocity

state indicator of treated or untreated

(14.11)

(14.12)

V
Vmaxc

K c+
-------------- ε+=

S Vmax K,( ) Vi
Vmax ∆VmaxI treated{ } state( )+( )ci

K ci+
-------------------------------------------------------------------------------– 

  2

∑=
478



Inference for Nonlinear Models
INFERENCE FOR NONLINEAR MODELS

Likelihood 
Models

With likelihood models distributional results are asymptotic.
Maximum likelihood estimates tend toward a normal distribution
with a mean equal to the true parameter, and a variance matrix given
by the inverse of the information matrix, the negative of the second
derivatives of the log-likelihood.

Least Squares 
Models

In least-squares models approximations to quantities such as standard
errors or correlations of parameter estimates are used. The
approximation proceeds as follows:

1. Replace the nonlinear model with its linear Taylor series
approximation at the parameter estimates.

2. Use the methods for linear statistical inference on the
approximation.

Consequently, the nonlinear inference results are called linear
approximation results.

The Fitting 
Algorithms

Minimum-sum algorithm

This section deals with the general optimization of an objective
function modeled as a sum. The algorithm is a version of Newton’s
method based on a quadratic approximation of the objective function.
If both first and second derivatives are supplied, the approximation is
a local one using the derivatives. If no derivatives or only the first
derivative are supplied, the algorithm approximates the second
derivative information. It does this in a way specifically designed for
minimization.

The algorithm actually used is taken from the PORT subroutine
library which evolved from the published algorithm by Gay (1983).
Two key features of this algorithm are:

1. A quasi-Newton approximation for second derivatives.

2. A “trust region” approach controlling the size of the region in
which the quadratic approximation is believed to be accurate.

The algorithm is capable of working with user models specifying 0, 1,
or 2 orders of derivatives.
479



Chapter 14  Nonlinear Models
Nonlinear least-squares algorithm

The Gauss-Newton algorithm is used with a step factor to ensure that
the sum of squares decreases at each iteration. A line-search method is
used, as opposed to the trust region employed in the minimum-sum
algorithm. The step direction is determined by a quadratic model.
The algorithm proceeds as follows:

1. The residuals are calculated, and the gradient is calculated or
approximated (depending on the data), at the current
parameter values.

2. A linear least-squares fit of the residual on the gradient gives
the parameter increment.

3. If applying the full parameter increment increases the sum-of-
squares rather than decreasing it, the length of the increment
is successively halved until the sum-of-squares is decreased.

4. The step factor is retained between iterations and started at
min{2*(previous step factor), 1}.

If the gradient is not specified analytically, it is calculated using finite
differences with forward differencing. For partially linear models, the
increment is calculated using the Golub-Pereyra method (Golub and
Pereyra, 1973) as implemented by Bates and Lindstrom (1986).

Specifying 
Models

Nonlinear models typically require specifying more details than
models of other types. The information typically required to fit a
nonlinear model, using the S-PLUS functions ms or nls, is:

1. A formula

2. Data

3. Starting values

Formulas For nonlinear models a formula is an S-PLUS expression involving
data, parameters in the model, and any other relevant quantities. The
parameters must be specified in the formula because there is no
assumption about where they are to be placed (as in linear models, for
example). Formulas are typically specified differently depending on
whether you have a minimum-sum problem or nonlinear least-
squares problem.
480



Inference for Nonlinear Models
In the puromycin example, you would specify a formula for the
simple model (described in Equation (14.11)) by:

vel ~ Vm*conc / (K + conc)

The parameters Vm and K are specified along with the data vel and
conc. Since there is no explicit response for minimum-sum models
(for example, likelihood models), it is left off in the formula.

In the ping-pong example (ignoring the average rating effect), the
formula for Equation (14.4) is:

~- DV * alpha + log( 1 + exp( DV * alpha ) )

where DV is a variable in the data and alpha is the parameter to fit.
Note that the model here is based only on the difference in ratings,
ignoring for the moment the average rating.

Simplifying 
Formulas

Some models can be organized as a simple expression involving one
or more S-PLUS functions that do all the work. Note that DV*alpha
occurs twice in the formula for the ping-pong model. You can write a
general function for the log-likelihood in terms of DV*alpha.

> lprob <- function(lp) log(1 + exp(lp)) - lp

Recall that lp is the linear predictor for the GLM. A simpler
expression for the model is now:

~ lprob( DV * alpha )

Having lprob now makes it easy to add additional terms or
parameters.

Implications of 
the Formulas

For nonlinear least-squares formulas the response on the left of ~ and
the predictor on the right must evaluate to numeric vectors of the
same length. The fitting algorithm tries to estimate parameters to
minimize the sum of squared differences between response and
prediction. If the response is left out the formula is interpreted as a
residual vector.

For Minimum-Sum formula, the right of ~ must evaluate to a numeric
vector. The fitting algorithm tries to estimate parameters to minimize
the sum of this “predictor” vector. The concept here is linked to
maximum-likelihood models. The computational form does not
depend on an MLE concept. The elements of the vector may be
anything and there need not be more than one.
481



Chapter 14  Nonlinear Models
The evaluated formulas can include derivatives with respect to the
parameters. The derivatives are supplied as attributes to the vector
that results when the predictor side of the formula is evaluated. When
explicit derivatives are not supplied, the algorithms use numeric
approximations.

Parametrized 
Data Frames

Relevant data for nonlinear modeling includes:

• Variables

• Initial estimates of parameters

• Fixed values occurring in a model formula

Parametrized data frames allow you to “attach” relevant data to a data
frame when the data doesn’t occupy an entire column. Information is
attached as a "parameter" attribute of the data frame. The
parameter function returns or modifies the entire list of parameters
and is analogous to the attributes function. Similarly the param
function returns or modifies one parameter at a time and is analogous
to the attr function. You could supply values for Vm and K to the
Puromycin data frame with:

> parameters(Puromycin) <- list(Vm = 200, K = 0.1)

The parameter values can be retrieved with

> parameters(Puromycin)

$Vm:
[1] 200

$K:
[1] 0.1

The class of Puromycin is now:

> class(Puromycin)

[1] "pframe" "data.frame"

Now, when Puromycin is attached, the parameters Vm and K are
available when referred to in formulas.
482



Inference for Nonlinear Models
Starting Values; 
Identifying 
Parameters

Before the formulas can be evaluated, the fitting functions must know
which names in the formula are parameters to be estimated and must
have starting values for these parameters. The fitting functions
determine this in the following way:

1. If the start argument is supplied, its names are the names of
the parameters to be estimated, and its values are the
corresponding starting values.

2. If start is missing, the parameters attribute of the data
argument defines the parameter names and values.

Derivatives Supplying derivatives of the predictor side of the formula with respect
to the parameters along with the formula can reduce the number of
iterations (so speed up the computations), increase numerical
accuracy, and improve the chance of convergence. In general
derivatives should be used whenever possible.

The fitting algorithms can use both first (the gradient) and second
derivatives (the Hessian). The derivatives are supplied to the fitting
functions as attributes to the formula. Recall that evaluating the
formula gives a vector of n values. Evaluating the first derivative
expression should give n values for each of the p parameters, that is
an n x p matrix. Evaluating the second derivative expression should
give n values for each of the p x p partial derivatives, that is, an
n x p x p array.

First Derivatives The negative log-likelihood for the simple ping-pong model is:

Hint

Explicitly use the start argument to name and initialize parameters.

You can easily see what the starting values are in the call component of the fit and you can
arrange to keep particular parameters constant when that makes sense.

(14.13)l α( ) 1 e
Diα+( )log Diα–[ ]∑=
483



Chapter 14  Nonlinear Models
Differentiating with respect to α and simplifying gives the gradient:

The gradient is supplied to the fitting function as the "gradient"
attribute of the formula:

> form.pp <-  ~log(1 + exp( DV*alpha ) ) - DV*alpha
> attr(form.pp, "gradient") <-
+ ~ -DV / ( 1 + exp( DV*alpha ) )
> form.pp

 ~ log(1 + exp(DV * alpha)) - DV * alpha

> attr(form.pp,"gradient")

 ~ - DV/(1 + exp(DV * alpha))

When a function is used to simplify a formula, build the gradient into
the function. The lprob function is used to simplify the formula
expression to ~lprob(DV*alpha).

> lprob

function(lp)
log(1 + exp(lp)) - lp

An improved version of lprob adds the gradient.

> lprob2

function(lp, X)
{
  elp <- exp(lp)
  z <- 1 + elp
  value <- log(z) - lp
  attr(value, "gradient") <- -X/z
  value
}

(14.14)
∂l
∂α
------

Di–

1 e
Diα+( )

------------------------∑=
484



Inference for Nonlinear Models
Note lp is again the linear predictor and X is the data in the linear
predictor. With the gradient built into the function, you don’t need to
add it as an attribute to the formula; it is already an attribute to the
object hence used in the formula.

Second 
Derivatives

The second derivatives may be added as the "hessian" attribute of
the formula. In the ping-pong example, the second derivative of the
negative log-likelihood with respect to α is:

The lprob2 function is now modified to add the Hessian as follows.
The Hessian is added in a general enough form to allow for multiple
predictors.

> lprob3

function(lp, X)
{

elp <- exp(lp)
z <- 1 + elp
value <- log(z) - lp
attr(value, "gradient") <- -X/z
if(length(dx <- dim(X)) == 2)
{

n <- dx[1]; p <- dx[2]
} else
{

n <- length(X); p <- 1
}
xx <- array(X, c(n, p, p))
attr(value, "hessian") <- (xx * aperm(xx, c(1, 3, 2)) *

elp)/z^2
value

}

Interesting points of the added code are:

• The second derivative computations are performed at the
time of the assignment of the "hessian" attribute.

(14.15)
∂2

l

∂α2
--------

Di
2
e

Diα

1 e
Diα+( )

2
--------------------------∑=
485



Chapter 14  Nonlinear Models
• The rest of the code (starting with if(length(...))) is to
make the Hessian general enough for multiple predictors.

• The aperm function does the equivalent of a transpose on the
second and third dimensions to produce the proper cross
products when multiple predictors are in the model.

Symbolic 
Differentiation

A symbolic differentiation function, D, is available to aid in taking
derivatives.

The function D is used primarily as a support routine to deriv.

Again referring to the ping-pong example, form contains the
expression of the negative log-likelihood:

> form

expression(log((1 + exp(DV * alpha))) - DV * alpha)

The first derivative is computed as:

> D(form, "alpha")

(exp(DV * alpha) * DV)/(1 + exp(DV * alpha)) - DV

And the second derivative is computed as:

> D( D(form, "alpha"), "alpha")

(exp(DV * alpha) * DV * DV)/(1 + exp(DV * alpha))
- (exp(DV * alpha) * DV * (exp(DV * alpha) * DV))
/(1 + exp(DV * alpha))^2

Table 14.2:  Arguments to D.

Argument Purpose

expr Expression to be differentiated.

name Which parameters to differentiate with respect to.
486



Inference for Nonlinear Models
Improved 
Derivatives

The deriv function takes an expression, computes a derivative,
simplifies the result then returns an expression or function for
computing the original expression along with its derivative(s).

Periods are used in front of created object names to avoid conflict
with user chosen names. The deriv function returns an expression in
the form expected for nonlinear models.

> deriv(form,"alpha")

expression(
{

.expr1 <- DV * alpha

.expr2 <- exp(.expr1)

.expr3 <- 1 + .expr2

.value <- (log(.expr3)) - .expr1

.grad <- array(0, c(length(.value), 1), list(NULL, 
"alpha"))

.grad[, "alpha"] <- ((.expr2 * DV)/.expr3) - DV
attr(.value, "gradient") <- .grad
.value

})

If the function.arg argument is supplied, a function is returned.

> deriv(form,"alpha",c("DV","alpha"))

Table 14.3:  Arguments to deriv

Argument Purpose

expr Expression to be differentiated, typically a formula, in
which case the expression returned computes the
right side of the ~ and its derivatives.

namevec Character vector of names of parameters.

function.arg Optional argument vector or prototype for a function.

tag Base of the names to be given to intermediate results.
Default is ".expr".
487



Chapter 14  Nonlinear Models
function(DV, alpha)
{ .expr1 <- DV * alpha

.expr2 <- exp(.expr1)

.expr3 <- 1 + .expr2

.value <- (log(.expr3)) - .expr1

.grad <- array(0, c(length(.value), 1), list(NULL, 
"alpha"))

.grad[, "alpha"] <- ((.expr2 * DV)/.expr3) - DV
attr(.value, "gradient") <- .grad
.value

}

The namevec argument can be a vector.

> deriv(vel ~ Vm * (conc/(K + conc)), c("Vm","K"))

expression(
{ .expr1 <- K + conc

.expr2 <- conc/.expr1

.value <- Vm * .expr2

.grad <- array(0, c(length(.value), 2), list(NULL, 
c("Vm","K")))

.grad[, "Vm"] <- .expr2

.grad[, "K"] <- - (Vm * (conc/(.expr1^2)))
attr(.value, "gradient") <- .grad
.value

})

The symbolic differentiation interprets each parameter as a scalar.
Generalization from scalar to vector parameters (for example,
lprob2) must be done by hand. Use parentheses to help deriv find
relevant subexpressions. Without the redundant parentheses around
conc/(K + conc) the expression deriv returns is not as simple as
possible.

Fitting Models There are two different fitting functions for nonlinear models:

• ms minimizes the sum of the vector supplied as the right side
of the formula.

• nls minimizes the sum of squared differences between the left
and right sides of the formula.
488



Inference for Nonlinear Models
Table 14.4:  Arguments to ms.

Argument Purpose

formula The nonlinear model formula (without a left side).

data A data frame in which to do the computations.

start Numeric vector of initial parameter values for the
iteration.

scale Parameter scaling.

control List of control values to be used in the iteration.

trace Indicates whether or not intermediate estimates
should be printed.

Table 14.5:  Arguments to nls.

Argument Purpose

formula The nonlinear regression model as a formula.

data A data frame in which to do the computations.

start Numeric vector of initial parameter values for the
iteration.

control List of control values to be used in the iteration.

algorithm Which algorithm to use. The default algorithm is a
Gauss-Newton algorithm. If algorithm =
"plinear", the Golub-Pereyra algorithm for
partially linear least-squares models is used.
489



Chapter 14  Nonlinear Models
Fitting a Model 
to the Puromycin 
Data

Before fitting a model, take a look at the data displayed in Figure 14.1.

> attach(Puromycin)
> plot(conc,vel,type="n")
> text(conc,vel,ifelse(state == "treated", "T","U"))

1. Estimating starting values

Obtain an estimate of Vmax for each group as the maximum value
each group attains.

• The treated group has a maximum of about 200.

• The untreated group has a maximum of about 160.

trace Indicates whether or not intermediate estimates
should be printed.

Table 14.5:  Arguments to nls. (Continued)

Argument Purpose

Figure 14.1:  vel versus conc for treated (T) and untreated (U) groups.

conc

ve
l

0.0 0.2 0.4 0.6 0.8 1.0

50
10

0
15

0
20

0

T

T

T
T

T

T

T
T

T
T T

T

U

U

UU
U

U

U
U

U
U U
490



Inference for Nonlinear Models
The value of K is the concentration at which V reaches Vmax/2,
roughly 0.1 for each group.

2. A simple model

Start by fitting a simple model for the treated group only.

> Treated <- Puromycin[Puromycin$state == "treated",]
> Purfit.1 <- nls(vel ~ Vm*conc/(K + conc), data = Treated,
+ start = list(Vm = 200, K = 0.1))
> Purfit.1

residual sum of squares: 1195.449

parameters:
      Vm          K
212.6836 0.06412111

12 observations

gradient.norm:
[1] 0.2781043

RELATIVE FUNCTION CONVERGENCE

formula: vel~(Vm * conc)/(K + conc)

Fit a model for the untreated group similarly but with Vm = 160.

> Purfit.2

residual sum of squares: 859.6043
parameters:
    Vm          K
160.28 0.04770808

11 observations

gradient.norm:
[1] 0.1389438

RELATIVE FUNCTION CONVERGENCE

formula: vel ~ (Vm * conc)/(K + conc)
491



Chapter 14  Nonlinear Models
3. A more complicated model

Obtain summaries of the fits with the summary function:

> summary(Purfit.1)

parameters:
          Value   Std.Error   t value
Vm 212.68362994 6.947148850 30.614520
 K   0.06412111 0.008280931  7.743225
. . .
sigma: 10.93366
df:
[1] 2 10
. . .
correlation:
          Vm         K
Vm 1.0000000 0.7650835
 K 0.7650835 1.0000000

formula:
vel ~ (Vm * conc)/(K + conc)

> summary(Purfit.2)

parameters:
          Value   Std.Error   t value
Vm 160.27997949 6.480240801 24.733646
 K   0.04770808 0.007781862  6.130677
. . .
sigma: 9.773003
df:
[1] 2 9
. . .
correlation:
          Vm         K
Vm 1.0000000 0.7768269
 K 0.7768269 1.0000000

formula:
vel ~ (Vm * conc)/(K + conc)
492



Inference for Nonlinear Models
An approximate t-test for the difference in K between the two models
suggests there is no difference:

> (.06412 - .04771)/sqrt(.00828^2 + .007782^2)

[1] 1.44416

The correct test of whether the Ks should be different, and is as
follows:

> Purboth <- nls(vel ~ (Vm + delV*(state=="treated"))*conc/
+ (K + conc), data=Puromycin,
+ start=list(Vm=160, delV=40, K=0.05))
> summary(Purboth)

parameters:
            Value   Std.Error   t value
  Vm 166.60396617 5.807422147 28.688110
delV  42.02590886 6.272136003  6.700414
   K   0.05797157 0.005910154  9.808809
. . .
sigma: 10.58511

df:
[1] 3 20
. . .
             Vm        delV          K
  Vm  1.0000000 -0.54055820 0.61128147
delV -0.5405582  1.00000000 0.06440645
   K  0.6112815  0.06440645 1.00000000

formula:
vel  ~ ((Vm + delV * (state == "treated")) * conc)/(K + 
conc)

> combinedSS <- sum(Purfit.1$res^2) + sum(Purfit.2$res^2)
> Fval <- (sum(Purboth$res^2) - combinedSS)/(combinedSS/19)
> Fval

[1] 1.718169

> 1 - pf(Fval, 1, 19)

[1] 0.2055523
493



Chapter 14  Nonlinear Models
Using a single K appears to be reasonable.

Fitting a Model 
to the Ping-Pong 
Data

The example here develops a model based only on the difference in
ratings, ignoring, for the moment, the average rating. The model to fit
is:

 ~ DV * alpha + log( 1 + exp(DV * alpha) )

There are four stages to the development of the model.

1. Estimating starting values

A very crude initial estimate for alpha can be found as follows:

• Replace all the differences in ratings by , where  is the
mean difference.

• For each match, the probability from the model that the
winner had a higher rating satisfies:

 * a = log(p/(1-p))

• Solve for α by substituting for p the observed frequency with
which the player with the higher rating wins.

The computations in S-PLUS proceed as follows:

> param(pingpong, "p") <- 0 # make pingpong a "pframe"
> attach(pingpong,1)
> DV <- winner - loser
> p <- sum(winner > loser) /length(winner)
> p

[1] 0.8223401

> alpha <- log(p/(1-p))/mean(DV)
> alpha

[1] 0.007660995

> detach(1, save = "pingpong")

d± d

d

494



Inference for Nonlinear Models
2. A simple model

Recall the lprob function which calculates the log-likelihood for the
ping-pong problem.

> lprob

function(lp)
log(1 + exp(lp)) - lp

The model is fitted as follows:

> attach(pingpong)
> fit.alpha <- ms( ~ lprob( DV * alpha ),
+ start = list(alpha=0.0077))
> fit.alpha

objective: 1127.635

parameters:
     alpha
0.01114251

gradient:
[1] -0.0004497159

RELATIVE FUNCTION CONVERGENCE.
formula:  ~ lprob(DV * alpha)

3. Adding the gradient

To fit the model with the gradient added to the formula use lprob2.

> fit.alpha.2 <- ms( ~ lprob2( DV * alpha, DV),
+ start = list(alpha=0.0077))
> fit.alpha.2

objective: 1127.635

parameters:
     alpha
0.01114251
495



Chapter 14  Nonlinear Models
gradient:
       alpha
2.938858e-07

RELATIVE FUNCTION CONVERGENCE.
formula:  ~ lprob2(DV * alpha, DV)

Even for this simple problem, providing the derivative has decreased
the computation time by 20%.

4. Adding the Hessian

To fit the model with the gradient and the Hessian added to the
formula use lprob3.

> fit.alpha.3 <- ms( ~ lprob3(DV*alpha, DV),
+ pingpong, start = list(alpha = .0077))
> fit.alpha.3

objective: 1127.635

parameters:
     alpha
0.01114251

gradient:
       alpha
-0.000218718

BOTH X- AND RELATIVE FUNCTION CONVERGENCE
formula:  ~ lprob3(DV * alpha, DV)

Profiling the 
Objective 
Function

Profiling provides a more accurate picture of the uncertainty in the
parameter estimates than simple standard errors. When there are
only two parameters, contours of the objective function can be
plotted by generating a grid of values. When there are more than two
parameters, examination of the objective function is usually done in
one of two ways:

• slices: Fixing all but two of the parameters at their estimated
values and creating a grid of the objective function by varying
the remaining two parameters of interest.
496



Inference for Nonlinear Models
• projections: Vary two parameters of interest over fixed values,
optimizing the objective function over the other parameters.

Two-dimensional projections are often too time consuming to
compute. One-dimensional projections are called profiles. Profiles are
plots of a t-statistic equivalent called the profile t function for a
parameter of interest against a range of values for the parameter.

The Profile t 
Function

For nls, the profile t function for a given parameter, θp, is denoted by
τ (θp) and is computed as follows:

where  is the model estimate of θp,  is the sum of squares

based on optimizing all parameters except θp, which is fixed, and

 is the sum of squares based on optimizing all parameters.

The profile t function is directly related to confidence intervals for the
corresponding parameter. τ (θp) can be shown to be equivalent to the
studentized parameter

for which a 1 - α confidence interval can be constructed as follows:

The profile 
Function in 
S-PLUS

The profile function produces profiles for "nls" and "ms" objects.
Profiles show confidence intervals for parameters as well as the
nonlinearity of the objective function. If the model were linear the

(14.16)

(14.17)

(14.18)

τ θp( ) sign θp θ̃p–( )
S̃ θp( ) S θ̃( )–

s
-------------------------------=

θ̃p S̃ θp( )

S θ̃( )

δ θp( )
θp θ̃p–

se θ̃p( )
-----------------=

t N P a
2
---;– 

 – δ θp( ) t N P a
2
---;– 

 ≤ ≤
497



Chapter 14  Nonlinear Models
profile would be a straight line through the origin with a slope of one.
You can produce the profile plots for the Puromycin fit Purboth as
follows:

> Purboth.prof <- profile(Purboth)
> plot(Purboth.prof)

The "profile" object returned by profile has a component for
each parameter containing the evaluations of the profile t function
plus some additional attributes. The component for the Vm parameter
is:

> Purboth.prof$Vm

          tau par.vals.Vm par.vals.delV par.vals.K
 1 -3.9021051    144.6497      54.60190 0.04501306
 2 -3.1186052    148.8994      52.07216 0.04725929
 3 -2.3346358    153.2273      49.54358 0.04967189
 4 -1.5501820    157.6376      47.01846 0.05226722
 5 -0.7654516    162.1334      44.50315 0.05506789
 6  0.0000000    166.6040      42.02591 0.05797157
 7  0.7548910    171.0998      39.57446 0.06103225
 8  1.5094670    175.6845      37.12565 0.06431820
 9  2.2635410    180.3616      34.67194 0.06783693
10  3.0171065    185.1362      32.20981 0.07160305
11  3.7701349    190.0136      29.73812 0.07563630
12  4.5225948    194.9997      27.25599 0.07995897

Figure 14.2 shows profile plots for the three-parameter Puromycin fit.
Each plot shows the profile t function, (τ ), when the parameter on the
x-axis ranges over the values shown, and the other parameters are
optimized. The surface is quite linear with respect to these three
parameters.
498



Inference for Nonlinear Models
Computing 
Confidence 
Intervals

An example of a simple function to compute the confidence intervals
from the output of profile follows:

> conf.int <- function(profile.obj, variable.name,
+ confidence.level = 0.95)
+ {if(is.na(match(variable.name, names(profile.obj))))
+ stop(paste("Variable", variable.name,
+ "not in the model"))
+ resid.df <- attr(profile.obj, "summary")[["df"]][2]
+ tstat <- qt(1 - (1 - confidence.level)/2, resid.df)
+ prof <- profile.obj[[variable.name]]
+ approx(prof[, "tau"], prof[, "par.vals"]

Figure 14.2:  The profile plots for the Puromycin fit.

Vm

ta
u

150 160 170 180 190

-4
-2

0
2

4
delV

ta
u

20 30 40 50 60 70

-4
-2

0
2

4

K

ta
u

0.04 0.06 0.08

-4
-2

0
2

4

499



Chapter 14  Nonlinear Models
+ [, variable.name],
+ c(-tstat, tstat))[[2]]
+ }

The tricky line in conf.int is the last one which calls approx.
Purboth.prof$Vm is a data frame with two components (columns).
The first component is the vector of τ  values which we pick off using
prof[, "tau"]. The second component named par.vals contains
a matrix with as many columns as there are parameters in the model.
This results in the strange looking subscripting given by
prof[, "par.vals"][, variable.name]. The first subscript
removes the matrix from the par.vals component, and the second
subscript removes the appropriate column. Three examples using
conf.int and the profile object Purboth.prof follow:

> conf.int(Purboth.prof, "delV", conf = .99)

[1] 24.20945 60.03857

> conf.int(Purboth.prof, "Vm", conf = .99)

[1] 150.4079 184.0479

> conf.int(Purboth.prof, "K", conf = .99)

[1] 0.04217613 0.07826822

The conf.int function can be improved by, for example, doing a
cubic spline interpolation rather than the linear interpolation that
approx does. A marginal confidence interval computed from the
profile t function is exact, disregarding any approximations due to
interpolation, whereas the marginal confidence intervals produced by
using the coefficient and its standard error from the summary of the
fit is only a linear approximation.
500



Introduction 502
Setting Up the Data Frame 502
The Model and Analysis of Variance 503

Experiments With One Factor 504
The One-Way Layout Model and Analysis of Variance 508

The Unreplicated Two-Way Layout 512
The Two-Way Model and ANOVA

        (One Observation Per Cell) 517

The Two-Way Layout With Replicates 526
The Two-Way Model and ANOVA (With Replicates) 529
Method for Two-Factor Experiments With Replicates 532
Method for Unreplicated Two-Factor Experiments 533
Alternative Formal Methods 536

Many Factors at Two Levels: 2k Designs 537

Estimating All Effects in the 2k Model 541
Using Half-Normal Plots to Choose a Model 545

References 550

DESIGNED EXPERIMENTS 
AND ANALYSIS OF VARIANCE 15
501



Chapter 15  Designed Experiments and Analysis of Variance
INTRODUCTION

This chapter discusses how to analyze designed experiments.
Typically, the data have a numeric response and one or more
categorical variables (factors) that are under the control of the
experimenter. For example, an engineer may measure the yield of
some process using each combination of four catalysts and three
specific temperatures. This experiment has two factors, catalyst and
temperature, and the response is the yield.

Traditionally, the analysis of experiments has centered on the
performance of an Analysis of Variance (ANOVA). In more recent
years graphics have played an increasingly important role. There is a
large literature on the design and analysis of experiments—Box,
Hunter, and Hunter (1978) is an example.

This chapter consists of sections which show you how to use S-PLUS
to analyze experimental data for each of the following situations:

• Experiments with one factor

• Experiments with two factors and a single replicate

• Experiments with two factors and two or more replicates

• Experiments with many factors at two levels: 2k designs

Each of these sections stands alone. You can read whichever section is
appropriate to your problem, and get the analysis done without
having to read the other sections. The examples used in this chapter
are from Box, Hunter, and Hunter (1978) and thus is a useful
supplement in a course which covers the material of Chapters 6, 7, 9,
10, and 11 of Box, Hunter, and Hunter.

Setting Up the 
Data Frame

In analyzing experimental data using S-PLUS, the first thing you do is
set up an appropriate data frame for your experimental data. You may
think of the data frame as a matrix, with the columns containing
values of the variables. Each row of the data frame contains an
observed value of the response (or responses), and the corresponding
values of the experimental factors.

A First Look at 
the Data

Use the functions plot.design, plot.factor, and possibly
interaction.plot to graphically explore your data.
502



Introduction
The Model and 
Analysis of 
Variance

It is important that you have a clear understanding of exactly what
model is being considered when you carry out the analysis of
variance. Use aov to carry out the analysis of variance, and use
summary to display the results.

In using aov, you use formulas to specify your model. The examples in
this chapter introduce you to simple uses of formulas. You may
supplement your understanding of how to use formulas in S-PLUS by
reading Chapter 2, Specifying Models in S-PLUS, or Chapter 2,
Statistical Models, and Chapter 5, Analysis of Variance; Designed
Experiments, in Chambers and Hastie (1992).

Diagnostic Plots For each analysis, you should make the following minimal set of plots
to convince yourself that the model being entertained is adequate:

• Histogram of residuals (using hist)

• Normal qq-plot of residuals (using qqnorm)

• Plot of residuals versus fit (using plot)

When you know the time order of the observations, you should also
make plots of the original data and the residuals in the time order in
which the data were collected.

The diagnostic plots may indicate inadequacies in the model from
one or more of the following sources: existence of interactions,
existence of outliers, and existence of inhomogeneous error variance.
503



Chapter 15  Designed Experiments and Analysis of Variance
EXPERIMENTS WITH ONE FACTOR

The simplest kind of experiments are those in which a single
continuous response variable is measured a number of times for each of
several levels of some experimental factor.

For example, consider the data in Table 15.1 (from Box, Hunter, and
Hunter (1978)), which consists of numerical values of “blood
coagulation times” for each of four diets. Coagulation time is the
continuous response variable, and diet is a qualitative variable, or
factor, having four levels: A, B, C, and D. The diets corresponding to
the levels A, B, C, and D were determined by the experimenter.

Your main interest is to see whether or not the factor “diet” has any
effect on the mean value of blood coagulation time. The experimental
factor, “diet” in this case, is often called the treatment.

Table 15.1:  Blood coagulation times for four diets.

Diet

A B C D

62 63 68 56

60 67 66 62

63 71 71 60

59 64 67 61

65 68 63

66 68 64

63

59
504



Experiments With One Factor
Formal statistical testing for whether or not the factor level affects the
mean is carried out using the method of analysis of variance
(ANOVA). This needs to be complemented by exploratory graphics
to provide confirmation that the model assumptions are sufficiently
correct to validate the formal ANOVA conclusion. S-PLUS provides
tools for you to do both the data exploration and formal ANOVA.

Setting Up the 
Data Frame

In order to analyze the data, you need to get it into a form that S-PLUS
can use for the analysis of variance. You do this by setting up a data
frame. First create a numeric vector coag:

> coag <- scan()

1: 62 60 63 59
5: 63 67 71 64 65 66
11: 68 66 71 67 68 68
17: 56 62 60 61 63 64 63 59
25:

Next, create a factor called diet, that corresponds to coag:

> diet <- factor(rep(LETTERS[1:4],c(4,6,6,8)))
> diet

[1] A A A A B B B B B B C C C C C C D D D D D D D D

Now create a data frame with columns diet and coag:

> coag.df <- data.frame(diet,coag)

The data frame object coag.df is a matrix-like object, so it looks like
a matrix when you display it on your screen:

> coag.df

   diet coag
 1    A   62
 2    A   60
 3    A   63
    .
    .
    .
23    D   63
24    D   59
505



Chapter 15  Designed Experiments and Analysis of Variance
A First Look at 
the Data

For each level of the treatment factor, you make an initial graphical
exploration of the response data yij by using the functions
plot.design and plot.factor.

You can make plots of the treatment means and treatment medians
for each level of the experimental factor diet by using the function
plot.design twice, as follows:

> par(mfrow=c(1,2))
> plot.design(coag.df)
> plot.design(coag.df, fun= median)
> par(mfrow=c(1,1))

The results are shown in the two plots of Figure 15.1. In the left-hand
plot, the tick marks on the vertical line are located at the treatment
means for the diets A, B, C, and D, respectively. The mean values of
coagulation time for diets A and D happen to have the same value, 61,
and so the labels A and D are overlaid. The horizontal line, located at
64, indicates the overall mean of all the data.

Figure 15.1:  Treatment means and medians.

Factors

m
ea

n 
of

 c
oa

g

62
64

66
68

A

B

C

D

diet

Factors

m
ed

ia
n 

of
 c

oa
g

62
64

66
68

A

B

C

D

diet
506



Experiments With One Factor
In the right-hand plot of Figure 15.1, medians rather than means are
indicated. There is not much difference between the treatment means
and the treatment medians, so you should not be too concerned about
adverse effects due to outliers.

The function plot.factor produces a boxplot of the response data
for each level of the experimental factor:

> plot.factor(coag.df)

The resulting plot is shown in Figure 15.2. This plot indicates that the
responses for diets A and D are quite similar, while the median
responses for diets B and C are considerably larger relative to the
variability reflected by the heights of the boxes. Thus, you suspect
that diet has an effect on blood coagulation time.

If the exploratory graphical display of the response using
plot.factor indicates that the interquartile distance of the boxplots
depends upon the median, then a transformation to make the error
variance constant is called for. The transformation may be selected

Figure 15.2:  Boxplots for each treatment.

6
0

6
5

7
0

c
o

a
g

A B C D

diet
507



Chapter 15  Designed Experiments and Analysis of Variance
with a “spread versus level” plot. See, for example, the section The
Two-Way Layout With Replicates or Hoaglin, Mosteller, and Tukey
(1983).

The One-Way 
Layout Model 
and Analysis of 
Variance

The classical model for experiments with a single factor is

where µi is the mean value of the response for the ith level of the
experimental factor. There are I levels of the experimental factor, and
Ji measurements yi1, yi2, ..., yiJ are taken on the response variable for
level i of the experimental factor.

Using the treatment terminology, there are I treatments, and µi is
called the ith treatment mean. The above model is often called the
one-way layout model. For the blood coagulation experiment, there are
I = 4 diets, and the means µ1, µ2, µ3, and µ4 correspond to diets A, B,
C, and D, respectively. The numbers of observations are JA = 4,
JB = JC = 6, and JD = 8.

You carry out the analysis of variance with the function aov:

> aov.coag <- aov(coag ~ diet, coag.df)

The first argument to aov above is the formula coag ~ diet. This
formula is a symbolic representation of the one-way layout model
equation; the formula excludes the error term ε ij. The second
argument to aov is the data frame you created, coag.df, which
provides the data needed to carry out the ANOVA. The names diet
and coag, used in the formula coag ~ diet, need to match the
names of the variables in the data frame coag.df.

To display the ANOVA table, use summary:

> summary(aov.coag)

          Df Sum of Sq Mean Sq F Value       Pr(F)
     diet  3       228    76.0 13.5714 4.65847e-05
Residuals 20       112     5.6

The p-value is equal to .000047, which is highly significant.

yij µi ε i j+=
j 1 ... J, ,=

i 1 ... I, ,=
508



Experiments With One Factor
Diagnostic Plots You obtain the fitted values and residuals using the fitted.values
and residuals functions on the result of aov. Thus, for example, you
get the fitted values with the following:

> fitted.values(aov.coag)

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
61 61 61 61 66 66 66 66 66 66 68 68 68 68 68 68 61 61 61 61 61 61 61 61

The resid and fitted functions are shorter names for residuals
and fitted.values, respectively.

You can check the residuals for distributional shape and outliers by
using hist and qqnorm, with the residuals component of aov.coag
as argument:

> hist(resid(aov.coag))
> qqnorm(resid(aov.coag))

Figure 15.3 shows the resulting histogram and Figure 15.4 shows the
resulting quantile-quantile plot.

Figure 15.3:  Histogram of residuals.

-6 -4 -2 0 2 4 6

0
2

4
6

8

resid(aov.coag)
509



Chapter 15  Designed Experiments and Analysis of Variance
The shape of the histogram, and the linearity of the normal qq-plot,
both indicate that the error distribution is quite Gaussian. (The flat
sections in the qq-plot are a consequence of tied values in the data.)

You can check for inhomogeneity of error variance and possible
outliers by plotting the residuals versus the fit:

> plot(fitted(aov.coag), resid(aov.coag))

 This plot reveals no unusual features and is not shown.

Details An alternate form of the one-way layout model is the overall mean plus
effects form

where µ is the overall mean, and αi is the effect for level (or
treatment) i. The mean µi for level (or treatment) i in the first form of
the model is related to µ and αi by

Figure 15.4:  Normal qq-plot of residuals.

•

•

•

•

•

•

•

•

•

• •

•

•

•

• •

•

•

•

•

•

•

•

•

Quantiles of Standard Normal

re
si

d
(a

o
v.

co
a
g
)

-2 -1 0 1 2

-4
-2

0
2

4

yij µ αi ε ij+ +=

µi µ αi+=
510



Experiments With One Factor
and the effects αi satisfy the constraint

.

The function aov fits the one-way model in the “overall mean plus
effects” form

.

See the section Model Coefficients and Contrasts on page 553 for
more on this.

To obtain the effects, use model.tables as follows:

> model.tables(aov.coag)

Refitting model to allow projection
Tables of effects

 diet
     A B C  D
    -3 2 4 -3
 rep 4 6 6  8

You can get the treatment means as follows:

> model.tables(aov.coag, type="means")

Refitting model to allow projection
Tables of means

Grand mean

 64

 diet
     A  B  C  D
    61 66 68 61
rep  4  6  6  8

α1 α2 … αI+ + + 0=

yij µ̂ α̂i r ij+ +=
511



Chapter 15  Designed Experiments and Analysis of Variance
THE UNREPLICATED TWO-WAY LAYOUT

The data in Table 15.2 (used by Box, Hunter, and Hunter (1978)) were
collected to determine the effect of treatments A, B, C, and D on the
yield of penicillin in a penicillin manufacturing process.

The values of the response variable “yield” are the numbers in the
table, and the columns of the table correspond to the levels A, B, C,
and D of the treatment factor. There was a second factor, namely the
blend factor, since a separate blend of the corn-steep liquor had to be
made for each application of the treatments.

Your main interest is in determining whether the treatment factor
affects yield. The blend factor is of only secondary interest; it is a
“blocking” variable introduced to increase the sensitivity of the
inference for treatments. The order of the treatments within blocks
was chosen at random. Hence, this is a randomized blocks experiment.

The methods we use in this section applies equally well to two-factor
experiments in which both factors are experimentally controlled and
of equal interest.

Table 15.2:  Effect of four treatments on penicillin yield.

Treatment

Block A B C D

Blend 1 89 88 97 94

Blend 2 84 77 92 79

Blend 3 81 87 87 85

Blend 4 87 92 89 84

Blend 5 79 81 80 88
512



The Unreplicated Two-Way Layout
Setting Up the 
Data Frame

Table 15.2 is balanced—each entry or cell of the table (that is, each row
and column combination) has the same number of observations (one
observation per cell, in the present example)—so you can use
fac.design to create the data frame.

First, create a list fnames with two components named blend and
treatment, where blend contains the level names of the blend factor
and treatment contains the level names of the treatment factor:

> fnames <- list(blend=paste("Blend ", 1:5),
+ treatment=LETTERS[1:4])

Then use fac.design to create the design data frame pen.design

> pen.design <- fac.design(c(5,4), fnames)

The first argument, c(5,4), to fac.design specifies the design as
having two factors because its length is two. The 5 specifies five levels
for the first factor, blend, and the 4 specifies four levels for the second
factor, treatment. The second argument, fnames, specifies the factor
names and the labels for their levels.

The design data frame pen.design that you just created contains the
factors blend and treatment as its first and second columns,
respectively.

Now create yield to match pen.design:

> yield <- scan()

1: 89 84 81 87 79
6: 88 77 87 92 81
11: 97 92 87 89 80
16: 94 79 85 84 88
21:

You can now use data.frame to combine the design data frame
pen.design and the response yield into the data frame pen.df:

> pen.df <- data.frame(pen.design,yield)
513



Chapter 15  Designed Experiments and Analysis of Variance
Now look at pen.df:

> pen.df

     blend treatment yield
 1 Blend 1         A    89
 2 Blend 2         A    84
 3 Blend 3         A    81
 4 Blend 4         A    87
 5 Blend 5         A    79
 6 Blend 1         B    88
             .
             .
             .
19 Blend 4         D    84
20 Blend 5         D    88

Alternatively, you could build the model data frame directly from
pen.design as follows:

> pen.design[,"yield"] <- yield

When you plot the object pen.design, S-PLUS uses the method
plot.design, because the object pen.design is of class design.
Thus, you obtain the same results as if you called plot.design
explicitly on the object pen.df.

A First Look at 
the Data

You can look at the (comparative) values of the sample means of the
data for each level of each factor using plot.design:

> plot.design(pen.df)

This function produces the plot shown in Figure 15.5. For the blend
factor, each tick mark is located at the mean of the corresponding row
of Table 15.2. For the treatment factor, each tick mark is located at the
mean of the corresponding column of Table 15.2. The horizontal line
is located at the sample mean of all the data. Figure 15.5 suggests that
the blend has a greater effect on yield than does the treatment.
514



The Unreplicated Two-Way Layout
Since sample medians are insensitive to outliers, and sample means
are not, you may want to make a plot similar to Figure 15.5 using
sample medians instead of sample means. You can do this with
plot.design, using the second argument fun = median:

> plot.design(pen.df, fun=median)

In this case, the plot does not indicate great differences between
sample means and sample medians.

Use plot.factor to get a more complete exploratory look at the
data. But first use par to get a one row by two column layout for two
plots:

> par(mfrow=c(1,2))
> plot.factor(pen.df)
> par(mfrow=c(1,1))

This command produces the plot shown in Figure 15.6.

Figure 15.5:  Sample means in penicillin yield experiment.

Factors

m
ea

n 
of

 y
ie

ld

82
84

86
88

90
92 Blend 1

Blend 2

Blend 3
Blend 4

Blend 5

A

B

C

D

blend treatment
515



Chapter 15  Designed Experiments and Analysis of Variance
The boxplots for factors, produced by plot.factor, give additional
information about the data besides the location given by
plot.design. The boxplots indicate variability, skewness, and
outliers in the response, for each fixed level of each factor. For this
particular data, the boxplots for both blends and treatments indicate
rather constant variability, relatively little overall skewness, and no
evidence of outliers.

For two-factor experiments, you should use interaction.plot to
check for possible interactions (that is, nonadditivity). The
interaction.plot function does not accept a data frame as an
argument. Instead, you must supply appropriate factor names and the
response name. To make these factor and response data objects
available to interaction.plot, you must first “attach" the data
frame pen.df:

> attach(pen.df)
> interaction.plot(treatment,blend,yield)

These commands produce the plot shown in Figure 15.7.

Figure 15.6:  Factor plot for penicillin yield experiment.

80
85

90
95

yi
el

d

Blend 1 Blend 2 Blend 3 Blend 4 Blend 5

blend

80
85

90
95

yi
el

d

A B C D

treatment
516



The Unreplicated Two-Way Layout
The first argument to interaction.plot specifies which factor
appears along the x-axis (in this case, treatment). The second
argument specifies which factor is associated with each line plot, or
“trace” (in this case, blend). The third argument is the response
variable (in this case, yield).

Without replication it is often difficult to interpret an interaction plot
since random error tends to dominate. There is nothing striking in
this plot.

The Two-Way 
Model and 
ANOVA (One 
Observation 
Per Cell)

The additive model for experiments with two factors, A and B, and
one observation per cell is:

where µ is the overall mean,  is the effect of the ith level of factor

A and  is the effect of the jth level of factor B.

For the penicillin data above, factor A is “blend” and factor B is
“treatment.” Blend has I = 5 levels and treatment has J = 4 levels.

Figure 15.7:  Interaction plot of penicillin experiment.

treatment

m
ea

n

80
85

90
95

A B C D

blend
Blend 1
Blend 5
Blend 3
Blend 4
Blend 2

yij µ αi
A αi

B ε ij+ + +=
i 1 … I, ,=

j 1 … J, ,=

αi
A

αj
B

517



Chapter 15  Designed Experiments and Analysis of Variance
To estimate the additive model, use aov:

> aov.pen <- aov(yield ~ blend + treatment, pen.df)

The formula yield ~ blend + treatment specifies that a two
factor additive model is fit, with yield the response, and blend and
treatment the factors.

Display the analysis of variance table with summary:

> summary(aov.pen)

          Df Sum of Sq Mean Sq F Value    Pr(F)
    blend  4       264 66.0000 3.50442 0.040746
treatment  3        70 23.3333 1.23894 0.338658
Residuals 12       226 18.8333

The p-value for blend is moderately significant, while the p-value for
treatment is insignificant.

Diagnostic Plots Make a histogram of the residuals.

> hist(resid(aov.pen))

The resulting histogram is shown in Figure 15.8.

Figure 15.8:  Histogram of residuals for penicillin yield experiment.

-6 -4 -2 0 2 4 6

0
1

2
3

4
5

resid(aov.pen)
518



The Unreplicated Two-Way Layout
Now make a normal qq-plot of residuals:

> qqnorm(resid(aov.pen))

The resulting plot is shown in Figure 15.9.

The central four cells of the histogram in Figure 15.8 are consistent
with a fairly normal distribution in the middle. The linearity of the
normal qq-plot in Figure 15.9, except near the ends, also suggests that
the distribution is normal in the middle. The relatively larger values
of the outer two cells of the histogram, and the flattening of the
normal qq-plot near the ends, both suggest that the error distribution
is slightly more short-tailed than a normal distribution. This is not a
matter of great concern for the ANOVA F tests.

Make a plot of residuals versus the fit:

> plot(fitted(aov.pen), resid(aov.pen))

The resulting plot is shown in Figure 15.10.

Figure 15.9:  Quantile-quantile plot of residuals for penicillin yield experiment.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Quantiles of Standard Normal

re
si

d(
ao

v.
pe

n)

-2 -1 0 1 2

-4
-2

0
2

4
6

519



Chapter 15  Designed Experiments and Analysis of Variance
The plot of residuals versus fit gives some slight indication that
smaller error variance is associated with larger values of the fit.

Guidance Since there is some indication of inhomogeneity of error variance, we
now consider transforming the response, yield.

You may want to test for the existence of a multiplicative interaction,
specified by the model

.

When the unknown parameter θ is not zero, multiplicative interaction
exists. A test for the null hypothesis of no interaction may be carried
out using the test statistic T1df for Tukey’s one degree of freedom for
nonadditivity.

An S-PLUS function, tukey.1, is provided in the section Details on
page 522. You can use it to compute T1df and the p-value. For the
penicillin data:

> tukey.1(aov.pen, pen.df)

Figure 15.10:  Residuals vs. fitted values for penicillin yield experiment.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

fitted(aov.pen)

re
si

d(
ao

v.
pe

n)

80 85 90 95

-4
-2

0
2

4
6

yij µ αi
A αj

B θαi
Aαj

B ε i j+ + + +=
520



The Unreplicated Two-Way Layout
$T.1df:
[1] 0.09826791

$p.value:
[1] 0.7597822

The statistic T1df = .098 has a p-value of p = .76, which is not
significant. Therefore, there is no indication of a multiplicative
interaction.

Assuming that the response values are positive, you can find out
whether or not the data suggest a specific transformation to remove
multiplicative interaction as follows: Plot the residuals rij for the
additive fit versus the comparison values

.

If this plot reveals a linear relationship with estimated slope , then
you should analyze the data again, using as new response values the

power transformation  of the original response variables yij, with

exponent

.

(If λ = 0, use log(yij).) See Hoaglin, Mosteller, and Tukey (1983) for
details.

An S-PLUS function called comp.plot, for computing the comparison

values cij, plotting rij versus cij, and computing , is provided in the
section Details on page 522 below. Applying comp.plot to the
penicillin data gives the following result:

> comp.plot(aov.pen, pen.df)

$theta.hat:
[1] 4.002165

$std.error:
[1] 9.980428

cij
α̂i

A
α̂j

B

µ̂
------------=

θ̂

yij
λ

λ 1 θ̂–=

θ̂

521



Chapter 15  Designed Experiments and Analysis of Variance
$R.squared:
          R2
 0.008854346

In this case, the estimated slope is , which gives λ = -3.
However, this is not a very sensible exponent for a power

transformation. The standard deviation of  is nearly 10 and the R2 is
only .009, which indicates that θ may be zero. Thus, we do not
recommend using a power transformation.

Details The test statistic T1df for Tukey’s one degree of freedom is given by:

Figure 15.11:  Display from comp.plot.

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

cij

a
s
.v

e
c
to

r(
r.

m
a
t)

-0.1 0.0 0.1 0.2

-4
-2

0
2

4
6

θ̂ 4=

θ̂

T1df IJ I– J–( )
SSθ

SSres.1
----------------=
522



The Unreplicated Two-Way Layout
where

with the ,  the additive model estimates of the  and , and

rij the residuals from the additive model fit. The statistic T1df has an
F1,IJ-I-J distribution.

Here is a function tukey.1 to compute the Tukey one degree of
freedom for nonadditivity test. You can create your own version of
this function by typing tukey.1 <- and then the definition of the
function.

> tukey.1

function(aov.obj, data)
{
        vnames <- names(aov.obj$contrasts)
        if(length(vnames) != 2)
                stop("the model must be two-way")
        vara <- data[, vnames[1]]
        varb <- data[, vnames[2]]
        na <- length(levels(vara))
        nb <- length(levels(varb))
        resp <- data[, as.character(attr(aov.obj$terms,
          "variables")[attr(aov.obj$terms, "response" )])]
        cfs <- coef(aov.obj)
        alpha.A <- aov.obj$contrasts[[vnames[1]]] %*% cfs[
                aov.obj$assign[[vnames[1]]]]

SSθ

α̂i
A

α̂j
B

yij
j 1=

J

∑
i 1=

I

∑
 
 
 
  2

α̂i
A

( )
2

i 1=

I

∑ α̂j
B

( )
2

j 1=

J

∑
-----------------------------------------------=

SSres.1 SSres SSθ–=

SSres r ij
2

j 1=

J

∑
i 1=

I

∑=

α̂i
A

α̂j
B

αi
A αj

B

523



Chapter 15  Designed Experiments and Analysis of Variance
        alpha.B <- aov.obj$contrasts[[vnames[2]]] %*% cfs[
                aov.obj$assign[[vnames[2]]]]
        r.mat <- matrix(0, nb, na)
        r.mat[cbind(as.vector(unclass(varb)), as.vector(
                unclass(vara)))] <- resp
        SS.theta.num <- sum((alpha.B %*% t(alpha.A)) *
                r.mat)^2
        SS.theta.den <- sum(alpha.A^2) * sum(alpha.B^2)
        SS.theta <- SS.theta.num/SS.theta.den
        SS.res <- sum(resid(aov.obj)^2)
        SS.res.1 <- SS.res - SS.theta
        T.1df <- ((na * nb - na - nb) * SS.theta)/SS.res.1
        p.value <- 1 - pf(T.1df, 1, na * nb - na - nb)
        list(T.1df = T.1df, p.value = p.value)
}

Here is a function comp.plot for computing a least-squares fit to the
plot of residuals versus comparison values:

> comp.plot

function(aov.obj, data)
{
        vnames <- names(aov.obj$contrasts)
        if(length(vnames) != 2)
                stop("the model must be two-way")
        vara <- data[, vnames[1]]
        varb <- data[, vnames[2]]
        cfs <- coef(aov.obj)
        alpha.A <- aov.obj$contrasts[[vnames[1]]] %*% cfs[
                aov.obj$assign[[vnames[1]]]]
        alpha.B <- aov.obj$contrasts[[vnames[2]]] %*% cfs[
                aov.obj$assign[[vnames[2]]]]
        cij <- alpha.B %*% t(alpha.A)
        cij <- c(cij)/cfs[aov.obj$assign$"(Intercept)"]
        na <- length(levels(vara))
        nb <- length(levels(varb))
        r.mat <- matrix(NA, nb, na)
        r.mat[cbind(as.vector(unclass(varb)), as.vector(
                unclass(vara)))] <- resid(aov.obj)
        plot(cij, as.vector(r.mat))
        ls.fit <- lsfit(as.vector(cij), as.vector(r.mat))
        abline(ls.fit)
524



The Unreplicated Two-Way Layout
        output <- ls.print(ls.fit, print.it = F)
        list(theta.hat = output$coef.table[2, 1], std.error
                 = output$coef.table[2, 2], R.squared =
                 output$summary[2])
}

525



Chapter 15  Designed Experiments and Analysis of Variance
THE TWO-WAY LAYOUT WITH REPLICATES

The data in Table 15.3 (used by Box, Hunter, and Hunter (1978))
displays the survival times, in units of 10 hours, of animals in a 3 x 4
replicated factorial experiment. In this experiment, each animal was
given one of three poisons, labeled I, II, and III, and one of four
treatments, labeled A, B, C, and D. Four animals were used for each
combination of poison and treatment, making four replicates.

Table 15.3:  A replicated factorial experiment.

treatment

poison A B C D

I 0.31 0.82 0.43 0.45

0.45 1.10 0.45 0.71

0.46 0.88 0.63 0.66

0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56

0.29 0.61 0.35 1.02

0.40 0.49 0.31 0.71

0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30

0.21 0.37 0.25 0.36

0.18 0.38 0.24 0.31

0.23 0.29 0.22 0.33
526



The Two-Way Layout With Replicates
Setting Up the 
Data Frame

To set up the data frame, first make a list, fnames, with components
treatment and poison, containing the level names of these two
factors:

> fnames <- list(treatment=LETTERS[1:4],
+ poison=c("I","II","III"))

Use fac.design, with optional argument rep = 4, to create the
design data frame poisons.design:

> poisons.design <- fac.design(c(4,3), fnames, rep=4)

Note that since treatments is the first factor in the fnames list and
treatments has 4 levels, 4 is the first argument of c(4,3).

You now need to create the vector surv.time to match
poisons.design. Each replicate of the experiment consists of data
in three rows of Table 15.3. Rows 1, 5, and 9 make up the first
replicate, and so on. The command to get what we want is:

> surv.time <- scan()

1: .31 .82 .43 .45
5: .36 .92 .44 .56
9: .22 .30 .23 .30
13: .45 1.10 .45 .71
17: .29 .61 .35 1.02
21: .21 .37 .25 .36
25: .46 .88 .63 .66
29: .40 .49 .31 .71
33: .18 .38 .24 .31
37: .43 .72 .76 .62
41: .23 1.24 .40 .38
45: .23 .29 .22 .33
49:

Finally, make the data frame poisons.df:

> poisons.df <- data.frame(poisons.design, surv.time)
527



Chapter 15  Designed Experiments and Analysis of Variance
A First Look at 
the Data

Use plot.design, plot.factor, and interaction.plot to get a
first look at the data through summary statistics.

Set par(mfrow = c(3,2)) and use the above three functions to get
the three row and two column layout of plots displayed in Figure
15.12:

> par(mfrow=c(3,2))

Figure 15.12:  Initial plots of the data.

Factors

m
ea

n 
of

 s
ur

v.
tim

e

0.
3

0.
5

A

B

C

D

I

II

III

treatment poison

Factors

m
ed

ia
n 

of
 s

ur
v.

tim
e

0.
3

0.
5

A

B

C

D

I

II

III

treatment poison

0.
2

0.
6

1.
0

su
rv

.ti
m

e

A B C D

treatment

0.
2

0.
6

1.
0

su
rv

.ti
m

e

I II III

poison

treatment

m
ea

n 
of

 s
ur

v.
tim

e

0.
2

0.
4

0.
6

0.
8

A B C D

   poison

I
II
III

treatment

m
ed

ia
n 

of
 s

ur
v.

tim
e

0.
2

0.
4

0.
6

0.
8

A B C D

   poison

I
II
III
528



The Two-Way Layout With Replicates
To obtain the design plot of sample means shown in the upper left
plot of Figure 15.12, use plot.design as follows:

> plot.design(poisons.df)

To obtain the design plot of sample medians shown in the upper right-
hand plot of Figure 15.12, use plot.design again:

> plot.design(poisons.df, fun=median)

The two sets of boxplots shown in the middle row of Figure 15.12 are
obtained with:

> plot.factor(poisons.df)

To obtain the bottom row of Figure 15.12, use interaction.plot:

> attach(poisons.df)
> interaction.plot(treatment,poison,surv.time)
> interaction.plot(treatment,poison,surv.time,fun=median)

The main differences between the plots obtained with plot.design
using means and medians are:

• the difference between the horizontal lines which represents
the mean and median, respectively, for all the data,

• the difference between the tick marks for the poison factor at
level II.

The boxplots resulting from the use of plot.factor indicate a clear
tendency for variability to increase with the (median) level of
response.

The plots made with interaction.plot show stronger treatment
effects for the two poisons with large levels than for the lowest level
poison—an indication of an interaction.

The Two-Way 
Model and 
ANOVA (With 
Replicates)

When you have replicates, you can consider a model which includes

an interaction term :αi j
AB

yijk µ αi
A αj

B αij
AB ε i jk+ + + +=

i 1 … I, ,=

j 1 … J, ,=

k 1 … K, ,=
529



Chapter 15  Designed Experiments and Analysis of Variance
You can now carry out an ANOVA for the above model using aov as
follows:

> aov.poisons <- aov(surv.time ~ poison*treatment,
+ poisons.df)

The expression poison*treatment on the right-hand side of the
formula specifies that aov fit the above model with interaction. This
contrasts with the formula surv.time ~ poison + treatment,

which tells aov to fit an additive model for which  is assumed to

be zero for all levels i,j.

You now display the ANOVA table with summary:

> summary(aov.poisons)

                 Df Sum of Sq   Mean Sq  F Value     Pr(F)
poison            2  1.033013 0.5165063 23.22174 0.0000003
treatment         3  0.921206 0.3070688 13.80558 0.0000038
poison:treatment  6  0.250138 0.0416896  1.87433 0.1122506
Residuals        36  0.800725 0.0222424

The p-values for both poisons and treatment are highly significant,
while the p-value for interaction is insignificant.

The colon in poison:treatment denotes an interaction, in this case
the poison-treatment interaction.

Diagnostic Plots Make a histogram and a normal qq-plot of residuals, arranging the
plots side by side in a single figure with par(mfrow = c(1,2))
before using hist and qqnorm:

> par(mfrow=c(1,2))
> hist(resid(aov.poisons))
> qqnorm(resid(aov.poisons))
> par(mfrow=c(1,1))

The call par(mfrow = c(1,1)), resets the plot layout to a single
plot per figure.

The histogram in the left-hand plot of Figure 15.13 reveals a marked
asymmetry, which is reflected in the normal qq-plot in the right-hand
side of Figure 15.13. The latter shows a curved departure from

αi j
AB
530



The Two-Way Layout With Replicates
linearity toward the lower left part of the plot, and a break in linearity
in the upper right part of the plot. Evidently, all is not well (see the
discussion on transforming the data in the Guidance section below).

Make a plot of residuals versus fit:

plot(fitted(aov.poisons), resid(aov.poisons))

Figure 15.13:  Histogram and normal qq-plot of residuals.

Figure 15.14:  Plot of residuals versus fit.

-0.4 -0.2 0.0 0.2 0.4

0
5

1
0

1
5

2
0

resid(aov.poisons)

•
•

••

•
•

•

•

•
• ••

•

•

•

•

•

•

•

•

• •• • •
•

•• •

•

•

•
•

•
•• •

•

•

•

•

•

•

•

•
• • •

Quantiles of Standard Normal

re
si

d
(a

o
v.

p
o

is
o

n
s)

-2 -1 0 1 2

-0
.2

0
.0

0
.2

0
.4

•
•

• •

•

•
•

•

•
•

• •

•

•

•

•

•

•

•

•

•
•• • •

•

• •
•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•
• •

fitted(aov.poisons)

re
si

d(
ao

v.
po

is
on

s)

0.2 0.4 0.6 0.8

-0
.2

0.
0

0.
2

0.
4

531



Chapter 15  Designed Experiments and Analysis of Variance
The result, displayed in Figure 15.14, clearly reveals a strong
relationship between the residuals and the fitted values. The
variability of the residuals increases with increasing fitted values. This
is another indication that transformation would be useful.

Guidance When the error variance for an experiment varies with the expected
value of the observations, a variance stabilizing transformation will
often reduce or eliminate such behavior.

We shall show two methods for determining an appropriate variance
stabilizing transformation, one which requires replicates and one
which does not.

Method for 
Two-Factor 
Experiments 
With 
Replicates

For two-factor experiments with replicates, you can gain insight into
an appropriate variance stabilizing transformation by carrying out the
following informal procedure. First, calculate the within-cell standard

deviations  and means :

> std.poison <- tapply(poisons.df$surv.time,
+ list(poisons.df$treatment,
+ poisons.df$poison),var)^.5
> std.poison <- as.vector(std.poison)
> means.poison <- tapply(poisons.df$surv.time,
+ list(poisons.df$treatment,
+ poisons.df$poison),mean)
> means.poison <- as.vector(means.poison)

Then plot  versus  and use the slope of the

regression line to estimate the variance stabilizing transform:

> plot(log(means.poison),log(std.poison))
> var.fit <- lsfit(log(means.poison),
+ log(std.poison))
> abline(var.fit)
> theta <- var.fit$coef[2]
> theta

       X
 1.97704

σ̂ij yij

log σ̂ij( ) log yij( )
532



The Two-Way Layout With Replicates
Now let  and choose λ to be that value among the set of

values  which is closest to . If λ = 0, then make

the transformation . Otherwise, make the power

transformation . Now you should repeat the complete

analysis described in the previous subsections, using the response 

in place of yijk.

Since for the poisons experiment you get , you choose λ = -1.

This gives a reciprocal transformation , where yijk are the

values you used in the response with surv.time. You can think of the

new response  as representing the rate of dying.

The model can be refit using the transformed response:

> summary(aov(1/surv.time ~ poison*treatment, poisons.df))

                 Df Sum of Sq  Mean Sq  F Value     Pr(F)
poison            2  34.87712 17.43856 72.63475 0.0000000
treatment         3  20.41429  6.80476 28.34307 0.0000000
poison:treatment  6   1.57077  0.26180  1.09042 0.3867329
Residuals        36   8.64308  0.24009

With the transformation the p-values for the main effects have
decreased while the p-value for the interaction has increased—a more
satisfactory fit. The diagnostic plots with the new response are much
improved also.

Method for 
Unreplicated 
Two-Factor 
Experiments

An alternative simple method for estimating the variance stabilizing
transformation is based on the relationship between the log of the
absolute residuals and the log of the fitted values. This method has the
advantage that it can be used for unreplicated designs. This method is

also often preferred to that of plotting log  against  even for

λ̂ 1 θ̂–=

1 1
2
---– 0 1

2
--- 1, , , ,–




λ̂

ỹ
ij

log yij=

ỹijk yijk
λ

=

ỹ
ijk

θ̂ 2≈

ỹijk yijk
1–

=

ỹijk

σ̂ij yij
533



Chapter 15  Designed Experiments and Analysis of Variance
cases with replication, because  and  are not always adequately

good estimates of the mean and standard deviation for small values of
K (K < 8).

This method consists of plotting log of absolute residuals versus log of

fitted values, and computing the slope  of the regression line. You

then set . Residuals with very small absolute values should
usually be omitted before applying this method. Here is some sample
code.

> plot(log(abs(fitted(aov.poisons)[
+ abs(resid(aov.poisons))>exp(-10)])),
+ log(abs(resid(aov.poisons)[
+ abs(resid(aov.poisons))>exp(-10)])))
> logrij.fit <- lsfit(
+ log(abs(fitted(aov.poisons)[
+ abs(resid(aov.poisons))>exp(-10)])),
+ log(abs(resid(aov.poisons)[
+ abs(resid(aov.poisons))>exp(-10)])))
> abline(logrij.fit)
> theta <- logrij.fit$coef[2]
> theta

          X
   1.930791

You get .

Note that the two simple methods described above both lead to
nearly identical choices of power transformation to stabilize variance.

Details You will find that a nonconstant standard deviation for observations yi
(yijk for the two-factor experiment with replicates) is well-explained by
a power law relationship in many datasets. In particular, for some
constant B and some exponent θ, we have

yij σ̂ij

θ̂

λ̂ 1 θ̂–=

λ̂ 1 θ̂ 1–≈–=

σy Bηθ≈
534



The Two-Way Layout With Replicates
where σy is the standard deviation of the yi and η is the mean of the yi.
If you then use a power law transformation

for some fixed exponent λ, it can be shown that the standard

deviation  for the transformed data , is given by

.

You can therefore make  have a constant value, independent of the

mean η of the original data yi (and independent of the approximate

mean ηλ of the transformed data ), by choosing

.

Note that

Suppose you plot log  versus log  for a two-factor experiment

with replicates and find that this plot results in a fairly good straight

line fit with slope , where  is an estimate of σy and  is an

estimate of η. Then the slope  provides an estimate of θ, and so you

set . Since a fractional exponent  is not very natural, one

often chooses the closest value  in the “natural” set:

ỹi yi
λ

=

σỹ ỹi

σỹ Kληλ 1 θ–( )–
=

σỹ

ỹ
i

λ 1 θ–=

log σy log K θlog η+≈

σ̂ij ŷi j

θ̂ σ̂ij ŷi j

θ̂

λ̂ 1 θ̂–= λ̂

λ̂

1– Reciprocal

1
2
---– Reciprocal square root

0 Log
1
2
--- Square root

1 No transformation
535



Chapter 15  Designed Experiments and Analysis of Variance
Alternative 
Formal 
Methods

There are two alternative formal approaches to stabilizing the
variance. One approach is to select the power transformation that
minimizes the residual squared error. This is equivalent to
maximizing the log-likelihood function and is sometimes referred to
as a Box-Cox analysis (see, for example, Weisberg (1985); Box (1988);
Haaland (1989)).

The second approach seeks to stabilize the variance without the use of
a transformation, by including the variance function directly in the
model. This approach is called generalized least squares/variance
function estimation (see, for example, Carroll and Ruppert (1988);
Davidian and Haaland (1990)).

Transformations are easy to use and may provide a simpler, more
parsimonious model (Box (1988)). On the other hand, modeling the
variance function directly allows the analysis to proceed on the
original scale and allows more direct insight into the nature of the
variance function. In cases when the stability of the variance is
critical, either of these methods have better statistical properties than
the simple informal graphical methods described above.
536



Many Factors at Two Levels: 2k Designs
MANY FACTORS AT TWO LEVELS: 2K DESIGNS

The data in Table 15.4 come from an industrial product development
experiment in which a response variable called conversion is measured
(in percent) for each possible combination of two levels of four
factors:

• K: catalyst charge (10 or 15 pounds),

• Te: temperature ( ),

• P: pressure (50 or 80 pounds per square inch),

• C: concentration (10% or 12%).

Table 15.4:  Data from product development experiment.

Factor

observation
number K Te P C conversion(%) run order

1 – – – – 71 (8)

2 + – – – 61 (2)

3 – + – – 90 (10)

4 + + – – 82 (4)

5 – – + – 68 (15)

6 + – + – 61 (9)

7 – + + – 87 (1)

8 + + + – 80 (13)

9 – – – + 61 (16)

220 or 240° C
537



Chapter 15  Designed Experiments and Analysis of Variance
The levels are labeled “-” and “+” in the table. All the factors in the
experiment are quantitative, so the “-” indicates the “low” level and
the “+” indicates the “high” level for each factor. This data set was
used by Box, Hunter, and Hunter (1978).

The design for this experiment is called a 24 design because there are

24 = 16 possible combinations of two levels for four factors.

Setting Up the 
Data Frame

To set up the data frame first create a list of the four factor names with
the corresponding pairs of levels labels:

> fnames <- list(K=c("10","15"), Te=c("220","240"),
+ P=c("50","80"), C=c("10","12"))

10 + – – + 50 (5)

11 – + – + 89 (11)

12 + + – + 83 (14)

13 – – + + 59 (3)

14 + – + + 51 (12)

15 – + + + 85 (6)

16 + + + + 78 (7)

Table 15.4:  Data from product development experiment. (Continued)

Factor

observation
number K Te P C conversion(%) run order
538



Many Factors at Two Levels: 2k Designs
Now use fac.design to create the 2k design data frame
devel.design:

> devel.design <- fac.design(rep(2,4), fnames)

The first argument to fac.design is a vector of length four, which
specifies that there are four factors. Each entry of the vector is a 2,
which specifies that there are two levels for each factor.

Since devel.design matches Table 15.4, you can simply scan in the
coversion data:

> conversion <- scan()

1: 71 61 90 82 68 61 87 80
9: 61 50 89 83 59 51 85 78
17:

Finally, create the data frame devel.df:

> devel.df <- data.frame(devel.design, conversion)
> devel.df

    K  Te  P  C conversion
 1 10 220 50 10         71
 2 15 220 50 10         61
 3 10 240 50 10         90
            .
            .
            .
15 10 240 80 12         85
16 15 240 80 12         78

A First Look at 
the Data

Use plot.design and plot.factor to make an initial graphical
exploration of the data. To see the design plot with sample means, use
the following command, which yields the plot shown in Figure 15.15:

> plot.design(devel.df)
539



Chapter 15  Designed Experiments and Analysis of Variance
To see the design plot with sample medians, use:

> plot.design(devel.df, fun=median)

To see boxplots of the factors, use the following commands, which
yield the plots shown in Figure 15.16:

> par(mfrow=c(2,2))
> plot.factor(devel.df)
> par(mfrow=c(1,1))

Figure 15.15:  Sample means for product development experiment.

Factors

m
ea

n 
of

 c
on

ve
rs

io
n

60
65

70
75

80
85

10

15

220

240

50
80

10

12

K Te P C
540



Many Factors at Two Levels: 2k Designs
Estimating All 
Effects in the 

2k Model

You can use aov to estimate all effects (main effects and all
interactions), and carry out the analysis of variance. Let’s do so, and
store the results in aov.devel:

> aov.devel <- aov(conversion ~ K*Te*P*C, devel.df)

The product form K*Te*P*C on the right-hand side of the formula

tells S-PLUS to fit the above 24 design model with all main effects and
all interactions included. You can accomplish the same thing by using
the power function ^ to raise the expression K+Te+P+C to the 4th
power:

> aov.devel <- aov(conversion ~ (K+Te+P+C)^4, devel.df)

This second method is useful when you want to specify only main
effects plus certain low-order interactions. For example, replacing 4
by 2 above results in a model with all main effects and all second-
order interactions.

Figure 15.16:  Factor plot for product development experiment.

50
60

70
80

90

co
nv

er
si

on

10 15

K

50
60

70
80

90

co
nv

er
si

on

220 240

Te

50
60

70
80

90

co
nv

er
si

on

50 80

P

50
60

70
80

90

co
nv

er
si

on

10 12

C

541



Chapter 15  Designed Experiments and Analysis of Variance
You can obtain the estimated coefficients using the coef function on
the aov output:

> coef(aov.devel)

 (Intercept)  K Te      P     C K:Te   K:P   Te:P           
K:C
       72.25 -4 12 -1.125 -2.75  0.5 0.375 -0.625 -
5.464379e-17
 Te:C    P:C K:Te:P K:Te:C  K:P:C Te:P:C K:Te:P:C
 2.25 -0.125 -0.375   0.25 -0.125 -0.375   -0.125

Notice that colons are used to connect factor names to represent
interactions, for example, K:P:C is the three factor interaction
between the factors K, P, and C.

For more on the relationship between coefficients, contrasts and
effects, see the section Experiments With One Factor on page 504
and the section The Unreplicated Two-Way Layout on page 512.

You can get the analysis of variance table with the summary
command:

> summary(aov.devel)

         Df Sum of Sq Mean Sq
K         1    256.00  256.00
Te        1   2304.00 2304.00
P         1     20.25   20.25
C         1    121.00  121.00
K:Te      1      4.00    4.00
K:P       1      2.25    2.25
Te:P      1      6.25    6.25
K:C       1      0.00    0.00
Te:C      1     81.00   81.00
P:C       1      0.25    0.25
K:Te:P    1      2.25    2.25
K:Te:C    1      1.00    1.00
K:P:C     1      0.25    0.25
Te:P:C    1      2.25    2.25
K:Te:P:C  1      0.25    0.25

The ANOVA table does not provide any F statistics. This is because
you have estimated 16 parameters with 16 observations. There are no
degrees of freedom left for estimating the error variance, and hence
542



Many Factors at Two Levels: 2k Designs
there is no error mean square to use as the denominator of the F
statistics. However, the ANOVA table can give you some idea of
which effects are the main contributors to the response variation.

Estimating All 

Effects in the 2k 
Model With 
Replicates

On some occasions, you may have replicates of a 2k design. In this

case, you can estimate the error variance σ2 as well as all effects. For

example, the data in Table 15.5 is from a replicated 23 pilot plant
example used by Box, Hunter, and Hunter (1978). The three factors
are temperature (Te), concentration (C) and catalyst (K), and the response
is yield.

To set up the data frame, first make the factor names list:

> fnames <- list(Te=c("Tl","Th"), C=c("Cl","Ch"),
+ K=c("Kl","Kh"))

Table 15.5:  Replicated pilot plant experiment.

Te C K rep 1 rep 2

– – – 59 61

+ – – 74 70

– + – 50 58

+ + – 69 67

– – + 50 54

+ – + 81 85

– + + 46 44

+ + + 79 81
543



Chapter 15  Designed Experiments and Analysis of Variance
Because T is a constant in S-PLUS which stands for the logical value
“true,” you can not use T as a factor name for temperature. Instead,
use Te, or some such alternative abbreviation. Then make the design
data frame, pilot.design, with M = 2 replicates, by using
fac.design with the optional argument rep = 2:

> pilot.design <- fac.design(c(2,2,2), fnames, rep=2)

Now, create the response vector pilot.yield as a vector of length
16, with the second replicate values following the first replicate
values:

> pilot.yield <- scan()

1: 59 74 50 69 50 81 46 79
9: 61 70 58 67 54 85 44 81
17:

Finally, use data.frame:

> pilot.df <- data.frame(pilot.design, pilot.yield)

You can now carry out the ANOVA, and because the observations are
replicated, the ANOVA table has an error variance estimate, that is,
mean square for error, and F statistics:

> aov.pilot <- aov(pilot.yield ~ (Te + C + K)^3, pilot.df)
> summary(aov.pilot)

          Df Sum of Sq Mean Sq F Value    Pr(F)
       Te  1      2116    2116 264.500 0.000000
        C  1       100     100  12.500 0.007670
        K  1         9       9   1.125 0.319813
     Te:C  1         9       9   1.125 0.319813
     Te:K  1       400     400  50.000 0.000105
      C:K  1         0       0   0.000 1.000000
   Te:C:K  1         1       1   0.125 0.732810
Residuals  8        64       8

Temperature is clearly highly significant, as is the temperature-catalyst
interaction, and concentration is quite significant.

Estimating All 
Small Order 
Interactions

In cases where you are confident that high-order interactions are
unlikely, you can fit a model which includes interactions only up to a
fixed order, through the use of the power function ^ with an
544



Many Factors at Two Levels: 2k Designs
appropriate exponent. For example, in the product development
experiment of Table 15.4, you may wish to estimate only the main
effects and all second-order interactions. In this case, use :

> aov.devel.2 <- aov(conversion ~ (K+Te+P+C)^2,devel.df)

Now you are using 16 observations to estimate 11 parameters: the
mean, the four main effects, and the six two-factor interactions. Since
you only use 11 degrees of freedom for the parameters, out of a total
of 16, you still have 5 degrees of freedom to estimate the error
variance. So the command:

> summary(aov.devel.2)

will produce an ANOVA table with an error variance estimate and F
statistics.

Using Half-
Normal Plots 
to Choose a 
Model

You are usually treading on thin ice if you assume that higher-order
interactions are zero, unless you have extensive first-hand knowledge

of the process you are studying with a 2k design. When you are not
sure whether or not higher-order interactions are zero, you should use
a half-normal quantile-quantile plot to judge which effects, including
interactions of any order, are significant. Use the function qqnorm as
follows to produce a half-normal plot on which you can identify
points:

> qqnorm(aov.devel, label=6)

The resulting figure, with six points labeled, is shown in Figure 15.17.
545



Chapter 15  Designed Experiments and Analysis of Variance
In general, there are 2k - 1 points in the half-normal plot, since there

are 2k effects and the estimate of the overall mean is not included in
this plot. The y-axis positions of the labeled points are the absolute
values of the estimated effects. The messages you get from this plot
are: You judge the effects for temperature, catalyst, concentration, and
temperature by concentration to be clearly nonzero. The effect for
Pressure is also very likely nonzero. You can examine the marginal
effects better by creating a plot with a smaller y-range:

> qqnorm(aov.devel, label=6, ylim=c(0,20))

A full qq-plot of the effects can give you somewhat more information.
To get this type of plot, use:

> qqnorm(aov.devel, full=T, label=6)

Having determined from the half-normal plot which effects are
nonzero, now fit a model having terms for the main effects plus the
interaction between temperature and concentration:

> aov.devel.small <- aov(conversion ~ K+P+Te*C, devel.df)

Figure 15.17:  Half-normal plot for product development experiment.

• • • • • • • • • • •
• •

•

•

Half-normal Quantiles

E
ffe

ct
s

0.0 0.5 1.0 1.5 2.0
0

10
20

30
40

Te  

K  
C  Te:C  

P  Te:P  
546



Many Factors at Two Levels: 2k Designs
You can now get an ANOVA summary, including an error variance
estimate:

> summary(aov.devel.small)

          Df Sum of Sq  Mean Sq  F Value       Pr(F)
K          1    256.00  256.000  136.533 0.000000375
P          1     20.25   20.250   10.800 0.008200654
Te         1   2304.00 2304.000 1228.800 0.000000000
C          1    121.00  121.000   64.533 0.000011354
Te:C       1     81.00   81.000   43.200 0.000062906
Residuals 10     18.75    1.875

Diagnostic Plots Once you have tentatively identified a model for a 2k experiment,
you should make the usual graphical checks based on the residuals
and fitted values. In the product development example, you should
examine the following plots:

> hist(resid(aov.devel.small))
> qqnorm(resid(aov.devel.small))
> plot(fitted(aov.devel.small),resid(aov.devel.small))

The latter two plots are shown in Figure 15.18 and Figure 15.19.

Figure 15.18:  Quantile-quantile plot of residuals, product development example.

•

•

••
•

•

•

•
•

•

•

•

• •

•

•

Quantiles of Standard Normal

re
si

d(
ao

v.
de

ve
l.s

m
al

l)

-2 -1 0 1 2

-2
-1

0
1

2

547



Chapter 15  Designed Experiments and Analysis of Variance
You should also make plots using the time order of the runs:

> run.ord <- scan()

1: 8 2 10 4 15 9 1 13 16 5 11 14 3 12 6 7
17:

> plot(run.ord, resid(aov.devel.small))
> plot(run.ord, fitted(aov.devel.small))

This gives a slight hint that the first runs were more variable than the
latter runs.

Details The function aov returns, by default, coefficients corresponding to
the following “usual” ANOVA form for the ηi:

Figure 15.19:  Fitted values vs. residuals, product development example.

•

•

••
•

•

•

•
•

•

•

•

••

•

•

fitted(aov.devel.small)

re
si

d(
ao

v.
de

ve
l.s

m
al

l)

50 60 70 80 90

-2
-1

0
1

2

ηi ηi1…i k
µ + αi1

1 αi2

2 … αi k

k
+ + += =

+ αi1i2

12 αi1 i3

13 … αi k 1– ik

k 1– k,
+ + +

+ …

+ αi1i2…i k

123…k
548



Many Factors at Two Levels: 2k Designs
In this form of the 2k model, each im takes on just two values, 1 and 2.

There are 2k values of the k-tuple index i1, i2, ..., ik. The parameter µ is

the overall mean. The parameters , m = 1, …, k correspond to the

main effects. The parameters  correspond to the two-factor

interactions, the parameters  correspond to the three-factor

interactions, and the remaining coefficients are the higher-order
interactions. The coefficients for the main effects satisfy the constraint

. All higher-order interactions satisfy the

constraint that the sum over any individual subscript index is zero, for

example, , etc.

Because of the constraints on the parameters in this form of the
model, it suffices to specify one of the two values for each effect. The
function aov returns estimates for the “high” levels, for example,

.

An estimated effect (in the sense usually used in 2k models) is equal to
the difference between the estimate at the high level minus the
estimate at the low level for the ANOVA model form given above:

and since

,

we have

.

αim

m

αimin

mn

αi l imi n

lmn

α1
i α2

i
+ 0 i 1 … k, ,=,=

αi11
12 αi12

12
+ 0 α1i2 i4

124 α2 i2 i4

124
+ 0=,=

α̂2
i α̂2

12,

α̂1 α̂2
1 α̂1

1
–=

α̂1
1 α̂2

1
+ 0=

α̂1
2α̂2

1
=

549



Chapter 15  Designed Experiments and Analysis of Variance
REFERENCES

Box, G.E.P. and Hunter, W.G. and Hunter, J.S. (1978). Statistics for
Experimenters: An Introduction to Design, Data Analysis. John Wiley, New
York.

Box, G.E.P. (1988). Signal-to-noise ratios, performance criteria, and
transformations. Technometrics, 30:1-17.

Carroll, R.J. and Ruppert, D. (1988). Transformation and Weighting in
Regression. Chapman and Hall, New York.

Chambers, J.M. and Hastie, T.J. (1992). Statistical Models in S.
Wadsworth and Brooks Cole Advanced Books and Software, Pacific
Grove, CA.

Davidian, M. and Haaland, P.D. (1990). Regression and calibration with
non-constant error variance. Chemometrics and Intelligent Laboratory
Systems; 9:231-248.

Haaland, P. (1989). Experimental Design in Biotechnology. Marcel
Dekker, New York.

Hoaglin, D.C. and Mosteller, F. and Tukey, J.W. (1983). Understanding
Robust and Exploratory Data Analysis. John Wiley, New York.

Weisberg, S. (1985). Applied Linear Regression, 2nd edition. John Wiley,
New York.
550



Introduction 552

Model Coefficients and Contrasts 553

Summarizing ANOVA Results 558
Splitting Treatment Sums of Squares Into Contrast Terms 558
Treatment Means and Standard Errors 560
Balanced Designs 560

2k Factorial Designs 564
Unbalanced Designs 564
Type III Sums of Squares and Adjusted Means 568

Multivariate Analysis of Variance 580

Split-Plot Designs 582

Repeated-Measures Designs 584

Rank Tests For One-Way and Two-Way Layouts 588
The Kruskal-Wallis Rank Sum Test 588
The Friedman Rank Sum Test 589

Variance Components Models 590
Estimating the Model 590
Estimation Methods 591
Random Slope Example 592

References 594

FURTHER TOPICS IN 
ANALYSIS OF VARIANCE 16
551



Chapter 16  Further Topics in Analysis of Variance
INTRODUCTION

Chapter 15, Designed Experiments and Analysis of Variance,
describes the basic techniques for using S-PLUS for analysis of
variance. This chapter extends the concepts to several related topics:

• Multivariate analysis of variance (MANOVA)

• Split-plot designs

• Repeated measures

• Nonparametric tests for one-way and blocked two-way
designs

• Variance components models

These topics are preceded by a discussion of model coefficients and
contrasts. This information is important in interpreting the available
ANOVA summaries.
552



Model Coefficients and Contrasts
MODEL COEFFICIENTS AND CONTRASTS

This section explains what the coefficients mean in ANOVA models,
and how to get more meaningful coefficients for particular cases.

Suppose we have 5 measurements of a response variable scores for
each of three treatments, "A", "B", and "C", as shown below:

> scores

[1] 4 5 4 5 4 10 7 7 7 7 7 7 8 7 6

> scores.treat

[1] A A A A A B B B B B C C C C C

In solving the basic ANOVA problem, we are trying to solve the
following simple system of equations:

The sample means , , and  can be calculated directly from
the data:

This leaves the following three equations in four unknowns:

µ̂A µ̂ α̂A+=

µ̂B µ̂ α̂B+=

µ̂C µ̂ α̂C+=

µ̂A µ̂B µ̂C

µ̂A 4 5 4 5 4+ + + +( ) 5⁄ 4.4= =

µ̂B 10 7 7 7 7+ + + +( ) 5⁄ 7.6= =

µ̂C 7 7 8 7 6+ + + +( ) 5⁄ 7.0= =

4.4 µ̂ α̂A+=

7.6 µ̂ α̂B+=

7.0 µ̂ α̂C+=
553



Chapter 16  Further Topics in Analysis of Variance
Like all ANOVA models, this system is overparametrized, meaning
there are more coefficients than can be estimated. We can, however,

replace the three variables , , and  with a pair of variables

 and  that are functionally independent linear combinations of

the original variables, and also independent of . Such a replacement
can be done in more than one way. For unordered factors such as
scores.treat, the default choice in S-PLUS is the set of Helmert
contrasts :

These contrasts, in effect, contrast the ith level with the average of the
preceding levels.

More generally, if you have variables αi, i = 1, …, k, you can
reparametrize with the k - 1 variables βj as follows:

The transpose of the matrix of coefficients for Equation (16.1) is the
following k 3 (k - 1) contrast matrix:

You can recover the original treatment effects α from the
reparametrized variables β by matrix multiplication as follows:

(16.1)

(16.2)

α̂A α̂B α̂C

β̂1 β̂2

µ̂

β̂1 α̂A– α̂B+=

β̂2 2α̂C α̂A α̂B+( )–=

βj jαj 1+ αi
i 1=

j

∑+=

A

1– 1– 1– … 1–

1 1– 1– … 1–

0 2 1– … 1–

: : : : :
0 0 0 …k 1–

=

Aβ α=
554



Model Coefficients and Contrasts
Returning to our simple example, we can rewrite our original

variables in terms of  and  as follows:

S-PLUS now solves the following system of equations:

If we use aov as usual to create the aov object scores.aov, we can

use the coef function to look at the solved values , , and :

> scores.aov <- aov(scores ~ scores.treat)
> coef(scores.aov)

(Intercept) scores.treat1 scores.treat2
   6.333333           1.6     0.3333333

In our example, the contrast matrix is as follows:

β̂1 β̂2

α̂A β̂1– β̂2–=

α̂B β̂1 β̂2–=

α̂C 2β̂2=

4.4 µ̂ β̂1– β̂2–=

7.6 µ̂ β̂1 β̂2–+=

7.0 µ̂ 2β̂2+=

µ̂ β̂1 β̂2

1– 1–

1 1–

0 2 
 
 
 
 
555



Chapter 16  Further Topics in Analysis of Variance
You can obtain the contrast matrix for any factor object using the
contrasts function. For unordered factors such as scores.treat,
contrasts returns the Helmert contrast matrix of the appropriate
size:

> contrasts(scores.treat)

  [,1] [,2]
A   -1   -1
B    1   -1
C    0    2

The contrast matrix, together with the treatment coefficients returned
by coef, provides an alternative to using model.tables to calculate
effects:

> contrasts(scores.treat) %*% coef(scores.aov)[-1]

        [,1]
A -1.9333333
B  1.2666667
C  0.6666667

For ordered factors, the Helmert contrasts are replaced, by default,
with polynomial contrasts that model the response as a polynomial
through equally spaced points. For example, suppose we define an
ordered factor water.temp as follows:

> water.temp <- ordered(c(65, 95, 120))
> water.temp

[1] 65  95  120
 65 < 95 < 120

The contrast matrix for water.temp uses polynomial contrasts:

> contrasts(water.temp)

            .L         .Q
 65 -0.7071068  0.4082483
 95  0.0000000 -0.8164966
120  0.7071068  0.4082483
556



Model Coefficients and Contrasts
For the polynomial contrasts,  represents the linear component of

the response,  represents the quadratic component, and so on.
When examining ANOVA summaries, you can split a factor’s effects
into contrast terms to examine each component’s contribution to the
model. See the section Splitting Treatment Sums of Squares Into
Contrast Terms on page 558 for complete details.

At times it is desirable to give particular contrasts to some of the
coefficients. In our example, you might be interested in a contrast that
has A equal to a weighted average of B and C. This might occur, for
instance, if the treatments were really doses. You can add a contrast
attribute to the factor using the assignment form of the contrasts
function:

> contrasts(scores.treat) <- c(4,-1,-3)
> contrasts(scores.treat)

  [,1]       [,2]
A    4  0.2264554
B   -1 -0.7925939
C   -3  0.5661385

Note that a second contrast was automatically added.

Refitting the model, we now get different coefficients (but the fit
remains the same).

> scores.aov2 <- aov(scores ~ scores.treat)
> coef(scores.aov2)

 (Intercept) scores.treat1 scores.treat2
    6.333333    -0.4230769      -1.06434

More details on working with contrasts can be found in the section
Contrasts: The Coding of Factors in Chapter 2.

β̂1

β̂2
557



Chapter 16  Further Topics in Analysis of Variance
SUMMARIZING ANOVA RESULTS

Results from an analysis of variance are typically displayed in an
analysis of variance table, which shows a decomposition of the variation
in the response: the total sum of squares of the response is split into
sums of squares for each treatment and interaction and a residual sum
of squares. You can obtain the ANOVA table, as we have throughout
this chapter, by using summary on the result of a call to aov, such as
this overly simple model for the wafer data:

> attach(wafer)
> wafer.aov <- aov( pre.mean ~ visc.tem + devtime +
+ etchtime)
> summary(wafer.aov)

          Df Sum of Sq   Mean Sq  F Value     Pr(F)
visc.tem   2  1.343361 0.6716807 3.678485 0.0598073
devtime    2  0.280239 0.1401194 0.767369 0.4875574
etchtime   2  0.103323 0.0516617 0.282927 0.7588959
Residuals 11  2.008568 0.1825971

Splitting 
Treatment 
Sums of 
Squares Into 
Contrast 
Terms

Each treatment sum of squares in the ANOVA table can be further
split into terms corresponding to the treatment contrasts. By default,
the Helmert contrasts are used for unordered factors and polynomial
contrasts for ordered factors. For instance, with ordered factors you
can assess whether the response is fairly linear in the factor by listing
the polynomial contrasts separately. In the dataset wafer, you can
examine the linear and quadratic contrasts of devtime and etchtime
by using the split argument to the summary function:

> summary(wafer.aov, split = list(etchtime =
+ list(L = 1, Q = 2),
+ devtime = list(L = 1, Q = 2)))

              Df Sum of Sq   Mean Sq  F Value     Pr(F)
visc.tem       2  1.343361 0.6716807 3.678485 0.0598073
devtime        2  0.280239 0.1401194 0.767369 0.4875574
  devtime: L   1  0.220865 0.2208653 1.209577 0.2949025
  devtime: Q   1  0.059373 0.0593734 0.325161 0.5799830
558



Summarizing ANOVA Results
etchtime       2  0.103323 0.0516617 0.282927 0.7588959
  etchtime: L  1  0.094519 0.0945188 0.517636 0.4868567
  etchtime: Q  1  0.008805 0.0088047 0.048219 0.8302131
Residuals     11  2.008568 0.1825971

Each of the (indented) split terms sum to their overall sum of squares.

The split argument can evaluate only the effects of the contrasts
used to specify the ANOVA model: if you wish to test a specific
contrast, you need to set it explicitly before fitting the model. Thus, if
you want to test a polynomial contrast for an unordered factor, you
must specify polynomial contrasts for the factor before fitting the
model. The same is true for other nondefault contrasts. For instance,
the variable visc.tem in the wafer dataset is a three-level factor
constructed by combining two levels of viscosity (204 and 206) with
two levels of temperature (90 and 105).

> levels(visc.tem)

[1] "204,90"  "206,90"  "204,105"

To assess viscosity, supposing temperature has no effect, we define a
contrast that takes the difference of the middle and the sum of the first
and third levels of visc.tem; the contrast matrix is automatically
completed:

> contrasts(visc.tem) <- c(-1,2,-1)
> contrasts(visc.tem)

        [,1]          [,2]
204,90    -1 -7.071068e-01
206,90     2 -1.110223e-16
204,105   -1  7.071068e-01

> wafer.aov <- aov( pre.mean ~ visc.tem + 
+ devtime + etchtime)

In this fitted model, the first contrast for visc.aov reflects the effect
of viscosity:

> summary(wafer.aov, split = list(visc.tem = 
+ list(visc = 1)))
559



Chapter 16  Further Topics in Analysis of Variance
                 Df Sum of Sq  Mean Sq  F Value     Pr(F)
visc.tem          2  1.343361 0.671681 3.678485 0.0598073
  visc.tem: visc  1  1.326336 1.326336 7.263730 0.0208372
devtime           2  0.280239 0.140119 0.767369 0.4875574
etchtime          2  0.103323 0.051662 0.282927 0.7588959
Residuals        11  2.008568 0.182597

Treatment 
Means and 
Standard 
Errors

Commonly the ANOVA model is written in the form “grand mean
plus treatment effects,”

The treatment effects, αi, βj, and (αβ)ij, reflect changes in the response
due to that combination of treatments. In this parameterization, the
effects are constrained, usually to sum to zero.

Unfortunately, the use of the term “effect” in ANOVA is not
standardized: in factorial experiments an effect is the difference
between treatment levels, in balanced designs it is the difference from
the grand mean, and in unbalanced designs there are (at least) two
different standardizations that make sense.

The coefficients of an aov object returned by coef(aov.object) are
coefficients for the contrast variables derived by the aov function,
rather than the grand-mean-plus-effects decomposition. The functions
dummy.coef and model.tables translate the internal coefficients
into the more natural treatment effects.

Balanced 
Designs

In a balanced design, both computing and interpreting effects are
straightforward:

> gun.aov <- aov(Rounds ~ Method + Physique/Team, gun)
> coef(gun.aov)

 (Intercept)    Method Physique.L  Physique.Q
    19.33333 -4.255556  -1.154941 -0.06123724
 PhysiqueSTeam1 PhysiqueATeam1 PhysiqueHTeam1
         1.9375           0.45          -0.45
 PhysiqueSTeam2 PhysiqueATeam2 PhysiqueHTeam2
        -0.4875    0.008333333     -0.1083333

yijk µ αi βj αβ( )ij ε ijk+ + + +=
560



Summarizing ANOVA Results
The dummy.coef function translates the coefficients into the more
natural effects:

> dummy.coef(gun.aov)

$"(Intercept)":
 (Intercept)
    19.33333

$Method:
       M1        M2
 4.255556 -4.255556

$Physique:
[1]  0.7916667  0.0500000 -0.8416667

$"Team %in% Physique":
   1T1        2T1       3T1   1T2       2T2
 -1.45 -0.4583333 0.5583333 2.425 0.4416667
        3T2    1T3        2T3        3T3
 -0.3416667 -0.975 0.01666667 -0.2166667

For the default contrasts, these effects always sum to zero.

The same information is returned in a tabulated form by
model.tables. Note that model.tables calls proj; hence, it is
helpful to use qr = T in the call to aov.

> model.tables(gun.aov, se = T)

Refitting model to allow projection
Tables of effects

 Method
    M1     M2
 4.256 -4.256

 Physique
      S    A       H
 0.7917 0.05 -0.8417

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
561



Chapter 16  Further Topics in Analysis of Variance
      T1     T2     T3
S -1.450  2.425 -0.975
A -0.458  0.442  0.017
H  0.558 -0.342 -0.217

Standard errors of effects
     Method Physique Team %in% Physique
     0.3381   0.4141             0.7172
rep 18.0000  12.0000             4.0000

Using the first method, the gunners fired on average 4.26 more
rounds than the overall mean. The standard errors for the effects are
simply the residual standard error scaled by the replication factor,
rep, the number of observations at each level of the treatment. For
instance, the standard error for the Method effect is:

The model.tables function also computes cell means for each of the
treatments. This provides a useful summary of the analysis that is
more easily related to the original data.

> model.tables(gun.aov, type = "means", se = T)

Tables of means

Grand mean
 19.33

 Method
    M1    M2
 23.59 15.08

 Physique
     S     A     H
 20.13 19.38 18.49

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team

se Method( ) se Residual( )

r eplication Method( )
-------------------------------------------------------- 1.434

18
-------------- 0.3381= = =
562



Summarizing ANOVA Results
     T1    T2    T3
S 18.68 22.55 19.15
A 18.93 19.83 19.40
H 19.05 18.15 18.28
Standard errors for differences of means
     Method Physique Team %in% Physique
     0.4782   0.5856              1.014
rep 18.0000  12.0000              4.000

The first method had an average firing rate of 23.6 rounds. For the
tables of means, standard errors of differences between means are
given, as these are usually of most interest to the experimenter. For
instance the standard error of differences for Team %in% Physique
is:

To gauge the statistical significance of the difference between the first
and second small physique teams, we can compute the “least
significant difference (LSD)” for the Team %in% Physique
interaction. The validity of the statistical significance is based on the
assumption that the model is correct and the residuals are Gaussian.
The plots of the residuals indicate these are not unreasonable
assumptions for this dataset—you can verify this by creating a
histogram and normal qq-plot of the residuals as follows:

> hist(resid(gun.aov))
> qqnorm(resid(gun.aov))

The LSD at the 95% level is:

We use the t-distribution with 26 degrees of freedom because the
residual sum of squares has 26 degrees of freedom. In S-PLUS, we
type the following:

> qt(0.975, 26) * 1.014

[1] 2.084307

SED 2 2.0576
4

-----------------× 1.014= =

t 0.975 26,( ) SED Team %*% Physique( )×
563



Chapter 16  Further Topics in Analysis of Variance
Since the means of the two teams differ by more than 2.08, the teams
are different at the 95% level of significance. From an interaction plot
it is clear that the results for teams of small physique are unusually
high.

2k Factorial 
Designs

In factorial experiments, where each experimental treatment has only
two levels, a treatment effect is, by convention, the difference between
the high and low levels. Interaction effects are half the average
difference between paired levels of an interaction. These factorial
effects are computed when type = "feffects" is used in the
model.tables function:

> catalyst.aov <- aov( Yield ~ ., catalyst, qr = T)
> model.tables(catalyst.aov, type = "feffects", se = T)

Table of factorial effects
     Effects    se
Temp    23.0 5.062
Conc    -5.0 5.062
Cat      1.5 5.062

Unbalanced 
Designs

When designs are unbalanced (there are unequal numbers of
observations in some cells of the experiment), the effects associated
with different treatment levels can be standardized in different ways.
For instance, suppose we use only the first 35 observations of the gun
data set:

> gunsmall.aov <- aov(Rounds ~ Method +
+ Physique/Team, gun, subset=1:35, qr = T)

The dummy.coef function standardizes treatment effects to sum to
zero:

> dummy.coef(gunsmall.aov)

$"(Intercept)":
 (Intercept)
    19.29177

$Method:
       M1        M2
 4.297115 -4.297115
564



Summarizing ANOVA Results
$Physique:
[1]  0.83322650  0.09155983 -0.92478632

$"Team %in% Physique":
   1T1        2T1       3T1   1T2       2T2
 -1.45 -0.4583333 0.6830128 2.425 0.4416667

        3T2    1T3        2T3        3T3
 -0.2169872 -0.975 0.01666667  -0.466025

The model.tables function computes effects that are standardized
so the weighted effects sum to zero:

,

where ni is the replication of level i and τ i the effect. The
model.tables effects are identical to the values of the projection
vectors computed by proj(gunsmall.aov):

> model.tables(gunsmall.aov)

Tables of effects

 Method
        M1      M2
     4.135  -4.378
rep 18.000  17.000

 Physique
          S        A        H
     0.7923  0.05065  -0.9196
rep 12.0000 12.00000  11.0000

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
        T1     T2     T3
S   -1.450  2.425 -0.975
rep  4.000  4.000  4.000

ni τ i
i 1=

T

∑ 0=
565



Chapter 16  Further Topics in Analysis of Variance
A   -0.458  0.442  0.017
rep  4.000  4.000  4.000
H    0.639 -0.261 -0.505
rep  4.000  4.000  3.000

With this standardization, treatment effects are orthogonal:
consequently cell means can be computed by simply adding effects to
the grand mean; standard errors are also more readily computed.

> model.tables(gunsmall.aov, type="means", se=T)

Standard error information not returned as design is 
unbalanced.
Standard errors can be obtained through se.contrast.
Tables of means
Grand mean

 19.45

 Method
       M1    M2
    23.59 15.08
rep 18.00 17.00

 Physique
        S    A     H
    20.25 19.5 18.53
rep 12.00 12.0 11.00

 Team %in% Physique
Dim 1 : Physique
Dim 2 : Team
       T1    T2    T3
S   18.80 22.67 19.27
rep  4.00  4.00  4.00
A   19.05 19.95 19.52
rep  4.00  4.00  4.00
H   19.17 18.27 18.04
rep  4.00  4.00  3.00

Note that the (Intercept) value returned by dummy.coef is not the
grand mean of the data, and the coefficients returned are not a
decomposition of the cell means. This is a difference that occurs only
566



Summarizing ANOVA Results
with unbalanced designs: in balanced designs the functions
dummy.coef and model.tables return identical values for the
effects.

In the unbalanced case, the standard errors for comparing two means
depend on the replication factors, hence it could be very complex to
tabulate all combinations. Instead, they can be computed directly
with se.contrast. For instance, to compare the first and third teams
of heavy physique:

> se.contrast(gunsmall.aov, contrast = list(
+ Physique=="S"  Team == "T1",
+ Physique=="S"  Team == "T3"),
+ data = gun[1:35,])

[1] 1.018648

By default, the standard error of the difference of the means specified
by contrast is computed. Other contrasts are specified by the
argument coef. For instance, to compute the standard error of the
contrast tested in the section Splitting Treatment Sums of Squares Into
Contrast Terms on page 558 for the variable visc.tem:

> attach(wafer)
> se.contrast(wafer.aov, contrast = list(
+ visc.tem ==levels(visc.tem)[1],
+ visc.tem == levels(visc.tem)[2],
+ visc.tem == levels(visc.tem)[3]),
+ coef = c(-1,2,-1), data = wafer)

Refitting model to allow projection
[1] 0.07793052

The value of the contrast can be computed from
model.tables(wafer.aov). The effects for visc.tem are:

visc.tem
204,90  206,90 204,105
0.1543 -0.3839  0.2296

The contrast is -0.3839 - mean(c(0.1543, 0.2296)) =
-0.5758. The standard error for testing whether the contrast is zero is
0.0779; clearly, the contrast is nonzero.
567



Chapter 16  Further Topics in Analysis of Variance
Type III Sums 
of Squares and 
Adjusted 
Means

Researchers implementing an experimental design frequently lose
experimental units and find themselves with unbalanced, but
complete, data. The data is unbalanced in that the number of
replications is not constant for each treatment combination; the data
is complete in that at least one experimental unit exists for each
treatment combination. In this type of circumstance, an experimenter
may find the hypotheses tested by Type III sum of squares are of
more interest than those tested by Type I (sequential) sum of squares,
and the adjusted means of more interest than unadjusted means. New
options to the lm and aov object methods, anova.lm, summary.aov,
and model.tables.aov will give the Type III sum of squares and the
adjusted (marginal) means. For anova and summary, the new
argument ssType can be 1 or 3, with ssType = 1 as the default;
model.tables has the new option “adj.means”, for the existing
argument type. An example is given to demonstrate the new
capabilities of these in an analysis of a designed experiment.

The fat-surfactant example is taken from Milliken and Johnson (1984,
p. 166), where they analyze an unbalanced randomized block
factorial design. Here, the specific volume of bread loaves baked from
dough mixed from each of nine Fat and Surfactant treatment
combinations is measured. The experimenters blocked on four flour
types. Ten loaves had to be removed from the experiment, but at least
one loaf existed for each Fat x Surfactant combination and all
marginal means are estimable so the Type III hypotheses are testable.

The overparameterized model is:

for i = 1, .., 4, j = 1, 2, 3, and k = 1, 2, 3. Because the data are
unbalanced the Type III sum of squares for Flour, Fat and Surfactant
test a more useful hypothesis than the Type I. Specifically, the Type
III hypotheses are that the marginal means are equal:

µijk µ bi fj sk fs( )jk+ + + +=

HFlour:µ1.. µ2.. µ3.. µ4..= = =

HFat:µ.1. µ.2. µ.3.= =

HSurfactant:µ..1 µ..2 µ..3= =
568



Summarizing ANOVA Results
where

The hypotheses tested by the Type I sum of squares are not easily
interpreted since they are dependent on the order each term is
specified the formula and involve the cell replications (which can be
viewed as random variables when there are random drop-outs).
Moreover, the hypothesis tested by the blocking term, Flour, involves
parameters of the Fat, Flour, and Fat x Flour terms.

ANOVA Tables The ANOVA tables for both Type I and Type III sum of squares are
given below for comparison. Using the Type III sum of squares we
see that the block effect, Flour, is significant as is Fat, but Surfactant is
not at, say, a test size of α = 0.05. However, in the presence of a
significant interaction, the test of the marginal means probably has
little meaning for Fat and Surfactant.

> Baking.aov<-aov(Specific.Vol ~ Flour + Fat * Surfactant,
+ data = Baking, contrasts=list(Flour=contr.sum(4),
+ Fat=contr.sum(3),Surfactant=contr.sum(3)) )

µi ..

µikj
j k,
∑
3 3⋅
---------------=

µ.j .

µi jk
i k,
∑
4 3⋅
---------------=

µ..k

µi jk
i j,
∑
4 3⋅
---------------=
569



Chapter 16  Further Topics in Analysis of Variance
> anova(Baking.aov)

Analysis of Variance Table
Response: Specific.Vol
Terms added sequentially (first to last)
               Df Sum of Sq  Mean Sq  F Value     Pr(F)
         Flour  3   6.39310 2.131033 12.88269 0.0002587
           Fat  2  10.33042 5.165208 31.22514 0.0000069
    Surfactant  2   0.15725 0.078625  0.47531 0.6313678
Fat:Surfactant  4   5.63876 1.409691  8.52198 0.0010569
     Residuals 14   2.31586 0.165418

> anova(Baking.aov,ssType=3)

Analysis of Variance Table
Response: Specific.Vol
Type III Sum of Squares
               Df Sum.of.Sq  Mean.Sq  F.Value      Pr.F.
         Flour  3   8.69081 2.896937 17.51280 0.00005181
           Fat  2  10.11785 5.058925 30.58263 0.00000778
    Surfactant  2   0.99721 0.498605  3.01421 0.08153989
Fat:Surfactant  4   5.63876 1.409691  8.52198 0.00105692
     Residuals 14   2.31586 0.165418

Adjusted Means The adjusted (marginal) means given below estimate the means given
in the Type III hypotheses for Flour, Fat, and Surfactant. The means
for Flour x Surfactant for the overparameterized model are

µ. jk

µijk
i
∑

4
------------=
570



Summarizing ANOVA Results
Interestingly, these means are still estimable even though not all
Flour x Surfactant x Flour combinations were observed.

> model.tables(Baking.aov,type="adj.means")

Tables of adjusted means
Grand mean
    6.633281
se  0.084599
 N 26.000000
 Flour
         1      2      3      4
    7.3020 5.7073 6.9815 6.5423
 se 0.1995 0.1467 0.1621 0.1785
rep 5.0000 8.0000 7.0000 6.0000
 Fat
         1      2      3
    5.8502 6.5771 7.4725
 se 0.1365 0.1477 0.1565
rep 9.0000 9.0000 8.0000
 Surfactant
         1      2      3
    6.3960 6.5999 6.9039
 se 0.1502 0.1432 0.1473
rep 8.0000 9.0000 9.0000
Fat:Surfactant
Dim 1 : Fat
Dim 2 : Surfactant
         1      2      3
  1 5.5364 5.8913 6.1229
 se 0.2404 0.2392 0.2414
rep 3.0000 3.0000 3.0000
  2 7.0229 6.7085 6.0000
 se 0.2414 0.3006 0.2034
rep 3.0000 2.0000 4.0000
  3 6.6286 7.2000 8.5889
 se 0.3007 0.2034 0.3001
rep 2.0000 4.0000 2.0000
571



Chapter 16  Further Topics in Analysis of Variance
Multiple 
Comparisons

The F-statistic for the Fat x Surfactant interaction in the Type III
ANOVA table is significant so the tests for the marginal means for Fat
and Surfactant have little meaning. We can, however, use multicomp
to find all pairwise comparisons of the mean Fat levels for each level
of Surfactant, and those for Surfactant for each level of Fat.

> multicomp(Baking.aov,focus="Fat",
+ adjust=list(Surfactant=seq(3)))

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method
critical point: 3.2117
response variable: Flour
intervals excluding 0 are flagged by '****'
            Estimate Std.Error Lower Bound Upper Bound
1.adj1-2.adj1   -1.490     0.344      -2.590      -0.381 ****
1.adj1-3.adj1   -1.090     0.377      -2.300       0.120
2.adj1-3.adj1    0.394     0.394      -0.872       1.660
1.adj2-2.adj2   -0.817     0.390      -2.070       0.434
1.adj2-3.adj2   -1.310     0.314      -2.320      -0.300 ****
2.adj2-3.adj2   -0.492     0.363      -1.660       0.674
1.adj3-2.adj3    0.123     0.316      -0.891       1.140
1.adj3-3.adj3   -2.470     0.378      -3.680      -1.250 ****
2.adj3-3.adj3   -2.590     0.363      -3.750      -1.420 ****

> multicomp(Baking.aov,focus="Surfactant",
+ adjust=list(Fat=seq(3)))

95 % simultaneous confidence intervals for specified linear
combinations, by the Sidak method
critical point: 3.2117
response variable: Flour
intervals excluding 0 are flagged by '****'
            Estimate Std.Error Lower Bound Upper Bound
1.adj1-2.adj1   -0.355     0.341    -1.45000       0.740
1.adj1-3.adj1   -0.587     0.344    -1.69000       0.519
2.adj1-3.adj1   -0.232     0.342    -1.33000       0.868
1.adj2-2.adj2    0.314     0.377    -0.89700       1.530
1.adj2-3.adj2    1.020     0.316     0.00922       2.040 ****
2.adj2-3.adj2    0.708     0.363    -0.45700       1.870
1.adj3-2.adj3   -0.571     0.363    -1.74000       0.594
1.adj3-3.adj3   -1.960     0.427    -3.33000      -0.590 ****
2.adj3-3.adj3   -1.390     0.363    -2.55000      -0.225 ****
572



Summarizing ANOVA Results
The levels for Fat and Surfactant factors are both labeled 1, 2, and 3
so the row labels in the multicomp tables require explanation. For
the first table, the label 1.adj1-2.adj1 refers to the difference
between levels 1 and 2 of Fat (the focus variable) at level 1of
Surfactant (the adjust variable), whereas for the second table it is the
difference between levels 1 and 2 of Surfactant at level 1 of Fat. The
reader can verify that the table of differences reported by multicomp
are the differences in the adjusted means for Fat:Surfactant
reported by model.tables. Significant differences are flagged with
‘****’. As a result of the of Surfactant and Fat interaction, the F test
for the equivalence of the Surfactant marginal means is not
significant, but there exists significant differences between the mean
of Surfactant levels 1-3 at a Fat level of 2 and between the means
Surfactant levels 1-3 and 2-3 at a Fat level of 3.

Estimable 
Functions

The Type I and Type III estimable functions for the
overparameterized model show the linear combinations of the
overparameterized model parameters tested by each sum of squares.
The Type I estimable functions can be obtained by performing row

reductions on the cross products of the model matrix, XtX, that reduce
it to upper triangular with each nonzero row divided by its diagonal
(SAS Technical Report R-101, 1978).

> round(L,4)

                        L2      L3      L4      L6      L7      L9     L10 L12 L13 L15 L16
       (Intercept)  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000   0   0   0   0
           Flour.1  1.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000   0   0   0   0
           Flour.2  0.0000  1.0000  0.0000  0.0000  0.0000  0.0000  0.0000   0   0   0   0
           Flour.3  0.0000  0.0000  1.0000  0.0000  0.0000  0.0000  0.0000   0   0   0   0
           Flour.4 -1.0000 -1.0000 -1.0000  0.0000  0.0000  0.0000  0.0000   0   0   0   0
             Fat.1  0.0667 -0.0833  0.0952  1.0000  0.0000  0.0000  0.0000   0   0   0   0
             Fat.2 -0.3000 -0.1250 -0.2143  0.0000  1.0000  0.0000  0.0000   0   0   0   0
             Fat.3  0.2333  0.2083  0.1190 -1.0000 -1.0000  0.0000  0.0000   0   0   0   0
      Surfactant.1  0.2333  0.2083  0.1190  0.1152  0.1338  1.0000  0.0000   0   0   0   0
      Surfactant.2 -0.1000 -0.2500 -0.2143 -0.1966 -0.3235  0.0000  1.0000   0   0   0   0
      Surfactant.3 -0.1333  0.0417  0.0952  0.0814  0.1896 -1.0000 -1.0000   0   0   0   0
Fat.1:Surfactant.1  0.2000  0.1250  0.1429  0.3531  0.0359  0.3507  0.0037   1   0   0   0
Fat.2:Surfactant.1 -0.1667 -0.0417 -0.0238 -0.0060  0.3250  0.4242  0.0760   0   1   0   0
Fat.3:Surfactant.1  0.2000  0.1250  0.0000 -0.2319 -0.2271  0.2251 -0.0797  -1  -1   0   0
Fat.1:Surfactant.2  0.0333 -0.1667 -0.0238  0.3167 -0.0060 -0.0149  0.3499   0   0   1   0
Fat.2:Surfactant.2 -0.1667 -0.0417 -0.1667  0.0049  0.2034  0.0190  0.2971   0   0   0   1
Fat.3:Surfactant.2  0.0333 -0.0417 -0.0238 -0.5182 -0.5209 -0.0041  0.3530   0   0  -1  -1
Fat.1:Surfactant.3 -0.1667 -0.0417 -0.0238  0.3302 -0.0299 -0.3358 -0.3536  -1   0  -1   0
Fat.2:Surfactant.3  0.0333 -0.0417 -0.0238  0.0011  0.4716 -0.4432 -0.3731   0  -1   0  -1
Fat.3:Surfactant.3  0.0000  0.1250  0.1429 -0.2499 -0.2520 -0.2210 -0.2733   1   1   1
573



Chapter 16  Further Topics in Analysis of Variance
The columns labeled L2, L3, and L4 are for the Flour hypothesis; L6
and L7 are for the Fat hypothesis; L9 and L10 are for the Surfactant
hypothesis; and L12, L13, L15, and L16 are for the Fat x Surfactant
hypothesis. In contrast, the Type III estimable functions can be

obtained from the generating set (XtX)*(XtX), where (XtX)* is the g-2
inverse of the cross product matrix, (Kennedy and Gentle, 1980,
p. 396) and perform the steps outlined in the SAS/STAT User’s
Guide (1990, pp. 120-121) .

> round(L3,4)

                   L2 L3 L4      L6      L7      L9     L10 L12 L13 L15 L16
       (Intercept)  0  0  0  0.0000  0.0000  0.0000  0.0000   0   0   0   0
           Flour.1  1  0  0  0.0000  0.0000  0.0000  0.0000   0   0   0   0
           Flour.2  0  1  0  0.0000  0.0000  0.0000  0.0000   0   0   0   0
           Flour.3  0  0  1  0.0000  0.0000  0.0000  0.0000   0   0   0   0
           Flour.4 -1 -1 -1  0.0000  0.0000  0.0000  0.0000   0   0   0   0
             Fat.1  0  0  0  1.0000  0.0000  0.0000  0.0000   0   0   0   0
             Fat.2  0  0  0  0.0000  1.0000  0.0000  0.0000   0   0   0   0
             Fat.3  0  0  0 -1.0000 -1.0000  0.0000  0.0000   0   0   0   0
      Surfactant.1  0  0  0  0.0000  0.0000  1.0000  0.0000   0   0   0   0
      Surfactant.2  0  0  0  0.0000  0.0000  0.0000  1.0000   0   0   0   0
      Surfactant.3  0  0  0  0.0000  0.0000 -1.0000 -1.0000   0   0   0   0
Fat.1:Surfactant.1  0  0  0  0.3333  0.0000  0.3333  0.0000   1   0   0   0
Fat.2:Surfactant.1  0  0  0  0.0000  0.3333  0.3333  0.0000   0   1   0   0
Fat.3:Surfactant.1  0  0  0 -0.3333 -0.3333  0.3333  0.0000  -1  -1   0   0
Fat.1:Surfactant.2  0  0  0  0.3333  0.0000  0.0000  0.3333   0   0   1   0
Fat.2:Surfactant.2  0  0  0  0.0000  0.3333  0.0000  0.3333   0   0   0   1
Fat.3:Surfactant.2  0  0  0 -0.3333 -0.3333  0.0000  0.3333   0   0  -1  -1
Fat.1:Surfactant.3  0  0  0  0.3333  0.0000 -0.3333 -0.3333  -1   0  -1   0
Fat.2:Surfactant.3  0  0  0  0.0000  0.3333 -0.3333 -0.3333   0  -1   0  -1
Fat.3:Surfactant.3  0  0  0 -0.3333 -0.3333 -0.3333 -0.3333   1   1   1   1

Here we see one of the appealing properties of Type III sum of
squares: the hypothesis tested by the Type III sum of squares for
Flour only involves parameters of the Flour term, whereas the
hypothesis tested by the Type I sum of squares for Flour involves the
parameters of Fat, Surfactant and Fat x Surfactant.

The marginal means can also be obtained from multicomp using
comparisons = ”none”. Doing so, we obtain the estimable
functions for the marginal means for the overparameterized model.
For example, the estimable functions for the Fat marginal means are:

> Fat.mcomp<-multicomp(Baking.aov,focus="Fat",comp="none")
574



Summarizing ANOVA Results
> round(Fat.mcomp$lmat,4)

                        1      2      3
       (Intercept) 1.0000 1.0000 1.0000
           Flour.1 0.2500 0.2500 0.2500
           Flour.2 0.2500 0.2500 0.2500
           Flour.3 0.2500 0.2500 0.2500
           Flour.4 0.2500 0.2500 0.2500
             Fat.1 1.0000 0.0000 0.0000
             Fat.2 0.0000 1.0000 0.0000
             Fat.3 0.0000 0.0000 1.0000
      Surfactant.1 0.3333 0.3333 0.3333
      Surfactant.2 0.3333 0.3333 0.3333
      Surfactant.3 0.3333 0.3333 0.3333
Fat.1:Surfactant.1 0.3333 0.0000 0.0000
Fat.2:Surfactant.1 0.0000 0.3333 0.0000
Fat.3:Surfactant.1 0.0000 0.0000 0.3333
Fat.1:Surfactant.2 0.3333 0.0000 0.0000
Fat.2:Surfactant.2 0.0000 0.3333 0.0000
Fat.3:Surfactant.2 0.0000 0.0000 0.3333
Fat.1:Surfactant.3 0.3333 0.0000 0.0000
Fat.2:Surfactant.3 0.0000 0.3333 0.0000
Fat.3:Surfactant.3 0.0000 0.0000 0.3333

The reader can verify that the Type III estimable functions for Fat are
the differences between columns 1 and 3 and between columns 2 and
3.

Sigma 
Constrained 
Parameterization

The function lm reparameterizes the linear model in an attempt to
make the model matrix full column rank. We will next explore the
computation of the adjusted means and the Type III sum of squares
for Fat using the sigma constrained linear model. The sigma
constraints were used in the aov fit above (aov calls lm with
singular.ok = T). This was done by specifying contr.sum in the
575



Chapter 16  Further Topics in Analysis of Variance
contrasts argument. In this setting the adjusted means can be
computed with the following estimable functions:

> L

                Fat.1 Fat.2 Fat.3
    (Intercept)     1     1     1
         Flour1     0     0     0
         Flour2     0     0     0
         Flour3     0     0     0
           Fat1     1     0    -1
           Fat2     0     1    -1
    Surfactant1     0     0     0
    Surfactant2     0     0     0
Fat1Surfactant1     0     0     0
Fat2Surfactant1     0     0     0
Fat1Surfactant2     0     0     0
Fat2Surfactant2     0     0     0

Some justification to these functions may be in order: The
parameterization chosen constrains the sum of the level estimates of
each effect to zero. That is,

Therefore, any effect that we are summing over in the mean estimate
vanishes. The intercept in the least squares fit estimates µ and the two
coefficients for the Fat effect (labeled in L as Fat1 and Fat2) estimate
f1 and f2, respectively, and f3 = -f1 - f2.

We can check that each function is, in fact, estimable by ensuring that
they are in the row space of X, then compute the adjusted means.

> X<-model.matrix(Baking.aov)
> ls.fit<-lsfit(t(X)%*%X,L,intercept=F)
> apply(abs(ls.fit$residuals),2,max)<0.0001

 Fat.1 Fat.2 Fat.3
     T     T     T

> m<-t(L)%*%Baking.aov$coefficients

bi
i
∑ fj

j
∑ sk

k
∑ fs( )jk

j
∑ fs( )jk

k
∑ 0= = = = =
576



Summarizing ANOVA Results
> m

          [,1]
Fat.1 5.850197
Fat.2 6.577131
Fat.3 7.472514

Now use the summary method for the lm object to obtain (XtX) - 1

and  and compute the standard errors of the least squares means.

> Baking.sum<-summary.lm(Baking.aov)
> Baking.sum$sigma*sqrt(diag(t(L)%*%
+ Baking.sum$cov.unscaled%*%L))

[1] 0.1364894 0.1477127 0.1564843

A set of Type III estimable functions for Fat can be obtained using the
contrasts generated by contr.helmert.

> contr.helmert(3)

  [,1] [,2]
1   -1   -1
2    1   -1
3    0    2

We will use this set of orthogonal contrasts to test  and

, which is equivalent to HFat.

> L.typeIII<-L%*%contr.helmert(3)
> L.typeIII

                [,1] [,2]
    (Intercept)    0    0
         Flour1    0    0
         Flour2    0    0
         Flour3    0    0
           Fat1   -1   -3
           Fat2    1   -3
    Surfactant1    0    0
    Surfactant2    0    0
Fat1Surfactant1    0    0

σ̂

µ.1. µ.2.=

µ.1. µ.2.+ 2µ.3.=
577



Chapter 16  Further Topics in Analysis of Variance
Fat2Surfactant1    0    0
Fat1Surfactant2    0    0
Fat2Surfactant2    0    0

Finally, the Type III sum of squares is computed for Fat.

> h.m <- t(contr.helmert(3))%*%m
> t(h.m)%*%solve(t(L.typeIII)%*%Baking.sum$cov.unscaled%*%
+ L.typeIII)%*%h.m

         [,1]
[1,] 10.11785

Since we used the sigma-constrained model and the data is complete,
we can also use drop1 to obtain the Type III sum of squares.

> drop1(Baking.aov,~.)

Single term deletions
Model:
Specific.Vol ~ Flour + Fat * Surfactant
               Df Sum of Sq      RSS  F Value      Pr(F)
        <none>               2.31586                    
         Flour  3   8.69081 11.00667 17.51280 0.00005181
           Fat  2  10.11785 12.43371 30.58263 0.00000778
    Surfactant  2   0.99721  3.31307  3.01421 0.08153989
Fat:Surfactant  4   5.63876  7.95462  8.52198 0.00105692

For the sigma-constrained model, the hypotheses HFat and HSurfactant
can also be expressed as

The row for Fat in the drop1 ANOVA table is the reduction in sum of
squares due to Fat given all other terms are in the model. This
simultaneously tests that the least squares coefficients βFat1 = f1 and
βFat2 = f2 are zero (and, hence f3 = -(f1 + f2) is zero) (Searle, 1987).
The same argument applies to Surfactant. It follows that the following
Type III estimable functions for Fat can be used to test H*Fat (or
equivalently HFat).

HFat
* :f1 f2 0= =

HSurfactant
* :s1 s2 s3 0= = =
578



Summarizing ANOVA Results
> L.typeIII

                [,1] [,2]
    (Intercept)    0    0
         Flour1    0    0
         Flour2    0    0
         Flour3    0    0
           Fat1    1    0
           Fat2    0    1
    Surfactant1    0    0
    Surfactant2    0    0
Fat1Surfactant1    0    0
Fat2Surfactant1    0    0
Fat1Surfactant2    0    0
Fat2Surfactant2    0    0

> h.c<-t(L.typeIII)%*%Baking.aov$coef
> t(h.c)%*%solve(t(L.typeIII)%*%Baking.sum$cov.unscaled%*%
+ L.typeIII)%*%h.c

         [,1]
[1,] 10.11785
579



Chapter 16  Further Topics in Analysis of Variance
MULTIVARIATE ANALYSIS OF VARIANCE

Multivariate analysis of variance, known as MANOVA, is the
extension of analysis of variance techniques to multiple responses.
The responses for an observation are considered as one multivariate
observation, rather than as a collection of univariate responses.

If the responses are independent, then it is sensible to just perform
univariate analyses. However, if the responses are correlated, then
MANOVA can be more informative than the univariate analyses as
well as less repetitive.

In S-PLUS the manova function is used to estimate the model. The
formula needs to have a matrix as the response:

> wafer.manova <- manova(cbind(pre.mean, post.mean) ~ .,
+ wafer[,c(1:9, 11)])

The manova function creates an object of class "manova". This class
of object has methods specific to it for a few generic functions. The
most important function is the "manova" method for summary, which
produces a MANOVA table:

> summary(wafer.manova)

          Df Pillai Trace approx. F num df   den df   P-value
  maskdim 1  0.9863       36.00761  2        1        0.11703
 visc.tem 2  1.00879      1.01773   4        4        0.49341
   spinsp 2  1.30002      1.85724   4        4        0.28173
 baketime 2  0.80133      0.66851   4        4        0.64704
 aperture 2  0.96765      0.93733   4        4        0.52425
  exptime 2  1.63457      4.47305   4        4        0.08795
  devtime 2  0.99023      0.98065   4        4        0.50733
 etchtime 2  1.26094      1.70614   4        4        0.30874
Residuals 2

There are four common types of test in MANOVA. The example
above shows the Pillai-Bartlett trace test, which is the default test in
S-PLUS. The last four columns show an approximate F test (since the
distributions of the four test statistics are not implemented). The other
available tests are Wilks’ Lambda, Hotelling-Lawley trace, and Roy’s
maximum eigenvalue. (By the way, a model with this few residual
degrees of freedom is not likely to produce informative tests.)
580



Multivariate Analysis of Variance
You can view the results of another test by using the test argument.
The following command shows you Wilks’ lambda test:

> summary(wafer.manova, test="wilk")

Below is an example of how to see the results of all four of the
multivariate tests:

> wafer.manova2 <- manova(cbind(pre.mean, post.mean,
+ log(pre.dev), log(post.dev)) ~ maskdim + visc.tem +
+ spinsp, wafer)
> wafer.ms2 <- summary(wafer.manova2)
> for(i in c("p","w","h","r")) print(wafer.ms2, test=i)

You can also look at the univariate ANOVA tables for each response
with a command like:

> summary(wafer.manova, univariate=T)

Hand and Taylor (1987) provide a nice introduction to MANOVA.
Many books on multivariate statistics contain a chapter on
MANOVA. Examples include Mardia, Kent and Bibby (1979), and
Seber (1984).
581



Chapter 16  Further Topics in Analysis of Variance
SPLIT-PLOT DESIGNS

A split-plot design contains more than one source of error. This can
arise because factors are applied at different scales, as in the guayule
example below.

Split-plots are also encountered because of restrictions on the
randomization. For example, an experiment involving oven
temperature and baking time will probably not randomize the oven
temperature totally, but rather only change the temperature after all
of the runs for that temperature have been made. This type of design
is often mistakenly analyzed as if there were no restrictions on the
randomization (an indication of this can be p-values that are close to
1). See Hicks (1973) and Daniel (1976).

S-PLUS includes the guayule data frame which is also discussed in
Chambers and Hastie (1992). This experiment was on eight varieties
of guayule (a rubber producing shrub) and four treatments on the
seeds. Since a flat (a shallow box for starting seedlings) was not large
enough to contain all 32 combinations of variety and treatment, the
design was to use only a single variety in each flat and to apply each
treatment within each flat. Thus the flats each consist of four sub-
plots. This is a split-plot design since flats are the experimental unit
for varieties, but the sub-plots are the experimental unit for the
treatments. The response is the number of plants that germinated in
each sub-plot.

To analyze a split-plot design like this, put the variable that
corresponds to the whole plot in an Error term in the formula of the
aov call:

> gua.aov1 <- aov(plants ~ variety*treatment +
+ Error(flats), guayule)

As usual, you can get an ANOVA table with summary:

> summary(gua.aov1)

Error: flats
          Df Sum of Sq  Mean Sq  F Value     Pr(F)
variety    7   763.156 109.0223 1.232036 0.3420697
Residuals 16  1415.833  88.4896
582



Split-Plot Designs
Error: Within
                  Df Sum of Sq  Mean Sq  F Value       Pr(F)
treatment          3  30774.28 10258.09 423.4386 0.00000e+00
variety:treatment 21   2620.14   124.77   5.1502 1.32674e-06
Residuals         48   1162.83    24.23

This shows varieties tested with the error from flats, while treatment
and its interaction with variety are tested with the within-flat error
(which is substantially smaller).

The guayule data actually represent an experiment in which the flats
were grouped into replicates—making three sources of error, or a split-
split-plot design. To model this we put more than one term inside the
Error term:

> gau.aov2 <- aov(plants ~ variety*treatment +
+ Error(reps/flats), guayule)
> summary(gau.aov2)

Error: reps
          Df Sum of Sq  Mean Sq F Value Pr(F)
Residuals  2  38.58333 19.29167

Error: flats %in% reps
          Df Sum of Sq  Mean Sq  F Value     Pr(F)
variety    7   763.156 109.0223 1.108232 0.4099625
Residuals 14  1377.250  98.3750

Error: Within
                  Df Sum of Sq  Mean Sq  F Value       Pr(F)
treatment          3  30774.28 10258.09 423.4386 0.00000e+00
variety:treatment 21   2620.14   124.77   5.1502 1.32674e-06
Residuals         48   1162.83    24.23

The Error term could also have been specified as
Error(reps + Flats). However, the specification
Error(flats + reps) would not give the desired result (the
sequence within the Error term is significant); explicitly stating the
nesting is preferred. Note that only one Error term is allowed.
583



Chapter 16  Further Topics in Analysis of Variance
REPEATED-MEASURES DESIGNS

Repeated-measures designs are those that contain a sequence of
observations on each subject—for example, a medical experiment in
which each patient is given a drug, and observations are taken at zero,
one, two and three weeks after taking the drug. (The above
description is a little too simplistic to encompass all repeated-
measures designs, but it captures the spirit.)

Repeated-measures designs are similar to split-plot designs in that
there is more than one source of error (between subjects and within
subjects), but there is correlation in the within-subjects observations.
In the example we expect that the observations in week three will be
more similar to week two observations than to week zero
observations. Because of this, the split-plot analysis (referred to as the
univariate approach) is valid only under certain restrictive conditions.

We will use the artificial dataset drug.mult, which has the following
form:

> drug.mult

  subject gender  Y.1  Y.2  Y.3  Y.4
1      S1      F 75.9 74.3 80.0 78.9
2      S2      F 78.3 75.5 79.6 79.2
3      S3      F 80.3 78.2 80.4 76.2
4      S4      M 80.7 77.2 82.0 83.8
5      S5      M 80.3 78.6 81.4 81.5
6      S6      M 80.1 81.1 81.9 86.4

The dataset consists of the two factors subject and gender, and the
matrix Y which contains 4 columns. The first thing to do is stretch this
out into a form suitable for the univariate analysis:

> drug.uni <- drug.mult[rep(1:6, rep(4,6)), 1:2]
> ymat <- data.matrix(drug.mult[,paste("Y.",1:4, sep="")])
> drug.uni <- cbind(drug.uni, time=
+ ordered(rep(paste("Week", 0:3,sep=""),6)),
+ y=as.vector(t(ymat)))
584



Repeated-Measures Designs
The univariate analysis treats the data as a split-plot design:

> summary(aov(y ~ gender*time + Error(subject), drug.uni))

Error: subject
          Df Sum of Sq  Mean Sq  F Value   Pr(F)
gender     1  60.80167 60.80167 19.32256 0.01173
Residuals  4  12.58667  3.14667

Error: Within
            Df Sum of Sq  Mean Sq  F Value     Pr(F)
time         3  49.10833 16.36944 6.316184 0.0081378
gender:time  3  14.80167  4.93389 1.903751 0.1828514
Residuals   12  31.10000  2.59167

Tests in the “Within” stratum are valid only if the data satisfy the
“circularity” property, in addition to the usual conditions. Circularity
means that the variance of the difference of measures at different
times is constant; for example, the variance of the difference between
the measures at week 0 and week 3 should be the same as the
variance of the difference between week 2 and week 3. We also need
the assumption that actual contrasts are used; for example, the
contr.treatment function should not be used. When circularity
does not hold, then the p-values for the tests will be too small.

One approach is to perform tests which are as conservative as
possible. Conservative tests are formed by dividing the degrees of
freedom in both the numerator and denominator of the F test by the
number of repeated measures minus one. In our example there are
four repeated measures on each subject, so we divide by 3. The split-
plot and the conservative tests are:

> 1 - pf(6.316184, 3, 12) # usual univariate test

[1] 0.008137789

> 1 - pf(6.316184, 1, 4) # conservative test

[1] 0.06583211

These two tests are telling fairly different tales, so the data analyst
would probably move on to one of two alternatives. A Huynh-Feldt
adjustment of the degrees of freedom provides a middle ground
585



Chapter 16  Further Topics in Analysis of Variance
between the tests above—see Winer, Brown and Michels (1991), for
instance. The multivariate approach, discussed below, substantially
relaxes the assumptions.

The univariate test for “time” was really a test on three contrasts. In
the multivariate setting we want to do the same thing, so we need to
use contrasts in the response:

> drug.man <- manova(ymat %*% contr.poly(4) ~ gender,
+ drug.mult)
> summary(drug.man, intercept=T)

            Df Pillai Trace approx. F num df   den df    P-value
(Intercept) 1  0.832005     3.301706  3        2        0.241092
     gender 1  0.694097     1.512671  3        2        0.421731
  Residuals 4

The line marked “(Intercept)” corresponds to “time” in the univariate
approach, and similarly the “gender” line here corresponds to
“gender:time”. The p-value of .24 is larger than either of the
univariate tests—the price of the multivariate analysis being more
generally valid is that quite a lot of power is lost. Although the
multivariate approach is preferred when the data do not conform to
the required conditions, the univariate approach is preferred when
they do (the trick, of course, is knowing which is which).

Let’s look at the univariate summaries that this MANOVA produces:

> summary(drug.man, intercept=T, univar=T)

Response: .L
            Df Sum of Sq Mean Sq  F Value     Pr(F)
(Intercept)  1    22.188 22.1880 4.327255 0.1059983
gender       1     6.912  6.9120 1.348025 0.3101900
Residuals    4    20.510  5.1275
Response: .Q
            Df Sum of Sq  Mean Sq F Value     Pr(F)
(Intercept)  1  5.415000 5.415000 5.30449 0.0826524
gender       1  4.001667 4.001667 3.92000 0.1188153
Residuals    4  4.083333 1.020833
586



Repeated-Measures Designs
Response: .C
            Df Sum of Sq  Mean Sq  F Value     Pr(F)
(Intercept)  1  21.50533 21.50533 13.22049 0.0220425
gender       1   3.88800  3.88800  2.39016 0.1969986
Residuals    4   6.50667  1.62667

If you add up the respective degrees of freedom and sums of squares,
you will find that the result is the same as the univariate “Within”
stratum. For this reason, the univariate test is sometimes referred to as
the “average F test.”

The above discussion has focused on classical inference, which should
not be done before graphical exploration of the data.

Many books discuss repeated measures. Some examples are Hand
and Taylor (1987), Milliken and Johnson (1984), Crowder and Hand
(1990), and Winer, Brown, and Michels (1991).
587



Chapter 16  Further Topics in Analysis of Variance
RANK TESTS FOR ONE-WAY AND TWO-WAY LAYOUTS

This section briefly describes how to use two nonparametric rank
tests for ANOVA: the Kruskal-Wallis rank sum test for a one-way
layout and the Friedman test for unreplicated two-way layout with
(randomized) blocks.

Since these tests are based on ranks, they are robust with regard to the
presence of outliers in the data; that is, they are not affected very
much by outliers. This is not the case for the classical F tests.

You can find detailed discussions of the Kruskal-Wallis and Friedman
rank-based tests in a number of books on nonparametric tests; for
example, Lehmann (1975) and Hettmansperger (1984).

The Kruskal-
Wallis Rank 
Sum Test

When you have a one-way layout, as in the section Experiments With
One Factor in Chapter 15, you can use the Kruskal-Wallis rank sum test
kruskal.test to test the null hypothesis that all group means are
equal.

We illustrate how to use kruskal.test for the blood coagulation
data of Table 15.1. First you set up your data as for a one-factor
experiment (or one-way layout). You create a vector object coag,
arranged by factor level (or treatment), and you create a factor object
diet whose levels correspond to the factor levels of vector object
coag. Then use kruskal.test:

> kruskal.test(coag,diet)

         Kruskal-Wallis rank sum test

data:  coag and diet
Kruskal-Wallis chi-square = 17.0154, df = 3,
 p-value = 7e-04
alternative hypothesis: two.sided

The p-value of p = .0007 is highly significant. This p-value is
computed using an asymptotic chi-squared approximation. See the
help file for more details.
588



Rank Tests For One-Way and Two-Way Layouts
You may find it helpful to note that kruskal.test and
friedman.test return the results of its computations, and associated
information, in the same style as the functions in Chapter 3, Statistical
Inference for One- and Two-Sample Problems.

The Friedman 
Rank Sum Test

 When you have a two-way layout with one blocking variable and one
treatment variable, you can use the Friedman rank sum test
friedman.test to test the null hypothesis that there is no treatment
effect.

We illustrate how you use friedman.test for the penicillin yield
data described in Table 15.1 of Chapter 15. The general form of the
usage is

friedman.test(y,groups,blocks)

where y is a numeric vector, groups contains the levels of the
treatment factor and block contains the levels of the blocking factor.
Thus, you can do:

> attach(pen.df) # make treatment and blend available

> friedman.test(yield, treatment, blend)

         Friedman rank sum test

data:  yield and pen.design[, 2] and pen.design[, 1]
Friedman chi-square = 3.4898, df = 3, p-value = 0.3221
alternative hypothesis: two.sided

The p-value is p = .32, which is not significant. This p-value is
computed using an asymptotic chi-squared approximation. For
further details on friedman.test, see the help file.
589



Chapter 16  Further Topics in Analysis of Variance
VARIANCE COMPONENTS MODELS

Variance components models are used when there is interest in the
variability of one or more variables other than the residual error. For
example, manufacturers often run experiments to see which parts of
the manufacturing process contribute most to the variability of the
final product. In this situation variability is undesirable, and attention
is focused on improving those parts of the process that are most
variable. Animal breeding is another area in which variance
components models are routinely used. Some data, from surveys for
example, that have traditionally been analyzed using regression can
more profitably be analyzed using variance component models.

Estimating the 
Model

To estimate a variance component model, you first need to use
is.random to state which factors in your data are random. A variable
that is marked as being random will have a variance component in
any models that contain it. Only variables that inherit from class
"factor" can be declared random. Although is.random works on
individual factors, it is often more practical to use it on the columns of
a data frame. You can see if variables are declared random by using
is.random on the data frame:

> is.random(pigment)

Batch Sample Test
    F      F    F

Declare variables to be random by using the assignment form of
is.random:

> is.random(pigment) <- c(T, T, T)
> is.random(pigment)

Batch Sample Test
    T      T    T

Because we want all of the factors to be random, we could have
simply done the following:

> is.random(pigment) <- T

The value on the right is replicated to be the length of the number of
factors in the data frame.
590



Variance Components Models
Once you have declared your random variables, you are ready to
estimate the model using the varcomp function. This function takes a
formula and other arguments very much like lm or aov. Because the
pigment data are from a nested design, the call has the following
form:

> pigment.vc <- varcomp(Moisture ~ Batch/Sample, pigment)
> pigment.vc

Variances:
    Batch Sample %in% Batch Residuals
 7.127976          28.53333 0.9166667
Call:
varcomp(formula = Moisture ~ Batch/Sample, data = pigment)

The result of varcomp is an object of class "varcomp". You can use
summary on "varcomp" objects to get more details about the fit, and
you can use plot to get qq-plots for the normal distribution on the
estimated effects for each random term in the model.

Estimation 
Methods

The method argument to varcomp allows you to choose the type of
variance component estimator. Maximum likelihood and REML
(restricted maximum likelihood) are two of the choices. REML is
very similar to maximum likelihood but takes the number of fixed
effects into account (the usual unbiased estimate of variance in the
one-sample model is a REML estimate). See Harville (1977) for more
details on these estimators.

The default method is a MINQUE (minimum norm quadratic
unbiased estimate); this class of estimator is locally best at a particular
spot in the parameter space. The MINQUE option in S-PLUS is
locally best if all of the variance components (except that for the
residuals) are zero. The MINQUE estimate agrees with REML for
balanced data. See Rao (1971) for details. This method was made the
default because it is less computationally intense than the other
methods, however, it can do significantly worse for severely
unbalanced data (Swallow and Monahan (1984)).

You can get robust estimates by using "method = winsor". This
method creates new data by moving outlying points or groups of
points toward the rest of the data. One of the standard estimators is
then applied to this possibly revised data. Burns (1992) gives details of
591



Chapter 16  Further Topics in Analysis of Variance
the algorithm along with simulation results. This method uses much
larger amounts of memory than the other methods if there are a large
number of random levels, such as in a deeply nested design.

Random Slope 
Example

We now produce a more complicated example in which there are
random slopes and intercepts. The data consist of several pairs of
observations on each of several individuals in the study. An example
might be that the y values represent the score on a test and the x
values are the time at which the test was taken.

Let’s start by creating simulated data of this form. We create data for
30 subjects and 10 observations per subject:

> subject <- factor(rep(1:30, rep(10,30)))
> set.seed(357) # makes these numbers reproducible
> trueslope <- rnorm(30, mean=1)
> trueint <- rnorm(30, sd=.5)
> times <- rchisq(300, 3)
> scores <- rep(trueint, rep(10,30)) + times *
+ rep(trueslope, rep(10,30)) + rnorm(300)
> test.df <- data.frame(subject, times, scores)
> is.random(test.df) <- T
> is.random(test.df) subject T

Even though we want to estimate random slopes and random
intercepts, the only variable that is declared random is subject. Our
model for the data has two coefficients: the mean slope (averaged
over subjects) and the mean intercept. It also has three variances: the
variance for the slope, the variance for the intercept, and the residual
variance.

The following command estimates this model using Maximum
Likelihood (the default MINQUE is not recommended for this type
of model):

> test.vc <- varcomp(scores ~ times * subject,
+ data=test.df, method="ml")
592



Variance Components Models
This seems very simple. We can see how it works by looking at how
the formula get expanded. The right side of the formula is expanded
into four terms:

scores ~ 1 + times + subject + times:subject

The intercept term in the formula, represented by 1, gives the mean
intercept. The variable times is fixed and produces the mean slope.
The subject variable is random and produces the variance
component for the random intercept. Since any interaction
containing a random variable is considered random, the last term,
times:subject, is also random; this term gives the variance
component for the random slope. Finally, there is always a residual
variance.

Now we can look at the estimates:

> test.vc

Variances:
   subject times:subject Residuals
 0.3162704      1.161243 0.8801149
Message:
[1] "RELATIVE FUNCTION CONVERGENCE"
Call:
varcomp(formula = scores ~ times*subject, data=test.df,
  method = "ml")

This shows the three variance components. The variance of the
intercept, which has true value .25, is estimated as .32. Next, labeled
times:subject is the variance of the slope, and finally the residual
variance. We can also view the estimates for the coefficients of the
model, which have true values of 0 and 1.

> coef(test.vc)

 (Intercept)   times
   0.1447211 1.02713
593



Chapter 16  Further Topics in Analysis of Variance
REFERENCES

Burns, P.J. (1992). Winsorized REML estimates of variance components.
Submitted.

Chambers, J.M. and Hastie, T.J. (1992). Statistical Models in S.
Wadsworth and Brooks Cole Advanced Books and Software, Pacific
Grove, CA.

Crowder, M.J. and Hand, D.J. (1990). Analysis of Repeated Measures.
Chapman and Hall, London.

Daniel, C. (1976). Applications of Statistics to Industrial Experimentation.
Wiley, New York.

Hand, D.J. and Taylor, C.C. (1987). Multivariate Analysis of Variance and
Repeated Measures. Chapman and Hall, London.

Harville, D.A. (1977). Maximum likelihood approaches to variance
component estimation and to related problems (with discussion). Journal of
the American Statistical Association, 72:320-340.

Hettmansperger, T.P. (1984). Statistical Inference Based on Ranks. John
Wiley, New York.

Hicks, C.R. (1973). Fundamental Concepts in the Design of Experiments.
Holt, Rinehart and Winston, New York.

Kennedy, W.J., Gentle, J.E., (1980), Statistical Computing. Marcel
Dekker, Inc., New York, p. 396.

Lehmann, E.L. (1975). Nonparametrics: Statistical Methods Based on
Ranks. Holden-Day, San Francisco.

Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979). Multivariate Analysis.
Academic Press, London.

Milliken, G.A. and Johnson, D.E., (1984), Analysis of Messy Data Volume
I: Designed Experiments. Van Norstrand Reinhold Co., New York, 473.

Rao, C.R. (1971). Estimation of variance and covariance components—
MINQUE theory. Journal of Multivariate Analysis, 1:257-275.

SAS Institute, Inc. (1978). Tests of Hypotheses in Fixed-Effects Linear
Models. SAS Technical Report R-101. SAS Institute, Inc., Cary, NC.

SAS Institute, Inc. (1990). SAS/Stat User’s Guide, Fourth Edition. SAS
Institute, Inc., Cary, NC, pp. 120-121.
594



References
Searle, S.R., (1987), Linear Models for Unbalanced Data. John Wiley &
Sons, New York, 536.

Seber, G.A.F. (1984). Multivariate Observations. Wiley, New York.

Swallow, W.H. and Monahan, J.F. (1984). Monte Carlo comparison of
ANOVA, MIVQUE, REML, and ML estimators of variance components.
Technometrics, 26:47-57.

Winer, B.J., Brown, D.R., and Michels, K.M. (1991). Statistical
Principles in Experimental Design. McGraw-Hill, New York.
595



Chapter 16  Further Topics in Analysis of Variance
596



Introduction 598

Overview 599
Honestly Significant Differences 601
Rat Growth Hormone Treatments 602
Upper and Lower Bounds 604
Calculation of Critical Points 605
Error Rates for Confidence Intervals 606

Advanced Applications 608
Adjustment Schemes 609
Toothaker’s Two-Factor Design 610
Setting Linear Combinations of Effects 613
Textbook Parameterization 613
Overparameterized Models 616
Multicomp Methods Compared 616

Capabilities and Limits 618

References 620

MULTIPLE COMPARISONS 17
597



Chapter 17  Multiple Comparisons
INTRODUCTION

This chapter describes the use of the function multicomp in the
analysis of multiple comparisons. The section Overview describes
simple calls to multicomp for standard comparisons in one-way
layouts. The section Advanced Applications tells how to use
multicomp for nonstandard designs and comparisons. In the section
Capabilities and Limits, the capabilities and limitations of this
function are summarized.
598



Overview
OVERVIEW

When an experiment has been carried out in order to compare effects
of several treatments, a classical analytical approach is to begin with a
test for equality of those effects. Regardless of whether one embraces
this classical strategy, and regardless of the outcome of this test, one is
usually not finished with the analysis until determining where any
differences exist, and how large the differences are (or might be); that
is, until one does multiple comparisons of the treatment effects.

As a simple start, consider the built-in S-PLUS data frame on fuel
consumption of vehicles, fuel.frame. Each row provides the fuel
consumption (Fuel) in 100*gallons/mile for a vehicle model, as well
as the Type group of the model: Compact, Large, Medium, Small,
Sporty, or Van. There is also information available on the Weight
and Displacement of the vehicle. Figure 17.1 shows a boxplot of fuel
consumption, the result of the following commands.

> attach(fuel.frame)
> boxplot(split(Fuel,Type))

Figure 17.1:  Fuel consumption boxplot.

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Compact Large Medium Small Sporty Van
599



Chapter 17  Multiple Comparisons
Not surprisingly, the plot suggests that there are differences between
vehicle types in terms of mean fuel consumption. This is confirmed
by a one-factor analysis of variance test of equality obtained by a call
to aov.

> aovout.fuel <- aov( Fuel ~ Type, data = fuel.frame)
> anova(aovout.fuel)

Analysis of Variance Table
Response: Fuel
Terms added sequentially (first to last)

          Df  Sum of Sq    Mean Sq    F Value          Pr(F)
Type       5   24.23960   4.847921   27.22058   1.220135e-13
Residuals 54    9.61727   0.178098

The boxplots show some surprising patterns, and inspire some
questions. Do Small cars really have lower mean fuel consumption
than Compact cars? If so, by what amount? What about Small versus
Sporty cars? Vans versus Large cars? Answers to these questions are
offered by an analysis of all pairwise differences in mean fuel
consumption, which can be obtained from a call to multicomp:

> mca.fuel <- multicomp(aovout.fuel, focus = “Type”)
> plot(mca.fuel)
> mca.fuel

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method
critical point: 2.9545
response variable: Fuel
intervals excluding 0 are flagged by '****'

                Estimate      Std.    Lower    Upper
                             Error    Bound    Bound
Compact-Large     -0.800     0.267   -1.590  -0.0116  ****
Compact-Medium    -0.434     0.160   -0.906   0.0387
Compact-Small      0.894     0.160    0.422   1.3700  ****
Compact-Sporty     0.210     0.178   -0.316   0.7360
Compact-Van       -1.150     0.193   -1.720  -0.5750  ****
Large-Medium       0.366     0.270   -0.432   1.1600
Large-Small        1.690     0.270    0.896   2.4900  ****
Large-Sporty       1.010     0.281    0.179   1.8400  ****
Large-Van         -0.345     0.291   -1.210   0.5150
Medium-Small       1.330     0.166    0.839   1.8200  ****
Medium-Sporty      0.644     0.183    0.103   1.1800  ****
600



Overview
Medium-Van        -0.712     0.198   -1.300  -0.1270  ****
Small-Sporty      -0.684     0.183   -1.220  -0.1440  ****
Small-Van         -2.040     0.198   -2.620  -1.4600  ****
Sporty-Van        -1.360     0.213   -1.980  -0.7270  ****

As the output and plot in Figure 17.2 indicate, this default call to
multicomp has resulted in the calculation of simultaneous 95%
confidence intervals for all pairwise differences between vehicle Fuel
means, based on the levels of Type, sometimes referred to as MCA
comparisons (Hsu, 1996). The labeling states that Tukey’s method
(Tukey, unpublished report, Princeton University, 1953) has been
used; since group sample sizes are unequal, this is actually equivalent
to what is commonly known as the Tukey-Kramer (Kramer, 1956)
multiple comparison method.

Honestly 
Significant 
Differences

The output indicates via asterisks the confidence intervals which
exclude zero; in the plot, these can be identified by noting intervals
that do not intersect the vertical reference line at zero. These
identified statistically significant comparisons correspond to pairs of
(long run) means which can be declared different by Tukey’s “HSD”
(honestly significant difference) method. Not surprisingly, we can
assert that most of the vehicle types have different mean fuel
consumption rates. If we require 95% confidence in all of our
statements, we cannot claim different mean fuel consumption rates

Figure 17.2:  Fuel consumption ANOVA.

(
(

(
(

(
(

(
(

(
(

(
(
(

(
(

)
)

)
)

)
)

)
)

)
)

)
)
)

)
)

Compact-Large
Compact-Medium

Compact-Small
Compact-Sporty

Compact-Van
Large-Medium

Large-Small
Large-Sporty

Large-Van
Medium-Small

Medium-Sporty
Medium-Van
Small-Sporty

Small-Van
Sporty-Van

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

simultaneous  95 % confidence limits, Tukey method
response variable: Fuel
601



Chapter 17  Multiple Comparisons
between the Compact and Medium types, the Compact and Sporty
types, the Large and Medium types, and the Large and Van types.
Note we should not assert that these pairs have equal mean
consumption rates; for example, the interval for Compact-Medium
states that this particular difference in mean fuel consumption is
between -0.906 and 0.0387 units. Hence, the Medium vehicle type
may have larger mean fuel consumption than the Compact, by as
much as 0.9 units. Only an engineer can judge the importance of a
difference of this size; if it is considered trivial, then using these
intervals we can claim that for all practical purposes these two types
have equal mean consumption rates; if not, there may still be an
important difference between these types, and we would need more
data to resolve the question.

The point to the above discussion is that there is more information in
these simultaneous intervals than is provided by a collection of
significance tests for differences. This is true whether the tests are
reported via conclusions “Reject”/“Do not reject”, or via p-values or
adjusted p-values. This superior level of information using confidence
intervals has been acknowledged by virtually all modern texts on
multiple comparisons (Hsu, 1996; Bechhofer et al., 1996; Hochberg
and Tamhane, 1987; Toothaker, 1993). All multiple comparison
analyses using multicomp are represented by using confidence
intervals or bounds.

Rat Growth 
Hormone 
Treatments

If all the intervals are to hold simultaneously with a given confidence
level, it is important to calculate intervals only for those comparisons
which are truly of interest. For example, consider the summary data
in Table 17.1 from Hsu (Hsu, 1996) concerning a study by Juskevich
and Guyer (1990) in which rat growth was studied under several
growth-hormone treatments.

In this setting, it may only be necessary to compare each hormone
treatment’s mean growth with that of the placebo (that is, the oral
administration with zero dose). These all-to-one comparisons are
usually referred to as multiple comparisons with a control (MCC)
(Dunnett, 1955). Suppose that the raw data for each rat were available
in a data frame hormone.dfr with variables growth (numeric) and
602



Overview
treatment (a factor object) for each rat. Then the following
statements would calculate, print, and plot Dunnett’s intervals:

> aovout.growth <- aov(growth~treatment, data=hormone.dfr)
> multicomp(aovout.growth, focus = “treatment”,
+ comparisons = “mcc”, control = 1, plot = T)

The results are shown graphically in Figure 17.3. The intervals clearly
show that only the injection method is distinguishable from the
placebo in terms of long run mean weight gain.

Table 17.1:  Mean weight gain in rats under hormone treatments.

method/dose
mean

growth (g) std.dev.
sample

size

oral, 0 324 39.2 30

inject,1.0 432 60.3 30

oral,0.1 327 39.1 30

oral,0.5 318 53.0 30

oral,5 325 46.3 30

oral,50 328 43.0 30

Figure 17.3:  MCC for rat hormone treatments.

(
(

(
(
(

)
)

)
)
)

inject.,1.0-oral,0
oral,0.1-oral,0
oral,0.5-oral,0
oral,5.0-oral,0
oral,50-oral,0

-40 -20 0 20 40 60 80 100 120 140
simultaneous  95 % confidence limits, Dunnett method

response variable: growth

Table 4: MCC for hormone treatments
603



Chapter 17  Multiple Comparisons
More Detail on 
multicomp

The first and only required argument to multicomp is an aov object
(or equivalent), the results of a fixed-effects linear model fit by aov or
a similar model-fitting function. The focus argument, when
specified, names a factor (a main effect) in the fitted aov model.
Comparisons will then be calculated on (adjusted) means for levels of
the focus factor. The comparisons argument is an optional
argument which can specify a standard family of comparisons for the
levels of the focus factor. The default is comparisons = “mca”,
which creates all pairwise comparisons. Setting
comparisons = “mcc” creates all-to-one comparisons relative to the
level specified by the control argument. The only other
comparisons option available is “none”, which states that the
adjusted means themselves are of interest (with no differencing), in
which case the default method for interval calculation is known as the
studentized maximum modulus method. Other kinds of comparisons
and different varieties of adjusted means can be specified through the
lmat and adjust options discussed below.

Upper and 
Lower Bounds

Confidence intervals provide both upper and lower bounds for each
difference or adjusted mean of interest. In some instances, only the
lower bounds, or only the upper bounds, may be of interest. For
example, in the fuel consumption example earlier, we may only be
interested in determining which types of vehicle clearly have greater
fuel consumption than compacts, and in calculating lower bounds for
the difference. This can be accomplished through lower mcc bounds:

> aovout.fuel<-aov(Fuel~Type, data=fuel.frame)
> multicomp(aovout.fuel, focus="Type",comparison="mcc",
+ bounds="lower", control=1, plot=T)

95 % simultaneous confidence bounds for specified
linear combinations, by the Dunnett method

critical point: 2.3332000000000002
response variable: Fuel

bounds excluding 0 are flagged by '****'
604



Overview
               Estimate Std.Error Lower Bound
 Large-Compact    0.800     0.267      0.1770 ****
Medium-Compact    0.434     0.160      0.0606 ****
 Small-Compact   -0.894     0.160     -1.2700
Sporty-Compact   -0.210     0.178     -0.6250
   Van-Compact    1.150     0.193      0.6950 ****

The intervals or bounds computed by multicomp are always of the
form

The reader has probably already noticed that the estimates and
standard errors are supplied in the output table. The critical point
used depends on the specified or implied multiple comparison
method.

Calculation of 
Critical Points

The multicomp function can calculate critical points for
simultaneous intervals or bounds by the following methods:

• Tukey (method = “tukey”),

• Dunnett (method = “dunnett”),

• Sidak (method = “sidak”),

• Bonferroni (method = “bon”),

• Scheffé (method = “scheffe”)

• Simulation-based (method = “sim”).

Figure 17.4:  Lower mcc bounds for rat hormone treatments.

(

(

(

(

(

Large-Compact

Medium-Compact

Small-Compact

Sporty-Compact

Van-Compact

-1.4 -1.0 -0.6 -0.2 0.2 0.6 1.0

simultaneous  95 % confidence limits, Dunnett method

response variable: Fuel

(estimate) (critical point)± (standard error of estimate)×
605



Chapter 17  Multiple Comparisons
Non-simultaneous intervals use the ordinary Student’s-t critical point,
method = “lsd”. If the user specifies a method, the function will
check its validity in view of the model fit and the types of
comparisons requested. For example, method = “dunnett” will be
invalid if comparisons = “mca”. If the specified method does not
satisfy the validity criterion, the function terminates with a message to
that effect. This safety feature can be disabled by specifying the
optional argument valid.check = F. If no method is specified, the
function uses the smallest critical point among the valid non-
simulation-based methods. If the user specifies method = “best”,
the function uses the smallest critical point among all valid methods
including simulation; this latter method may take a few moments of
computer time.

The simulation-based method generates a near-exact critical point via
Monte Carlo simulation, as discussed by Edwards and Berry (1987).
For nonstandard families of comparisons or unbalanced designs, this
method will often be substantially more efficient than other valid
methods. The simulation size is set by default to provide a critical
point whose actual error rate is within 10% of the nominal α (with
99% confidence). This amounts to simulation sizes in the tens of
thousands for most choices of α. The user may directly specify a
simulation size via the simsize argument to multicomp, but smaller
simulation sizes than the default are not advisable. It is important to
note that if the simulation-based method is used, the critical point
(and hence the intervals) will vary slightly over repeated calls;
recalculating the intervals repeatedly searching for some desirable
outcome will usually be fruitless, and will result in intervals which do
not provide the desired confidence level.

Error Rates for 
Confidence 
Intervals

Other multicomp arguments of interest are the alpha argument
which specifies the error rate for the intervals or bounds, with default
alpha = .05. By default, alpha is a familywise error rate, that is, the
user may be (1 - alpha) x 100% confident that every calculated bound
holds. If the user desires confidence intervals or bounds without
simultaneous coverage, specify error.type = “cwe”, meaning
comparisonwise error rate protection; in this case the user must also
606



Overview
specify method = “lsd”. Finally, for users familiar with the Scheffé
(1953) method, the critical point is of the form:

sqrt(Srank*qf(1-alpha, Srank, df.residual))

The numerator degrees of freedom Srank may be directly specified
as an option. If omitted, it is computed based on the specified
comparisons and aov object.
607



Chapter 17  Multiple Comparisons
ADVANCED APPLICATIONS

In the first example, the Fuel consumption differences found
between vehicle types are almost surely attributable to differences in
Weight and/or Displacement. Figure 17.5 shows a plot of Fuel
versus Weight with plotting symbols identifying the various model
types:

> plot(Weight,Fuel,type = ‘n’)
> text(Weight,Fuel,abbreviate(as.character(Type)))

This plot shows a strong, roughly linear relationship between Fuel
consumption and Weight, suggesting the addition of Weight as a
covariate in the model. Though it may be inappropriate to compare
adjusted means for all six vehicle types (see below), for the sake of
example the following calls fit this model and calculates simultaneous

Figure 17.5:  Fuel consumption versus Weight.

Weight

F
ue

l

2000 2500 3000 3500

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

SmllSmll

Smll

Smll Smll

Smll

Smll

Smll

Smll

Smll

Smll

Smll

Smll

Sprt

Sprt

Sprt

Sprt

Sprt

Sprt

Sprt

Sprt

Sprt
Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

CmpcCmpc

Cmpc

Cmpc

Cmpc

Cmpc

Cmpc

Medm

Medm

Medm MedmMedmMedm

MedmMedm

Medm

Medm

Medm Medm

MedmLarg

Larg

Larg

Van VanVan

Van

VanVan

Van
608



Advanced Applications
confidence intervals for all pairwise differences of adjusted means,
requesting the best valid method:

> lmout.fuel.ancova <- lm(Fuel ~ Type+Weight,
+ data = fuel.frame)
> multicomp(lmout.fuel.ancova, focus = “Type”,
+ method = “best”, plot = T)

The "best" valid method for this particular setting is the simulation-
based method; Tukey’s method has not been shown to be valid in the
presence of covariates when there are more than three treatments.
The intervals show that, adjusting for weight, the mean fuel
consumption of the various vehicle types are in most cases within one
unit of each other. The most notable exception is the Van type, which
is showing higher mean fuel consumption than the Small and Sporty
types, and most likely higher than the Compact, Medium and Large
types.

Adjustment 
Schemes

When there is more than one term in the lm model, multicomp
calculates standard adjusted means for levels of the focus factor and
then takes differences as specified by the comparisons argument.
Covariates are adjusted to their grand mean value. If there are other
factors in the model, the standard adjusted means for levels of the
focus factor use the average effect over the levels of any other (non-

Figure 17.6:  Fuel consumption ANCOVA (adj. for Weight).

(
(

(
(

(
(

(
(

(
(

(
(

(
(

(

)
)

)
)

)
)

)
)

)
)

)
)

)
)
)

Compact-Large
Compact-Medium

Compact-Small
Compact-Sporty

Compact-Van
Large-Medium

Large-Small
Large-Sporty

Large-Van
Medium-Small

Medium-Sporty
Medium-Van
Small-Sporty

Small-Van
Sporty-Van

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

simultaneous  95 % confidence limits, simulation-based method
response variable: Fuel
609



Chapter 17  Multiple Comparisons
nested) factors. This adjustment scheme can be changed using the
adjust argument, which specifies a list of adjustment levels for non-
focus terms in the model. Any terms excluded from the adjust list
are adjusted in the standard way. The adjust list may include
multiple adjustment values for each term; a full set of adjusted means
for the focus factor is calculated for each combination of values
specified by the adjust list. Differences (if any) specified by the
comparisons argument are then calculated for each combination of
values specified by the adjust list.

Toothaker’s 
Two-Factor 
Design

Besides allowing the user to specify covariate values for adjustment,
the adjust argument can be used to calculate“simple effects”
comparisons when factors interact, or (analogously) when covariate
slopes are different. This is probably best illustrated by an example:
Toothaker (1993) discusses a two-factor design, using the data
collected by Frank (1984). Subjects are undergraduate females, with
response the score on a 20-item multiple choice test over a taped
lecture. Factors are cognitive style (cogstyle, levels FI = Field
independent and FD = Field dependent) and study technique (studytech:
NN = no notes, SN = student notes, PO = partial outline supplied,
CO = complete outline). The following code fits the model and
performs a standard two-factor analysis of variance.

> score <- c(13, 13, 10, 16, 14, 11, 13, 13, 11, 16, 15, 16,
+ 10, 15, 19, 19, 17, 19, 17, 20, 17, 18, 17, 18, 18, 19,
+ 19, 18, 17, 19, 17, 19, 17, 19, 17, 15, 18, 17, 15, 15,
+ 19, 16, 17, 19, 15, 20, 16, 19, 16, 19, 19, 18, 11, 14,
+ 11, 10, 15, 10, 16, 16, 17, 11, 16, 11, 10, 12, 16, 16,
+ 17, 16, 16, 16, 14, 14, 16, 15, 15, 15, 18, 15, 15, 14,
+ 15, 18, 19, 18, 18, 16, 16, 18, 16, 18, 19, 15, 16, 19,
+ 18, 19, 19, 18, 17, 16, 17, 15)
> cogstyle <- factor(c(rep("FI",52), rep("FD",52)))
> studytec <- factor(c(rep("NN",13), rep("SN", 13),
+ rep("PO",13), rep("CO",13), rep("NN",13), rep("SN", 13),
+ rep("PO",13), rep("CO",13)))
> interaction.plot(cogstyle,studytec,score)
> aovout.students <- aov( score ~ cogstyle*studytec)
610



Advanced Applications
> anova(lmout.students)

Analysis of Variance Table
Response: score
Terms added sequentially (first to last)
               Df    Sum of Sq   Mean Sq    F Value     Pr(F)
cogstyle       1       25.0096   25.0096   7.78354 0.00635967
studytec       3      320.1827  106.7276  33.21596 0.00000000
cogstyle:studytec 3    27.2596    9.0865   2.82793 0.04259714
Residuals      96     308.4615    3.2131

It is apparent from the test for interaction and the profile plot that
there is non-negligible interaction between these factors. In such cases
it will often be of interest to follow the tests with an analysis of “simple
effects,” in this case a comparison of the four study techniques
performed separately for each cognitive style group. The following

Figure 17.7:  Two-factor design test scores.

cogstyle

m
ea

n 
of

 s
co

re

13
14

15
16

17
18

FD FI

   studytec

SN
CO
PO
NN
611



Chapter 17  Multiple Comparisons
call calculates simultaneous 95% intervals for these differences by the
best valid method, which is again simulation.

> mcout.students <- multicomp(aovout.students,
+ focus = “studytech”, adjust = list(cogstyle =
+ c(“FI”,”FD”) ), method = “best”)
> plot(mcout.students)
> mcout.students

95 % simultaneous confidence intervals for specified
linear combinations, by the simulation-based method
critical point: 2.8774
response variable: score
simulation size= 12616
                Estimate      Std.    Lower    Upper
                             Error    Bound    Bound
CO-NN.adj1      4.3800       0.703    2.360    6.410  ****
CO-PO.adj1      0.0769       0.703   -1.950    2.100
CO-SN.adj1     -0.3850       0.703   -2.410    1.640
NN-PO.adj1     -4.3100       0.703   -6.330   -2.280  ****
NN-SN.adj1     -4.7700       0.703   -6.790   -2.750  ****
PO-SN.adj1     -0.4620       0.703   -2.480    1.560  ****
CO-NN.adj2      4.4600       0.703    2.440    6.480  ****
CO-PO.adj2      0.7690       0.703   -1.250    2.790
CO-SN.adj2     -2.3100       0.703   -4.330   -0.285  ****
NN-PO.adj2     -3.6900       0.703   -5.720   -1.670  ****
NN-SN.adj2     -2.3100       0.703   -4.330   -0.285  ****
PO-SN.adj2      1.3800       0.703   -0.638   3.410
612



Advanced Applications
Setting Linear 
Combinations 
of Effects

In many situations, the setting calls for inference on a collection of
comparisons or linear combinations other than those available
through specifications of the focus, adjust, and comparisons
arguments. The lmat argument to multicomp allows the user to
directly specify any collection of linear combinations of the model
effects for inference. lmat is a matrix (or an expression evaluating to a
matrix) whose columns specify linear combinations of the model
effects for which confidence intervals or bounds are desired. Specified
linear combinations are checked for estimability; if inestimable, the
function terminates with a message to that effect. The user may
disable this safety feature by specifying the optional argument
est.check = F. Specification of lmat overrides any focus or
adjust arguments; at least one of lmat or focus must be specified.
Differences requested or implied by the comparisons argument are
taken over the columns of lmat. In many instances no such further
differencing would be desired, in which case the user should specify
comparisons = “none”.

Textbook 
Parameteriza-
tion

Linear combinations in lmat use the “textbook parameterization” of
the model. For example, the fuel consumption analysis of covariance
model parameterization has eight parameters: an Intercept, six
coefficients for the factor Type (Compact, Large, Medium, Small,

Figure 17.8:  Simple effects for study techniques.

(
(

(
(

(
(

(
(

(
(

(
(

)
)

)
)

)
)

)
)

)
)

)
)

CO.adj1-NN.adj1
CO.adj1-PO.adj1
CO.adj1-SN.adj1
NN.adj1-PO.adj1
NN.adj1-SN.adj1
PO.adj1-SN.adj1
CO.adj2-NN.adj2
CO.adj2-PO.adj2
CO.adj2-SN.adj2
NN.adj2-PO.adj2
NN.adj2-SN.adj2
PO.adj2-SN.adj2

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

simultaneous  95 % confidence limits, simulation-based method
response variable: score
613



Chapter 17  Multiple Comparisons
Sporty, Van) and a coefficient for the covariate Weight. Note that
the levels of the factor object Type are listed in alphabetical order in
the parameter vector.

In the Fuel consumption problem, many would argue that it is not
appropriate to compare, for example, adjusted means of Small
vehicles and Large vehicles, since these two groups’ weights do not
overlap. Inspection of Figure 17.5 shows that, under this
consideration, comparisons are probably only appropriate within two
weight groups: Small, Sporty, and Compact as a small weight group;
Medium, Large, and Van as a large weight group. We can accomplish
comparisons within the two Weight groups using the following
matrix, which is assumed to be pre-typed in a text file “lmat.fuel”.
Note the column labels, which will be used to identify the intervals in
the created figure and plot:

Table 17.2:  The Weight comparison matrix in the file lmat.fuel.

Com-Sma Com-Spo Sma-Spo Lar-Med Lar-Van Med-Van

Intercept 0 0 0 0 0 0

Compact 1 1 0 0 0 0

Large 0 0 0 1 1 0

Medium 0 0 0 -1 0 1

Small -1 0 1 0 0 0

Sporty 0 -1 -1 0 0 0

Van 0 0 0 0 -1 -1

Weight 0 0 0 0 0 0
614



Advanced Applications
The code below creates the intervals. If we restrict attention to these
comparisons only, we cannot assert any differences in adjusted mean
fuel consumption.

> multicomp.lm(lmout.fuel.ancova, lmat = lmat.fuel,
+ comparisons = “none”, method = “best”, plot = T)

The textbook parameterizations for linear models are created
according to the following algorithm:

1. An Intercept parameter is included first, if the model contains
one.

2. For each “main effect” term in the model (terms of order one),
groups of parameters are included in the order the terms are
listed in the model specification. If the term is a factor, a
parameter is included for each level. If the term is numeric, a
parameter is included for each column of its matrix
representation.

3. Parameters for terms of order 2 (for example, A:B) are created
by "multiplying" the parameters of each main effect in the
term, in left-to-right order. For example, if A has levels A1, A2
and B has levels B1, B2, B3, the parameters for A:B are A1B1
A1B2 A1B3 A2B1 A2B2 A2B3.

4. Parameters for higher level terms are created by multiplying
the parameterizations of lower level terms two at a time, left to
right. For example, the parameters for A:B:C are those of A:B
multiplied by C.

Figure 17.9:  Using lmat for specialized contrasts.

(
(

(
(

(
(

)
)

)
)

)
)

Com.Sma
Com.Spo
Sma.Spo
Lar.Med
Lar.Van

Med.Van.

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

simultaneous  95 % confidence limits, simulation-based method
response variable: Fuel
615



Chapter 17  Multiple Comparisons
Overparame-
terized Models

The textbook parameterization will often be awkwardly
overparameterized. For example, the 2 x 4 factorial model specified
in the student study techniques example has the following
parameters, in order; note the alphabetical rearrangement of the
factor levels:

• Intercept

• FD FI

• CO NN PO SN

• FDCO FDNN FDPO FDSN FICO FINN FIPO FISN

Clearly, care must be taken in creating an lmat for factorial designs,
especially with crossed and/or nested terms. The flexibility lmat
provides for creating study-specific linear combinations can be
extremely valuable, though. If you are in doubt about the actual
“textbook parameterization” of a given linear model, it may help to
run a standard analysis and inspect the lmat created, which is part of
the output list of multicomp. For example, for the simple effects
analysis of the student test scores of Figure 17.8, the implied lmat can
be seen using the command:

> mcout.students$lmat

Multicomp 
Methods 
Compared

The function multicomp.lm, after checking estimability of specified
linear combinations and creating a vector of estimates, a covariance
matrix, and degrees of freedom, calls the “base” function
multicomp.default. The function multicomp.default will be
directly valuable in many settings. It uses a vector of estimates bvec
and associated covariance matrix vmat as required arguments, with
optional degrees of freedom df.residual (possibly Inf, the default)
to calculate confidence intervals on linear combinations of bvec.
These linear combinations can be specified through an optional lmat
argument and/or comparisons argument; there is neither a focus
nor an adjust argument. Linear combinations of bvec defined by
columns of lmat (if any; the default lmat is an identity matrix) are
calculated, followed by any differences specified or implied by the
comparisons argument. The multicomp.lm options method,
bounds, alpha, error.type, crit.point, sim.size, Srank,
valid.check, and plot are also available in multicomp.default.
616



Advanced Applications
The function multicomp.default can be very useful as a means of
calculating intervals based on summary data, or using the results of
some model-fitting program other than lm; bvec must be considered
as a realization of a multivariate normal vector. If the matrix vmat
incorporates any estimate of variance considered to be a realized chi-
square variable, the degrees of freedom df.residual must be
specified.

The rat growth data discussed earlier (Table 17.1) provides a simple
example of the use of multicomp.default. Here, the first few
statements create the vector of estimates bvec and covariance matrix
vmat assuming that a single factor analysis of variance model is
appropriate for the data, followed by the statement that produced the
lower mcc bounds of Figure 17.4:

> growth <- c(324, 432, 327, 318, 325, 328)
> stddev <- c(39.2, 60.3, 39.1, 53.0, 46.3, 43.0)
> samp.size <- rep(30,6)
> names(growth) <- c( “oral,0”, ”inject,1.0”, ”oral,0.1”,
+ ”oral,0.5”, ”oral,5”, ”oral,50”)
> mse <- mean(stddev^2)
> vmat <-mse*diag(1/samp.size)
> multicomp.default(growth, vmat, df.residual =
+ sum(samp.size-1), comparisons = “mcc”, bounds = “lower”,
+ control = 1, plot = T)
617



Chapter 17  Multiple Comparisons
CAPABILITIES AND LIMITS

In summary, the function multicomp uses the information in a linear
model; that is, a fitted fixed effects linear model. Through some
combination of the focus, adjust, comparisons and lmat
arguments, any collection of estimable linear combinations of the
fixed effects may be estimated, and simultaneous or non-simultaneous
intervals or bounds computed by any of the applicable methods
mentioned above. Specified linear combinations are checked for
estimability unless the user specifies est.check = F. Specified
methods are checked for validity unless the user specifies
valid.check = F.

The function multicomp.default uses a specified vector of
parameter estimates bvec and a covariance matrix vmat, which will
usually have some associated degrees of freedom df.residual
specified. Possibly through some combination of the comparisons or
lmat arguments, any collection of linear combinations of the
parameters may be estimated, and simultaneous or non-simultaneous
intervals or bounds computed by any of the applicable methods
discussed above. Specified methods are checked for validity unless
the user specifies valid.check = F.

The output from either procedure is an object of class "multicomp", a
list containing elements $table (a matrix of calculated linear
combination estimates, standard errors, and lower and/or upper
bounds), $alpha, $error.type, $method, $crit.point, $lmat (the
final matrix of linear combinations specified or implied), and other
ancillary information pertaining to the intervals. If the argument
plot = T is specified, the intervals/bounds are plotted on the active
device. If not, the created multicomp object can be used as an
argument to plot (see plot.multicomp).

The critical points for the methods of Tukey and Dunnett are
calculated by numerically using the S-PLUS quantile functions
qtukey, qdunnett, qmvt, and qmvt.sim, which may be directly
useful to advanced users for their own applications.

What the function multicomp does not do:

1. Any stagewise or multiple range test. The simultaneous testing
procedures attributed to Fisher, Tukey, Scheffé, Sidak and
Bonferroni are implied by the use of the corresponding
618



Capabilities and Limits
method and noting which of the calculated intervals excludes
zero. The multiple range tests of Duncan(1955) and
Newman(1959)-Keuls(1952) do not provide familywise error
protection, and are not very efficient for comparisonwise
error protection; modern texts on multiple comparisons
recommend uniformly against these two multiple range tests
(Hsu, 1996; Hochberg and Tamhane, 1987; Bechofer et al.,
1996; Toothaker 1993).

2. Multiple comparisons with the "best" treatment (MCB; Hsu,
1996, chapter 4), or any ranking and selection procedure
(Bechofer et al., 1996) other than selection of treatments better
than a control implied by Dunnett’s one-sided methods. Users
familiar with these methods and reasonably proficient at
S-PLUS programming will be able to code many of these
procedures through creative use of multicomp with the
comparisons = “mcc” option.
619



Chapter 17  Multiple Comparisons
REFERENCES

Bechhofer, Robert E., Thomas J. Santner, and David M. Goldsman
(1995). Design and Analysis of Experiments for Statistical Selection,
Screening, and Multiple Comparisons. New York: Wiley.

Duncan, D.B. (1955), “Multiple range and multiple F tests,” Biometrics
11, 1-42.

Dunnett, C.W. (1955), “A multiple comparison procedure for
comparing several treatments with a control,” J.Amer.Stat.Assoc. 50,
1096-1121.

Edwards, Don and Berry, Jack J. (1987), “The efficiency of simulation-
based multiple comparisons,” Biometrics 43, 913-928.

Frank, B.M. (1984). “Effect of field independence-dependence and
study technique on learning from a lecture,” Amer.Educ.Res.J. 21, 669-
678.

Hsu, Jason C. (1996). Multiple Comparisons: Theory and Methods.
London: Chapman and Hall.

Hochberg, Y. and Tamhane, A.C. (1987). Multiple Comparison
Procedures. New York: Wiley.

Juskevich, J.C. and Guyer, C.G. (1990). “Bovine growth hormone:
human food safety evaluation,” Science 249, 875-884.

Kramer, C.Y. (1956). “Extension of multiple range tests to group
means with unequal numbers of replications,” Biometrics 12, 309-310.

Keuls, M. (1952). “The use of the ‘studentized range’ in connection
with an analysis of variance,” Euphytica 1, 112-122.

Newman, D. (1939). “The distribution of the range in samples from a
normal population, expressed in terms of an independent estimate of
standard deviation,” Biometrika 35, 16-31.

Scheffé, H. (1953). “A method for judging all contrasts in the analysis
of variance,” Biometrika 40, 87-104.

Sidak, A. (1967). “Rectangular confidence regions for the means of
multivariate normal distributions,” J.Amer.Stat.Assoc. 62, 626-633.

Toothaker, Larry E. (1993). Multiple Comparison Procedures. London:
Sage publications.
620



Index
INDEX

Symbols
%in% operator

formula 36
* operator

formula 34, 37
formulas 530, 541

+ operator
formulas 530

. operator
formula 39

/ operator
formula 36, 37

: operator
variable interaction 34

^ operator
formulas 34, 541, 544

~ operator 31

Numerics
2k designs

creating design data frame 539
details of ANOVA 548
diagnostic plots 545, 547
EDA 539
estimating effects 541, 543, 545
example of 24 design 537
replicates 543
small order interactions 544

A
ace

algorithm 231
compared to avas 236
example 233

ace function 233

ace goodness-of-fit measure 231
acf function 59, 86
add1 function

linear models 184
add1 function 48
add1 function, generalized linear 

models 304
additive models

see generalized additive models
additivity and variance stabilizing 

transformation
see avas 236

AIC
related to Cp statistic 180

air data set 169, 182
algorithms

ace 231
ANOVA 560
avas 236
backfitting 236
correlation coefficient 84
cubic smoothing splines 221
deviance 226
generalized additive models 13, 

326
generalized linear models 12, 

322
goodness-of-fit measure 231
kernel-type smoothers 217
L1 regression 293
least squares regression 288
least trimmed squares 

regression 288
linear models 11
link functions 324
local cross-validation for 

variable span smoothers 216
621



Index
locally weighted regression 
smoothing 214

logit link function 322
residuals 331, 332
Tukey’s one degree of freedom 

522
alternating conditional expectations

see ace
alternative hypothesis 60
analysis of deviance tables, see 

ANOVA tables 329
analysis of variance see ANOVA
ANOVA

2k designs 539–549
checking for interaction 529
data type of predictors 11
diagnostic plots 509
diagnostic plots for 518, 530, 

547
EDA 506, 514, 528, 539
effects table 511
estimating effects 541, 543, 545
factorial effects 564
fitting functions 9
grand mean plus treatment 

effects form 560
interaction 516
one-way layout 508–511
parameterization 554
rank sum tests 588
repeated-measures designs 585
robust methods 588
small-order interactions 544
split-plot designs 582
treatment means 511
two-way additive model 518
two-way replicated 529–536
two-way unreplicated 512–525
unbalanced designs 564
variance stabilizing 532, 533, 

536
ANOVA, see also MANOVA
anova function

additive models 230
anova function

chi-squared test 303
anova function 303, 455
anova function 10
ANOVA models

residuals 518, 530
ANOVA tables 10, 530, 542, 544, 

558
generalized additive models 230
logistic regression 303
splitting treatment sums of 

squares 558
ANOVA tables, F-statistics 329
aov.coag data set

created 508
aov.devel.2 data set

created 545
aov.devel.small data set

created 546
aov.devel data set

created 541
aov.pilot data set

created 544
aov function

2k model 541
arguments 508
default coefficients returned 548
estimating effects 545
extracting output 542
one-way layout 508, 511
repeated-measures designs 585
split-plot designs 582
two-way layout 530
two-way layout additive model 

518
aov function 9
approx function 500
auto.stats data set 16
autocorrelation function

plot 59, 86
avas

algorithm 236
algorithm for population 

version 240
backfitting algorithm 236
compared to ace 236
622



Index
example 237
key properties 239

avas function 237

B
backfitting 242
binom.test function 114
binomial distribution 112
binomial family 322, 323
blocking variable 512
Box-Cox maximum-likelihood 

procedure 239
boxplot 301
boxplots 57, 507, 516, 529
Box-Tidwell procedure 239
breakdown point 290
browser function 390
browser function 392
B-splines 307
B-splines 221
burl.tree function 394, 395

C
cancer study data 127
canonical links 324
catalyst data set 11
catalyst data set 564
categorical data

cross-classification 134
categorical data see also factors
categorical response 323
categorical variables 32

interactions 34
CDF, see cumulative distribution 

functions
cdf.compare function 95, 97
C function 44
chisq.gof function

cut.points argument 100
distribution argument 99
n.classes argument 100

chisq.gof function 94, 99
chisq.test function 122

chi-squared test 122, 126, 137, 303, 
319

chi-square goodness of fit test 94
compared to KS 103
continuous variables 100
described 98
distributions 99
partition of sample 100

claims data set 134
classification tree

pruning 385
classification trees

browsing nodes 390, 392
classification rules 370
determining splits 394
editing 396
example 374
nodes 392
pruning 385
removing subtrees 390
selecting subtrees 390, 391
shrinking 387
summarizing 380
see also tree-based models

classification trees see also tree-
based models

coag.df data frame
created 505

coagulation data 504
coefficients

converting to treatment effects 
560

estimated 542
extracting 9

coefficients function
abbreviated coef 9

coef function 9, 25, 542
cognitive style study 610
comp.plot function

defined 524
comparative study 77
comparing means

two samples 155
comparing proportions

two samples 159
623



Index
comparison values 521
conditioning plots 8, 10

analyzing 349
conditioning panels 347
conditioning values 347
constructing 347
local regression models 360
residuals as response variable 

355
conditioning values 347
confidence intervals 55, 121, 499, 

604
binomial distribution 115
confidence level 60, 115
correlation coefficient 91
error rate 60
pointwise 196
simultaneous 196
two-sample 118

confint.lm function
defined 197

contingency tables 113, 122, 125
choosing suitable data 138
continuous data 142
creating 134
reading 136
subsetting data 145

continuous data 4
converting to factors 142
cross-tabulating 142

continuous response variable 504
continuous variables

interactions 35
contr.helmert function 42
contr.poly function 42
contr.sum function 43
contr.treatment function 43
contrast matrix 554
contrasts

adding to factors 557
ANOVA tables 558
creating contrast functions 44
Helmert 42
polynomial 42
specifying 44, 45

sum 43
treatment 43

contrasts function 45
contrasts function 557
coplot function 8, 10
coplots

see conditioning plots
cor.confint function

created 91
cor.test function 88
corelation

serial 54
cor function 90
correlation

example 83
serial 58
shown by scatterplots 54

correlation coefficient 54
algorithm 84
Kendall’s t measure 88, 89
Pearson product-moment 88
p-values

p-values 88
rank-based measure 88, 89
Spearman’s r measure 88, 89

correlation structures 442
correlation structures and variance 

functions 444
corStruct classes 204, 444
cost-complexity measure

tree models 385
counts 112
courserev data set 191
Cp statistic 180, 186
Cp statistic 304
cross-classification 134
crosstabs function

arguments 136, 145
return object 136

crosstabs function 134, 148
cross-validation

algorithm 216
cu.summary data set 394
cubic smoothing splines 221, 307

algorithm 221
624



Index
cumulative distribution functions 95
cut function 142

D
data

categorical 4
continuous 4
organizing see data frames
summaries 5

data frames
attaching to search list 175
design data frame 513, 527, 539

degrees of freedom 68, 227
nonparametric 227
parametric 227
smoothing splines 221

density plot 57
derivatives 483
deriv function 487
design data frames 513, 527, 539
designed experiments

one factor 504–511
randomized blocks 512
replicated 526
two-way layout 512

devel.design data frame
created 539

devel.df data frame
created 539

deviance
algorithm 226

D function 486
diagnostic plots

ANOVA 518
linear regression 171
local regression models 342
multiple regression 178
outliers 509

diff.hs data set 85
drop1 function

linear models 179
drop1 function 47
drug.fac data set 125
drug.mult data set 584

drug data set 124
dummy.coef function 561
Dunnett’s intervals 603

E
EDA

see exploratory data analysis
eda.shape

defined 58
eda.ts function 59
EDA functions

interaction.plot 516
plot.design 506, 514, 529
plot.factor 507, 515

edit.tree function 396
ethanol data set 199
Euclidean norm 290
example functions

comp.plot 524
confint.lm 197
cor.confint function 91
eda.shape 58
eda.ts 59
tukey.1 523

examples
2k design of pilot plant data 543
2k design of product 

development data 537
ace example with artificial data 

set 233
ANOVA of coagulation data 

504
ANOVA of gun data 560
ANOVA of penicillin yield data 

512
ANOVA of poison data 526
ANOVA table of wafer data 

558
avas with artificial data set 237
binomial model of Salk vaccine 

trial data 116
binomial test with roulette 114
chi-squared test on propranolol 

drug data 126
625



Index
chi-squared test on Salk vaccine 
data 126

classification tree from kyphosis 
data 374

coplot of ethanol data 347
correlation of phone and 

housing starts data 83
developing a model of auto data 

15
Fisher’s exact test on 

propranolol drug data 127
hypothesis testing of lung 

cancer data 120
linear model of air pollution 

data 169
logistic regression model of 

kyphosis data 301
MANOVA of wafer data 580
Mantel-Haenszel test on cancer 

study data 127
McNemar chi-squared test on 

cancer study data 130
multiple regression with 

ammonia loss data 175
one-sample speed of light data 

63
paired samples of shoe wear 

data 78
parameterization of scores data 

553
perspective plot of fitted data 

359
Poisson regression of solder 

data 315
predicting the additive model of 

kyphosis 333
proportions test with roulette 

115
quasi-likelihood estimation of 

solder data 329
repeated-measure design 

ANOVA of drug data 584
split-plot design ANOVA of 

rubber plant data 582
two-sample weight gain data 70

variance components model of 
pigment data 591

weighted regression of course 
revenue data 190

exploratory data analysis 56
four plot function 58
interaction 516
phone and housing starts data 

85
plots 5
serial correlation 58
shoe wear data 79
speed of light data 64
time series function 59
weight gain data 71

F
fac.design function 513, 539
factorial effects 564
factors 4

adding contrasts 557
creating from continuous data 

142
levels 4
parametrization 42
plotting 516
setting contrasts 45

families, logistic regression models 
301

family argument, binomial 301
first derivatives 483
fisher.test function 122
Fisher’s exact test 123, 127
fitted.values function

abbreviated fitted 509
fitted function 9, 509, 510, 519, 531, 

547, 548
fitted values

ANOVA models 519, 531, 533, 
547

extracting 9
lm models 172

fitting functions 302
fitting methods
626



Index
formulas 40
functions, listed 9
missing data filter functions 50
optional arguments to functions 

49
specifiying data frame 49
subsetting rows of data frames 

49
weights 49

fitting models 488
formula function 33
formulas 30–48, 480

automatically generating 177
categorical variables 32, 34, 37
changing terms 47, 48
conditioning plots 347
continuous variables 31, 35, 37
contrasts 42
expressions 31
fitting procedures 40
generating function 33
implications 481
interactions 34, 35, 37
intercept term 31
linear models 169
matrix terms 32
nesting 36, 37, 38
operators 31, 33, 34, 36, 37, 39
polynomial elements 201
simplifying 481
specifying interactions 530, 541, 

544
syntax 32, 33, 39
updating 47, 48
variables 31

friedman.test function 589
Friedman rank sum test 588, 589
F-statistic

linear models 171
F-statistics 329
F-test

local regression models 367
fuel.frame data 599
fuel consumption problem 614

G
gain.high data set 71
gain.low data set 71
gam function

returned object 227
gam function

binomial family 307
families available 324
family argument 301
Poisson family 315

gam function 301
gam function 9, 25
Gaussian mean

one-sample test of 152
generalized additive models 326

algorithm 13, 225, 326
analysis of deviance table 308
ANOVA tables 230
degrees of freedom 227
fitting function 9
link functions 324
logistic regression 307
plotting 309
residual deviance 226
smoothing functions 327
summary of fit 308

generalized additive models, 
marginal fits 334

generalized additive models, 
predicted values 333

generalized additive models, 
residuals 331

generalized linear models 300, 322
adding terms 304
algorithm 12, 322
fitting function 9
link functions 322
logistic regression 314
plotting 304, 306, 320
Poisson regression 315
summary of fit 302

generalized linear models, logistic 
regression 301
627



Index
generalized linear models, predicted 
values 333

generalized linear models, residuals 
331

glm function
families available 324
family argument 301
Poisson family 315

glm function 301
glm function 9
glm function, binomial family 302
GLM models 304
GOF

seegoodness of fit tests
goodness-of-fit measure

algorithm 231
goodness of fit tests

chi-square 94, 98–100
composite 104
Kolmogorov-Smirnov 94, 101
one-sample case 94, 98–100, 

103
two-sample case 94, 107

goodness-of-split criterion (tree 
models) 394

gradient attribute 484
groupData class 406
grouped datasets 406
guayule data set 138, 582
gun data set 560, 564

H
half-normal QQ-plots 545
Helmert contrasts 42
hessian attribute 485
hist.tree function 396
hist function 5, 509, 518, 530
histograms 5, 57, 509, 518, 530
horshft argument 462
Hotelling-Lawley trace test 580
hypothesis testing 55, 60

goodness of fit 94
one sample proportions 114
p-values 88

three sample proportions 120
two sample proportions 116

I
identify function

tree models 393
identify function 22
identifying plotted points 22
importance

in ppreg 248
inner covariates 406
interaction.plot function 516, 529
interactions 244

checking for 516, 529
specifying 34, 530, 541
specifying order 544

intercept 31
intercept-only model 184
is.random function 590
iteratively reweighted least squares 

324

K
Kendall’s t measure 88, 89
kernel functions 218, 219
kernel-type smoother

algorithm 217
Kolmogorov-Smirnov goodness of 

fit test 94
compared to chi-squared 103
described 101
distributions 102

kruskal.test function 588
Kruskal-Wallis rank sum test 588
ks.gof function

distribution argument 102
one-sample case 102
two-sample case 102

ks.gof function 94, 102
ksmooth function

kernels available 218
ksmooth function 218
KS test
628



Index
see  Kolmogorov-Smirnov 
goodness of fit test 102

kyphosis data set 374
kyphosis data set 5
kyphosis data set 142
kyphosis data set, described 301

L
l1fit function 293
L1 regression 293

algorithm 293
least absolute deviation regression 

see L1 regression
least squares regression 169

algorithm 288
least squares regression, 

mathematical representation 200
least squares vs. robust fitted model 

objects 263
least trimmed squares regression

algorithm 288
breakdown point 290

leave-one-out residuals 217
level of significance 60
levels

experimental factor 504
likelihood models 479
linear dependency, see correlation
linear mixed-effects models

fitting 417
model definitions 417

linear models
adding terms 184
algorithm 11
confidence intervals 196
diagnostic plots 171, 172, 178, 

181
dropping terms 179
fitting function 9, 169, 204
intercept-only model 184
modifying 179, 189
pointwise confidence intervals 

196
polynomial regression 199

predicted values 194
selecting 179, 186
simultaneous confidence 

intervals 196
stepwise selection 186
summary of fitted model 170
updating 189

linear models see also generalized 
linear models

linear predictor 333
linear regression 167
link functions 322
link functions, algorithms 324
lme function

advanced fitting 442
arguments 419

lme objects
analysis of variance 424
extracting components 427
ploting 425
predicting values 428
printing 421
summarizing 422

lm function
arguments 177
multiple regression 176
polynomial regression 201
subset argument 22
weights argument 192

lm function 9, 19, 170
lm function 169, 204
lmRobMM function 260
locally weighted regression 

smoothing 213, 340
algorithm 214

local maxima and minima 463
local regression models 13, 340

diagnostic plots 352
diagnostic plots for 342
dropping terms 363
fitting function 9
improving the model 363
multiple predictors 352
one predictor 341
parametric terms 363
629



Index
plotting 359
predicted values 359
returned values 341

local regression smoothing 307, 327
loess 213

scatterplot smoother 213
scatterplot smoothing 214

loess.smooth function 214
loess function 9, 341, 342, 360
loess models see local regression 

models
loess smoother function 225
lo function 307, 327
lo function 225
logistic regression 301, 302, 314, 

323, 326
additive models 307
analysis of deviance tables 303
linear model 311
link function 322
smoothing 307
t-tests 303

logistic regression, Cp statistic 304
logistic regression, fitting functions 

301
logit link function

algorithm 322
log link function

algorithm 323
lprob function 481, 484
ltsreg function 288
lung cancer study 119

M
MANOVA 580

repeated-measures designs 586
test types available 580

manova function 580
Mantel-Haenszel test 123, 127
margin.fit function 334
marginal fits 334
maximum likelihood estimate

for variance components 
models 591

maximum likelihood method 417, 
424

mcnemar.test function 129
McNemar chi-squared test 123, 129
mean 53
median 58
M-estimates of regression 294

fitting function 295
Michaelis-Menten relationship 478
mich data set

created 64
Michelson speed-of-light data 63
minimum sum 460
minimum-sum algorithm 479
minimum sum function 468
minimum sum-of-squares 460
missing data

filters 50
tree models 382

mixed-effects model 404
MM-estimate 259
model

mixed-effects 404
nonlinear mixed-effects 430

model.tables function 511
model.tables function 561
model data frame 513, 527, 539
models 30–48

data format 4
data type of variables 10
development steps 3
example 15
extracting information 9
fitting functions 9
iterative process 15
missing data 50
modifying 10
nesting formulas 36, 37
paradigm for creating 9
parameterization 37
plotting 10
prediction 10
specifying all terms 34
specifying interactions 34
types available in S-PLUS 3
630



Index
models see also fitting methods
ms function

arguments to 489
ms function 460, 468
multicomp

Lmat argument 613
multicomp function

alpha argument 606
comparisons argument 604
control argument 604
est.check argument 618
focus argument 604
simsize argument 606
valid.check option 606

multicomp function 600
multilevel linear mixed-effects 

models 417
multiple comparisons 599

with a control (MCC) 602
multiple regression 175

diagnostic plots 178
multiple R-squared

linear models 171
multivariate analysis of variance

see MANOVA

N
na.action function 382
na.tree.replace function 382
namevec argument 488
nesting formulas 36, 37
nlimb function 464
nlme function

advanced fitting 442
Arguments 430

nlme function 430, ??–455
nlme objects

analysis of variance 438
extractnig components 441
plotting 438
predicting values 439
printing 434
summarizing 436

nlminb function 466

nlregb function 472
nls function

arguments to 489
nls function 460, 471, 472
nlsList function 449
nlsList function ??–455
nnls.fit 470
nnls.fit function 469
nonlinear least-squares algorithm 

480
nonlinear mixed-effects models

fitting 430
model definition 430

nonlinear models 460
nonnegative least squares problem 

469
nonparametric methods 55
nonparametric regression

ace 231
nregb function 470
null hypothesis 60

completely specified 
probabilities 116, 117

equal-probabilities 116, 117
null model 184, 304

O
observation weights

in ppreg 251
oil.df data set 261
one-sample test

binomial proportion 157
Gaussian mean 152

one-way layout 504, 508
overall mean plus effects form 

510
robust methods 588

- operator
formula 34

operators
formula 31, 33, 34, 36, 37, 39, 

530, 541, 544
optimise function 463
optimization functions 461
631



Index
options function 45
outer covariates 406
outliers 53

checking for 509, 510, 516
identifying 21
sensitivity to 515

over-dispersion 330
over-dispersion, regression models 

328
overparameterized models 616

P
paired comparisons 78
paired t-test 82
pairs function

linear models 182
pairs function 6, 345
pairs function 175
pairwise scatter plots

see scatterplot matrices
parameter function 482
parametrized data frames 482
param function 482
path.tree function 393
pdMat classes 442
peaks function 463
Pearson product-moment 

correlation 88
Pearson residuals 331
pen.design data frame

converted to model data frame 
514

created 513
pen.df data frame

created 513
penicillin yield data 512, 513
perspective plots 345

local regression models 359
perspective plots, creating grid 359
phone.gain data set 85
phone increase data 83
pigment data 591
pigment data set 591
Pillai-Bartlett trace test 580

pilot.design data frame
created 544

pilot.df data frame
created 544

pilot.yield vector 544
pilot plant data 543
ping-pong example 474, 483, 486, 

494
plot.design function 506, 514, 515, 

529, 539
plot.factor function 301
plot.factor function 507, 515, 529, 

540
plot.gam function 306, 320
plot function

plot selection menu 307
preserving scale 309

plot function 5, 10
plot function 378
plots

autocorrelation plot 86
boxplot 301
boxplots 57, 507, 516, 529
conditioning plots 8, 10, 347
density plot 57
density plots 57
diagnostic 342

for ANOVA 530, 547
diagnostic for ANOVA 509
exploratory data analysis 5, 57
histograms 5, 57, 509, 518, 530
interactively selecting points 22
normal probability plot 10
perspective 345
qq-plots 57
quantile-quantile 6, 519, 530, 

545, 546, 547
quantile-quantile plot 57
quantile-quantile plots 509
scatterplot matrices 6, 345
surface 334

plotting
design data frames 514
factors 301, 317, 516
fitted models 10
632



Index
generalized additive models 309
generalized linear models 304, 

306, 320
linear models 172
local regression models 342, 

360
residuals in linear models 173
selecting plots 307

point estimates 89
pointwise confidence intervals

linear models 196
pointwise function 196
poison data 526, 527
poisons.design data set

created 527
poisons.df data frame

created 527
Poisson distribution 323
Poisson family 323
Poisson regression 315, 321, 326

log link function 323
poly.transform function 201
poly function 201
polynomial contrasts 42
polynomial regression 201
polynomials

formula elements 201
orthogonal form transformed to 

simple form 201
polyroot function 462
positive-definite matrices 442
power law 534
ppreg

backward stepwise procedure 
248

forward stepwise procedure 247
model selection strategy 249
multivariate response 250

ppreg function
examples 244

ppreg function 242
predict.gam function 333, 336
predict.glm function 333
predicted response 10
predicted values 359

tree models 381
predict function

linear models 194, 196
returned value 195
tree models 381, 384

predict function 10, 26
prediction 26

composite terms 335
generalized models 333, 336
linear models 194
safe 335, 336

predictor variable 5
probability density curves 57
probability distributions

binomial 112
normal (Gaussian) 52
Poisson 323
skewed 65

product development data 537, 538
profile function 497
profile projections 496
profiles for ms 497
profiles for nls 497
profile slices 496
profile t function 497
profiling 496
projection pursuit regression

algorithm 242, 244
prop.test function 115, 116
proportions 112

confidence intervals 115, 118
one sample 114
three or more samples 119
two samples 116

propranolol data 124
prune.tree function 385
pruning trees 385
puromycin experiment 478
p-values 60, 62

Q
qqnorm function

linear models 173
633



Index
qqnorm function 6, 10, 509, 519, 
530, 545

qq-plots
see quantile-quantile plots

quantile-quantile plots 6, 57
full 546
half-normal 545
residuals 509, 519, 530, 547

quartiles 58
quasi-likelihood estimation 323, 

328, 330
quasi-likelihood estimation, F-

statistics 329

R
randomized blocks 512
rat growth-hormone study 602, 617
recursive partitioning 370
regression

diagnostic plots 171
dispersion parameter 328
least absolute deviation 293
least squares 169
linear models 9, 11
M-estimates 294
multiple predictors 175
one variable 169
overview 167
Poisson 315
polynomial terms 199
robust techniques 257
simple 169
stepwise model selection 186
updating models 189
weighted 190

regression line 173
confidence intervals 196

regression splines 213
regression trees

browsing nodes 390, 392
determining splits 394
editing 396
examples 372
nodes 392

pruning 385
regression rules 370
removing subtrees 390
selecting subtrees 390, 391
shrinking 387
summarizing trees 379
see also tree-based models

regression trees see also tree-based 
models

repeated-measures designs 584
replicated factorial experiments 526
resid function 332
resid function 9, 509, 510, 519, 531, 

547, 548
residual deviance 226, 378
residuals

algorithms 331, 332
ANOVA models 509, 518, 530, 

533, 547
computing functions 332
definition 169
deviance 331
deviance residuals 331
extracting 9
gam 331, 332
glm 331
lm models 172
local regression models 342
normal plots 173
Pearson 331
plotting in linear models 173
response 332
tree models 381
working 331

residuals function
abbreviated resid 9, 509

response
lm models 172

response residuals 332
response variable 5
response weights

in ppreg 251
restricted maximum likelihood 

method (REML) 417
robust fit
634



Index
computing 262
robust methods 55
robust regression 257

least absolute deviation 293
M-estimates 294

Roy’s maximum eigenvalue test 580
rreg function

arguments 295
weight functions 296

rreg function 295
rug.tree function 400

S
salk.mat data set 123
Salk vaccine trials data 116, 122, 123
scatterplot matrices 6, 175, 182, 345
scatter plots 80
scatterplot smoothers 167, 213

locally weighted regression 214
score equations 324
scores.treat data set 553
scores data set 553
second derivatives 485
select.tree function 391
self-starting function ??–455

biexponential model 450
first-order compartment model 

450
four-parameter logistic model 

450
logistic model 450

s function 307, 327
s function 225
shoe wear data 77
shrink.tree function 385, 387
shrinking trees 385, 387
simple effects comparisons 610
simultaneous confidence intervals 

197
linear models 196

smooth.spline function 221
smoothers 167

B-splines 307
comparing 222

cubic smoothing spline 213
cubic spline 221
functions with gam 327
kernel-type 213, 217
locally weighted regression 213
variable span 213, 215

snip.tree function 390
solder.balance data set 315
solder data set 138
soybean data 414–455
Spearman’s r measure 88, 89
splines

B-splines 221
cubic smoothing splines 221
degrees of freedom 221
regression 213

split-plot designs 582
stack.df data set

defined 175
stack.loss data set 175
stack.x data set 175
standard deviation 53
standard error

linear models 171
predicted values 195

statistical inference 59
alternative hypothesis 60
assumptions 55
confidence intervals 59
counts and proportions 112
difference of the two sample 

means 73
equality of variances 73
hypothesis tests 59
null hypothesis 60

status.fac data set 125
status data set 124
step function

displaying each step 187
step function 186
stepwise model selection 186
straight line regression 167
Student’s t-test 61, 303

one-sample 67
paired test 81
635



Index
two-sample 73
sum contrasts 43
summarizing data 5
summary function

ANOVA models 542
tree models 378

summary function 5, 9, 25, 170
super smoother 237, 242, 247
supersmoother 215
supsm function 215
supsmu

use with ppreg 247
surface plots 334
symbolic differentiation 486

T
t.test function 67, 73, 81
table function 125
test.vc data set 592
textbook parameterization of the lm 

model 613
tile.tree function 399
t measure of correlation 88, 89
Toothaker’s two-factor design 610
transformations

variance stabilizing 236
treatment 504

ANOVA models 508
treatment contrasts 43
tree-based models 376

see also classification trees
advantages 370
browsing nodes 390, 392
classification rules 370
determining splits 394
displaying 378
editing 396
factor response 374
finding paths 393
fitting function 9
graphical interaction 390
identifying nodes 393
importance of subtrees 385
missing data 382

nodes 392
numeric response 372
partitioning 370
prediction 381
pruning 385
regression rules 370
removing subtrees 390
selecting subtrees 390, 391
shrinking 387
see also regression trees

tree function 9
tri-cube weight function 214
t-tests

see Student’s t-test
tukey.1 function

defined 523
tukey.1 function 520
Tukey’s method 601
Tukey’s one degree of freedom 520, 

522
Tukey-Kramer multiple comparison 

method 601
two-way layout

additive model 517
details 534
multiplicative interaction 520
power law 534
replicated 526–536
replicates 529, 532
robust methods 589
unreplicated 512–525
variance stabilizing 532, 533

U
under-dispersion, regression models 

328
uniroot function 462
update function

linear models 189
update function 10, 47, 343, 363
updating models 10

linear models 189
local regression models 343, 

363
636



Index
V
var.test function 73
varcomp function 9
varcomp function 591
varFunc classes 205, 444
variables

continuous 31
variance 53
variance components models 590

estimation methods 591
maximum likelihood estimate 

591
MINQUE estimate 591
random slope example 592
restricted maximum likelihood 

(REML) estimate 591
winsorized REML estimates 

591
variance functions 442
variance stabilizing 532, 533

Box-Cox analysis 536
least squares 536

vershft argument 462

W
wafer data 558
wafer data set 558
wave-soldering skips experiment 

475
wear.Ascom data set 79
wear.Bscom data set 79
weighted regression 49, 167, 190, 

192, 193
weight gain data 70
wilcox.test 62
wilcox.test function 68, 73, 75, 82
Wilcoxon test 62, 63

one-sample 68
paired test 82
two-sample 75

Wilks’ lambda test 581

Y
yield data set

created 513
637



Index
638


	Contents
	Introduction to Statistical Analysis in S�Plus
	Introduction
	Developing Statistical Models
	Data Used for Models
	Data Frame Objects
	Continuous and Discrete Data
	Summaries and Plots for Examining Data

	Statistical Models in S�Plus
	The Unity of Models in Data Analysis

	Example of Data Analysis
	The Iterative Process of Model Building
	Exploring the Data
	Fitting the Model
	Fitting an Alternative Model
	Conclusions


	Specifying Models in S�Plus
	Introduction
	Basic Formulas
	Continuous Data
	Categorical Data
	General Formula Syntax

	Interactions in Formulas
	Categorical Data
	Continuous Data

	Nesting in Formulas
	Interactions Between Categorical and Continuous Variables
	Using the Period Operator in Formulas
	Combining Formulas With Fitting Procedures
	Composite Terms in Formulas

	Contrasts: The Coding of Factors
	Built-In Contrasts
	Specifying Contrasts

	Useful Functions For Model Fitting
	Optional Arguments to Model-Fitting Functions

	Statistical Inference for One- and Two-Sample Problems
	Introduction
	Background
	Exploratory Data Analysis
	Statistical Inference
	Robust and Nonparametric Methods

	One Sample: Distribution Shape, Location, and Scale
	Setting Up the Data
	Exploratory Data Analysis
	Statistical Inference

	Two Samples: Distribution Shapes, Locations, and Scales
	Setting Up the Data
	Exploratory Data Analysis
	Statistical Inference

	Two Paired Samples
	Setting Up the Data
	Exploratory Data Analysis
	Statistical Inference

	Correlation
	Setting Up the Data
	Exploratory Data Analysis
	Statistical Inference

	References

	Goodness of Fit Tests
	Introduction
	Cumulative Distribution Functions
	The Chi-Square Test of Goodness of Fit
	The Kolmogorov-Smirnov Test
	One-Sample Tests
	Composite Tests for a Family of Distributions

	Two-Sample Tests
	References

	Statistical Inference for Counts and Proportions
	Introduction
	Proportion Parameter for One Sample
	Setting Up the Data
	Hypothesis Testing
	Confidence Intervals

	Proportion Parameters for Two Samples
	Setting Up the Data
	Hypothesis Testing
	Confidence Intervals

	Proportion Parameters for Three or More Samples
	Setting Up the Data
	Hypothesis Testing
	Confidence Intervals

	Contingency Tables and Tests for Independence
	The Chi-Square and Fisher Tests of Independence
	The Chi-Square Test of Independence
	Fisher’s Exact Test of Independence
	The Mantel- Haenszel Test�of Independence
	McNemar Test for Symmetry Using Matched Pairs

	References

	Cross-Classified Data and Contingency Tables
	Introduction
	Choosing Suitable Data Sets
	Cross-Tabulating Continuous Data
	Cross-Classifying Subsets of Data Frames
	Manipulating and Analyzing Cross-Classified Data

	Power and Sample Size
	Introduction
	Power and Sample Size Theory
	Normally Distributed Data
	One-Sample Test of Gaussian Mean
	Comparing Means From Two Samples

	Binomial Data
	One-Sample Test of Binomial Proportion
	Comparing Proportions From Two Samples

	References

	Regression and Smoothing For Continuous Response Data
	Introduction
	Simple Least-Squares Regression
	Diagnostic Plots For Linear Models

	Multiple Regression
	Adding and Dropping Terms From a Linear Model
	Choosing the Best Model—Stepwise Selection
	Updating Models
	Weighted Regression
	Prediction With the Model
	Confidence Intervals
	Polynomial Regression
	Generalized Least Squares Regression
	Example
	Manipulating gls Objects

	Smoothing
	Locally Weighted Regression Smoothing
	Using the Super Smoother
	Using the Kernel Smoother
	Smoothing Splines
	Comparing Smoothers

	Additive Models
	More on Nonparametric Regression
	Alternating Conditional Expectations
	Additive and Variance Stabilizing Transformation
	Projection Pursuit Regression

	References

	Robust Regression
	Introduction
	Overview of the Robust MM Regression Method
	Key Robustness Features of the Method
	The Essence of the Method: A Special M�Estimate
	Using the lmRobMM Function to Obtain a Robust Fit
	Comparison of Least Squares and Robust Fits
	Robust Model Selection

	Computing Least Squares and Robust Fits
	Computing a Least Squares Fit
	Computing a Robust Fit
	Least Squares vs. Robust Fitted Model Objects

	Visualizing and Summarizing the Robust Fit
	Visualizing the Fit With the plot Function
	Statistical Inference With the summary Function

	Comparing Least Squares and Robust Fits
	Creating a Comparison Object for LS and Robust Fits
	Visualizing LS vs. Robust Fits
	Statistical Inference for LS vs. Robust Fits

	Robust Model Selection
	Robust F and Wald Tests
	Robust FPE Criterion

	Controlling Options For Robust Regression
	Efficiency at Gaussian Model
	Alternative Loss Function
	Confidence Level of Bias Test
	Resampling Algorithms
	Random Resampling Parameters
	Genetic Algorithm Parameters

	Theoretical Details
	Initial Estimate Details
	Optimal and Bisquare Rho and Psi- Functions
	The Efficient Bias Robust Estimate
	Efficiency Control
	Robust R�Squared
	Robust Deviance
	Robust F Test
	Robust Wald Test
	Robust FPE (RFPE)

	Other Robust Regression Techniques
	Least Trimmed Squares Regression
	Least Median Squares Regression
	Least Absolute Deviation Regression
	M�Estimates of Regression

	Appendix
	Bibliography

	Generalizing the Linear Model
	Introduction
	Logistic Regression
	Fitting a Linear Model
	Fitting an Additive Model
	Returning to the Linear Model

	Poisson Regression
	Generalized Linear Models
	Generalized Additive Models
	Quasi-Likelihood Estimation
	Residuals
	Prediction From the Model
	Predicting the Additive Model of Kyphosis
	Safe Prediction

	References

	Local Regression Models
	Introduction
	Fitting a Simple Model
	Diagnostics: Evaluating the Fit
	Exploring Data With Multiple Predictors
	Conditioning Plots
	Creating Conditioning Values
	Constructing a Conditioning Plot
	Analyzing Conditioning Plots

	Fitting a Multivariate Loess Model
	Looking at the Fitted Model
	Improving the Model

	Classification and Regression Trees
	Introduction
	Growing Trees
	Numeric Response and Predictor
	Factor Response and Numeric Predictor

	Displaying Trees
	Prediction and Residuals
	Missing Data
	Pruning and Shrinking
	Pruning
	Shrinking

	Graphically Interacting With Trees
	Subtrees
	Nodes
	Splits
	Manual Splitting and Regrowing
	Leaves

	References

	Linear and Nonlinear Mixed-Effects Models
	Introduction
	Representing Grouped Data Sets
	The groupedData Class
	Example: The Orthodont Data Set
	Example: The Pixel Data Set
	Example: The CO2 Data Set

	Fitting Models Using the lme Function
	Model Definitions
	Arguments

	Manipulating lme Objects
	The print Method
	The summary Method
	The anova Method
	The plot method
	Other Methods

	Fitting Models Using the nlme Function
	Model Definition
	Arguments

	Manipulating nlme Objects
	The print Method
	The summary Method
	The anova Method
	The plot Method
	Other Methods

	Advanced Model Fitting
	Positive- Definite Matrix Structures
	Correlation Structures and Variance Functions
	Self-Starting Functions

	References

	Nonlinear Models
	Introduction
	Optimization Functions
	Finding Roots
	Finding Local Maxima and Minima of Univariate Functions
	Finding Maxima and Minima of Multivariate Functions
	Solving Nonnegative Least Squares Problems
	Solving Nonlinear Least Squares Problems

	Examples of Nonlinear Models
	Maximum Likelihood Estimation
	Nonlinear Regression

	Inference for Nonlinear Models
	Likelihood Models
	Least Squares Models
	The Fitting Algorithms
	Specifying Models
	Parametrized Data Frames
	Derivatives
	Fitting Models
	Profiling the Objective Function


	Designed Experiments and Analysis of Variance
	Introduction
	Setting Up the Data Frame
	The Model and Analysis of Variance

	Experiments With One Factor
	The One-Way Layout Model and Analysis of Variance

	The Unreplicated Two-Way Layout
	The Two-Way Model and ANOVA (One Observation Per Cell)

	The Two-Way Layout With Replicates
	The Two-Way Model and ANOVA (With Replicates)
	Method for Two-Factor Experiments With Replicates
	Method for Unreplicated Two-Factor Experiments
	Alternative Formal Methods

	Many Factors at Two Levels: 2k Designs
	Estimating All Effects in the 2k Model
	Using Half- Normal Plots to Choose a Model

	References

	Further Topics in Analysis of Variance
	Introduction
	Model Coefficients and Contrasts
	Summarizing ANOVA Results
	Splitting Treatment Sums of Squares Into Contrast Terms
	Treatment Means and Standard Errors
	Balanced Designs
	2k Factorial Designs
	Unbalanced Designs
	Type III Sums of Squares and Adjusted Means

	Multivariate Analysis of Variance
	Split-Plot Designs
	Repeated-Measures Designs
	Rank Tests For One-Way and Two-Way Layouts
	The Kruskal- Wallis Rank Sum Test
	The Friedman Rank Sum Test

	Variance Components Models
	Estimating the Model
	Estimation Methods
	Random Slope Example

	References

	Multiple Comparisons
	Introduction
	Overview
	Honestly Significant Differences
	Rat Growth Hormone Treatments
	Upper and Lower Bounds
	Calculation of Critical Points
	Error Rates for Confidence Intervals

	Advanced Applications
	Adjustment Schemes
	Toothaker’s Two-Factor Design
	Setting Linear Combinations of Effects
	Textbook Parameterization
	Overparameterized Models
	Multicomp Methods Compared

	Capabilities and Limits
	References
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y


	Index

