
GMM and MINZ Program Libraries for Matlab

Michael T. Cliff∗

Krannert Graduate School of Management

Purdue University

March 2, 2003

This document accompanies the GMM and MINZ software libraries for Matlab which
complement and build from James LeSage’s Econometrics Toolbox.1 A brief overview of
GMM estimation from a theoretical perspective2 is followed by a discussion on how to use
the GMM portion of the software. Since the gmm routine relies on the MINZ optimization
library, a discussion of MINZ follows. Direct interaction with this optimization library is not
necessary for most users. However, the libraries are written with flexibility in mind, so more
advanced users are able to substitue their own routines if desired. As a general rule, the user
does not need to change the provided code. Various options are selected by the arguments
passed to the provided functions, not by editing the functions themselves. The idea is to
use a common set of programs for different applications, eliminating the need to maintain
several different versions of a program. Of course, it also means that care must be taken
when modifying the central programs, as the changes will affect many different projects.

To make the discussion concrete, several demo programs are discussed in the final section.
Some of these focus on the GMM portion of the code, others on the MINZ optimization
library. You can think of each demo as being a seperate project and see how the central
code is used to estimate a variety of models.

1 What is GMM?

GMM, the Generalized Method of Moments, is an econometric procedure for estimating the
parameters of a model. Hansen (1982) developed GMM as an extension to the classical
method of moments estimators dating back more than a century. The basic idea is to choose
parameters of the model so as to match the moments of the model to those of the data as

∗Address correspondence to Mike Cliff, Krannert Graduate School of Management, 1310 Kran-
nert Building, Purdue University, West Lafayette, IN 47907–1310. Phone: (765) 496–7514; e-mail:
mcliff@mgmt.purdue.edu. The software is available for download from
http://www.mgmt.purdue.edu/faculty/mcliff/progs.html.

1The Econometrics Toolbox is available from http://www.econ.utoledo.edu/matlab gallery.
2There are many excellent textbook treatments, including Cochrane (2001), Davidson and MacKinnon

(1993), Greene (1997), and Hamilton (1994).

1

closely as possible. The moment conditions are chosen by the analyst based on the problem
at hand. A weighting matrix determines the relative importance of matching each moment.
Most common estimation procedures can be couched in this framework, including ordinary
least squares, instrumental variables estimators, two-stage least squares, and in some cases
maximum likelihood. An example provides an illustration of the similarity to OLS in the
linear model.

It is important to realize the generality of GMM (hence the ’G’). Thus, saying that
“I estimate the parameters via GMM” is essentially meaningless unless additional details
are provided. Without any additional information, this statement is about as informative
as saying “I use a computer to estimate the parameters” or “my estimates are based on
econometrics.”

A key advantage to GMM over other estimation procedures is that the statistical as-
sumptions required for hypothesis testing are quite weak. Of course, nothing comes for free.
The cost is a loss of efficency over methods such as Maximum Likelihood (MLE). One can
view MLE as a limiting case of GMM: under MLE the distribution of errors is specifed so
in a sense all of the moments are incorporated. The trouble with MLE is often that the
errors may not follow a known distribution (such as the Normal, which is almost the uni-
versal standard in MLE). Thus, GMM offers a compromise between the efficiency of MLE
and robustness to deviations from normality (or other distributional forms). Also note that,
except for some special cases, the GMM results are asymptotic.

2 Theory behind GMM

GMM chooses the parameters which minimize the quadratic

JT = m(θ)′Wm(θ) (1)

where θ is a k-vector of parameters, m(θ) is a L-vector of orthogonality conditions, and W

is an L × L positive definite weighting matrix. The objective function has a least-squares
flavor. You can see that “I use GMM to estimate θ” doesn’t mean much without some
additional details such as what m(θ) and W look like. The next two subsections address
these in turn.

2.1 Orthogonality Conditions

The moment conditions m(θ) set means of functions of the data and parameters to zero.
One simple restriction estimates the mean µ of data yt

E[yt] = µ

giving the population orthogonality condition

E[yt − µ] = 0

2

and sample counterpart

m(θ) =
1

T

T∑

t=1

yt − µ.

Another restriction, on the variance (σ2), is

E[(yt − µ)2] = σ2 giving the system E

[
yt − µ

(yt − µ)2 − σ2

]
=

[
0
0

]
.

Note that the moment condition for the mean is needed to estimate the variance. Similarly,
a covariance restriction would be

E[(xt − µx)(yt − µy)] = σx,y giving E

xt − µx

yt − µy

(xt − µx)(yt − µy) − σx,y

 =

0
0
0

 .

The terms µx, µy, σx, σy and σx,y are parameters we wish to estimate, whereas xt and yt are
data. An example is provided with the code to estimate the means and covariance matrix
of a dataset.

A key ingredient to GMM is the specification of the moment, or orthogonality, conditions
m(θ). The moment conditions are commonly based on the error terms from an economic
model. Consider a general model of the form

y[T×1] = f(X[T×k]; θ) + ε (2)

where f can be a nonlinear function. We then will need L ≥ k (independent) restrictions in
order to identify the k-vector of parameters, θ. The moment conditions restrict unconditional
means of the data to be zero. The population version of each of these restrictions (` =
1, . . . , L) is of the form

E[m`(y,X; θ)] = 0.

The sample analog is

m`(y,X; θ̂) =
1

T

T∑

t=1

m`,t(yt,xt; θ̂)

where yt and xt denote row t of the matrices y and X, transposed to be column vectors.
Note that mt (with the time subscript) indicates an observation-by-observation set of values,
while m (no time subscript) indicates the moment (average) of the mt’s.

The moment conditions utilized, though somewhat arbitrary, are often guided by eco-
nomic principles and the model of interest. For example, in finance the return on an asset
this period is generally modeled as unpredictable by (orthogonal to) information in prior
periods, so moment conditions often incorporate past returns, interest rates, etc.

Note that there must be at least as many moment conditions as there are parameters
to achieve identification. If you have too few restrictions, you can “create” more by using

3

instruments. Returning to (2), suppose E[εtxt] 6= 0, but that E[εtzt] = 0. The zt’s are
referred to as instruments. In sample, the model errors are

e(θ̂) = y − f(X; θ̂). (3)

giving the moment conditions

m(θ) =
1

T

T∑

t=1

zte(yt,xt; θ) =
1

T
Z′e(y,X; θ̂). (4)

This can actually be generalized for simultaneous equations by letting et represent the vector
of residuals for each equation at time t, giving mt = εt ⊗ zt. The notation ⊗ indicates the
Kroneker product, multiply every element of εt by zt in (9).

This approach with the instruments changes the question of “which moments” to “which
Z.” It is common to include a constant as an instrument to restrict the model errors to
have mean zero. For purposes of using the software, understanding (3) and (4) is crucial.
The user will need to provide an m-file which returns these objects. Equation 3 provides the
errors from the economic model, like the residuals in OLS. Equation 4 returns the moments
that are used to identify the parameters, like the normal equations in OLS. Nearly all other
aspects of the software can proceed without the user’s intervention.

Illustration: GMM vs. OLS
Suppose we have a simple model yt = α + xtβ + εt and three observations of {xt, yt} :

{0, 1}, {1, 3}, {2, 5}. We need (at least) two moment conditions to identify α and β. The
natural ones to choose are E[εt] = 0 and E[xtεt] = 0, the normal equations from OLS. In
this case, zt = [1 xt]. In sample,

m =

[
m1

m2

]
=

1

3

3∑

t=1

z′tet =
1

3

3∑

t=1

[
1et

xtet

]
=

1

3

3∑

t=1

[
1(yt − α − xtβ)
xt(yt − α − xtβ)

]

In this case, the objective function is minimized when m = 0, or

m1 =
1

3
[(1 − α − 0β) + (3 − α − 1β) + (5 − α − 2β)] = 3 − α − β = 0 (5)

m2 =
1

3
[0(1 − α − 0β) + 1(3 − α − 1β) + 2(5 − α − 2β) =

1

3
(13 − 3α − 5β)] = 0 (6)

Equation (5) gives α = 3 − β, which can be substituted into (6) to get β = 2, implying
α = 1.

The above analysis ignored the presence of the weighting matrix W in the minimization
of the objective function (assuming it is equal to the identity matrix). We will now consider
the role of the weighting matrix.

4

2.2 Weighting Matrix

If there are as many moment conditions as parameters, the moments will all be perfectly
matched and the objective function JT in (1) will have a value of zero. This is referred
to as the “just-identified” case. In the situation where there are more moment conditions
than parameters (“over-identified”) not all of the moment restrictions will be satisfied so a
weighting matrix W determines the relative importance of the various moment conditions.
An important contribution of Hansen (1982) is to point out that setting W = S−1, the
inverse of an asymptotic covariance matrix, is optimal in the sense that it yields θ̂ with the
smallest asymptotic variance. Intuitively, more weight is given to the moment conditions
with less uncertainty. S is also know as the spectral density matrix evaluated at frequency
zero. There are many approaches for estimating S which can account for various forms
of heteroskedasticity and/or serial correlation, including White (1980), the Bartlett kernel
used by Newey and West (1987), the Parzen kernel of Gallant (1987), the truncated kernel of
Hansen (1982) and Hansen and Hodrick (1980), or the “automatic” bandwidth selection from
Andrews and Monahan (1992) with Quadratic-Spectral or Tukey-Hanning kernels. Each of
these methods is supported in the software.

The Spectral Density matrix for the kernel-based estimators (White, Hansen, Newey-
West, and Gallant) is given by

Ŝ = Ŝ0 +

J∑

j=1

w(j)
[
Ŝj + Ŝ′

j

]
(7)

where

Ŝj =
T

T − k

1

T

T∑

t=j+1

mt(θ̂)mt−j(θ̂)′ (8)

=
1

T − k

T∑

t=j+1

[εt ⊗ zt] [εt−j ⊗ zt−j]
′ (9)

=
1

T − k

T∑

t=j+1

[
εtε

′

t−j ⊗ ztz
′

t−j

]
(10)

The T
T−k

term is a small sample degrees of freedom correction. The term w(j) is the kernel
weight, and it is what distinguishes the various estimators. Terms beyond the lag truncation
parameter J are given weights of zero in kernels other than the Quadratic-Spectral and
Tukey-Hanning. Figure 1 shows an example of the weights assigned to each of the kernels.

In general, an “optimal” weighting matrix requires an estimate of the parameter vector,
yet at the same time, estimating the parameters requires a weighting matrix. To solve
this dependency, common practice is to set the initial weighting matrix to the identity
then calculate the parameter estimates. A new weighting matrix is calculated with the last

5

Figure 1: Weights Used by Various Kernels

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

1.5

2
Hansen
Newey−West
Gallant
T−H
Q−S

parameter estimates, then new parameter estimates with the updated weighting matrix.

W0 = I (11)

θ̂1 = argmin m(θ)′W0m(θ) (12)

W1 = f(θ̂1) (13)

θ̂2 = argmin m(θ)′W1m(θ) (14)

The process can then be iterated futher by calculating W2 then minimizing to find θ̂3 and
so on. In general, iterating to end with θ̂n is called n-stage GMM. You can also iterate until
the change in objective function is sufficiently small. I call this approach iterated GMM.
The software is written so that the user can easily control this process.

A problem with using the Identity as the initial weighting matrix is that the estimation
procedure may be sensitive to the scaling of the data. The objective function is m′m =∑L

`=1 m2
` . Consider a single-equation case. Since m` = 1

T

∑T
t=1 etz`,t, the magnitudes of the

moments obviously depends on the scaling of the elements of zt. One way to deal with
this problem is to incorporate the magnitudes of the instruments in the weighting matrix
by setting W0 = (IN ⊗ Z′Z)−1. N refers to the number of equtions, taken to be one here.
As more GMM iterations are used the difference between using the Identity matrix and the
second moments of the instruments as a weighting matrix decreases. However, I have found
that the approach using instruments can perform much better at fewer iterations. As an
example, in one experiment I found that the Identity matrix generated p-values for the model
fit (discussed in the next section) of 0.2955, 0.1849, and 0.0854 after 2, 3, and 10 stage GMM

6

estimation. When using the instruments to form the weighting matrix, the corresponding p-
values were 0.0524, 0.0534, and 0.05. The difference in the two approaches will be somewhat
problem-specific, but it seems that using the instruments should be at least as good as the
Identity approach.

The simple example in the prior section minimized the objective function by setting the
moments to zero. In the general case with over-identified systems or nonlinear models, this
approach is not appropriate. Instead the function is minimized by setting the gradient of
the objective function ∂[m(θ)′Wm(θ)]/∂θ to zero. The presence of the weighting matrix
in the quadratic makes it more convenient in the program to work with the Jacobian of
the moment conditions ∂m(θ)/∂θ = M(θ) than with the gradient of the objective function,
2M(θ)′Wm(θ). One way to think about what the estimation is doing in this case is to write
the first order conditions for minimizing m(θ)′Wm(θ) as

m(θ)′Wm(θ) = Am(θ) = 0

where the matrix A is a set of weights that specify what linear combinations of m are set
to zero.

From the prior OLS example,

M =
1

3

3∑

t=1

[
1 xt

xt x2
t

]
=

1

3

[
3 3
3 5

]

so

M′m =

[
1 1
1 5/3

] [
3 − α − β

(13 − 3α − 5β)/3

]
=

[
0
0

]
.

Solving gives the same answer as before

[
α
β

]
=

[
3 4
9 14

]
−1 [

11
37

]
=

[
1
2

]
.

2.3 Hypothesis Testing with GMM

2.3.1 Covariance Matrices

One of the nice properties of GMM is that hypothesis testing is still possible in the presence
of heteroskedastic and/or serially correlated errors. I should point out that the reason for
this rests in choosing S to take care of the heteroskedasticity/serial correlation. If your
estimate of S only corrects for heteroskedasticity [e.g., White (1980)], then your standard
errors will not be robust to serial correlation.

The distribution of the GMM estimator is given by

θ̂ ∼ N (θ,V/T), where V = [M′WM]−1M′WSWM[M′WM]−1.

When the weighting matrix is optimal (W = S−1), V = [M′S−1M]−1. The reduced expres-
sion for V is also the Gauss-Newton approximation to the inverse Hessian of the objective

7

function, a feature exploited in the code. In addition to the covariance matrix of the pa-
rameter estimates, the GMM framework also provides a covariance matrix of the moment
conditions

[I − M(M′WM)−1M′W]S[I − M(M′WM)−1M′W]′/T (15)

This matrix also simplifies for the optimal weighting matrix, giving [S − MVM′]/T .

2.3.2 Model Fit

A natural question to ask is how well the model fits the data. If the model is “just-identified”
there is one parameter for each restriction so the restrictions can be satisfied exactly. If the
model is over-identified it will not be possible to set every moment to zero. So the question is
how far from zero are we. The answer is provided by the “test of over-identifying restrictions,”
often denoted TJT . This test statistic is distributed χ2

L−k under the null.
If the optimal weighting matrix is used, the test of model fit is simply TJT as noted. If a

suboptimal weighting matrix is used, it is necessary to use (15) to find Tm(θ)′[cov(m(θ))]+m(θ)
instead of TJT . The notation [·]+ indicates a pseudo-inverse, since the covariance matrix is
singular. The covariance matrix of the moments also allows one to calculate t-statistics to
test individual moments.

2.3.3 Three Classic Tests

The three classic test statistics, likelihood ratio (LR), Lagrange multiplier (LM), and Wald
(W) can be implemented using the results of gmm. The tests are based on nesting, meaning
the null hypothesis is a special case of the alternative. For example, in the model

yt = α + β1x1,t + β2x2,t

the null hypothesis β2 = 0 can be tested against the alternative β2 6= 0. All three tests are
asymptotically χ2 with degrees of freedom equal to the number of restrictions. This section
briefly discusses the theory behind the tests. Section 5.9 shows how to implement these tests.

Likelihood Ratio Test (LRT)
The LR test estimates the model in both restricted and unrestricted form. The essence of

the test is to see how much the loss function (JT) increases when the restrictions are imposed.
The test is implemented by multiplying the difference in the restricted and unrestricted
objective functions by the sample size. It is important to estimate the restricted model
using the same weighting matrix as the unrestricted model.

Wald Test (W)
The Wald test estimates the unrestricted version of the model only. Conceptually, you

see how many standard errors your restriction is from zero, much like a t-test. In a linear
model with one restriction, the Wald test is simply a squared t-test. More generally, the
test can accomodate multivariate restrictions, possibly involving linear combinations of the
variables. These restrictions are of the form Rb = r, where R is q×k and r is a q-vector with

8

q denoting the number of restrictions and k denoting the number of parameters. Denote the
variance of b = [αβ1β2]

′ as Σ, so

var(Rb − r) = RΣR′

The test statistic is
W = (Rb − r)′(RΣR′)−1(Rb − r)

In the above example, R = [0 0 1] and r = 0 so the test becomes β̂2
2/v̂ar(β2), a t2 as

claimed. To test if β1 = 0 and β2 = 1, set R = [0 1 0; 0 0 1] and r = [0; 1]. To test
β1 + β2 = 0 set R = [0 1 1] and r to zero.

A caution is in order when using the Wald test for nonlinear models. The test is not
invariant to the paramterization of the model. You can get different inferences by simply
changing the way you write the model. This lack of invariance means you should probably
not use the test in the nonlinear case.

Lagrange Multiplier Test (LM)
The LM test estimates the model in its restricted form, then checks to see how well the

unrestricted model fits the data at the restricted parameter values. This approach can be
convenient when the full unrestricted model is difficult to estimate.

Implementation using the GMM package is somewhat more complicated than with the
other tests because it is necessary to take the restricted estimates and reevaluate the moment
conditions and Jacobian for the full model at the restricted values. The test statistic is
LM = T (m′WM)(M′WM)−1(M′Wm).

3 The GMM Package

This section covers the particulars of the GMM code. I start this section by looking at the
simple OLS example from Section 2.1. This example is very simple and shows the minimum
amount of information the user must provide. I show how to formulate this problem in terms
of Matlab code. Section 3.2 then discusses the code in more detail.

3.1 Implementation Example

The model and data are

1
3
5

 =

1
1
1

 α +

0
1
2

 β +

e1

e2

e3

We need to define the moment conditions to use. Previously, we decided to focus on the
OLS normal equations, meaning we can use Z = X (which includes the vector of ones here)
and we want X′e = 0.

9

y = [1; 3; 5];

X = [1 0; 1 1; 1 2];

b0 = [0; 0];

gmmopt.infoz.momt=’lingmmm’;

gmmopt.gmmit = 1;

out = gmm(b0,gmmopt,y,X,X);

The first three lines just set up the data and the parameter starting values. The fourth
line defines the m-file for the moment conditions, lingmmm.m (note the file extension is sup-
pressed). The fifth line says to use one-step GMM estimation (for simplicity). The last line
calls the gmm() function, passing the parameter starting values, the gmmopt variable contain-
ing the reference to our moment conditions, the “dependent” variable y, the “independent”
variable(s) X, and the instruments Z.

An edited version of the output is

------------------ GMM PARAMETER ESTIMATES -----------------

Parameter Coeff Std Err Null t-stat p-val

parameter 1 1.000000 0.000000 0.00

parameter 2 2.000000 0.000000 0.00

Focusing only on the parameter estimates for now, we see that indeed, α̂ = 1.0 and β̂ = 2.0.
Note that this example is a little unusual since the error terms are identically zero so the
standard errors are zero.

Before proceeding, lets take a look at the moment conditions in the file lingmm.m The
file (modified somewhat to facilitate exposition for the single equation case) is

function [m,e] = lingmmm(b,infoz,stat,y,x,z)

e = y - x*b;

m = z’*e/rows(e);

The first line defines the function and its input/output arguments. The next line calculates
the model residuals, like (3). The last line forms the moment conditions for the normal
equations, like (4). Although this sample code is very simple, it illustrates all of the necessary
features of the moment conditions m-file.

3.2 GMM Package Details

The GMM package is comprised of several m-files, including an optimization library MINZ.
The user typically does not need to work directly with most of these files, but they are
described for completeness. The user will need to create his own m-file specifying the model.
With this m-file in hand, the GMM estimation is as simple as gmm(b0,gmmopt,Y,X,Z,Win).
A vector of parameter starting values is given in b0. The gmmopt argument is a Matlab

structure variable.3 The structure gmmopt has as its fields several variables specific to GMM,

3This is a special type of construct that allows packaging of variables, both numeric and string, of differing
dimensions as fields in a single object. A field is referenced by gmmopt.fieldname. Do a help struct in
Matlab for more information.

10

but also another entire structure, infoz, which contains much of the information needed
by the optimization routine. The GMM-specific portions of gmmopt are discussed in this
section. See Section 4 for more details on the optimization options gmmopt.infoz.

The arguments Y, X, and Z contain the data from which the model is estimated. The
distinction between Y and X may be somewhat artificial in some situations, but should have
a natural interpretation in regression settings. It is important to put the instruments in Z.
For OLS problems, just repeat X for the Z argument. Each of the three data inputs should
have the same number of observations (rows). You may use different numbers of columns
as needed, and in some cases may find it convenient to make use of the multi-dimensional
features in Matlab. For example, I typically accomodate a system of equations by using
columns of Y, and have also stacked matrices into 3-dimensional objects to handle lagged
variables in X. However you decide to organize your data, it must be consistent with the
m-file you provide for the moment conditions. Finally, Win is an optional argument for a
user-defined matrix for use as the initial weighting matrix. This is only used if you do not
want to use an “optimal” weighting matrix.

The function gmm returns two structures, gmmout and gmmopt. The former provides a
collection of the results from the estimation. The latter is an update of the gmmopt structure
provided on input. You can accept this output structure with some other name to avoid
overwriting your original gmmopt.

The files comprising the GMM library are described below. Most features of the software
are described, although the user need not be concerned with much of the detail for most
applications. The key thing to remember is that the user must provide the file with the
moment conditions of interest, and tell the software the name of this file (without the .m

extension) in gmmopt.infoz.momt. If the user has a linear model, the user can reference the
m-file lingmmm which is provided as part of the library.

A sample of the output is shown in Figure 2. The default is to print a report with
parameter estimates, standard errors, t-statistics, and p-values. The user can give the routine
a vector of values for the null hypothesis of interest if values other than zero are desired.
For over-identified models, similar information about the moment conditions is printed,
along with the χ2 test for the over-identifying restrictions. A heading section describes the
estimation problem. In between the heading and the results there is some information about
the optimization process.

Provided files in the GMM package

1. gmm

The part of the online documentation for gmm describing the gmmopt structure appears
below. Note that the .infoz.momt field is the only one required. This is where you
specify the file containing your moment conditions. Defaults for others appear in
brackets. .infoz.jake is the m-file containg the Jacobian of the moments, M(θ).
If left blank then numerical derivatives are used. .infoz.hess controls the Hessian
calculation in the optimization routine. More details on it are provided on page 21.

11

Figure 2: Sample GMM Output

===

GMM ESTIMATION PROGRAM

===

2 Parameters, 8 Moment Conditions

2 Equation Model, 4 Instruments

329 Observations

2 Passes, Max., 100 Iterations/Pass

Search Direction: BFGS

Derivatives: Analytical (gmmexj)

Initial Weighting Matrix: inv(Z’Z)

Weighting Matrix: Optimal

Spectral Density Matrix: Newey-West (12 lags)

STARTING GMM ITERATION 1

Weights Attached to Moments

Moment 1 Moment 2 Moment 3 Moment 4 Moment 5 Moment 6

beta -0.7716 0.5981 0.0063 0.6678 -0.1722 0.6539

gamma 29.1716 -43.2613 1.4210 13.1716 30.1899 -43.0929

Moment 7 Moment 8

beta -0.0219 0.0395

gamma 1.3827 12.0175

Ill-Conditioning Tolerance Set to 1000

Parameter Convergence Tolerance Set to 1e-4

Objective Function Convergence Tolerance Set to 1e-7

Gradient Convergence Tolerance Set to 1e-7

INITIAL HESSIAN = I

ITER cond(H) * Step Obj Fcn

1 1.00e+00 1.000000 0.0000056255

2 9.16e+00 1.000000 0.0000002832

3 9.16e+00 1.000000 0.0000002832

CONVERGENCE CRITERIA MET: Change in Objective Function

beta gamma

b1 1.0103 4.9999

STARTING GMM ITERATION 2

Weights Attached to Moments

Moment 1 Moment 2 Moment 3 Moment 4 Moment 5 Moment 6

beta -1.5903 -3.1187 -1.0759 5.9184 0.6884 16.2865

gamma -15.0070 -5.4496 -0.4973 21.0482 29.6968 -28.5222

Moment 7 Moment 8

beta 11.4508 -27.5593

gamma 11.4646 -11.7335

ITER cond(H) * Step Obj Fcn

1 1.00e+00 0.000300 0.0618081047

2 7.86e+01 1.000000 0.0562342258

[lines cut for brevity]

10 1.28e+03 * 1.000000 0.0282889094

11 1.27e+03 * 1.000000 0.0282889094

CONVERGENCE CRITERIA MET: Change in Objective Function

EVALUATING S at FINAL PARAMETER ESTIMATES

------------------ GMM PARAMETER ESTIMATES -----------------

Parameter Coeff Std Err Null t-stat p-val

beta 1.001973 0.001539 1.00 1.28 0.1998

gamma 1.245958 0.511788 0.00 2.43 0.0149

------------------- GMM MOMENT CONDITIONS ------------------

Moment Std Err t-stat p-val

Moment 1 0.003338 0.002118 1.58 0.1151

Moment 2 0.003356 0.002122 1.58 0.1137

Moment 3 0.003465 0.002118 1.64 0.1019

Moment 4 0.003356 0.002120 1.58 0.1134

Moment 5 -0.000334 0.000375 -0.89 0.3723

Moment 6 -0.000330 0.000377 -0.88 0.3814

Moment 7 -0.000339 0.000369 -0.92 0.3577

Moment 8 -0.000331 0.000376 -0.88 0.3785

J-stat = 9.3071 Prob[Chi-sq.(6) > J] = 0.1570

===

12

% gmmopt s t r u c tu r e o f gmm opt ions [d e f au l t]
% gmmopt . i n f o z Nested s t r u c tu r e o f i n f o z needed in MINZ
% gmmopt . i n f o z .momt Filename o f moment cond i t i on s REQUIRED
% gmmopt . i n f o z . jake Filename o f Jacobian o f moment cond [’ numz ’]
% gmmopt . i n f o z . hess Hess ian updating (s e e gmmS func t i on) [’ gn ’]
%
% gmmopt . gmmit Number o f GMM i t e r a t i o n s (NaN i s i t e r a t e d) [2]
% gmmopt . maxit Cap on number o f GMM i t e r a t i o n s [2 5]
% gmmopt . t o l Convergence c r i t e r i a f o r i t e r . GMM [1 e−7]
% gmmopt .W0 I n i t i a l GMM weight ing matrix [’ Z ’]
% ’ I ’ = Id en t i t y , ’ Z ’ = Instruments (Z ’ Z) , ’C’ = Ca l cu la t e from b ,
% ’Win’ = Fixed passed as Win , my f i l e = user ’ s own m− f i l e
% gmmopt .W Subsequent GMM Weighting Matrix [’ S ’]
% ’ S ’ = inv e r s e Spec t ra l Density from gmmS
% myf i l e = user ’ s m− f i l e name
% gmmopt . S Type o f Spec t ra l Density matrix [’NW’]
% ’W’=White , ’NW’=Newey−West (Ba r t l e t t) , ’G’=Gal lant (Parzen)
% ’H’=Hansen (Truncated) , ’AM’=Andrews−Monahan , ’P’= Pla in (OLS)
% myf i l e = user ’ s m− f i l e
% gmmopt . aminfo s t r u c tu r e i f gmmopt . S=’AM’ . See ANDMON.M
% gmmopt . l a g s Lags used in truncated ke rne l f o r S [nobs ˆ (1/3)]
% gmmopt . wtvec User−provided vec to r o f wts f o r t runcated ke rne l
% gmmopt . Strim Contols demeaning o f moments in c a l c o f S [1]
% 0 = none , 1 = demean e , 2 = demean Z ’ e
% gmmopt . S l a s t 1 to r e c a l c S at f i n a l param e s t . 2 updates W [1]
% gmmopt . nu l l Vector o f nu l l hypotheses f o r t−s t a t s [0]
% gmmopt . prt Fid f o r p r i n t i n g (0=none,1= sc r een , e l s e f i l e) [1]
% gmmopt . p l o t 1 does some p l o t s , e l s e suppress [1]
% gmmopt . vname Optional k−vec to r o f parameter names

The .gmmit option determines the number of iterations through the GMM procedure.
Note that the number of GMM iterations is different from the number of iterations in
the optimization (.infoz.maxit). Iterated GMM is achieved by setting .gmmit=NaN.
The user controls the maximum number of iterations and the convergence criteria for
the objective function with .maxit and .tol.

On each iteration a new weighting matrix is calculated. The initial weighting matrix
is determined by setting .W0; the default is to use the instruments, (IN ⊗Z′Z)−1. The
user can also choose the Identity matrix (gmmopt.W0=’I’) or to calculate a weighting
matrix from the starting parameter values (’C’). Alternatively, the user can specify
their own weighting matrix. To use a fixed matrix of numbers as the initial weighting
matrix, set gmmopt.W0=’Win’ and pass the desired matrix as the last argument to
the gmm() function. To use a matrix calculated by an m-file as the initial weighting
matrix, pass the name of this file (without the .m extension). For example, to user the
file userw.m, set gmmopt.W0=’userw’. The user can also control the weighting matrix
used in subsequent iterations. The default (gmmopt.W=’S’) is to use the inverse of the
spectral density matrix calculated by the gmmS function. Alternatively, the user can
specify a different function to calculate a weighting matrix, (e.g., gmmopt.W=’userw’).
This can be, but does not have to be, the same function as the initial weighting

13

matrix. If a user’s own m-file is provided, the input and output arguments must follow
the convention W = userw(b,gmmopt,Y,X,Z). Of course the name of the m-file does
not have to be userw.m, but must match the name specified in gmmopt.W0 and/or .W.

If using an optimal weighting matrix, the user can specify the desired method for esti-
mating the Spectral Density matrix in gmmopt.S. The options are Identity (’I’), White
(’W’), Hansen (’H’, truncated kernel), Newey-West (’NW’, Bartlett kernel), Gallant
(’G’, Parzen kernel), or the Andrews-Monahan procedure (’AM’). If the covariance
matrix is not positive definite4 an error flag is returned. In the case of Newey-West,
Gallant, or Hansen, the number of lags is specified in .lags. The default is T 1/3. One
additional feature that applies to the truncated kernel is the ability to select specific
lags in the spectral density matrix. To do so, the user passes a vector of the weights
associated with each lag to gmmopt.wtvec, starting with lag 1 (the contemporaneous,
or lag 0, is assumed to get a weight of 1). This can be useful for modeling seasonali-
ties. For example, if there is a quarterly seasonal in monthly data, a user might use
gmmopt.wtvec = [0 0 1]’. Keep in mind that S computed in this fashion may not
be positive definite. Another feature the user can control is demeaning of the moment
conditions in calculation of S. Under the null, E[et] = 0 and E[et⊗zt] = 0 so it should
not matter whether one uses E[mtm

′

t] or E[mtm
′

t]−E[mt]E[m′

t]. In practice, one may
wish to allow for non-zeros means. Accordingly, the field .Strim makes no correction
if zero, demeans et if set to one (default), or demeans et ⊗ zt if set to two.

The Andrews-Monahan method has some additional options associated with it in the
gmmopt.aminfo structure. Specifically, the user can choose to the time series model
used to prewhiten the residuals: AR(1) equation-by-equation (.aminfo.p=1), MA(q)
for each equation (set .aminfo.q to q), or an ARMA(1,1) model by making the
obvious settings to the .p and .q fields. Setting .aminfo.vardum=1 overrides the
equation-by-equation settings and estimates a VAR(1) model. The Andrews-Monahan
procedure “automatically” calculates the bandwidth5 and uses either the Quadratic-
Spectral kernel as the default (.aminfo.kernel=’QS’) or the Tukey-Hanning kernel
(.aminfo.kernel=’TH’). A modification of this method [Andrews (1991)] uses the
time series models to determine the bandwidth but does not use the pre-whitened
residuals. This procedure is achieved by setting .aminfo.nowhite=1.

The final parameter estimates are used to recalculate the spectral density matrix esti-
mate if the field gmmopt.Slast is set to one (default). Thus, the S is the formulas in

4This is possible with the truncated kernel. A common solution is to switch to a method such as Newey-
West when this occurs. The criteria for positive definiteness is λmin > ελmaxcols(S), where λi is an eigenvalue
of the Spectral Density matrix S and ε is the machine precision. This is the same criteria as used by the
Matlab function rank().

5The procedure is automatic in that it uses specific formulas for the calculation. There are still some
decisions the analyst must make, such as the specification of the time series model. The bandwith is a
function of the weighted value of the parameters of the time series model. The weights are set to unity for
coefficients other than the intercept in Andrews (1991) and Andrews and Monahan (1992), resulting in a
bandwidth which is sensitive to the scaling of the data. I follow the recommendation of den Haan and Levin
(1999) and use the inverse of the standard deviation of each moment as the weight to account for scaling.

14

Section 2.3 do not collapse to the simplified form since W is the inverse of S from the
prior parameter estimates, not the final S. The updating of S in this fashion is similar
to the simple case of using Newey-West standard errors for a least squares problem:
the OLS estimates are used to calculate the covariance matrix. To force recalculation
of W, set gmmopt.Slast=2. Any other value will update neither W nor S.

A few other options in gmmopt control some of the fluff. .null sets the null hypotheses
for parameter values. The default is a vector of zeros. .vname is a string matrix of
parameter names, one per row. If nothing is given the parameters are simply labeled
sequentially as “Parameter k.” Finally, printing is controlled via gmmopt.prt. Setting
it to zero suppresses printing, one prints to the screen, and a higher value prints to a file
as specified by fopen(). The optimization printing (the sections of Figure 2 with iter-
ation histories) is controlled separately but in a similar fashion by gmmopt.infoz.prt.
Two diagnostic plots are generated when gmmopt.plot=1. One shows the absolute
value of the weights in W. Negative weights are market with an “X.” The second
graph shows the kernel weights used in calculating S.

% gmmout r e s u l t s s t r u c tu r e
% gmmout . f f unc t i on va lue
% gmmout . J ch i−square s t a t f o r model f i t
% gmmout . p p−va lue f o r model f i t
% gmmout . b c o e f f i c i e n t e s t imate s
% gmmout . se standard e r r o r s f o r each parameter
% gmmout . bcov cov matrix o f parameter e s t imate s
% gmmout . t t−s t a t s f o r parms = nu l l
% gmmout . pb p−va lue s f o r c o e f f i c i e n t s
% gmmout .m moments
% gmmout . mse standard e r r o r s o f moments
% gmmout . varm covar i ance matrix o f moments
% gmmout .mt t−s t a t s f o r moments = 0
% gmmout .mp p−va l s f o r moments
% gmmout . nobs number o f obse rva t i ons
% gmmout . north number o f o r thogona l i ty c ond i t i on s
% gmmout . neq number o f equat ions
% gmmout . nz number o f inst ruments
% gmmout . nvar number o f parameters
% gmmout . df deg ree s o f freedom f o r model
% gmmout . s t a t s t a t s t r u c tu r e from MINZ
% gmmout . nu l l v ec to r o f nu l l hypotheses f o r parameter va lue s
% gmmout .W weight ing matrix
% gmmout . S s p e c t r a l dens i ty matrix
% gmmout . e f l a g e r r o r f l a g f o r s p e c t r a l dens i ty matrix
% gmmout . i t h i s t His tory o f MINZ i t e r a t i o n s

The gmm function returns the results from the estimation packaged in a structure vari-
able called gmmout. These fields should be largely self-explanatory. Of note, the .stat

structure contains information on the status of the optimization procedure. This struc-
ture is discussed in more detail in Section 4. A second argument returned by gmm is

15

the gmmopt structure, with any updates during the estimation. A few fields are added
to the input structure to facilitate printing.

2. gmmS

This file calculates the Spectral Density matrix S. The type of estimate is specified
by gmmopt.S. The default is a Newey-West matrix (’NW’) with T 1/3 lags. Different
lags are specified in gmmopt.lags. The preceeding discussion of the gmm.m file provides
additional details. The output heading indicates which method was used along with
the lag structure.

3. prt gmm

Controls printing of header information, GMM iteration history, and results. This file
uses the fields hprt and eprt (added by gmm) to determine whether to print the header
summary information or the final parameter estimates.

4. lsfunc

The objective function used by the MINZ optimization routine (m′Wm). gmm knows
to assign this filename to the gmmopt.infoz.func field, so the user doesn’t need to
worry about this.

5. lsgrad

The gradient used by the minz optimization routine (2M′Wm). Again, this assignment
is handled by the program.

6. lingmmm

Moment conditions for use in a linear model. Of note, the user must give the dependent
variable(s) Y, independent variables X, and the instruments Z. It is fine to use the same
data for Z as X. Instrumental variables style estimation requires using different data.
Systems of equations like yi = Xβi + ei can be handled by setting Y = [y1 . . .yN].

7. lingmmj

Jacobian of moment conditions for use in a linear model.

8. lingmmh

Calculates analytic second derivatives of objective function (Hessian) for linear model.
As for all files dealing with the Hessian, the file returns the inverse Hessian as the field
stat.Hi. This is discussed in more detail in Section 4.

9. msdm

Moment conditions to calculate the means and covariance matrix of a dataset. For a
T × k matrix of data Y, takes as parameters k means, followed by vech(cov(y)).

16

10. msdj

Jacobian for msdm.

User-defined files needed for GMM

1. Moment Conditions

The user must specify a file containing the moment conditions of interest. This function
takes the form [m,e] = yourfunc(b,infoz,stat,Y,X,Z). Of course, you name the
function and the m-file it lives in something meaningful to you, not “yourfunc.” The
function needs to return the moment conditions m and the model errors e For a
N -equation model, the model errors are a T × N matrix formed by concatenating
columns of the errors in (3). The moment conditions are the L-vector formed by
taking the matrix Z′e/T and stacking the columns. The inputs to the function are the
parameter values b, the structures infoz and stat containing information about the
estimation procedure (these need not be used by the function but must be included as
arguments), and the data Y,X,Z. The file with the moment conditions is referenced
by setting gmmopt.infoz.momt = ’filename’, or equivalently, by setting infoz.momt

= ’filename’ and then gmmopt.infoz = infoz.

We can look at the provided lingmm file as an example. The file starts with the line
function [m,e] = lingmmm(b,infoz,stat,y,x,z). This tells Matlab that the file
is a function (as opposed to a script) and the function takes the arguments listed and
returns m and e.

If your moments require additional data or information, you can pass these through
as fields in the infoz structure. For example, you may have moment conditions that
depend on the value of some constants, which you may like to change occasionally. If
your moments need to know such a value µ, you can pass this number to the estimation
procedure by setting gmmopt.infoz.mu= your desired value. Your moment conditions
m-file would then receive this like mu = infoz.mu; and use it as if it were a constant
hard-coded into your moment conditions. This flexibiliity is nice as it let you write
one set of moment conditions and apply it to a variety of problems.

17

function [m, e] = lingmmm(b , i n f o z , s t a t , y , x , z)
% PURPOSE: Provide moment cond i t i on s and e r r o r term f o r
% l i n e a r GMM est imat i on
%−−−
% USAGE: [m, e] = lingmmm(b , i n f o z , s t a t , y , x , z ,w)
% b model parameters
% i n f o z MINZ i n f o z s t r u c tu r e
% s t a t MINZ s t a tu s s t r u c tu r e
% y , x , z Data : dependent , independent , and instruments
% w GMM weight ing matrix
%−−−
% RETURNS:
% m vec to r o f moment cond i t i on s
% e Model e r r o r s (Nobs x Neq)
%−−−
% VERSION: 1 . 1 . 2

% wr i t t en by :
% Mike C l i f f , Purdue Finance mcliff@mgmt . purdue . edu
% Created : 12/10/98
% Modif ied 9 / 2 6 / 0 0 (1 . 1 . 1 Does system o f Eqs)
% 11//13/00 (1 . 1 . 2 No W as input argument)

k = rows (b) ;
nx = co l s (x) ;
neq = k/nx ;
e = [] ;
i f mod(k , nx) ˜= 0

error (’ Problem determin ing number o f equat ions ’)
end

for i = 1 : neq
e i = y (: , i) − x∗b ((i −1)∗nx+1: i ∗nx) ;
e = [e e i] ;

end

m = vec (z ’∗ e/rows (e)) ;

2. Jacobian (Optional)

As discussed above, it is more convenient to work with the derivative of the moment
conditions than the derivative of the objective function. I refer to the former as the
Jacobian and the latter as the gradient. This function takes the same arguments as
the moment condition file and returns the L×K matrix of derivatives of each moment
condition with respect to the parameters. The file with the Jacobian is referenced
in a manner similar to moment conditions, although the field is now jake. Although
analytic derivatives should always be used whenever possible, numerical derivatives are
available by leaving the field jake empty or by setting it to numz.

3. User’s Weighting Matrix (Optional)

18

The user can elect to use a sub-optimal weighting matrix. This weighting matrix can
either be fixed or calculated as a function of the data and parameters. For a fixed
initial matrix, the user passes the matrix as the last argument to gmm() and sets
gmmopt.W0=’Win’. The matrix must be positive definite with dimensions correspond-
ing to the number of moment conditions. For a calculated weighting matrix, pass the
name of the m-file that calculates your W to gmmopt.W0 and/or gmmopt.W. As with
other file references such as .momt, you specify the file name without its extension and
the file must be in your path.

As a simple example, you might want to use a weighting matrix which just has diagonal
elements. If this function is in the m-file userw.m you would put gmmopt.W=’userw’ to
invoke this weighting matrix after the first GMM iteration. To also use it as the initial
weighting matrix, set gmmopt.W0=’userw’ as well. The code would may be something
like the following, but must have input and output arguments as show here.

function W = userw (b , gmmopt ,Y,X,Z) ;
%
%func t i on W = userw (b , i n f o z ,Y,X, Z) ;
%
% Function to c a l c u l a t e user−de f ined weight ing matrix . Example uses
% inv e r s e o f d iagona l o f cov (e .∗Z)

momt = fcnchk (gmmopt . i n f o z .momt) ;
[m, e] = feval (momt , b , gmmopt . i n f o z , [] , Y,X, Z) ;
u = repmat (e , 1 , c o l s (Z)) . ∗Z ;
S = diag (diag (cov (u))) ;
W = S\eye (c o l s (S)) ;

If you have your own spectral density matrix m-file called mys.m and want to use its
inverse as your weighting matrix, then make a m-file that does this

function W = mysinv(b,gmmopt,Y,X,Z)

W = inv(mys(b,gmmopt,Y,X,Z));

You would need to set gmmopt.S=’mys’ and gmmopt.W=’mysinv’.

4 Optimization Library

Users solely interested in GMM may not need to be concerned with the details of the opti-
mizer. However, an understanding of the process is useful in problem-solving and enhancing
performance. Additionally, the user may wish to modify or enhance the optimization routines
employed.

The MINZ optimization library provides a flexible environment for general optimization
problems. Although many of the algorithms employed are “good” [typically drawn from Gill,
Murray, and Wright (1981) or Press, Teukolsky, Vetterling, and Flannery (1992)], they may

19

not always be “best” for the situation at hand. The overall flexibility of the software makes
it relatively easy for the user to substitute their own algorithms.

The focus is on applications where parameter estimation and hypothesis testing are of
primary interest. Econometrics is of course one such field. The library consists of a “control”
program minz and a number of helper functions which are called by minz. The user issues
a command such as [b,infoz,stat] = minz(b0,infoz,Y,X). b0 represents the parameter
starting values, infoz is the structure variable containing information about the specific
procedures used, convergence criteria, etc., and Y and X represent data. The number of
arguments given to minz is variable depending on the needs of the objective function of
interest, so additional data/variables can be passed. The important thing is that the input
arguments must be consistent with the function specified in infoz.func. The routine returns
the parameter estimates b, the infoz structure (with any updates) and stat which contains
a number of fields with information on the status of the solution (e.g., the inverse Hessian).
We will examine the components of the infoz and stat structures then discuss each of the
supporting functions.

The infoz structure contains the following fields

% in f o z s t r u c tu r e
% i n f o z . c a l l Ca l l i ng program : ’gmm’ , ’ l s ’ , ’ mle ’ , ’ o ther ’
% i n f o z . func What to min : ’ l s f u n c ’ f o r LS/GMM
% in f o z .momt Orthog . c ond i t i on s m o f m’Wm fo r GMM
% in f o z . jake Jacobian o f momt
% i n f o z . grad Gradient : ’ g r a d f i l e ’ f o r ana l y t i c , e l s e [’ numz ’]
% i n f o z . d e l t a Increment in numerical d e r i v s [. 0 0 0 0 0 1]
% i n f o z . hess Hess ian : [’ dfp ’] , ’ b f g s ’ , ’ gn ’ , ’ marq ’ , ’ sd ’
% i n f o z .H1 I n i t i a l Hess ian in DFP/BFGS. [1] = eye , e l s e eva lua t e
% i n f o z . maxit Maximium i t e r a t i o n s [1 0 0]
% i n f o z . s tep step s i z e rout ine [’ s tep2 ’]
% i n f o z . lambda Minimum e igenva lue o f Hess ian f o r Marquardt [. 0 0 1]
% i n f o z . cond Tolerance l e v e l f o r cond i t i on o f Hess ian [1 000]
% i n f o z . b to l Tolerance f o r convergence o f parm vec to r [1 e−4]
% i n f o z . f t o l Tolerance f o r convergence o f o b j e c t i v e func t i on [1 e−7]
% i n f o z . g t o l Tolerance f o r convergence o f g rad i en t [1 e−7]
% i n f o z . prt Pr in t ing : 0 = None , 1 = Screen , h igher = f i l e [1]

The user must provide infoz.func or, in the case of GMM/LS, infoz.momt. All other
fields are optional and use the default values (in brackets) unless specified otherwise. If
the user would like analytic derivatives, these are specified in infoz.jake for GMM/LS,
and infoz.grad for other problems. If these are left blank, or if they are set to numz,
then numerical derivatives are used. Next are a number of controls for the (approximate)
Hessian, including infoz.hess, infoz.H1, infoz.lambda and infoz.cond. These are dis-
cussed in detail in the Hessian step below. The user may also specify a file for the step size
in infoz.step and its option infoz.stepred. See the step size description below for more
details. Next are a series of settings for convergence criteria. Iterations will stop when any
one of the four criteria are met: maximum iterations (infoz.maxit), change in parameter
values (infoz.btol), change in the objective function (infoz.ftol), or change in the gra-

20

dient (infoz.gtol). The procedure will tell you which criteria caused the program to stop.
infoz.prt controls printing during the optimization procedure and infoz.call tells the
optimization program the kind of problem it is solving: GMM/LS, or other (the typical user
does not need to worry about this but it is the mechanism that lets minz know when to use
the momt and jake fields).

Steps in Optimization Library

1. Evaluate Criterion Function given in infoz.func

The func field specifies the file with the objective function. This file can require any
number of inputs but must have the form scalar = myfunc(b,infoz,stat,varargin).
The infoz and stat structures need not be used by the function but they must be
included as arguments. In the case of least squares and GMM problems, the code sets
infoz.func = ’lsfunc’ to use a standard file. The user then provides a moment
conditions file of the form [m,e] = myfunc(b,infoz,stat,varargin).

2. Evaluate Gradient in infoz.grad

In all cases, gradient refers to the first derivative of the objective function with re-
spect to the parameter vector. For GMM/LS, it is more convenient to work with the
Jacobian: the first derivative of the moment conditions or model error.

Handling of the gradient works much like the objective function. For GMM/LS prob-
lems, a default gradient file lsgrad is used but the user can specify the Jacobian in
infoz.jake. For all other problems, the user can set infoz.grad for analytic deriva-
tives. If the user wants numerical derivatives, he can leave these fields blank or set
the appropriate field to numz. Again, for GMM/LS the field to set is jake whereas in
other problems the relevant field is grad.

3. Calculate/update Hessian in infoz.hess (e.g., hessz)

To choose the search direction method, set infoz.hess to ’dfp’ for Davidon-Fletcher-
Powell, ’bfgs’ for Broyden-Fletcher-Goldfarb-Shanno, ’gn’ for Gauss-Newton, ’marq’
for Levenberg-Marquardt, or ’sd’ for Steepest Descent. Any one of these choices will
result in a call to the file hessz. A user can substitute a different method be setting
infoz.hess. The procedure for adding a new method will be discussed shortly. Note
that hessz actually returns the inverse Hessian, since this is the object of interest in
both the optimization routine and in hypothesis testing. For the DFP/BFGS methods,
the inverse is calculated directly. The other methods calculate the normal Hessian then
invert it (actually use Gaussian elimiation using the Matlab \ operator). There are
a number of options that can be passed to hessz. To specify the initial Hessian to
use in the DFP/BFGS algorithms, set infoz.H0 = 1 for the identity matrix. In the
Levenberg-Marquardt alogorithm the user can specify the value added to the diago-
nal of the Hessian when it is ill-conditioned. This is done by setting infoz.lambda

= value. Finally, the user can set the criteria for determining ill-conditioning with
infoz.cond.

21

4. Determine Step Direction

The step direction is calculated within minz as the product of the inverse Hessian and
the gradient.

5. Determine Step Size specified in infoz.step (e.g,. step2)

Once a step direction is calculated, the program must determine how far to move in
this direction. The default is to use the file step2 for the line minimization. This file
uses a simple algorithm which reduces the step size by a fixed fraction (infoz.stepred,
90% by default) until the objective function decreases. A different file is referenced by
setting infoz.step to the appropriate filename. An alternative routine, based on a the
LNSRCH algorithm in Press, Teukolsky, Vetterling, and Flannery (1992, page 378), is
provided in stepz.m but I have had difficulty with this algorithm in some cases.

6. Program Control minz

After performing the preceeding steps, minz then recalculates the objective function
and checks the convergence criteria. If none of the convergence criteria are met, repeat
the steps. At each iteration some summary information is printed, if desired. As
shown in Figure 2, the output contains the iteration number, the condition number of
the Hessian in cond(H), an asterisk if the Hessian is poorly conditioned (infoz.cond,
1000 by default), and the value of the objective function. The output contains a
message about the reason the iterations stopped (e.g., CONVERGENCE CRITERIA MET:

Change in Objective Function). For GMM estimation, the parameter estimates at
intermediate GMM iterations (not optimization iterations) is also displayed to track
the progression of the estimation process.

Each of the steps above is essentially self-contained. Although one function may make
calls to another, the structure is such that it is easy to add a new function. In general, these
helper functions take the form of helper(b,infoz,stat,varargin). The first argument is
always the parameter vector, the second the infoz structure, the third is the stat structure,
and the final arguments are the inputs needed by the user’s objective function. So long as
this framework is preserved, adding a user’s helper function should be simple.

The following is a brief description of how to incorporate a user’s function rather than
a provided one. First, the user needs to write the m-file for the helper function. Give it a
name that will not conflict with existing m-files (e.g., don’t call a new Hessian algorithm
hess.m). Make sure the function returns the same thing as the helper function it replaces.
A Hessian algorithm should return the stat structure variable with the new inverse Hessian,
a step size algorithm returns a scalar step size, etc. Then just change the value in the
appropriate infoz field to point to your function. For example, a new Hessian algorithm
called greathess.m requires setting infoz.hess = ’greathess’. If a user has an existing
function which has different arguments, I suggest writing a short conversion function. This
new function would have the input and output argument structure required here, make the
necessary conversions, and call the user’s existing function.

22

As minz is iterating the above steps it passes information on the status of the procedure
to the different functions it calls. This information is conveniently stored in infoz.stat.
Upon completion of the procedure, this structure variable is returned to the program calling
minz. Of particular interest is the inverse Hessian, since it is useful for hypothesis testing.
The fields are fairly self-explanatory.

% sta t s t r u c tu r e
% s t a t .G Gradient
% s t a t . f Object ive func t i on va lue
% s t a t . Hi Inve r s e Hess ian
% s t a t .dG Change in Gradient
% s t a t . db Change in Parm vec to r
% s t a t . df Change in Object ive Function
% s t a t . Hcond Condit ion number f o r cur r en t Hess ian
% s t a t . h i s t His tory o f b at each i t e r a t i o n

5 Demo Programs

The libraries come with several demonstration programs to illustrate use of the software.
I recommend running each of these and looking at the demo program code to see how to
formulate and solve problems. I start with a couple of examples using only the MINZ code
then provide seven examples using GMM.

1. rosen d Minimize the “banana” function. MINZ only.

2. nslq d Do a nonlinear least squares estimation. MINZ only.

3. sumstats d Calculate summary statistics with GMM.

4. lingmm d Estimate a linear regression model with GMM.

5. gmm d Do a nonlinear GMM estimation; power utility asset pricing model.

6. ckls d Estimate several term structure models. Also shows how to write very flexible
moment condition so that you can estimate a model with some of the parameters fixed.

7. gmmldv d Limited dependent variable models (Logit and Probit) by GMM.

8. hyptest d Hypothesis testing examples with GMM.

9. userw d Use a user’s weighting matrix in GMM estimation.

To run a demo just type the demo name at the command prompt. The demos provide
prompts to guide you through. It will probably be most useful if you also look at the code
for each demo to see exactly how things are done.

23

Figure 3: Iterations of Minimizing Banana Function

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x(1)

x(
2)

Banana Function: DFP Direction (Default)

22 Steps, x = 1.0000 1.0000

5.1 Minimize the Banana Function

To run this demo type rosen d at the Matlab prompt. The program will draw a couple of
pictures of the function then do several different minimizations. Each minimization illustrates
the use of a different approximate Hessian. A contour plot of the function is marked with
the location of the parameter vector at each step, giving a sense as to the performance of
the various algorithms. Figure 3 shows an example. Most of the algorithms perform well,
but the steepest descent method fails to find the minimum. Keep in mind that the “best”
algorithm depends on the problem at hand.

Look at the files rosen.m, roseng.m, and rosenh.m to get a feel for how the objective
function, gradient, and analytic Hessian are specified. Notice in the demo how the Hessian
algorithms are changed (e.g., infoz.hess=’bfgs’;).

5.2 Nonlinear Least Squares

Running nlsq d executes a demo of nonlinear least squares. The model is

yt = β1xt + β2x
2
t + β3x

3
t + β4 cos(β5xt) + εt.

Note that this model is linear except for the last term. In order to get starting values, the
model is estimated by OLS ignoring the final term. A plot then shows the errors for a linear
model with a reference cos function. By adjusting the amplitude β4 and frequency β5, the
augmented OLS predictions are close to the function. These values are then the starting

24

values in the minimization. The user is then prompted for the choice of approximate Hessian.
The final estimates and standard errors are printed and the predictions from the nonlinear
and augmented linear models are plotted with the actual values. The demo uses the provided
objective function lsfunc and gradient lsgrad along with the application-specific model
errors nlsqe.m and Jacobian of errors nlsqj.m.

5.3 Estimate Summary Statistics

Now we move from demonstrations of the MINZ package alone to ones also featuring the
GMM library. The first example is very simple, estimate the means, variances, and covari-
ances for a matrix of data. The demo is provided as the file sumstats d and is quite short.
The basic code is shown below

T = 1000;

k = 3;

Y = randn(T,k);

gmmopt.infoz.momt=’msdm’;

gmmopt.infoz.jake=’msdj’

bin = zeros(k + k*(k+1)/2,1);

out = gmm(bin,gmmopt,Y,[],ones(T,1));

The first three lines simply generate some data. The next two lines tell gmm what moment
conditions and Jacobian to use. If the Jacobian were not specified the code would automat-
ically use numerical derivatives. We then set up parameter starting values as a vector of
zeros and call gmm. Not much to it!

The output shows that the parameter estimates calculated by GMM are nearly identical
to the conventional estimates. There are two reasons for differences. First, we are doing two-
stage GMM, so if the first stage spectral density matrix has important off-diagonal terms,
we may end up paying attention to the cross-moments and this may affect the estimates.
That turns out not to be the case here. The second reason is simply that the msdm function
does not do a degrees of freedom correction. Modifying it to do so is straightforward.

5.4 Estimate a Linear Model by GMM

The linear model demo lingmm d is geared to giving a flavor of GMM implementation and
also facilitates comparison to more tradional estimation methods. The details appearing on
the screen show the steps necessary to run gmm in this example. The demo makes use of the
moment conditions (lingmmm), Jacobian (lingmmj), and analytic Hessian (lingmmh) already
provided with the GMM package. Thus, the user does not need to write their own m-files
for a basic linear model.

The GMM results are compared with OLS using White standard errors. The small
difference in the standard errors arises because the White version does not include the
degrees of freedom correction. You can change the covariance matrix calculations in GMM
by altering gmmopt.S to see how the results change.

25

------------------ GMM PARAMETER ESTIMATES -----------------

Parameter Coeff Std Err Null t-stat p-val

parameter 1 0.019747 0.032344 0.00 0.61 0.5415

parameter 2 1.052202 0.032646 0.00 32.23 0.0000

parameter 3 -0.995067 0.031469 0.00 -31.62 0.0000

===

White Heteroscedastic Consistent Estimates

Variable Coefficient Std Error t-stat p-val

variable 1 0.019747 0.032296 0.61 0.5410

variable 2 1.052202 0.032597 32.28 0.0000

variable 3 -0.995067 0.031422 -31.67 0.0000

5.5 Estimate a Nonlinear Model by GMM

Run the demo gmm d. It is largely self-explanatory. The demo estimates the power utility
asset pricing model. The model is

Et[β(Ct+1/Ct)
−γRt+1] = 1

where Ct is per capita real consumption at time t, Rt+1 is the return on a vector of N assets
from time t to t + 1. There are two parameters, β and γ. The expectation is conditional
on time t infomation. We use the instruments zt to capture this information. In the demo
we use lagged returns and consumption growth, along with a constant, in forming z. The
moment conditions are therefore defined as

m(θ) =
T∑

t=1

[β(Ct+1/Ct)
−γRt+1] − 1] ⊗ zt

The demo uses two assets and four instruments, so there are eight moment conditions and
two parameters.

Sample output is shown in Figure 2. Figure 4 shows the objective function surface created
with the objplot function. The flat valley in the γ direction confirms the relatively large
standard error on that parameter. The minimized value appears as an asterisk. Figure 5
shows the weighting matrix used in the estimation. You can see that most weight is placed
on a few moments. Figure 6 shows the weights used in the calculation of S. This is useful to
know if you have in mind a particular correlation structure for the moments. If you would
like to allow for an annual seasonal (12 lags with montly data), you can see that the current
estimation places relatively little weight on this lag.

This is the first example where we have an over-identified model (more moments than
parameters). Now the output shows the moments (since they are not all zero), the corre-
sponding t-stats, and the J test of overidentification.

------------------ GMM PARAMETER ESTIMATES -----------------

Parameter Coeff Std Err Null t-stat p-val

26

beta 1.001973 0.001539 1.00 1.28 0.1998

gamma 1.245958 0.511788 0.00 2.43 0.0149

------------------- GMM MOMENT CONDITIONS ------------------

Moment Std Err t-stat p-val

Moment 1 0.003338 0.002118 1.58 0.1151

Moment 2 0.003356 0.002122 1.58 0.1137

Moment 3 0.003465 0.002118 1.64 0.1019

Moment 4 0.003356 0.002120 1.58 0.1134

Moment 5 -0.000334 0.000375 -0.89 0.3723

Moment 6 -0.000330 0.000377 -0.88 0.3814

Moment 7 -0.000339 0.000369 -0.92 0.3577

Moment 8 -0.000331 0.000376 -0.88 0.3785

J-stat = 9.3071 Prob[Chi-sq.(6) > J] = 0.1570

===

Figure 4: GMM Objective Function

0

1

2

3

0.9
0.95

1
1.05

1.1
1.15

0

5

10

15

20

25

30

35

40

gamma

beta

O
bj

27

Figure 5: Example of Weighting Matrix

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

0

0.5

1

1.5

2

2.5

3

x 10
8

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

GMM Weighting Matrix at Iteration 2

X

X

X

X

X
X

X

X

X

X

X

XX

X

X

Figure 6: Example of Kernel Weights

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Bartlett (Newey−West) Kernel Weights in HAC Estimate

Lag

W
ei

gh
t

28

Note that this demo is intended to provide an illustration of how to use the code, not be
an example of the “best” way to estimate this particular model. Among other things, the
choice of assets and instruments are quite important. You can easily adjust the instruments
by changing nz to add more lags to the instrument set or by excluding consumption from
the instrument set (the first column of the rawdata matrix).

5.6 Term Structure Model, CKLS

This is an example of estimating the parameters of the several nested term structure models,
as in Chan, Karolyi, Longstaff, and Sanders (1992). The continuous time model is

drt = κ(θ − rt)dt + σrγ
t dWt

where rt is the interest rate at time t and Wt is a Brownian motion. This model implies that

E[drt] = E [κ(θ − rt)] dt

and
Var[drt] = σ2r2γ

t dt

A special case when γ = .5 is Cox, Ingersoll, and Ross (1985)
We have to discretize the model for estimation, so we will use yt = drt = rt−rt−1, Xt = rt,

and dt = 1/12 since we use monthly observations. We choose instruments zt = [1 rt], giving
moments

mt =

[
yt − (α + βXt)/12

(yt − (α + βXt)/12)2 − σ2X2γ
t /12

]
⊗ [1 Xt]

where σ2 is taken as a parameter (rather than σ). The file ckls dm.m provides the following
bit of code (some of the documentation is purged) to define the moment conditions

function [m,e]=ckls_dm(b,infoz,stat,y,X,Z)

% --- Grab parameters out of b, Find parameters that are fixed -------

parms = repmat(NaN,4,1);

parms(isnan(infoz.parms)) = b;

parms(~isnan(infoz.parms)) = infoz.parms(~isnan(infoz.parms));

alpha = parms(1);

beta = parms(2);

sigsq = parms(3);

gamma = parms(4);

% --- Form model residuals ---

T = rows(X);

e1 = y - (alpha + beta*X)/12;

e2 = e1.^2 - (sigsq*X.^(2*gamma))/12;

e = [e1 e2];

29

% --- Moments are inner product with instruments ---------------------

m = reshape(Z’*e/T,4,1);

Ignoring the first block of code, the rest just implements the equation for mt in vector form.
So what is the first block of code for? Well, suppose you want to estimate a restricted

version of the model, say where γ = 0.5 as in Cox, Ingersoll, and Ross (1985). Since that
model has only three parameters, we need a way to pass a vectot of starting values with
only three rows, and we need to the moment conditions to plug in the value 0.5 for γ. One
brute force way to do this is copy our moment conditions file for the full model and make
the necessary edits. Well, now suppose we want to have another restricted model that sets
β = 0 and γ = 0. We now need another file. This is not very flexible, and it will be quite
cumbersome to maintain all these files. So how about if we can use only the one file which
contains moment conditions for the full model? What we need is a way to tell the file which
parameters should be fixed (not estimated) and what values to plug in for them. That is
what the mysterious first block of code does.

When we set up the gmmopt structure, we will add a field .infoz.parms. This field is
not recognized by the standard code, but we can have our file ckls dm look for it. The field
contains four elements, correpsonding to [αβσ2γ]′. For parameters that are to be estimated,
set the element to NaN, and for those that are to be fixed, set the element to the desired
value. The code will then take the .infoz.parms structure and the parmeter vector b to
determine α, β, σ2, and γ. At the end of the demo we will estimate nine variations of the
model, as in Table 3 of Chan, Karolyi, Longstaff, and Sanders (1992).

Runing the demo by typing ckls d gives the following results for the full model.

------------------ GMM PARAMETER ESTIMATES -----------------

Parameter Coeff Std Err Null t-stat p-val

alpha 0.041902 0.015939 0.00 2.63 0.0086

beta -0.607658 0.269772 0.00 -2.25 0.0243

sigma^2 1.778786 2.905567 0.00 0.61 0.5404

gamma 1.508122 0.313462 0.50 3.22 0.0013

===

For those that are familiar with this economic model, we can then convert the estimated
parameters (α, β, σ2, and γ) into the economically interesting θ, κ, and σ.

Long-run mean, theta = 6.8956%

Speed of adj, kappa = 0.6077

Volatility parm, sigma = 1.3337

Cond. Vol. parm, gamma = 1.5081

Average Cond Volatility = 0.6840%

R^2 (yld change) = 0.0266

R^2 (sqrd yld chg) = 0.1576

30

Figure 7: CLKS Conditional Volatility Estimates

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06
Cond Std Dev (Unrestr)
|r(t)−r(t−1)|
CIR Cond Std Dev

The demo then estimates the CIR version of the model by setting gmmopt.infoz.parms

= [NaN NaN NaN 0.5]’. Results are

------------------ GMM PARAMETER ESTIMATES -----------------

Parameter Coeff Std Err Null t-stat p-val

alpha 0.028733 0.013869 0.00 2.07 0.0383

beta -0.420795 0.242914 0.00 -1.73 0.0832

sigma^2 0.006557 0.001677 0.00 3.91 0.0001

------------------- GMM MOMENT CONDITIONS ------------------

Moment Std Err t-stat p-val

Moment 1 0.000061 0.000033 1.83 0.0679

Moment 2 -0.000007 0.000004 -1.83 0.0680

Moment 3 0.000029 0.000016 1.83 0.0680

Moment 4 0.000004 0.000002 1.83 0.0680

J-stat = 4.0487 Prob[Chi-sq.(1) > J] = 0.0442

===

Constraints: gamma= 0.5000

Long-run mean, theta = 6.8282%

Speed of adj, kappa = 0.4208

Volatility parm, sigma = 0.0810

Cond. Vol. parm, gamma = 0.5000

31

Average Cond Volatility = 0.5926%

R^2 (yld change) = 0.0128

R^2 (sqrd yld chg) = 0.0038

In comparing the CIR results to the more general model, we can see that that γ = 0.5
restriction is rejected. One way of looking at this is to see the p-value of 0.0442 on the
overidentification test. Another way is to do a t-test of the null γ = 0.5 in the first estimation.
I used the code gmmopt.null = [0; 0; 0; 0.5] to specify my null for the coefficients, and
the output shows the p-value is only 0.0013. Figure 7 shows the estimated conditional
standard deviation from both models, along with the absolute value of the return changes in
the data. The general model is much more able to generate variation in conditional volatility.

We close out the demo by estimating nine models, as in Chan, Karolyi, Longstaff, and
Sanders (1992). The table below shows the models and the setting of gmmopt.infoz.parms.

gmmopt.infoz.parms

Model α β σ2 γ
Full NaN NaN NaN NaN
Merton NaN 0 NaN 0
Vasicek NaN NaN NaN 0
CIR SR NaN NaN NaN 0.5
Dothan 0 0 NaN 1
GBM 0 NaN NaN 1
Brennan-Schwartz NaN NaN NaN 1
CIR VR 0 0 NaN 1.5
CEV 0 NaN NaN NaN

The demo produces some tables with the parameter estimates, standard errors, and various
measures of model fit.

5.7 Example With User’s W

The demo userw d shows how to use alternative weighting matrices. One estimation uses
a fixed matrix of numbers as the initial weighting matrices, while other estimates use a
user-defined function userw to calculate the weighting matrix initially and/or at subsequent
iterations. The example uses a simple linear model.

5.8 Estimating Limited Dependent Variable Models

A special form of econometric model involves dependent variables which take on discrete
values. Standard linear regression models are inappropriate in this context, but there are
several popular alternatives. This example illustrates how to do this in GMM.

We focus on three types of models: linear probability, Logit, and Probit. Each one is
based on writing the likelihood function for the data. Parameter estimates are the values
that maximize the log-likelihood. Consider an observed variable yi which is one if an event

32

is successful and zero otherwise. [I use i subsripts rather than t because these models are
often used with a cross-section of observations rather than a time series.] We seek to explain
when the event occurs or not with explanatory variables xi. The likelihood function is

L =
N∏

i=1

[F (β′xi)]
yi[1 − F (β′xi)]

1−yi

where F (β′xi) is the probability the event was a success (yi = 1), given xi. The three models
we consider differ in specification of the F function. The linear probability model simply
uses F () = β′xi. The logit model is based on the logistic function, F () = e

�
′
xi/(1 + e

�
′
xi).

The probit model uses the normal CDF, F () = Φ(β′xi).
The maximum likelihood estimate sets the score of the log-likelihood function to zero,

∂ lnL

∂β
=

∂
[∑N

i=1 yi ln F (β′xi) + (1 − yi) ln (1 − F (β′xi))
]

∂β

=

N∑

i=1

[
yi

F1(β
′xi)

F (β′xi)
+ (1 − yi)

−F1(β
′xi)

1 − F (β′xi)

]
= 0

where F1 means the first derivative of F ().
For the linear probility model, we have

N∑

i=1

yi(1 − β′xi)xi + (1 − yi)(β
′xi)xi =

N∑

i=1

[yi(1 − β′xi) + (1 − yi)(0 − β′xi)]xi

=
∑

i∈yi=1

(yi − β′xi) +
∑

i∈yi=0

(yi − β′xi)

=
N∑

i=1

eixi = 0

We can interpret the part in square brackets as the residual because the parts (1 − β ′xi) or
(0 − β′xi) are turned on or off depending on the value of yi. Thus, MLE tells us to choose
β to set the errors orthogonal to the x’s, just like OLS. Consequently, I use the moment
conditions and Jacobian from a linear model (lingmmm and lingmmj).

For symmetric distributions like the logistic or normal F (−x) = 1− F (x) , so we can let
qi = 2yi − 1 and use

mi =

N∑

i=1

[
F1(qiβ

′xi)

F (qiβ
′xi)

]
= 0

as moment conditions. The files logitm.m and probitm.m specify these, respectively.
Since analytic derivatives are not too cumbersome, we specifiy them as well. Note that the

first derivative of the log-likelihood function is the vector of moment conditions. Therefore,
the second derivative of lnL is the derivative of the moment conditions (Jacobian). The files
logitj.m and probitj.m give the Jacobians.

33

The final consideration is construction of the standard errors. In the maximum likelihood
context, these are just the inverse of the negative of the Hessian of the log-likelihood function,
evaluated at the final parameter estimates. We have already computed this analytically as
the Jacobian, so we can make use of that work. What is needed is to tell the GMM code
to use our own spectral density matrix, rather than one of the options provided by gmmS.m.
To do so, we simply provide the name of our m-file in gmmopt.S. The relevant code from the
file for the spectral density matrix of the logit model, logitS.m, is below:

function S = logitS(b,infoz,y,x,z)

S = -logitj(b,infoz,[],y,x,z)*rows(y);

The function is very simple. It is just a wrapper function that calls the Jacobian and changes
the sign. The input and output arguments for your spectral density function must match
those of gmmS.m. Note that we do not invert S, since that is handled in gmm.m by the code:

term = (M’*W*M)\eye(k);

bcov = term*(M’*W*S*W*M)*term/nobs; % Cov(b)

Since W is an Indentity matrix, this reduces to (M′M)−1(M′SM)(M′M)−1. M is symmetric
and positive definite (it is the Hessian of lnL), so we get M−1M′−1M′SMM−1M′−1 which
becomes M−1SM′−1. Now it is clear that we want S = −M to get var(b) = −M−1. The
multiplication by sample size in logitS is undoing the division in gmm.m.

To run the model, we need to set up some of the GMM options. For the logit model, the
relevant code is

opt.gmmit = 1;

opt.W0 = ’I’;

opt.infoz.momt = ’logitm’;

opt.infoz.jake = ’logitj’;

opt.S = ’logitS’;

out2 = gmm(b0,opt,grade,X,X);

We just want a one-stage estimate, so we set opt.gmmit = 1. Also, we want to use an
Identiy matrix as the initial weighting matrix rather than the cross-product of the instru-
ments, so we specify that in the W0 line. The next two lines just indicate the names of the
files containing our moment conditions and Jacobian. Then we need to provide the name
of the spectral density matrix file. Finally, we call the GMM routine. The demo does the
estimation by GMM for the linear probability model, Logit, and Probit. For comparison,
it also runs standard MLE Logit and Probit (from the Econmetrics Toolbox). Some of the
output is shown below.

34

Coefficient Estimates

Linear Logit Probit Logit (ML) Probit (ML)

Const -1.4980 -13.0213 -7.4523 -13.0213 -7.4523

GPA 0.4639 2.8261 1.6258 2.8261 1.6258

TUCE 0.0105 0.0952 0.0517 0.0952 0.0517

PSI 0.3786 2.3787 1.4263 2.3787 1.4263

Standard Errors

Linear Logit Probit Logit (ML) Probit (ML)

Const 0.5239 4.9313 2.5425 4.9313 2.5425

GPA 0.1620 1.2629 0.6939 1.2629 0.6939

TUCE 0.0195 0.1416 0.0839 0.1416 0.0839

PSI 0.1392 1.0646 0.5950 1.0646 0.5950

t-stat

Linear Logit Probit Logit (ML) Probit (ML)

Const -2.8594 -2.6405 -2.9311 -2.6405 -2.9311

GPA 2.8640 2.2377 2.3431 2.2377 2.3431

TUCE 0.5387 0.6722 0.6166 0.6722 0.6166

PSI 2.7200 2.2344 2.3970 2.2344 2.3970

Marginal Effects

Linear Logit Probit

Const

GPA 0.4639 0.5339 0.5333

TUCE 0.0105 0.0180 0.0170

PSI 0.3786 0.4493 0.4679

5.9 Implementation of Classic Test Statistics

Here we see how to implement the three classic test statistics. I use the example where the
full model is

yt = α + β1x1,t + β2x2,t + εt = Xtβ + εt.

The null we wish to test is β2 = 0.
To fix some notation, we will call uout the output structure from the unrestricted esti-

mate, and rout the restricted output. y is a T × 1 vector of the dependent variable, X is a
T × 3 matrix (including a constant). The instruments Z are just the independent variables,
so we have OLS. We use White’s correction in calculation of the spectral density matrix. To
run the demo, type hyptest d.

gmmopt.S=’W’;

bu = [0;0;0];

br = [0;0];

35

gmmopt.infoz.momt=’lingmmm’;

uout = gmm(bu,gmmopt,y,X,X);

This is a “bare-bones” specification. You may set other options such as using analytic
Jacobian and Hessian, specifying the spectral density matrix, etc.

Likelihood Ratio Test (LRT)
We want to look at the change in the objective function from the unconstrained model

to the constrained version. It is important to estimate the restricted model using the same
weighting matrix as the unrestricted model. To implement this, estimate the full model and
save the weighting matrix. Then use this weighting matrix to estimate the restricted model.
We drop β2 from the parameter vector and x2,t from Xt, but keep all the instruments.

W0 = uout.W;

gmmopt.W0 = ’Win’;

rout=gmm(br,gmmopt,y,X(:,1:2),X,W0);

LR = rout.nobs*(rout.f - uout.f);

Wald Test (W)
The Wald test is based on the restrictions of the form Rb = r, where R is q × k and

r is a q-vector with q denoting the number of restrictions and k denoting the number of
parameters. Denote the variance of b as Σ, so

var(Rb − r) = RΣR′

The test statistic is
W = (Rb − r)′(RΣR′)−1(Rb − r)

In the above example, R = [0 0 1] and r = 0 so the test becomes β2
2/var(β2), the square

of the conventional t-statistic. The actual code need to test H0 : β2 = 0 is

R = [0 0 1];

r = 0;

W = (R*uout.b - r)’*inv(R*uout.bcov*R’)*(R*uout.b - r);

To test if β1 = 0 and β2 = 1, set R = [0 1 0; 0 0 1] and r = [0; 1]. To test β1 + β2 = 0 set
R = [0 1 1] and r = 0.

Lagrange Multiplier Test (LM)
Implementation using the GMM package is somewhat more complicated than with the

other tests because it is necessary to take the restricted estimates and reevaluate the moment
conditions and Jacobian for the full model at the restricted values. The test statistic is
LM = T (m′WM)(M′WM)−1(M′Wm).

36

% ---- Estimate Constrained Model (Normal W) ------------------------------

rout = gmm(br,gmmopt,y,X(:,1:2),X);

Wr = rout.W;

% ---- Reevaluate Unconstrained Model at Constrained Estimate -------------

gmmopt.infoz.call = ’gmm’;

lmb = [rout.b; 0]; % Construct restr version of full b

momt = fcnchk(gmmopt.infoz.momt);

jake = fcnchk(gmmopt.infoz.jake);

m = feval(momt,lmb,gmmopt.infoz,[],y,X,X); % Reeval moment conditions

M = feval(jake,lmb,gmmopt.infoz,[],y,X,X); % Reeval Jacobian

term1 = M’*Wr*m;

term2 = (M’*Wr*M)\eye(uout.nvar);

LM = rout.nobs*term1’*term2*term1;

We can compare each test statistic. The Wald is very close to the the t2 from OLS (with
White standard errors). The small difference is due to a degrees of freedom correction. The
other statistics follow the ranking W ≥ LR ≥ LM , which holds in a finite sample for linear
models.

Comparison of Test Statistics

t t^2 Wald LR LM

Test Stat -3.0255 9.1537 9.1262 8.7749 8.7741

p-value 0.0025 0.0025 0.0025 0.0031 0.0031

37

References

Andrews, Donald W. K., 1991, Heteroskedasticity and autocorrelation consistent covariance
matrix estimation, Econometrica 49, 817–858.

, and J. Christopher Monahan, 1992, An improved heteroskedasticity and autocor-
relation consistent covariance matrix estimator, Econometrica 60, 953–966.

Chan, K.C., G. Andrew Karolyi, Francis Longstaff, and Anthony Sanders, 1992, An empirical
comparison of alternative models of the short-term interest rate, Journal of Finance 47,
1209–1227.

Cochrane, John H., 2001, Asset Pricing (Princeton University Press: Princeton, NJ).

Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross, 1985, A theory of the term
structure of interest rates, Econometrica 53, 385–407.

Davidson, R., and J. MacKinnon, 1993, Estimation and Inference in Econometrics (Oxford
University Press: New York).

den Haan, Wouter J., and Andrew Levin, 1999, A practitioner’s guide to robust covariance
matrix estimation, Working Paper.

Gallant, A. Ronald, 1987, Nonlinear Statistical Models (John Wiley & Sons: New York).

Gill, Philip E., Walter Murray, and Margaret H. Wright, 1981, Practical Optimization (Aca-
demic Press: New York).

Greene, William H., 1997, Econometric Analysis (Prentice Hall: Upper Saddle River, NJ) 3
edn.

Hamilton, James D., 1994, Time Series Analysis (Princeton University Press: Princeton,
NJ).

Hansen, Lars Peter, 1982, Large sample properties of generalized method of moments esti-
mators, Econometrica 50, 1029–1054.

, and Robert J. Hodrick, 1980, Forward exchage rates as optimal predictors of future
spot rates: An empirical analysis, Journal of Political Economy 88, 829–853.

Newey, Whitney, and Kenneth West, 1987, A simple positive semi-definite, heteroskedasticity
and autocorrelation consistent covariance matrix, Econometrica 55, 703–708.

Press, William H., Saul A. Teukolsky, William H. Vetterling, and Brian P. Flannery, 1992,
Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University
Press: New York) 2 edn.

White, Halbert, 1980, A heteroskedasticity-consistent covariance matrix estimator and a
direct test for heteroskedasticity, Econometrica 48, 817–838.

38

