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Some real data examples

Farallon data
Carinae data

SOl data
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Quebec Births Data
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Example : Farallon data

/32 obs. monthly mean temperature at Farallon Islands, Ca,
1920-1981
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Example : Carinae data

1182 consecutive 10-day mean light intensities of the S.
Carinee variable star.
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Example : SOI data

1688 monthly values of SOI (normalized pressure difference
Tahiti/Darwin: www. cr u. uea. ac. uk)
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Example : Quebec Births data

Daily number of births, in Quebec, January 1, 1977 to
December 31, 1990.
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Example : Quebec Births data

Weekly aggregates (from R.J. Hyndman’s Time Series Data
Library, htt p: // ww per sonal . buseco. nonash. edu. au/)
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Example : CO, data

468 monthly observations atmospheric concentrations of CO,
from 1959 to 1997 (from R)

Concentration (ppm)
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Example : CO, data

First differences (not the only transformation possible ... )
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Modelling Context

» Discrete time process {X;}, zero mean

s Time seriesdata {z;, :t=1,... N}

o Parametric models, Gaussian residual errors
o Stationarity (after pre-processing)

s require
« likelihood-based inference about system parameters,
« prediction/forecasting.

Need
o likelihood,

o Inference mechanism.
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Time Domain modelling

Most commonly, but not exclusively, data collected in the time
domain

» finance, banking, econometrics
» climatology
» earth sciences

s computing systems, internet traffic, pageview statistics
etc.

Natural to seek inferences and make predictions in the time
domain.
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Autocovariance

In the time domain, raw data plots are not that informative;
the stationary process is characterized by its autocovariance
sequence (acvs)

Ye = E[XtXt—l—k] k e Z

Determination of underlying structure is more straightforward
after inspection of the acvs/autocorrelation sequence.
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Starting Point: ARIMA Models

{X;} with zero mean follows an ARIMA(p, d, g) model if
®(B)A“X, = O(B)e,,

» B is the backward shift operator, so that BX; = X,_;.

s A?=(1- B)% where d is the positive, integer-valued
level of differencing required to achieve stationarity.

s {¢} is a zero mean Gaussian error process with variance

2
e

» YVyields a Gaussian likelihood in the time domain.

o
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The process is specified by the AR and MA polynomials
B)=1—¢B—...—¢,B" OB)=1+60B+..+0,B7

with real-valued parameters ¢; # 0,60, # 0.

Sufficient conditions for stationarity and invertibility of the
differenced series Y, = A?X, are that the roots of the two
polynomial equations

lie outside the unit circle. Under these conditions, ARMA
processes have infinite AR and MA representations.
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Parameterization

Under the restrictions of stationarity/invertibility, the
parameter space for general (p, g) is a region in RP*? that is
not straightforward.

This makes inference (e.g. MCMC) difficult to implement.

Can use a reciprocal root parameterization (Huerta and West
(1999)). write

p

b(z) = | (1 - Gj2) H (1 —G;2)

g=1

where ((i1, ..., 1) and ((ay, ..., (o) are complex-valued
parameters.
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For both & and ©, the reciprocal roots are either real, or
appear in complex conjugate pairs. Denote by

s (p1,p2), and (q1, g2) the number of real and complex
conjugate pairs (so that p = p1 + 2po, ¢ = ¢1 + 2¢9).

o For the complex roots, for r =1, 2

’i27Tw7~j

Gri = Qe = Qpj COS 2TTWyj + 10 ; SIN 2TTW, 5 ;

Criv1 = Qpje "™ri = a5 c08 2Tw,; — 1 SN 27Tw,.;.

» For stationarity/invertibility:

OSO&U,OéQj<1 nglj,w%<1/2.
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MCMC Inference in the Time Domain

Using this parameterization, it is possible to implement
(transdimensional) MCMC in a reasonably straightforward
fashion.

» Model space defined by p, g,
» Birth/Death moves to change dimension,
» Metropolis-Hastings moves on 6 and ¢,

» Can incorporate different degrees of differencing.

However computation of Gaussian likelihood requires
Inversion of potentially large covariance matrix. This can
be prohibitive.
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Frequency Domain Representation

Spectral representation of the acvs of { X, }:

1/2

1/2
Vi :/_ exp {2mikf} dS;(f) :/ exp {2mifk} S(f)df.

1/2 —1/2

» S;(f)is anon-decreasing function on (—1/2,1/2),
» derivative S(f), the Spectral Density Function (SDF)

s S(f) gives a decomposition of the variance of the process
Into contributions of different frequencies.

0@

S(f) = > qwexp{-2mifk}.

k=—o0

Seasonally Persistent Processes — p.20



SDF for ARMA processes

The stationary ARM A(p, q) process {X,;} has SDF

q

_ pi2mf]?
2’@(62‘27#)‘2 2]1;[1 |1 CQJG |

S(f) = oc CEDIE — %< 2
[T 11— e

.

j=1

This function is

» bounded

» bounded away from zero.
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The Periodogram

At the Fourier frequencies, f; = j/N, 5 =0,...,N/2, define
periodogram, I, by

I(f;)=1Z(f;)FF j=0,....,N/2

where 7 is the Discrete Fourier Transform (DFT) of { X}

N-1
1 ot f .
Z(fj) — \/—N ZXte_Z%thg — Aj —|—@Bj
t
2
t

=0
=0

N—1 N—1 t—1
1 .
I(f;) = N g X7+ 2 SJ SJXtXSCOS(QTF](t—S)/N)
|t t=1 s=0 |
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The periodogram is a natural non-parametric estimator for S

s I(f;)and I(fx), 7 # k are asymptotically independent
» [ asymptotically unbiased for .S (in most cases)
» Inconsistent

» always finite valued.

Behaviour as N — oo illustrates problem; the grid of Fourier
frequencies has O(N) components, so the learning rate is
zero (we essentially have just a data transformation).
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N = 2048 N = 4096
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Periodogram (dB)
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Likelihood Inference

See Chan and Palma (2004) for a recent summary:
» exact time domain

s approximate time domain
« AR approximation
« MA approximation
« QML
» exact frequency domain
» approximate frequency domain

Most exact methods are at least O(N?) per likelihood
evaluation in computation.
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The Whittle Likelihood

Motivation: Approximate the Gaussian time-domain likelihood
using a spectral approximation to covariance matrix
(Whittle (1951, 1953), Grenander and Szégo (1958))

1 1 1 _
108 L(0.0) = —5lg|S(0.0)| — 5 XTE(0,)”

Q

{ZlogSw],Hgb +st 9¢)}

where w; =27 f; = 2mj/N.
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Statistical Properties

For models with bounded spectra, for N large,
I(f)/SG/N)= U,  j=0,...,M=N/2
s Uj~x3/2=FEzp(l)iid.,j=1,..., M —1,
o UO) UM ~ X%

These properties facilitate likelihood-based inference via the
Whittle approximation.

ML estimates of SDF parameters are consistent and
asymptotically normally distributed.
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Seasonally Persistent Processes

It is plausible in many contexts that { X;} has a seasonal
component

» calendar-based data collection (annual, quarterly,
monthly, or weekly cycles)

» high dependence at specific lags

» using seasonal differencing e.g. for monthly data
Y, =(1-B")X, = X, — Xy_1
removes an annual seasonal component.

Seasonal processes are not stationary before differencing,

and have SDFs with singularities (poles) that render the SDF
not integrable.
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Persistence : A process { X, } with acvs {v;} can also exhibit
persistence, that is,

» long-range dependence if, Va > 0

a—k

lm — =0
k— o0 ”}/k

that is, the acf is slowly decaying.

s long-memory If the acvs is absolutely divergent
D | = o0
k

» In practice, diagnosed by observing large autocorrelation
at high lags, spectral power near frequency zero.

Seasonally Persistent Processe
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Constructing Persistent Processes

Let {WW,} be an i.i.d. Gaussian sequence with variance 1. Let
6 € (—1/2,1/2), and write

=B =3 al-D-B)  ald)=

k=0
and set X, = (1 — B)°W,.

This fractional differencing yields a process that is stationary
If 0 < 1/2, long-memory if 0 < § < 1/2 and long-range
dependentif —1/2 < 6 < 1/2. For k large,

Vg ~ k—(1—25)

The persistence is associated with frequency zero.

Seasonally Persistent Processes
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Seasonal Persistence

Similar construction: replace {c;} sequence by {g.} such
that, for some )y € (0,1/2),

X; = (1 —2cos(21\g) B + B*)™°W,

Recursion for {¢x} given by g ;1 = 0,99 = 1 and for &k > 0

2 20+ k—1
gr = (k—H> (0 + k) cos(2mAg) — < ) Jk—1

E+1

but no simple explicit form.

{gi} are coefficients of the Gegenbauer polynomials (see
Gray, Zhang, Woodward (1989), Lapsa(1997)).

Seasonally Persistent Processe
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This procedure yields a process { X;} that has persistence
associated with the frequency \g, and is stationary

s ifd <1/2when )y # 0, or
s ifd <1/4when )y=0
SDF has relatively straightforward form

1
(2 |[cos(2m f) — cos(2mNg)])?°

S(f) =

with

1 1
) = (2[sin(27A0)[)? |27 f — 27 Ao[* Ande

Seasonally Persistent Processe
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ACV/ACF less straightforward

5 ['(1 —20)
OxVk = JT21/2+25

{sin(2mAg) }'/2 7
[Plfi/l2/2(cos(27r)\o)) + (—1)kP,3fI/12/2(— 003(277)\0))}

where P! (x) is the associated Legendre function of the first
kind.

A recursion formula for P#(xz) gives the acvs to arbitrary lag.

(v —p+ 1P () = 2v+1)P)(x) = (v+ p) Py (2)
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Gegenbauer Models

Characteristic singularity (pole) in the spectrum at \,.
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Example: \o =0.14, 6 = 0.4

Data ACF
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Theoretical ACF

With § = 0.4, large autocorrelation at high lag separation.
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The Whittle Likelihood for SP process

The distributional assumptions central to the construction of
the Whittle likelihood break down for Fourier frequencies
near to spectral poles.

Recall that the periodogram is finite at the pole Ay, where the
SDF is not finite.

When the pole is at \j = 0 (standard long-memory), it is
possible to deduce distributional properties for the
periodogram evaluated at the Fourier frequencies.
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For example, Hurvich and Beltrao (1993):. when the pole is at
Ao = 0.

» the periodogram values should not treated as I.1.d
exponential random variables

» asymptotically, the periodogram values are distributed a
weighted combination of two independent y# random
variables.

» the asymptotic relative bias in the periodogram is positive
for most values of the 6 parameter.

We attempt to re-evaluate these results for general ).
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Relabelling the Fourier frequencies

We attempt to quantify the (relative) bias in the periodogram
at Fourier frequencies near to .

» The bias will depend on the distance between the Fourier
frequency and ).

o For any fixed )\, the distance from the pole to the nearest
Fourier frequency depends on sample size N.

» Intuitively, as the distance decreases, the bias increases.

For convenience, we re-label the Fourier frequencies, so that
f; s the 7 closest Frequency to the pole.
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The grid of Fourier frequencies m /N for integer m, and their
relation to the Fourier frequencies closest to the pole. Here
wi/(27) =m/N and wsy/(27) = (m — 1)/N.

e, (AN [ | e, (AJIN
4 <] >

(m-2)/N (m-1)/N A, m/N A
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Quantifying the relative bias

The crucial factor determining the magnitude of the bias is the
distance between the periodogram ordinates and .

THEOREM : For (relabelled) Fourier frequency £/, the 5%
closest to the pole at A\, for large N

i (1 ( f;)) 2 /OO sin {u/2 — mej v (o)}

20

27TCj7N()\0) du

u

S(f)) 7w fu—2men(N0)}

-
plus terms that are o(1), where c; y(A\g) = 7 — N Xo.
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Demodulation

The Demodulated DFT (DDFT) or offset DFT (Pei and Ding
(2004)) of X, with demodulation via frequency X is denoted
Zy, and is defined for f; = j/N by

\ () = \/_ermfa“ — Ay, +1iBy,;, j=0,...,M.

The demodulated periodogram at frequency f; with
demodulation via A is denoted I,( f;), and is defined via the
ordinary periodogram I by

L(f;) =1(f; +X) = |Z:(f;)]? = A3,(4) + B3,
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Demodulation simplifies the calculation of distributional
properties of periodogram values near the spectral pole.

THEOREM : For a Gegenbauer (), §) process with SDF

S(f) =S =A™

where ST is a bounded SDF, the expected value of the
periodogram evaluated at the pole )y, after demodulation by
Ao, IS

(20N {=25T(A\)T(—1 — 26)} cos{m(1/2 4+ 8)}m~ ! + o(1)

which is O(N?).
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A Whittle Likelihood Adjustment

Using the previous theorem, and demodulation, we can
construct an adjusted Whittle likelihood to estimate the
parameters in the SPP.

For a Gegenbauer model with parameters (g, 9), construct a
demodulated Whittle likelihood as follows:

» Compute the DDFT of sample data with demodulation via
Ap = Ao — [N )] /N; this aligns a new Fourier grid
precisely with \,.
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» This yields periodogram values
I( M+ Ji/N),...I(Ag+ J2/N)
where J; = —[NXg] and Jy = (N/2) — [N )]
o Construct a likelihood under the model where
I(Ao+J/N) ~ Exp(n;)
give independent contributions, and

‘j’%x{j#o}
T QUGN + j/N)

where Q(§) = —I' (=1 — 24) cos{m (1/2 + §)}220T1g20-1,
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This likelihood is bounded on (0,1/2) x (0,1/2).

It IS not continuous in \y due to the demodulation, but the
discontinuities are O(1), hence ignorable.

Numerical maximization yields ML estimates.

Theoretical properties of the estimators are not
straightforward to establish.

In particular, the behaviour of the the estimator of )\, is
non-standard.

Seasonally Persistent Processe

s —p.53



Asymptotic Properties of the Estimators

For the adjusted likelihood, we can establish
» N-consistency for \y, N'/2-consistency for &
s asymptotic normality of 4

» asymptotic distribution of )\, is scaled Cauchy

Simulation studies verify that demodulated likelihood yields
estimators that seem to have better small sample
performance than the classic Whittle likelihood when )\, is
unknown.
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Sampling distribution of estimator

Simulation study: 1000 reps., N = 4096, \p =1/7, =0.4
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Small sample properties

A simulation study: A\ = 0.15, 6 = 0.1,0.2,0.3,0.4, N = 406,

1000 replicate data sets.

Adjusted Whittle | Classic Whittle

0 | Mean SD Mean SD
0.1 | 0.104 | 0.0294 || 0.100 | 0.0283
0.2 1 0.199 | 0.0312 || 0.194 | 0.0316
0.3 0.298 | 0.0313 || 0.297 | 0.0325
0.4 | 0.399 | 0.0291 || 0.405 | 0.0330

Seasonally Persistent Processes
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Non likelihood estimation

» Geweke-Porter-Hudak (GPH); semi-parametric,
generalized least-squares using periodogram near
singularity.

» Giraitis-Hidalgo-Robinson; minimize the discrepancy
measure

over a “fine grid" of values for \,.

» also common to choose ), equal to the Fourier frequency
at which the periodogram achieves its maximum value
(Hidalgo-Soulier).
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Simulation Study (bias x10%).

N = 512, 500 replications, comparison with other methods.

True Value ML GL HS PHS
Bias | s.d. Bias | s.d. Bias | s.d. Bias | s.d.
o =0.1 4 258 || -203 | 289 || -583 | 754 || -266 | 773
A0=0.1415 0 54 -4 54 125 | 869 129 | 868
d=0.2 -8 280 || -147 | 309 || -330 | 761 -64 | 687
A0=0.1415 1 35 -1 37 -26 | 200 -28 | 197
d=0.3 -25 | 271 -86 | 308 -97 | 677 67 602
A0=0.1415 -1 23 -2 25 -3 50 -7 48
5=0.4 -18 | 250 96 348 165 | 724 137 | 686
A0=0.1415 1 12 0 15 1 23 -5 26
o = 0.45 -46 | 223 206 | 305 544 | 903 337 | 772
A0=0.1415 o) 7 -3 11 -2 16 -3 17
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Examples revisited: Farallon Data
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Examples revisited: SOI data (/N = 1688)
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GARMA Models

The spectrum of a k-factor GARMA model,

.rq[ (1= e )| 1
S(f) = o2

111 = Gue )P TT [4 {eos(2rf) —v,)]”
—1 i

)

[l

J

where 1; = cos(2m)\y;) parameterizes the location of the jth
singularity in the spectrum.

Use variable dimension MCMC to carry out inference and
prediction.
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Extensions

Whittle adjustments for multiple Gegenbauer models
modelling harmonics

adjustments to current semiparametric methods
adjusted continuous Whittle likelihood

MCMC inference, model selection, imputation of missing
values, prediction

prediction (forecasting) required in time domain

« Inference in frequency domain ?

« achieved using data augmentation technique in
MCMC.

Seasonally Persistent Processes — p.67



	 
	Outline
	Some real data examples
	Example : Farallon data
	Example : Carinae data
	Example : SOI data
	Example : Quebec Births data
	Example : Quebec Births data
	Example : CO$_2$ data
	Example : CO$_2$ data
	Modelling Context
	Time Domain modelling
	Autocovariance
	ACF plot comparison
	Starting Point: ARIMA Models
	 
	Parameterization
	
	MCMC Inference in the Time Domain
	Frequency Domain Representation
	SDF for ARMA processes
	The Periodogram
	 
	$N=1024$
	 
	Examples Revisited
	SOI periodogram
	Likelihood Inference
	The Whittle Likelihood
	Statistical Properties
	Seasonally Persistent Processes
	
	Constructing Persistent Processes
	Periodograms for different $delta $.
	Seasonal Persistence
	
	 
	Gegenbauer Models
	Example: $lambda _0 = 0.14$, $delta = 0.4$
	Theoretical ACF
	Periodogram 
	Periodogram and SDF 
	The Whittle Likelihood for SP process
	 
	Relabelling the Fourier frequencies 
	 
	Quantifying the relative bias
	Bias for various values of $(c,delta )$
	Demodulation
	 
	A Whittle Likelihood Adjustment
	 
	 
	Asymptotic Properties of the Estimators
	Sampling distribution of estimator
	Small sample properties
	Non likelihood estimation
	Simulation Study (bias $	imes 10^4$).
	Examples revisited: Farallon Data
	Posterior Distributions : $lambda _0$
	Posterior Distributions : $delta $
	Examples revisited: SOI data ($N=1688$)
	GARMA Models
	Examples revisited: Carinae data
	Carinae data: Pure Gegenbauer
	GARMA fit using MCMC
	Extensions

