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Volatility Modelling

I ARCH

I GARCH

I Stochastic Volatility

I Multivariate Volatility

I Methods of Inference
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It has long been recognized that financial time series exhibit
changes in volatility over time that tend to be serially correlated.

In particular, financial returns demonstrate volatility clustering,
meaning that large changes tend to be followed by large changes
and vice versa.

A conceptually useful division of these models into
observation-driven and parameter-driven models.

I Observation-driven models allow the variance of the observed
series to depend on its lagged values

I Parameter-driven models specify that the variance of the
observations is a function of some unobserved or latent
process.
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The most popular examples of observation-driven models are the
Autoregressive Conditional Heteroscedasticity (ARCH) and
Generalized ARCH (GARCH) models.

In particular, let yt be a realization, at time t, of the time series of
interest. Typically, yt is taken to be the compounded return of the
underlying asset, so that yt = 100 log (xt/xt−1), where xt denotes
the price of the asset. ARCH type models specify the distribution
of the current observation as a one-step-ahead prediction density.
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More precisely, for the observation-driven models, we assume
yt | Ψt−1 ∼ N

(
0, σ2

t

)
, where Ψt−1 contains all the information up

to time t − 1, so that Ψt = {yt , yt−1, . . . }.

yt = σtεt ,

where {εt} is a sequence of independent N (0, 1) random variables.

The ARCH(p) model allows the conditional variance σ2
t of yt to be

a linear combination of past squared observations, so that

σ2
t = α0 +

p∑
i=1

αiy
2
t−i .
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Properties of the ARCH(1) model:The parameters α0 and α1

have to be non-negative, and the process is stationary if and only if
α1 < 1, with

Var (yt) = E
(
y2
t

)
= α0/ (1− α1) .

All the odd moments of yt are zero by symmetry, while the fourth
moment exists if and only if 3α2

1 < 1 and is

E
(
y4
t

)
=

3α2
0

(
1− α2

1

)
(1− α1)

2 (1− 3α2
1

) .
The implied kurtosis is

−3 + E
(
y4
t

)
/E
(
y2
t

)2
and is greater than zero and hence yt is leptokurtotic (fat tails).
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The GARCH(p,q) model: The GARCH(p, q) process is an
extension to the ARCH(p) model which models σ2

t as dependent
on its lagged values;

σ2
t = α0 +

p∑
i=1

αiy
2
t−i +

q∑
i=1

βiσ
2
t−i .

The most widely used GARCH model is that of order (1, 1).

I Sufficient conditions for σ2
t ≥ 0 are αi ≥ 0, i = 0, 1 and

β1 ≥ 0.

I The GARCH(1, 1) process yt is zero mean, second order
stationary if and only if α1 + β1 < 1, with

Var(yt) = α0/ (1− α1 − β1)

and all the odd moments equal to zero.
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If in addition,

3α2
1 + 2α1β1 + β2

1 < 1

the fourth moment exists and is equal to

E (y4
t ) =

3α2
0 (1 + α1 + β1)

(1− α1 − β1)
(
1− 3α2

1 − 2α1β1 − β2
1

)
and yt exhibits leptokurtosis.

A special case of the GARCH(1, 1) model has α1 + β1 = 1, which
is called the Integrated GARCH (IGARCH) model.
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There exist many other versions of the ARCH type models,

I Exponential GARCH (EGARCH)

I ARCH-in-Mean (ARCH-M)

I TGARCH

I MGARCH
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Observation-driven models are built out of one-step-ahead
prediction densities. These densities allow the likelihood function
to be constructed via the prediction error decomposition.

Therefore, the maximum likelihood estimation of the unknown
parameters in the model is in principle straightforward. However,
there are also a number of drawbacks to ARCH type models.

I the parameter constraints, imposed so that the conditional
variance σ2

t remains non-negative, are often violated when
estimating these coefficients.

I GARCH models rule out a random oscillatory behavior of the
conditional variance process.
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Inference For ARCH/GARCH Models

In this section, we will study the likelihood function for the ARCH
and GARCH models to illustrate the Bayesian approach for the two
univariate GARCH models.

The first model is an ordinary GARCH(1,1) and the second model
is a Student-t GARCH(1,1). For both models, parameters are α1,
β1, and (α1 + β1), which is recognized as a measure of persistence.



Session 7: Volatility Modelling 11/ 165

The ARCH(1) process is defined as

σ2
t = α0 + α1y

2
t−1,

where α0 ≥ 0, α1 ≥ 0 are the two parameters about which
inference is required.
The ARCH(p) process is defined as

σ2
t = α0 +

p∑
i=1

αiy
2
t−i ,

where α0 ≥ 0, αi ≥ 0 are the parameters of the ARCH(p) model.
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Summary: The moments of the ARCH(1) model are given as
follows

(i) E (Yt) = E (Y 3
t ) = 0

(ii) The second moment of Yt is

E (Y 2
t ) =

α0

(1− α1)
, for 0 ≤ α1 < 1.

(iii) The fourth moment of Yt is

E (Y 4
t ) = 3E (σ4

t ) =
3α2

0

(
1− α2

1

)
(1− α1)

2 (1− 3α2
1

) , for 0 ≤ α2
1 <

1

3
.
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(iv) The kurtosis of Yt is given by

κ = 3
1− α2

1

1− 3α2
1

, for α2
1 <

1

3
.

I If α1 = 0 then κ = 3, and the distribution is Normal.
I If α1 > 0 then κ > 3, and the distribution is heavy-tailed.

(v) The autocorrelation function (ACF) of Y 2
t is given by

ρY 2
t
(s) = αs

1,

where s = 0, 1, .., n for all n ≥ 0.

The variance characteristics are solely dependent on the nature of
the parameter α1.
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Stationarity and Persistence in ARCH(1) Variance

I Condition for stationarity: α1 < 1;

I sudden changes to the error variance have an impact that
decrease at an exponential rate and will eventually diminish in
subsequent periods.

I The conditional variance, σ2
t , varies over time and is

dependent on past squared error terms.

I The sequence Yt is white noise and Y 2
t is an autoregressive

process, hence the existence of volatility clustering is partly
controlled by α1.

I Note that Y 2
t is not necessarily covariance stationary; its

variance will be finite only if 3α2
1 < 1.
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Persistence: When α1 > 1, shocks to the variance in period one
will have a more than proportionate impact in subsequent periods,

I Effects in the previous period causing greater shocks in the
next, leading to instability in the system.

I The unconditional variance is not finite, and the conditional
variance grows at a more than proportionate rate (dependent
on α1 ) in every subsequent period.

The conditional time-varying error variance should always be
positive; we may ensure this in the ARCH(1) case by using α2

0

instead of α0, and α2
1 instead of α1as starting values in the

Maximum Likelihood (ML) calculations if these parameters should
be negative. Doing so imposes positive parameter values from new
ML results.
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The likelihood for ARCH(1) can be written as

f (y |y0, α0, α1) =
n∏

t=1

(
1

2σ2
t

)1
2

exp

(
− y2

t

2σ2
t

)
,

where y = (y1, y2, ..., yn). Thus the log likelihood is

log f (y |y0, α0, α1) =
n∑

t=1

log f (yt |yt−1, α0, α1)

= const.− 1

2

n∑
t=1

[
log σ2

t +
y2
t

σ2
t

]
.
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To obtain the ML estimates we differentiate with respect to α0, α1

respectively to obtain the score equations:

∂ log f

∂α0
=

1

2

n∑
t=1

(
∂σ2

t

∂α0

)
1

σ2
t

(
y2
t

σ2
t

− 1

)
,

∂σ2
t

∂α0
= 1,

∂ log f

∂α1
=

1

2

n∑
t=1

(
∂σ2

t

∂α1

)
1

σ2
t

(
y2
t

σ2
t

− 1

)
,

∂σ2
t

∂α1
= y2

t−1.

For ARCH(p), (α0, α1)
T becomes (α0, α1, .., αp)

T so(
∂σ2

t

∂α0
, ...,

∂σ2
t

∂αp

)T

=
(
1, y2

t−1, ..., y
2
t−p

)T
.
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The GARCH(1, 1) model

The GARCH(1, 1) process is defined by

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1,

with parameters α0 ≥ 0, α1 ≥ 0, β1 ≥ 0.

The GARCH(p, q) process is defined by

σ2
t = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j ,

where α0 ≥ 0, αi ≥ 0, βj ≥ 0 are the parameters of the
GARCH(p, q) model.
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The moments of the GARCH(1,1) model take the following values:

(i) E (Yt) = E (Y 3
t ) = 0

(ii) If 0 ≤ α1 + β1 < 1,

E (Y 2
t ) =

α0

(1− α1 − β1)
,

(iii) If 0 ≤ α1 + β1 < 1 and 3α2
1 + 2α1β1 + β2

1 < 1

E (Y 4
t ) =

3α2
0 (1 + α1 + β1)

(1− α1 − β1) (1− β2
1 − 2α1β1 − 3α2

1)
,

The fourth moment does not exist when the sum of α1 + β1

is close to one, and the value of α1 is not close to zero.
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(iv) If 3α2
1 + 2α1β1 + β2

1 < 1, the kurtosis is

κ =
3 (1 + α1 + β1) (1− α1 − β1)(

1− β2
1 − 2α1β1 − 3α2

1

) ,

When β1 = 0, this condition is the same as the ARCH(1)

model, but when β1 > 0, α1 has to be lower than
√

1
3 . For

example, in the typical case where α1 is not close to zero and
β1 is near to one, κ does not exist.
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(v) The ACF of Y 2
t is given by

ρ1 =
α1(1− β2

1 − α1β1)

(1− β2
1 − 2α1β1)

, ρs = (α1+β1)ρs−1, for s ≥ 2

Clearly ρs depends on the values of α1 and β1.

The ACF declines geometrically at the rate of α1 + β1. If α1

is sufficiently small and the sum of α1 + β1 is close to one,
then there exists a slowly decreasing autocorrelation function
with finite kurtosis.
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Stationarity and Persistence in GARCH(1,1) Volatility

The stationarity of the GARCH(p, q) model is ensured if the
coefficients in the conditional variance equation sum to less than
one (i.e. α1 + ...+ αp + β1 + ...+ βq < 1), in which case the
unconditional variance of Yt ,

α0

1− (α1 + ...+ αp + β1 + ...+ βq)
,

is a finite constant.

In this case, shocks to the variance term do not have a permanent
effect, but fade over time.
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For the GARCH(1, 1) model, the following is known:

(i) If α1 + β1 < 1, under normality of the residual errors,

Var(Yt) = const.
α0

1− (α1 + β1)

and Cov(Yt ,Ys) 6= 0.

(ii) If α1 + β1 −→ 1, the ACF will decay quite slowly, indicating a
relatively slow change in conditional variance. This has often
been observed to occur in practice especially with high
frequency data. This indicates that a shock at time t will
persist for many future periods.
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(iii) If α1 + β1 = 1, then a shock at time t will lead to a
permanent change in all future periods; this also refers to the
Integrated-GARCH (I−GARCH) model, where the conditional
variance is non-stationary and the unconditional variance does
not exist.

(iv) If α1 + β1 > 1, then a shock at time t will have a
destabilizing effect, not only leading to a permanent change in
future periods, but reinforcing itself over time.

It is widely thought that the GARCH(1, 1) is broadly an adequate
model that has been successfully used in a wide range of volatility
modelling situations; it is a simple model, and thus avoids the
problems of overfitting, and yet has been found to have the main
features present in more complex models.
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Likelihood Function For GARCH(1,1) Model

An ML estimation structure can be constructed for all
GARCH-type models; it is identical to that for the ARCH model,
with the addition of score equations for β

∂ log f

∂β1

=
1

2

n∑
t=1

(
∂σ2

t

∂β1

)
1

σ2
t

(
y2
t

σ2
t

− 1

)
,

where
∂σ2

t

∂β1

= σ2
t−1 + β1

∂σ2
t−1

∂β1

.
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To obtain the ML estimates. we need to implement a numerical
calculation for the partial derivatives recursively for t = 1, .., n.
Unlike ARCH(p), the ML for GARCH(1,1) is more complicated
than just implementing the previous procedure due to the recursive
term in the score equation for β1. The resulting estimators have
properties of asymptotic normality and consistency.

Quasi Maximum Likelihood (QML) estimation may also
asymptotic normal distribution for the QML estimates and are in
practice close to the ML estimates.
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Bayesian inference For GARCH(1,1) Model

The Bayesian posterior distribution is

p(α0, α1, β1|Y ) =
n∏

t=1

(
1

2σ2
t

)1
2

exp

(
−y2

t

σ2
t

)
α−1

0 exp

(
−(logα0)

2

2σ2
α0

)
×αγ1−1

1 β
γ2−1
1 (1− α1 − β1)

γ3−1

∝ exp

{
−1

2

n∑
t=1

log

(
σ2

t +
y2
t

σ2
t

)
− (logα0)

2

2σ2
α0

}
×α−1

0 × α
γ1−1
1 β

γ2−1
1 (1− α1 − β1)

γ3−1 .
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Example : FX Returns in a number of twelve Far Eastern and
other currencies

I Daily data

I Hourly data

taken around the time of the market crash in the late nineties.

Following results from a Bayesian analysis via Markov chain Monte
Carlo (MCMC). In the MCMC algorithm, used 2,500,000, and
recorded parameters at every 500th iteration.
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Daily JPY GARCH(1,1)
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GARCH α1 β1 (α1 + β1)
(1,1) Mean, Median, Std Mean, Median, Std Mean, Median, Std

D-THB 0.9036, 0.9039, 0.0091 0.0961, 0.0957, 0.0091 0.9997, 0.9998, 0.0004
D-SGD 0.0347, 0.0199, 0.0409 0.6248, 0.6403, 0.2144 0.6594, 0.6743, 0.2097
D-JPY 0.9159, 0.9181, 0.0160 0.0714, 0.0701, 0.0138 0.9872, 0.9883, 0.0079
D-HKD 0.0355, 0.0204, 0.0421 0.5823, 0.5804, 0.2208 0.6177, 0.6147, 0.2166
D-GBP 0.0441, 0.0289, 0.0469 0.2045, 0.1925, 0.0740 0.2486, 0.2381, 0.0810
D-CHF 0.2244, 0.1365, 0.2402 0.1127, 0.1130, 0.0419 0.3371, 0.2622, 0.2155
D-CAD 0.9223, 0.9233, 0.0096 0.0707, 0.0702, 0.0095 0.9930, 0.9940, 0.0052
D-AUD 0.0394, 0.0239, 0.0441 0.4568, 0.4224, 0.2047 0.4963, 0.4641, 0.2003
H-THB 0.0269, 0.0174, 0.0284 0.6468, 0.6416, 0.0981 0.7295, 0.6684, 0.0973
H-SGD 0.2945, 0.2932, 0.0363 0.6845, 0.6866, 0.0414 0.9790, 0.9849, 0.0192
H-JPY 0.9193, 0.9200, 0.0103 0.0797, 0.0789, 0.0102 0.9990, 0.9993, 0.0010
H-HKD 0.6618, 0.6621, 0.0350 0.3182, 0.3183, 0.0368 0.9800, 0.9838, 0.0162

Posterior statistics of GARCH(1,1) model for 12 FX series.
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The table above contains posterior summaries for the three
parameters in the GARCH(1, 1) model for all FX series.

To explore the stability and persistence of GARCH(p, q) model,
the sum of the α1 + β1 should be examined. From the table, five
data series (D-THB, H-JPY, D-CAD, H-JPY, H-SGD) yield values
of (α1 + β1) to be significantly close to one

In addition, the estimated values of α1 are close to one and β1 are
close to zero. Thus there exists considerable persistence in
volatility, moving towards non-stationarity.
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We introduced a constrained model to ensure the existence of
higher order moments; the kurtosis exists for the observable
GARCH(1, 1) process only when the inequality

3α2
1 + 2α1β1 + β2

1 < 1

holds; further, the fourth moment only exists for a certain range of
values of α1, β1.

The additional constraint can be explicitly incorporated into the
MCMC simulation scheme; we reject points generated by the
proposal mechanism that violate the constraint

Note that such constraints are typically problematic in
conventional (non-simulation based) classical and Bayesian
inference.
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Daily JPY GARCH(1,1): Constrained Model
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GARCH α1 β1 (α1 + β1)
(1,1) Mean, Median, Std Mean, Median, Std Mean, Median, Std

D-THB 0.3838, 0.3837, 0.0086 0.4551, 0.4558, 0.0164 0.8389, 0.8394, 0.0079
D-SGD 0.0358, 0.0214, 0.0214 0.6170, 0.622788, 0.6228 0.6528, 0.6582, 0.2078
D-JPY 0.4200, 0.4481, 0.0839 0.2479, 0.2450, 0.0435 0.6679, 0.6878, 0.0715
D-HKD 0.0356, 0.0210, 0.0413 0.5841, 0.5859, 0.2207 0.6197, 0.6182, 0.2140
D-GBP 0.0418, 0.0251, 0.0472 0.2025, 0.1924, 0.0732 0.2443, 0.2344, 0.0820
D-CHF 0.1452, 0.1120, 0.1216 0.1213, 0.1182, 0.0383 0.2665, 0.2431, 0.1111
D-CAD 0.4803, 0.4974, 0.0548 0.1517, 0.1503, 0.0288 0.6319, 0.6444, 0.0498
D-AUD 0.0405, 0.0254, 0.0449 0.4561, 0.4277, 0.1990 0.4966, 0.4721, 0.1950
H-THB 0.2566, 0.2561, 0.0280 0.6586, 0.6603, 0.0450 0.9152, 0.9173, 0.0205
H-SGD 0.0285, 0.0193, 0.0293 0.6480, 0.644049, 0.0994 0.6765, 0.6737, 0.0987
H-JPY 0.4227, 0.4235, 0.0186 0.3708, 0.369196, 0.0378 0.7934, 0.7930, 0.0199
H-HKD 0.4315, 0.4326, 0.0192 0.3484, 0.3475, 0.0380 0.7800, 0.7797, 0.0205

Posterior statistics for the constrained model of GARCH(1,1) for
12 FX series
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Results: The posterior statistics values for this GARCH(1, 1)
model are displayed above.

No currency estimates the values of (α1 + β1) to be very close to
1, although the H-THB obtains the highest estimated posterior
mean value of 0.9152.

We conclude that this constrained model, where the existence of
kurtosis is required in the model, produces very different parameter
estimates; this may have serious consequences for prediction.
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The Student-t GARCH(1, 1) Model

The leptokurtosis of the observed returns series can be modelled
explicitly. The Student-t GARCH(1, 1) model can be formulated as

Yt = εtσ
2
t

εt ∼ N(0, kλt)

λt ∼ IGamma
(ν

2
,
ν

2

)
and for stationarity, 0 < α1 + β1 < 1.
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I The parameters λt , t = (1, .., n) modify the model so that

Yt |σ2
t ∼ St(0, kσ2

t , ν),

where ν takes some positive value, and k is a constant term.

I For the conditional variance of Yt to be finite, we require
ν > 2. Again, choosing a constant term

k =
(ν − 2)

ν

ensures that the conditional variance of yt remains as σ2
t , and

setting each λt = 1 recovers the original GARCH(1, 1)
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I For 4 < ν <∞, the conditional kurtosis for the
t-GARCH(1,1) model is

3(ν − 2)/(v − 4)

which is greater than that of a normal.

I The kurtosis for the Student-t GARCH(1,1) only exists if
ν > 4.

I As ν →∞ , the Student density tends to a normal.

I All odd moments are zero.
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Results for the t-GARCH(1,1) Model.

t-GARCH(1,1) Median, Std Median, Std Median, Std
ν = 5 α1 β1 (α1 + β1)

D-THB 0.8672, 0.8677, 0.0148 0.1252, 0.1247, 0.0157 0.9924, 0.9924, 0.0048
D-SGD 0.5928, 0.5948, 0.0361 0.2628, 0.2612, 0.0310 0.8556, 0.8561, 0.0289
D-JPY 0.9507, 0.9521, 0.0107 0.0250, 0.0244, 0.0057 0.9757, 0.9769, 0.0072
D-HKD 0.3955, 0.3947, 0.0275 0.5754, 0.5776, 0.0347 0.9709, 0.9760, 0.0224
D-GBP 0.0118, 0.0057, 0.0165 0.1150, 0.1124, 0.0326 0.1268, 0.1246, 0.0348
D-CHF 0.6865, 0.9027, 0.3607 0.0382, 0.0282, 0.0258 0.7247, 0.9291, 0.3399
D-CAD 0.9337, 0.9352, 0.0140 0.0380, 0.0373, 0.0080 0.9716, 0.9729, 0.0099
D-AUD 0.1207, 0.0097, 0.0347 0.0264, 0.1189, 0.0320 0.1471, 0.1432, 0.0433
H-THB 0.2597, 0.2589, 0.0578 0.4477, 0.4441, 0.0673 0.7074, 0.7062, 0.0670
H-SGD 0.2352, 0.2340, 0.0499 0.4140, 0.4097, 0.0625 0.6493, 0.6488, 0.0579
H-JPY 0.9086, 0.9103, 0.0181 0.0683, 0.0668, 0.0154 0.9769, 0.9775, 0.0084
H-HKD 0.2308, 0.2259, 0.0767 0.4339, 0.4308, 0.0629 0.6646, 0.6644, 0.0732

Posterior statistics of t-GARCH(1,1) model with ν =5 for 12 FX
series.
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The Student-t GARCH(1,1) Model with ν unknown

For the Bayesian t-GARCH(1,1) model, if ν is also to be included
as an unknown parameter, inference can also be made about it.

t-GARCH(1,1) ν
ν unknown Mean, Median, Std

D-THB 6.8834, 6.8834, 0.3640
D-SGD 6.9735, 6.9735, 0.3619
D-JPY 8.3251, 8.3251, 0.5570
D-HKD 5.0460, 5.0460, 0.1667
D-GBP 7.5149, 7.5149, 0.4321
D-CHF 8.7967, 8.7967, 0.6852
D-CAD 9.7992, 9.7992, 0.8881
D-AUD 7.2669, 7.2669, 0.3898
H-THB 6.5218, 6.5218, 0.3756
H-SGD 6.3907, 6.3907, 0.3614
H-JPY 8.1712, 8.1712, 0.6470
H-HKD 6.7072, 6.7071, 0.4109

Posterior statistics for ν in t-GARCH(1,1) model for 12 FX series
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Stochastic Volatility Models

The main alternative to ARCH type models is the stochastic
volatility (SV), a class of parameter-driven models and allows the
variance of the observations to be an unobserved random process.

SV models overcome the drawbacks encountered with GARCH
models and fit more naturally into the theoretical framework within
which much of modern finance theory has been developed. In
particular, SV models can easily be seen to have simple
continuous-time analogues used for option pricing.
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The most popular SV model is

yt = exp (ht/2) εt

ht = γ + φht−1 + ηt

where yt is, as usual, the observation at time t, the εts are
independent identically distributed (i.i.d.) N (0, 1) random
variables, the ηts are also i.i.d. N

(
0, σ2

η

)
random variables.

The latent process ht can be interpreted as the random and
uneven flow of new information into the market, and φ is the
persistence in the volatility.
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Leverage: The advantage of using SV models lies in the fact that
they provide greater flexibility in describing stylized facts such as
leverage, which causes the conditional variance to respond
asymmetrically to rises and falls in yt .

More precisely, falling stock prices cause the debt to equity ratio of
firms to increase and this entails more uncertainty and in turn
increased volatility, whereas rising stock prices decrease a firm’s
debt to equity ratio, while increasing investor’s confidence causing
lower levels of volatility.

The leverage effect cannot be described by the ARCH or GARCH
model, because the conditional variance depends only on the size
of lagged yt ’s and not on their sign; however, it can be captured by
the EGARCH model.
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Persistence in Volatility: A sset returns has been found to have
quite high autocorrelations for long lags. The SV model can
capture this phenomenon very easily. As has already been
mentioned, the parameter φ in the AR process is interpreted as the
persistence in the volatility and the restriction

|φ| < 1

is typically imposed to ensure that the series ht of the
log-volatilities is stationary.

Most studies in the SV literature have found evidence of near unit
root behavior of the process ht with values of φ ranging from 0.8
to 0.995 demonstrating that the volatility of asset returns is indeed
highly persistent. However, ht can also be allowed to follow a
random walk by setting φ = 1.
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Properties of the Stochastic Volatility Model

For simplicity, the error processes, εt and ηt , in the SV model are
initially presumed independent. If |φ| < 1, the process {ht} is
strictly stationary with unconditional mean and variance given
respectively by

µh = E (ht) =
γ

1− φ

σ2
h = Var (ht) =

σ2
η

1− φ2
.

Since yt is the product of two processes, εt and exp (ht/2), and εt
is always stationary, yt will also be stationary if and only if ht is
stationary.
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Then
E (yt) = E (yt | Ψt−1) = 0

so that yt is zero mean and the autocorrelation function (ACF) of
yt is

ρyt
(τ) = E (ytyt−τ ) = E

(
exp

(
ht

2
+

ht−τ

2

))
E (εtεt−τ ) = 0.

Thus the series yt is a martingale difference. Furthermore, if the
distribution of εt is symmetric, it follows that all the odd moments
of yt are zero.
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By assumption, exp (ht) is log-normal distributed, so from standard
properties of the log-normal distribution, we have

E
(
exp (ht)

j
)

= exp

{
jµh +

1

2
j2σ2

h

}
,

so that, if r is even and ht is stationary, all the even moments of yt

exist and are given by the formula

E (y r
t ) = E

(
(exp ht)

r/2
)

E [(εt)
r ] = exp

{
r

2
µh +

r2

8
σ2

h

}
r !

2r/2
(

r
2

)
!
.
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In particular

Var (yt) = E
(
(yt)

2
)

= exp

{
µh +

1

2
σ2

h

}
and hence if ht is stationary, yt is a white-noise process. The
fourth moment is

E
[
(yt)

4
]

= 3 exp
{
2µh + 2σ2

h

}
and so the kurtosis for yt is

−3 + E
(
y4
t

)
/E
(
y2
t

)2
= 3

(
exp

(
σ2

h

)
− 1
)
,

which is greater than 0 if σ2
h is positive. Thus, yt has a leptokurtic,

symmetric distribution.
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The dynamic properties of the SV model appear most clearly if we
square yt and take logarithms, so that

log y2
t = ht + log ε2t .

If εt has a standard normal distribution, then log ε2t has a
log-chi-square distribution with mean ψ (1)− log 2 ' −1.2704 and
variance π2/2 ' 4.9348, where ψ (·) is the digamma function.

Thus, if we define ξt = log ε2t + 1.2704, then clearly ξt is i.i.d. with
mean zero and variance π2/2 and we may rewrite the model as

log y2
t = −1.2704 + ht + ξt .
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Therefore, it follows that log y2
t is a linear process which is the sum

of the AR(1) process ht and white noise. Hence, log y2
t behaves

approximately as an ARMA(1, 1) process, with its ACF being
equivalent to that of an ARMA(1, 1) process and given by

ρlog y2
t
(τ) =

φτ

1 +
(
π2/2σ2

h

) , τ = 1, 2, . . . .

The ACF of the powers of the absolute values of yt are also
available; the ACF of y2

t is approximately proportional to that of
the AR(1) process ht .
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When the errors εt have a Student t-distribution with ν degrees of
freedom, yt is also white noise if and only if the process ht is
stationary, and if εt ∼ tν , then

Var (εt) = E
(
ε2t
)

= ν/ (ν − 2) , ν > 2

and
E
(
ε4t
)

= 3ν2/ [(ν − 2) (ν − 4)] , ν > 4.

Hence, it follows immediately that the unconditional variance of yt

generalizes in this case to

Var (yt) = E
(
y2
t

)
=

ν

ν − 2
exp

{
µh +

1

2
σ2

h

}
, ν > 2

The kurtosis for ν > 4 is 3
[
−1 + (ν − 2) exp

(
σ2

h

)
/ (ν − 4)

]
.
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The SV model with εt ∼ tν can also be transformed into a linear
form; let

εt = ζtκ
−1/2
t ,

where ζt ∼ N (0, 1) and νκt is independent of ζt and has a
chi-square distribution with ν degrees of freedom.

Therefore, log ε2t = log ζ2
t − log κt and it follows that

E (log κt) = ψ (ν/2)− log (ν/2)

and
Var (log κt) = ψ ′ (ν/2)

with ψ (·) and ψ ′ (·) the digamma and trigamma functions,
respectively.
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Therefore, if we now define

ξt =
(
log ζ2

t + 1.2704
)

+ (log κt − ψ (ν/2) + log (ν/2)) ,

then clearly ξt is i.i.d. with mean zero and variance
π2/2 + ψ ′ (ν/2). Squaring yt and taking logarithms gives

log y2
t = −1.2704− ψ (ν/2) + log (ν/2) + ht + ξt ,

which is again a linear process which adds the i.i.d. ξt to the
AR(1) ht . The ACF is

ρlog y2
t
(τ) =

φτ

1 +
[
ψ ′ (ν/2) + π2/2

]
/σ2

h

.
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Inference for the Stochastic Volatility Model

No analytic expression exists for the densities p (yt | Ψt−1), and
this makes the likelihood function hard to evaluate; the distribution
of yt conditional on past information Ψt−1 does not possess an
analytic expression.

One way of deriving the likelihood is by integrating the latent
log-volatilities out of the joint probability distribution. In
particular, denote by y = (y1, . . . , yT )T the vector of observations
for T consecutive periods, h = (h1, . . . , hT )T the vector of the
corresponding log-volatilities and θ =

(
γ, φ, σ2

η

)
.
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Then, the likelihood is given by

L (y;θ) =

∫
p (y,h|θ) dh =

∫
p (y | h,θ) p (h | θ) dh.

This last integral is of dimension equal to the sample size, T , its
evaluation requires the use of numerical procedures and this makes
the estimation of the hyperparameters, θ, via the Maximum
Likelihood method quite involved.
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Generalized Method-of-Moments (GMM): The simplest
estimation procedure of SV models is the Method-of-Moments.
The key advantage of GMM is that it does not require the
specification of the likelihood function, but only certain moment
conditions are needed.

Given a sample of size T , y, the GMM procedure requires the
construction of a vector g, whose elements will be the differences
between the unconditional expectations and the sample moments.

For the SV model there are three parameters we need to estimate,
namely θ =

(
γ, φ, σ2

η

)
, and a large number of moments to use.
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For example, we might define estimating function g with
components

1

T

∑
y2
t − E

(
y2
t

)
1

T

∑
y4
t − E

(
y4
t

)
1

T

∑
y2
t y2

t−1 − E
(
y2
t y2

t−1

)
...

1

T

∑
y2
t y2

t−τ − E
(
y2
t y2

t−τ

)
where the theoretical values of E (y2

t y2
t−τ ) , for τ ≥ 1, can be

found analytically.
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The objective function to be minimized is then

Q = gTWg

where W is a (τ + 2)× (τ + 2) positive definite, symmetric
weighting matrix.

The great advantage of the GMM method is simplicity; the main
disadvantage is that it is typically inefficient in small samples,
although GMM estimators are consistent and asymptotically
normal even when the residual errors are non-Gaussian.

Furthermore, GMM is asymptotically consistent if the observations
yt are stationary. When the persistence in the latent process, ht , is
high, i.e. φ is close to unity, as is usually the case in practice, the
GMM estimator works poorly.
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There are disadvantages:

I Estimates can be substantially biased especially for σ2
η, have

large mean squared errors (MSE) when there is high
persistence and low coefficient of variation

C .V . = Var (exp (ht)) / {E (exp (ht))}2 = exp
(
σ2

h

)
− 1.

I GMM parameter estimates are not invariant to
reparameterization

ψ = f (θ) then ψ̂ 6= f
(
θ̂
)

I GMM estimation does not deliver filtered or smoothed
estimates of ht
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Quasi-Maximum Likelihood (QML): The QML method is based
on the linearization of the SV model by squaring yt and taking
logarithms. Assuming that the errors εt ∼ N (0, 1) and denoting
wt = log y2

t , as has already been seen, the SV model can be
written as

wt = −1.2704 + ht + ξt ,

ht = γ + φht−1 + ηt ,

where ξt = log ε2t − E
(
log ε2t

)
, with σ2

ξ = Var (ξt) = π2/2.

This is a linear but non-Gaussian state-space model. The QML
approach treats the observation errors, ξt , as though they were
i.i.d N

(
0, π2/2

)
and apply the standard Kalman filter.
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The Kalman filter produces one-step-ahead forecasts of the
observations, wt , and the log-volatilities, ht , as well as filtered
estimates of the latter. Given a set of observations {y1, . . . , yT} ,
or equivalently

{
log y2

1 , . . . , log y2
T

}
, the recursions can also be

used to construct the Gaussian likelihood of the data via the
prediction error decomposition

If this Gaussian form of the likelihood is then maximized with
respect to the hyperparameters of the model, typically using
numerical procedures, it will yield QML estimates of the unknown
parameters. Before we proceed with describing the method in more
detail, we make one more simplifying transformation of the model,
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Assume that |φ| < 1, so that ht is stationary. Taking expectations
on both sides of the observation equation, we obtain

E (wt) = γ∗ = −1.2704 + µh = −1.2704 + γ/ (1− φ) .

Moreover, if we denote w∗
t = wt − γ∗ to be the new observations

centered around their unconditional mean and αt = ht − µh be the
mean-centered states, then the model can be rewritten as follows

w∗
t = αt + ξt ,

αt = φαt−1 + ηt .
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The latter state-space model does not explicitly contain the
constant term γ of the state-transition equation, and a consistent
estimator of γ∗ is given by the sample mean of wt , or equivalently
log y2

t , and is also the QML estimator of γ∗.

Therefore, by applying this last transformation on the SV model,
we have managed to “concentrate” the parameter γ out of the
likelihood; we can apply the Kalman filter to the model with the
mean centered observations, and obtain the QML estimates of
θ =

(
φ, σ2

η

)T
.

Once the estimates φ and σ2
η are available, the QML estimator of

γ will be given by γ = (1− φ)
(
1.2704 + 1

T

∑
log y2

t

)
.
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The Kalman filter recursions then compute the one-step-ahead
prediction, at|t−1, and the smoothed estimates, at|t , of the
unobserved states αt assuming that the observations sequentially
become available in the usual way. Initializing with

a0|0 = E (αt) = 0 P0|0 = Var (αt) = σ2
η/
(
1− φ2

)
,

the one-step-ahead prediction estimates of αt and their mean
square errors (MSEs) are respectively given by

at|t−1 = φat−1|t−1, Pt|t−1 = φ2Pt−1|t−1 + σ2
η, t = 1, . . . ,T ,

while the filtered estimates, at|t .
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The MSEs, Pt|t , are respectively given by

at|t = at|t−1 + Pt|t−1f
−1
t

(
w∗

t − at|t−1

)
Pt|t = Pt|t−1 − P2

t|t−1f
−1
t , t = 1, . . . ,T ,

where the terms w∗
t − at|t−1 are the innovations in predicting w∗

t

given past observations
{
w∗

t−1, . . . ,w
∗
1

}
and ft = Pt|t−1 + σ2

ξ are
the MSE’s of the one-step-ahead prediction estimates of w∗

t .

Due to non-Gaussianity, the filtered and smoothed estimators
at|t−1 and at|t are only minimum mean square linear estimators
(MMSLEs) of the unobserved variable αt , given the observations
up to time t − 1 and t; they are optimal in the class of linear
estimators.
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A Gaussian (quasi) log-likelihood can be constructed

lq (θ;w∗) = −T

2
log (2π)− 1

2

T∑
t=1

log ft −
1

2

T∑
t=1

(
w∗

t − at|t−1

)2
ft

.

The resulting QML estimators of θ are consistent with
asymptotically normal distribution.

The backward recursions produce the smoothed estimates at|T of
αt along with their MSE Pt|T

at|T = at|t + φPt|tP
−1
t+1|t

(
at+1|T − φat|t

)
Pt|T = Pt|t + φ2P2

t|tP
−2
t+1|t

(
Pt+1|T − Pt+1|t

)
, t = T − 1, . . . , 1.
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The QML procedure can be applied to the SV model when φ is set
equal to one and the log-volatilities are allowed to follow a random
walk. When φ = 1, the state-transition equation becomes

αt = αt−1 + ηt

and the linearized SV model becomes a random walk plus noise
model for w∗

t with the only unknown parameter being σ2
η.

The Kalman filter prediction and update equations and the
recursions need to be initialized with a diffuse prior for α1, by
setting P1|0 = κ, where κ is some large positive constant and a1|0
an arbitrary constant.
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QML estimation is not restricted only to the case when
εt ∼ N (0, 1), but with minor modifications can also be used to
estimate a SV model with εt ∼ tν .

As before, if |φ| < 1 and εt ∼ tν , let εt = ζtκ
−1/2
t , with νκt ∼ χ2

ν

independent of ζt ∼ N (0, 1), which results in wt = log y2
t , with

E (ξt) = 0 and

σ2
ξ = Var (ξt) = π2/2 + ψ ′ (ν/2) .

In addition, w∗
t is obtained from wt by subtracting the

unconditional mean γ∗, in which case it is given by
γ∗ = −1.2704− ψ (ν/2) + log (ν/2) + γ/ (1− φ) and thus the
state-space form of the model has the same form as above.
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The QML procedure is inefficient compared to ML, as it
approximates the density of a log

(
χ2

1

)
variable by a normal density.

A comparison of these densities (below) illustrates that this
approximation is rather inappropriate; the adequacy of the
approximation depends critically on the true parameter values

I For large values of σ2
η, the AR(1) process, ht , dominates ξt ,

the non-Gaussian error term in the observation equation, and
the normal approximation may be adequate and the QML
approach is close to optimal.

I However, as σ2
η decreases, the approximation worsens and for

small values of σ2
η, usually found in practice, the QML

estimates can be extremely biased and have high root mean
square error.
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Example: Simulated a sample of 1,000 values from a SV model
with parameters γ = 0, so that µh = γ/ (1− φ) = 0, φ = 0.9 and
σ2

η = 0.1. The size of the sample is typical for financial data, as
are the chosen parameter values.

A plot of the likelihood function over a range of values of φ and σ2
η

shows that it is rather flat. For this reason and to avoid
convergence difficulties usually encountered with some of the
numerical optimization procedures, we use stochastic optimization
(simulated annealing) algorithm to find an approximate maximum
of the quasi-likelihood function.
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Volatility Estimates
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Figure: Simulated underlying volatility process (thick grey line) and
estimated smoothed volatilities via the QML method (thin black line).
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Inliers: A drawback to the QML procedure worth noting is the
so-called inlier problems encountered by taking logarithms of very
small numbers. In particular, when the asset returns, yt , are close
to zero log y2

t is a large negative number and in the extreme case
where yt = 0 , log y2

t is not defined.

Instead of transforming to wt = log y2
t , it is possible to work with

the series

ωt = log
(
y2
t + δs2

)
− δs2

y2
t + δs2

,

where s2 is the sample variance of yt and δ is a small user-specified
constant.
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Bayesian Approaches to Inference

After we have collected a set of data, Y, which are assumed to
have come from a density p (·|θ), we can investigate the
distribution of the parameters θ given Y using Bayes’ Theorem. In
essence, given the data, we update our degree of belief about θ
and obtain a posterior distribution of the parameters, which is
denoted p (θ|Y) and is given by

p (θ|Y) =
p (Y|θ)π (θ)∫

Θ p (Y|θ)π (θ) dθ
∝ p (Y|θ)π (θ) ,

In the SV case, we will explore the posterior distribution using
Markov chain Monte Carlo (MCMC).
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The estimation of the SV model via MCMC considers the
hierarchical structure of conditional distributions.

Let

I θ =
(
γ, φ, σ2

η

)T
denote the vector of hyperparameters,

I h = (h1, . . . , hT )T denote the vector of log-volatilities

I y = (y1, . . . , yT )T the vector of observations,

then the hierarchy is specified by the sequence of three conditional
distributions.



Session 7: Volatility Modelling 77/ 165

I the distribution of the observations conditional on the
log-volatilities, p (y|h),

I the distribution of the log-volatilities conditional on the
hyperparameters, p (h|θ)

I the prior distribution of the hyperparameters, p (θ).

The joint posterior distribution of the log-volatilities and
hyperparameters is

p (h,θ|y) ∝ p (y|h) p (h|θ) p (θ) .
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Gibbs sampler for the SV model

1. Choose arbitrary starting values h(0), θ(0) and let i = 0.

2. Sample h(i+1) ∼ p
(
h|y,θ(i)

)
.

3. Sample θ(i+1) ∼ p
(
θ|y,h(i+1)

)
.

4. Set i = i + 1 and goto 1.
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Step (2) of the Gibbs algorithm is relatively simple to implement,
but sampling from

p
(
h|y,θ(i)

)
is not that straightforward.

Single-move algorithms circumvent this difficult part of the

procedure by decomposing further the density p
(
h|y,θ(i)

)
into

the conditionals
p
(
ht |h(i)

\t , y,θ
(i)
)

where
h

(i)
\t =

(
h

(i+1)
1 , . . . , h

(i+1)
t−1 , h

(i)
t+1, . . . , h

(i)
T

)
.
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Step 2 of the Gibbs Sampler algorithm becomes:

2a. For t = 1, . . . ,T , sample

h
(i+1)
t ∼ p

(
ht |h(i)

\t , y,θ
(i)
)

The common feature of all single-move algorithms is that they
exploit the Markovian structure of the log-volatilities process;

p
(
ht |h\t , y,θ

)
= p (ht |ht−1, ht+1, yt ,θ)

∝ p (yt |ht) p (ht+1|ht ,θ) p (ht |ht−1,θ) ,

where the second line is deduced from Bayes theorem.
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Rejection Metropolis-Hastings: An first approach to the
estimation of the SV model via MCMC was offered in the literature
using ideas from non-Gaussian and non-linear state-space
modeling. Consider the parameterization of the SV model:

yt =
√

htεt ,

log ht = γ + φ log ht−1 + ηt , t = 1, . . . ,T ,

where εt and ηt are contemporaneously and serially independent
random variables with distributions N (0, 1) and N

(
0, σ2

η

)
,

respectively.
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In the standard model, with |φ| < 1, the logarithm of the latent
volatilities follows a stationary, Gaussian AR(1) process, so that

log ht |ht−1,θ ∼ N
(
γ + φ log ht−1, σ

2
η

)
,

which implies that ht |ht−1,θ has a log-normal distribution
LN
(
γ + φ log ht−1, σ

2
η

)
and in particular,

p (ht |ht−1,θ) ∝
1

ht
exp

{
−(log ht − γ − φ log ht−1)

2

2σ2
η

}
.
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In addition, noting that yt |ht ∼ N (0, ht), it follows that

p
(
ht |h\t , y,θ

)
∝ 1

h
1/2
t

exp

{
− y2

t

2ht

}

× 1

ht
exp

{
−(lt+1 − γ − φlt)

2 + (lt − γ − φlt−1)
2

2σ2
η

}
.

where lt = log ht .



Session 7: Volatility Modelling 84/ 165

After some algebra it follows that

p
(
ht |h\t , y,θ

)
∝ 1

h
1/2
t

exp

{
− y2

t

2ht

}
× 1

ht
exp

{
−(lt −mt)

2

2σ2
∗

}
= f (ht) ,

where

mt =
γ (1− φ) + φ (lt+1 + lt−1)(

1 + φ2
) and σ2

∗ =
σ2

η

1 + φ2
.

This conditional cannot be sampled directly, but can be sampled
using rejection sampling.
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The idea is to place the rejection sampling method within an
independence M-H algorithm; this approach is based on a density
g and a constant c such that

p
(
x |h\t , y,θ

)
≤ cg (x)

but not necessarily for all x , so that g is a pseudo-dominating
density.

For each time t, proposals xt are generated from the density g ,
until one of this proposals is accepted with probability

min
{

1, p
(
xt |h(i)

\t , y,θ
)
/cg (xt)

}
.
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The accepted xt then enters an independence M-H accept-reject

step and we set h
(i+1)
t = xt with probability

min

1,
p
(
xt |h(i)

\t , y,θ
)

min
{

p
(
h

(i)
t |h

(i)
\t , y,θ

)
, cg

(
h

(i)
t

)}
p
(
h

(i)
t |h

(i)
\t , y,θ

)
min

{
p
(
xt |h(i)

\t , y,θ
)
, cg (xt)

}
 .

If xt is not accepted, then we set h
(i+1)
t = h

(i)
t .
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Thus, the problem is reduced to finding the pseudo-dominating
density g and choosing accordingly the constant c .

The posterior density of ht in can be seen as the product of two
densities,

I an improper inverse-gamma density, IG
(
−0.5, 0.5y2

t

)
,

I a log-normal density.

The log-normal part can be approximated by an inverse-gamma
density, IG (α, βt), with the same mean and variance; this
approximation amounts to setting

α =
1− 2 exp

(
σ2
∗
)

1− exp (σ2
∗)

and βt = (α− 1) exp
(
mt + 0.5σ2

∗
)
.
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The product of the two inverse-gamma densities, the improper one
and the approximating one, is also the density of an IG (ν, λt)
random variable, with ν = α+ 0.5 and λt = βt + 0.5y2

t .

The pseudo-dominating density g is given by

g (xt) ∝ x
−(α+0.5+1)
t exp

{
−βt + 0.5y2

t

xt

}
.
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This method has been regarded as inefficient, as the posterior
density p

(
ht |h\t , y,θ

)
can clearly be written as

p
(
ht |h\t , y,θ

)
∝ p (yt |ht) p (ht |ht−1, ht+1,θ) .

In essence, the initial method attempts to approximate the density

p (ht |ht−1, ht+1,θ) by p (yt |ht) .

However, in practice, the prior density

p (ht |ht−1, ht+1,θ)

dominates the likelihood, and therefore one should focus in
approximating p

(
ht |h\t , y,θ

)
by a density of the same form as

p (ht |ht−1, ht+1,θ).
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Consider the following parameterization of the SV model:

yt = exp(ht/2)εt ,

ht = µh + φ (ht−1 − µh) + ηt , t = 1, . . . ,T ,

where εt and ηt are as before. The log-volatilities have been
centered around their unconditional mean and

ht |ht−1,θ ∼ N
(
µh + φ (ht−1 − µh) , σ

2
η

)
while yt |ht ∼ N (0, exp (ht)). It follows that,
ht |ht−1, ht+1,θ ∼ N

(
mt , σ

2
∗
)
, where

mt = µh +
φ [(ht+1 − µh) + (ht−1 − µh)]

1 + φ2
and σ2

∗ =
σ2

η

1 + φ2
.
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Thus log p
(
ht |h\t , y,θ

)
is given by

log p(ht |−) = const + log p (ht |ht−1, ht+1,θ) + log p (yt |ht)

= const− (ht −mt)
2

2σ2
∗

− ht

2
− y2

t

2
exp (−ht)

' const− (ht −mt)
2

2σ2
∗

− ht

2

−y2
t

2
exp (−mt)

[
1− (ht −mt) +

(ht −mt)
2

2

]
= log g (ht) ,

say, where the third line comes from a second order Taylor
expansion of exp (−ht) about mt .
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In addition, the terms in log g can be combined and after some
algebra, it is easily seen that g (ht) ∝ fN

(
ht |µt , σ

2
t

)
, where

fN
(
x |α, β2

)
denotes the density of a Gaussian random variable

with mean α and variance β2, and where

µt =
σ2

t

σ2
∗
mt +

σ2
t

2

[
y2
t exp (−mt) (1 + mt)− 1

]
σ2

t =

[
1

σ2
∗

+
y2
t

2
exp (−mt)

]−1

.
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Rejection Sampling : The function exp (−ht) is convex and
hence, by considering the tangent line of exp (−ht) at the point
mt , where mt is given as before by (15), it follows that

exp (−ht) ≥ exp (−mt) (1 + mt − ht) .

Using the latter result

log p
(
ht |h\t , y,θ

)
≤ const− (ht −mt)

2

2σ2
∗

− ht

2

−y2
t

2
exp (−mt) (1 + mt − ht)

= log g (ht) .
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The terms in log g can be combined and thus
g (ht) ∝ fN

(
ht |µt , σ

2
∗
)
, where σ2

∗ is as previously, and µt is

µt = mt +
σ2
∗

2

[
y2
t exp (−mt)− 1

]
.

In this case the density fN
(
·|µt , σ

2
∗
)

does bound p
(
·|h\t , y,θ

)
and

so rejection sampling can be used.

In order to update the log-volatilities, for each time t, proposals xt

are generated from a N
(
µt , σ

2
∗
)

density until one of these is
accepted with probability

min

1,
p
(
xt |h(i)

\t , y,θ
)

fN (xt |µt , σ
2
∗)


we then set h

(i+1)
t = xt and proceed to update h

(i)
t+1 in the same

manner.
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Sampling θ: The Gibbs sampler algorithm is split into three parts:

3a Sample σ
2 (i+1)
η ∼ p

(
σ2

η|h(i+1), µ
(i)
h , φ(i)

)
.

3b Sample φ(i+1) ∼ p
(
φ|h(i+1), µ

(i)
h , σ

2 (i+1)
η

)
, under

the restriction |φ| < 1

3c Sample µ
(i+1)
h ∼ p

(
µh|h(i+1), φ(i+1), σ

2 (i+1)
η

)
.
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The likelihood function of the log-volatilities can be expressed as

p (h|θ) = p (h1|θ)
T−1∏
t=1

p (ht+1|ht ,θ)

=

(
1

2πσ2
η

)T
2 (

1− φ2
) 1

2 exp

{
− SSQh

2σeta2

}
.

where

SSQh = (h1 − µh)
2 (1− φ2

)
+

T−1∑
t=1

[(ht+1 − φht)− (1− φ)µh]
2
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Sampling σ2
η.

Under an inverse-gamma conjugate prior, σ2
η ∼ IG (ασ/2, βσ/2)

the posterior for the parameter σ2
η takes the form

p
(
σ2

η|h, µh, φ
)
∝

(
σ2

η

)−[1+(ασ+T )/2]
exp

{
−βσ + SSQh

2σ2
η

}
.

Therefore, in the Gibbs sampler for the SV model, the variance σ2
η

can be directly updated by drawing from an IG (νσ, λσ), where

νσ = (ασ + T )/2 λσ = (βσ + SSQh)/2.

Setting ασ = 5 and βσ = 0.05 yields prior mean of approximately
0.0167 .
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Sampling φ.
To respect the restriction of φ to the stationary region, a
transformed Beta prior is used

(φ+ 1) /2 ∼ Beta
(
αφ, βφ

)
The full conditional posterior for φ is

p
(
φ|h, µh, σ

2
η

)
∝ p (φ)

(
1− φ2

)1/2
exp

{
−

(h1 − µh)
2 (1− φ2

)
2σ2

η

}

× exp

{
−
∑T−1

t=1 [(ht+1 − µh)− φ (ht − µ)]2

2σ2
η

}
.
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This density is log-concave in φ and hence, the adaptive rejection
sampling procedure can be used. A simpler approach is to use the
independence M-H algorithm.

Expanding terms in the second exponent yields that the full

conditional is proportional to fN

(
·|µφ, σ

2
φ

)
, the density of a

Normal random variable with mean and variance respectively given
by

µφ =

∑T−1
t=1 (ht+1 − µh) (ht − µh)∑T−1

t=1 (ht − µh)
2

and σ2
φ =

σ2
η∑T−1

t=1 (ht − µh)
2
.
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The posterior density of φ is:

p
(
φ|h, µh, σ

2
η

)
∝ p (φ)

(
1− φ2

)1/2
exp

{
−

(h1 − µh)
2 (1− φ2

)
2σ2

η

}
×fN

(
φ|µφ, σ

2
φ

)
.

Within a M-H setting, we choose an initial value
∣∣∣φ(0)

∣∣∣ < 1. We

sample draws φ∗ ∼ fN and then provided |φ∗| < 1, the proposed φ∗
enters a MH accept-reject step.

Typical choices for the parameters αφ and βφ of the prior density
are αφ = 20 and βφ = 3/2 so that the prior mean for φ is
−1 + 2αφ/

(
αφ + βφ

)
' 0.8605.
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Sampling µh.
Under a non-informative prior distribution for µh, p (µh) ∝ 1, it is
easily seen that the posterior density satisfies

p
(
µh|h, φ, σ2

η

)
∝ exp

{
−SSQh

2σ2
η

}
.

After some algebra, it follows that the parameter µh can also be
directly updated in the Gibbs sampler, µh ∼ N

(
mh, s

2
h

)
, where

mh =
(1 + φ) h1 +

∑T−1
t=1 (ht+1 − φht)

(T − 1) (1− φ) + (1 + φ)

s2
h =

σ2
η[

(T − 1) (1− φ)2 +
(
1− φ2

)] .
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Notes:

I it is also possible to obtain multi-step-ahead forecasts of
future log-volatilities. Finally, with some further (non-trivial)
modifications the procedure can also be adapted to handle
fat-tailed distributions and correlated errors, as well as
multivariate SV models.

I the procedure is not well suited to the problem of obtaining
smoothed estimates of the log-volatilities as more data
become available.
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I if the persistence in the volatility is high, i.e. φ ' 1, and σ2
η is

small, the log-volatility process is highly correlated. As a

result, the draws h
(i)
t sampled from the full conditional

densities exhibit high levels of correlation for long lags and
consequently, there is little movement in the chain.

Thus, the single-move MCMC procedure converges slowly in this
case. In order to overcome this problem, another approach has
been proposed in the literature, which attempts to sample the
whole vector of the log-volatilities with a single draw from the
density p (h|y,θ).
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Multimove MCMC Samplers

Multimove MCMC samplers, based on the linear state-space
representation, have had a great impact on other approaches.

The multimove approach begins by write the SV model as

wt = log y2
t = ht + zt ,

ht = µh + φ (ht−1 − µh) + ηt , t = 1, . . . ,T .
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Instead of approximating the logχ2 distribution of zt = log ε2t with
a N

(
−1.2704, π2/2

)
, which is suboptimal and results in poor

sample properties, a better choice is to approximate the logχ2

distribution by a mixture of seven normals, so that

fzt (zt) '
7∑

j=1

qj fzt |st=j (zt |st = j) ,

where zt |st = j ∼ N
(
mj − 1.2704, υ2

j

)
, st is the indicator variable

at time t, and the qj , j = 1, . . . , 7 are the weights attached to each
component, so that p (st = j) = qj and

∑7
j=1 qj = 1. The

elements {qj ,mj , υ
2
j , j = 1, . . . , 7} are selected by matching the

first four moments of the logχ2 distribution to the approximating
mixture of normals.
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In addition, given the indicator variable at each time t, the
state-space model is Gaussian, that is

wt |st = j , ht ∼ N
(
ht + mj − 1.2704, υ2

j

)
.

Given the indicator variables, the model can be thought of as a
time-inhomogeneous, Gaussian state-space model, a standard
algorithm can be used to sample h1, . . . , hT at once from
p (h|w, s), where w =

(
log y2

1 , . . . , log y2
T

)
and s = (s1, . . . , sT ).

Therefore, the main idea of this approach is to augment further
the vector of parameters and log-volatilities, (θ,h), with the vector
s of indicator variables and construct a Gibbs sampler which will
produce samples from the density p (θ,h, s|w).
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The general form of the multimove Gibbs sampler for the SV
model is as follows:

1. Choose arbitrary starting values θ(0), h(0), s(0) and let i = 0.

2. Sample h(i+1) ∼ p
(
h|w, s(i),θ(i)

)
.

3. Sample s(i+1) ∼ p
(
s|w,h(i+1)

)
.

4. Sample θ(i+1) ∼ p
(
θ|h(i+1)

)
.

5. Set i = i + 1 and go to 1.
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Step 1. is best conducted via the simulation smoother. To sample
the vector s from its full conditional density, we sample each st
independently using rejection sampling;

p (s|w,h) =
T∏

t=1

p (st |wt , ht) ∝
T∏

t=1

p (wt |st , ht) p (st)

p (st = j |wt , ht) ∝ qj fN
(
wt |ht + mj − 1.2704, υ2

j

)
, j = 1, . . . ,K ,

where fN
(
·|a, b2

)
denotes the density of a normal random variable

with mean a and variance b2.
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Therefore, for each time t in the sample, we can draw a proposed
value s∗t = j , with probability qj , which is then accepted with

probability fN

(
wt |h(i+1)

t + mj − 1.2704, υ2
j

)
. Finally, to update

the parameters θ, exactly the same approach as with the
single-move Gibbs sampler can be used.

This procedure greatly reduces the correlation between successive
draws. The method has also been extended to handle fat-tailed
observation errors and leverage effect. However, this method
suffers from the inlier problem discussed above.
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Another multimove sampler for general non-Gaussian time series
models has also been proposed, where the main idea is, on any
given iteration, to fix a given number of randomly chosen
log-volatilities fixed and update the rest conditional on the
observations and the fixed volatilities.

I if ht−1 and ht+k+1 are two elements of the log-volatilities
vector that have been chosen to remain fixed, then the block

(ht , . . . , ht+k)

is updated by sampling from

p (ht , . . . , ht+k |yt , . . . , yt+k , ht−1, ht+k ,θ)
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Multivariate Stochastic Volatility Models

Multivariate modelling allows representation of the volatility
co-movements amongst financial time series.

I Interactive movement between markets, or sectors, or stocks
in a sector, or exchange rates is often observed.

I Volatilities of different series move together.

I The flow of new information (trading volume, quote arrivals,
dividend announcements, policy announcements) will affect
the volatility of all the assets in the market/sector.
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I Arbitrage pricing theory suggests indicates a relationship
between the expected return of a stock and the covariance of
the returns.

I Portfolio optimization theory and ‘value at risk’ theory, which
studies the extreme downside of a portfolio of assets, both
require knowledge of the joint distribution of the asset returns.
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Examples of Multivariate ARCH models:

I the diagonal vech model,

I the constant conditional correlation model,

I the factor-ARCH model,

I the BEKK model

I the latent factor ARCH model

Most of these models highly parameterized, with constraints on the
parameters needed to ensure symmetry and positivity are
complicated and hard to interpret. The dynamic conditional
correlation GARCH model, the flexible multivariate GARCH model
and the orthogonal GARCH also have potential.
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Far fewer multivariate models have been proposed in the stochastic
volatility literature. The main reason for this is that stochastic
volatility models are expressed in terms of normal log-volatilities,
which in turn are hard to be extended to a multivariate
counterpart.

I The most well known multivariate SV model overcomes this
difficulty by defining vectors of log-volatilities which interact
through a constant correlation structure.

I Another approach is to use factor structures which are more
flexible and allow for a large number of assets to be modelled
simultaneously.

I The multivariate random walk model has received significant
attention

I The Wishart distribution is also a commonly used model basis.
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Constant Correlation Model

This model does not allow the covariances between different time
series to evolve independently of the variances; it can be
considered as the stochastic volatility analogue to the constant
conditional correlation ARCH model.

For all t = 1, . . . ,T and for each i = 1, . . . ,N

yit = exp(hit/2)εit ,

hit = γi + φihi t−1 + ηit ,

εt = (ε1t , . . . , εN t)
T and ηt = (η1t , . . . , ηN t)

T are serially and
mutually independent, both normal distributed with zero means,
Var (ηt) = Ση.
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Var (εt) = Σε =


1 ρ12 · · · ρ1N

ρ12 1 ρ2N
...

...
. . .

...
ρ1N ρ2N 1


so that Σε is a correlation matrix, i.e.

∣∣ρij

∣∣ < 1.

Therefore, the model can be written as:

yt |ht ∼ N
(
0,H

1/2
t ΣεH

1/2
t

)
,

Ht =diag(exp (h1t) , . . . , exp (hN t)) and Σε is given above.
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The vector of log-volatilities ht = (h1t , . . . , hN t)
T follows a

vector-AR(1) (VAR(1)) process so that

ht = γ + Φht−1 + ηt ,

where γ = (γ1, . . . , γN)T, Φ =diag(φ1, . . . , φN) and
ηt ∼ N (0,Ση).

The matrix Φ is taken to be the identity matrix, and γ is equal to
the N-dimensional zero vector, so that the log-volatilities follow a
random walk and hence, the fact that volatility movements are
persistent is stressed.
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For i 6= j , the model has constant correlations as

Cov (yit , yjt |ht) = E
(
y2
ity

2
jt |ht

)
= ρij exp((hit + hjt)/2)

I It is thought that the assumption of constant correlations may
be empirically reasonable.

I The model can be written in a linear, non-Gaussian state
space form, and thus can be easily estimated by QML

Denoting wt =
(
log y2

1t , . . . , log y2
N t

)T
and by 1 the N × 1 vector

of ones,
wt = −1.2704× 1 + ht + ξt ,

where ξt =
(
log ε21t , . . . , log ε2N t

)T
+ 1.2704× 1 is a zero-mean

vector, serially independent vector process whose covariance matrix
is denoted Σξ.
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Since Φ is a diagonal matrix, the state vector, ht , and the
observation vector, wt , are linked together only through the
off-diagonal elements of the covariance matrices Ση and Σξ.

The linearized model resembles a Seemingly Unrelated Time Series
(SUTSE) model, where the N time series, w1t , . . . ,wN t , are
modelled together not because they interact with each other, but
because they are all subject to the same economic environment
and thus are contemporaneously correlated.

Furthermore, it can be shown that the covariance matrix, Σξ, of ξt

can be expressed in terms of Σε.
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Let cij denote the ij-th element of Σξ. Since for i = 1, . . . ,N,
ξit = log ε2it + 1.2704, the diagonal elements are all equal to
Var (ξit), so that cii = π2/2, while the off-diagonal elements are
given by

cij =
∞∑

n=1

(n − 1)!

n (1/2)n
ρ2n
ij , i 6= j

where (α)n = α (α+ 1) · · · (α+ n − 1).



Session 7: Volatility Modelling 125/ 165

Note: This transformation of the model incurs loss of information,
since the correlation coefficients ρij have been squared, all the
relevant information on their sign has been lost. Thus, if the
transformed observations are used to estimate the model, then we
can recover the information on the magnitude of the original
correlations ρij , but not their sign.

A final feature of the model is that it can incorporate common
factors and hence allow common trends and cycles in the volatility.
In a common factor model each of the N elements of a
multivariate time series are related to K ≤ N common factors via
a linear function.
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This model can be considered as a generalization of a SUTSE
model where the N elements have certain common components.
For the case where the log-volatilities follow a random walk, the
model can be written as a common factor model, as follows

wt = −1.2704× 1 + Bh∗t + h̄ + ξt

h∗t = h∗t−1 + η∗t .

wt and ξt are defined as before, B is an (N × K ) matrix of factor
loadings, h̄ is an N-dimensional vector, while the second term is a
K -dimensional random walk model with η∗t ∼ N

(
0,Σ∗

η

)
.
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Unless restrictions are placed on the elements βij of B and on the
vector h̄, the model above is not identifiable. The usual restrictions
are to set βij = 0 for j > i and Σ∗

η equal to the identity matrix,
while the first K elements of the vector h̄ are restricted to be zero
and the rest are unconstrained.

An appealing feature implied by these restrictions is that the
common factors h∗t are uncorrelated with each other and this
simplifies estimation and the theoretical properties of the model.
Conversely, the restrictions placed on the matrix B are displeasing,
in the sense that they imply that the first observation w1t depends
only on the first factor, w2t depends only on the first two factors
and only the last K observations, wk t , . . . ,wN t are related to all of
the common factors.



Session 7: Volatility Modelling 128/ 165

I Depending on the ordering for the N series in order to model
them, we will get different relations between the N
observations and the K factors; this is an unappealing feature.

I In the latter case once estimation of the model has been
completed, using an orthogonal matrix R to give a factor
rotation and a more useful interpretation to the factors.

I Finally, the idea of common factors can also be extended to
stationary models of the log-volatilities. For a stationary
model, we allow h∗t in to follow a stationary VAR(1) process
and this also removes the need to include h̄ in the observation
equation).
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Factor SV models

The basic advantage of factor models is that they reduce the
dimensionality of the parameter space; a factor model, with
unobserved latent ARCH factors has also been proposed.

Multivariate factor SV models resemble this model, in the sense
that the returns yt from N series are linear functions of K
unobserved latent factors, where each one is driven by a SV model.

The difference between the common factor model is that in this
case the common factors are incorporated for the untransformed
observations.
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The simplest factor model uses factors ft = (f1t , . . . , fK t)
T the

vector of K common factors. Then

yt = Bft + ωt ,

fit = exp (hit/2) εit ,

hit = µi + φi (hit−1 − µi ) + ηit , i = 1, . . . ,K .

In the factor SV model, the matrix B is a constant (N × K ) matrix
of factor loadings with K < N, the errors ωt ∼ N (0,Ω) and are
serially and mutually independent of all the other terms.

In the model K factors fit are introduced with each one modelled
as an independent SV process.
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Clearly, since ft and ωt are independent, zero mean processes, we
have E (yt) = 0 and

Var (yt |ht) = BHtB
T + Ω,

where
Ht = diag (exp (h1t) , . . . , exp (hK t)) .

MCMC methods can be used to estimate the model, as the QML
method is not effective in this case. However, the method has not
been implemented and another more complicated multivariate
factor SV model is usually preferred.
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The second factor SV model allows the errors ωt = (ω1t , . . . , ωN t)
to be driven by independent SV processes also. That is,

ωjt = exp (αjt/2) ejt ,

αjt = mj + δj (αjt−1 −mj) + ujt , j = 1, . . . ,N.

As before, the ejt are i.i.d N (0, 1) random variables with no serial
dependence and the ujt are i.i.d N(0, σ2

u j) serially and mutually
independent of the ejt . As usual we place the constraint |δj | < 1 to
ensure the stationarity of the log-volatility processes.
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The intuition behind this extension of the model is that the K
factors can account for the off-diagonal elements of the covariance
matrix of the returns but cannot account for all the marginal
persistence in the volatility.

Loosely speaking the volatility resulting from the fact that the N
series are subject to the same economic environment is explained
by the volatility of the common factors ft , while each of the
idiosyncratic errors, or series-specific shocks ωt account for the
volatility associated with a particular series.

The inclusion of SV effects in the errors ωt makes the model more
robust, in the sense that if an unusual return is observed for a
specific series, then this can be attributed to the idiosyncratic error
associated with that particular series.
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Identifiability: As with the common factors model the parameters
of the model are not identifiable unless constraints are placed on
the elements βij of the matrix B. There are two ways that this can
be done.

I set βii = 1 for i = 1, . . . ,K and βij = 0 for j > i .

I set βii = 1 for i = 1, . . . ,K , while

βi(i+1) = 0, i = 1, . . . ,K − 1

In this case the first series of returns depends in all but the
second common factor, the second series is influenced by all
the factors apart from the third and so on, while only the last
N − K + 1 series depend on all the factors.

In both cases, an optimal factor rotation can be used to give a
more meaningful interpretation to the factors.
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Denote by ht the vector (h1t , . . . , hKt)
T of log-volatilities of the

factors, while αt = (α1t , . . . , αN t)
T.

Since the errors εit (i = 1, . . . ,K )and ejt (j = 1, . . . ,N) are zero
mean, we have

E (ft) = E (ωt) = E (ft |ht) = E (ωt |αt) = 0.

Since the model for the returns is

yt = Bft + ωt ,

both the unconditional and conditional mean of yt are equal to the
zero vector.
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Since each of the elements of ft and ωt follow mutually
independent SV processes,(

ft
ωt

)∣∣∣∣ht ,αt ∼ NID

(
0,

[
Ht 0
0 Ωt

])
,

where

Ht = diag (exp (h1t) , . . . , exp (hKt))

Ωt = diag (exp (α1t) , . . . , exp (αN t))

where NID denotes normally and serially independently distributed.
Since ft is independent of ωt and both are normally distributed,

yt |ht ,ωt ∼ NID
(
0,BHtB

T + Ωt

)
.
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Expanding the matrix multiplications it follows that

Var (yit |ht ,ωt) = β2
i1 exp (h1t) + · · ·+ β2

iK exp (hK t) + exp (αit)

Cov (yit , yjt |ht ,ωt) = βi1βj1 exp (h1t) + · · ·+ βiKβjK exp (hK t) ,

The evolution of the covariances in the factor SV model depends
on the variances but in a very complicated way.

The unconditional covariance matrix of yt is deduced using the
properties of log-normal distributions.

From the properties of the AR processes, we know that

hit ∼ N
(
µi , σ

2
η i/
(
1− φ2

i

))
αjt ∼ N

(
mj , σ

2
u j/
(
1− δ2i

))
.
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E (fit) = E (ωjt) = 0 while

σ2
fi

= Var (fit) = exp

(
µi +

σ2
ηi

2
(
1− φ2

i

))

σ2
ωj

= Var

(
mj +

σ2
u j

2
(
1− δ2j

)) .
Therefore,

Var (yt) = BHBT + Ω

where H =diag
(
σ2

f1
, . . . , σ2

fK

)
and Ω = diag

(
σ2

ω1
, . . . , σ2

ωN

)
.
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More complicated dynamics could be introduced in the latent SV
processes. For example, the errors et in the idiosyncratic shocks
can be allowed to be correlated, so that et ∼ NID (0,Σe).

Alternatively, consider a factor SV model where the errors in the
latent AR processes of the log-volatilities ht are
contemporaneously correlated, so that

ht = µ+ Φ (ht−1 − µ) + ηt ,

where µ = (µ1, . . . , µK )T, Φ =diag(φ1, . . . , φK ) and
ηt ∼ NID (0,Ση).
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I The model can be extended in two ways: by incorporating
Student-t distributed errors ωt with stochastic volatility and
allowing the series of returns to have jumps.

I The estimation of this model is performed using MCMC
methods, but the number of factors is user-controlled and is
not estimated from the data. If the number of factors is too
large, then the MCMC behaves poorly and does not converge;
if the factors are too few, there are co-movements in the
estimated variances of the idiosyncratic errors and the
variances of one or more factors.
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Multivariate SV models based on Wishart processes

One of the first multivariate SV models exploits the conjugacy
between the Wishart distribution and the matrix variate beta
distribution and allows the variance of the observations to evolve
according to a matrix random walk.

An attractive feature of the model is that it leads to closed form
prediction and update equations that are generalizations of the
standard Kalman filter recursions.
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Stationarity: Related results have become popular in the
literature of matrix normal dynamic linear models, but the model
has never been applied in a SV setting for financial time series; the
conjugacy between the Wishart and the matrix variate beta
distribution cannot be sustained if we try to move away from the
matrix random walk formulation and impose stationarity to the
process generating the volatility matrix.

From a financial point of view imposing non-stationarity on the
volatility matrix is an unattractive assumption.
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Model Description: If U ∼ Bn (ν/2,m/2) with ν,m > n − 1 and
V = RTR ∼ Wn (ν + m,Σ) for some positive definite symmetric
(n × n) matrix Σ and for an upper-triangular matrix R with
positive diagonal elements, then

S = RTUR ∼ Wn (ν,Σ) .

Note also that the matrix beta distribution and its density in are
only defined for ν,m > n − 1 and is singular otherwise.

An extension to this definition of the matrix variate beta
distribution for positive integers m > 0, and the conjugacy result
still holds for ν > n − 1 and integer-valued m > 0. In particular,
the density of a singular Bn (ν/2, 1/2) -distributed random matrix
can be found.
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Denote by yt = (y1t , . . . , yNt) the vector of one-period returns from
N assets at time t and by Σt the (N × N) covariance matrix of yt .

In addition Tt denotes the Cholesky factor of Σt , i.e. the
upper-triangular matrix with positive diagonal elements such that
TT

t Tt = Σt . Then

yt = T−1
t εt , εt ∼ NID (0, IN)

Σt =
ν + 1

ν
TT

t−1QtTt−1

Qt ∼ BN

(
ν

2
,
1

2

)
, t = 1, . . . ,T .
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The random variables Qt are serially and mutually independent of
all other variables in the model and the initial condition

Σ0 ∼ WN

(
ν + 1, (ν + 1)−1 S−1

0

)
for some (N × N) matrix S0 (positive definite and symmetric).

Note that
yt |Σt ∼ NID

(
0,Σ−1

t

)
.

Using the conjugacy between the Wishart and matrix beta
distributions it follows that

TT
0 Q1T0 ∼ WN

(
ν, (ν + 1)−1 S−1

0

)
,

so that prior to observing y1, Σ1 ∼ WN

(
ν, ν−1S−1

0

)
with

E (Σ1) = S−1
0 .
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Once the first observation y1 becomes available, the posterior for

Σ1 is a Wishart WN

(
ν + 1, (ν + 1)−1 S−1

1

)
, with

S1 =
1

ν + 1

(
y1y

T
1 + νS0

)
with

E (Σ1|y1) = S−1
1 .

This posterior distribution of Σ1 suggests a prior WN

(
ν, ν−1S−1

1

)
distribution for Σ2, so that

E (Σ2|y1) = S−1
1 = E (Σ1|y1)

.
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The filtered distribution for Σ2 has the same form with that of Σ1;
an induction argument shows that at each time t, the prior for Σt

is a WN

(
ν, ν−1S−1

t−1

)
distribution, while the posterior is

WN

(
ν + 1, (ν + 1)−1 S−1

t

)
, where

St =
(
yty

T
t + νSt−1

)
/ (ν + 1) .

This filtering algorithm delivers the one-step-ahead prediction
distributions for yt and hence the estimation of the model by
maximum likelihood is is principle straightforward.
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For a more general model denote by Σt the (N × N) covariance
matrix of the returns at time t. We also write Σt = TT

t Tt for the
Cholesky decomposition of Σt .

Then, the new Wishart model sets for t = 1, . . . ,T

yt = TT
t εt , εt ∼ NID (0, IN)

so that yt |Σt ∼ N (0,Σt) and hence the density of the returns at
time t given the covariance structure is

p (yt |Σt) =
1

(2π)
N
2 det (Σt)

1
2

exp

{
−1

2
yT
t Σ−1

t yt

}
.
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The evolution of the covariance matrices Σt is specified through
one-step-ahead prediction densities, specifically, the density of the
inverse of the current covariance structure Σt conditional on Σt−1.

In particular,
Σ−1

t |Σt−1 ∼ WN (ν,St−1) ,

where ν ≥ N. To define the scale matrix St−1 of the Wishart
distribution, we introduce a positive definite symmetric (N × N)
parameter matrix A, with Cholesky factor R, i.e. A = RTR and a
scalar parameter d .
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Then, for t = 0, . . . ,T − 1, St is defined as follows

St =
1

ν
RT
(
Σ−1

t

)d
R,

where we assume a known initial condition Σ0 > 0 for the
covariance matrix. Thus,

Σ−1
t |Σt−1 ∼ WN

(
ν,

1

ν
RT
(
Σ−1

t−1

)d
R

)
and hence the conditional density of Σ−1

t is available in
straightforward form. The latter distribution defines the evolution
of the covariance matrices.
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The time-variation of the covariances can be expressed in terms of
Σt . Since Σ−1

t |Σt−1 is WN (ν,St−1)-distributed, it follows that

Σt |Σt−1 ∼ IWN

(
ν + N + 1,S−1

t−1

)
≡ IWN

(
ν + N + 1, ν (R)−1 (Σt−1)

d
(
RT
)−1

)
.

Using the properties of the Wishart/inverse Wishart distributions

E
(
Σ−1

t |Σt−1

)
= νSt−1 = RT

(
Σ−1

t−1

)d
R and

E (Σt |Σt−1) =
1

ν − N − 1
S−1

t−1.
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Hyperparameters:

I the elements of A−1 determine the dependence of the current
variances and covariances of the returns depend on the
previous periods corresponding values.

I the scalar d defines the strength of the relationship between
the current values of the volatilities and covariances of the
assets and those in the previous period, like a persistence
parameter.
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A value of d close to zero implies small persistence in the
covariance structure; if d = 0,

E (Σt |Σt−1) =
ν

ν − N − 1

(
RTR

)−1
=

ν

ν − N − 1
A−1

E
(
Σ−1

t |Σt−1

)
= A.

that is, the conditional expectation of the current covariance
structure does not depend on the previous period.

The only values of d that result in the process generating the
conditional covariance matrix being stationary indeed lie in the
interval (−1, 1).
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The Wishart Autoregressive process

The idea underlying the WAR(1) processes relies on the fact that if
a (p × n) matrix X is formed by setting its columns to be n ≥ p
random draws from a multivariate N (0,Σ) distribution, where the
(p × p) matrix Σ > 0, then the random variable

XXT ∼ Wp (n,Σ)

To introduce intertemporal dependence between the covariance
matrices formed in this way, the columns of the matrix X are
presumed to be observations from a latent Gaussian VAR(1)
process.
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As before let Σt be the covariance structure of the returns-vector
yt from N assets. Consider now, ν > N − 1 identical,
N-dimensional, Gaussian VAR(1) processes x1t , . . . , xνt , where
each xit (i = 1, . . . , ν) is generated for t = 1, . . . ,T from

xit = Φxit−1 + ηit , ηit ∼ NID (0,Ση) ,

where Φ is a (N × N) matrix.

The VAR(1) process is stationary if and only if all the eigenvalues
λi (i = 1, . . . ,N ) of the matrix Φ lie inside the unit circle; the ν
VAR(1) processes x1t , . . . , xνt are stationary, and the unconditional
distribution of all of the xit (i = 1, . . . , ν) is multivariate normal.
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The unconditional mean of each xit is the zero vector while the
unconditional variance Var (xit) = S is given by

S = ΦSΦT + Ση.

Applying the vec (·) operator on both sides, it is seen that
vec (S) = (IN2 −Φ⊗Φ) vec (Ση). In short, the VAR(1) processes
x1t , . . . , xνt are i.i.d. N (0,S) -distributed variables.
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The ν processes can be represented as a matrix normal linear model

Xt = ΦXt−1 + Ht ,

where the (N × ν) matrices Xt and Ht are defined as

Xt = [x1t , . . . , xνt ]

Ht = [η1t , . . . ,ηνt ]

Since the vector ηit (i = 1, . . . , ν) are i.i.d N (0,Ση) we have

Ht ∼ NN,ν (0,Ση ⊗ Iν) .

Most importantly, using the unconditional distributions of the ν
VAR(1) processes, we also have that

Xt ∼ NN,ν (0,S⊗ Iν) .
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Therefore if
Σt = XtX

T
t t = 1, . . . ,T

then Σt > 0 with probability one and the unconditional
distribution of the covariance matrix at each time t is

Σt ∼ WN (ν,S) t = 1, . . . ,T

and so the unconditional density is

p (Σt) =
1

2
νN
2 ΓN

(
ν
2

) det (Σt)
(ν−N−1)

2

det (S)
ν
2

exp

{
−1

2
tr
(
S−1Σt

)}
.

Moreover, using the properties of the Wishart distribution,
E (Σt) = νS.
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The distribution of Σt conditional on Σt−1 is computed by
considering the conditional distribution of the latent VAR(1)
processes contained in Xt conditional on Xt−1.

Since Ht ∼ NN,ν (0,Ση ⊗ Iν) using the dynamic linear model
representation,

Xt |Xt−1 ∼ NN,ν (ΦXt−1,Ση ⊗ Iν) .

We have that the distribution of Σt conditional on Xt−1 is a
non-central Wishart distribution

Σt |Xt−1 ∼ WN

(
ν,Ση,Σ−1

η ΦXt−1X
T
t−1Φ

T
)
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The conditional distribution of Σt depends on Xt−1 only through
the product

Xt−1X
T
t−1 = Σt−1,

which implies that the process is Markov. That is, the current
covariance matrix Σt depends only on the previous period
covariance matrix Σt−1 and not on the latent VAR(1) processes
contained in Xt−1.
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In particular, the conditional density of Σt is given by

p (Σt |Σt−1) =
1

2
νN
2 ΓN

(
ν
2

) det (Σt)
(ν−N−1)

2

det (Ση)
ν
2

×

exp

{
−1

2
tr
[
Σ−1

η

(
Σt + ΦΣt−1ΦT

)]}
×

0F1

(
ν

2
;
1

4
Σ−1

η ΦΣt−1ΦTΣ−1
η Σt

)
.

where 0F1 is the hypergeometric function of matrix argument. It
follows that

E (Σt |Σt−1) = νΣη + ΦΣt−1ΦT.



Session 7: Volatility Modelling 162/ 165

The fact that the WAR(1) process is Markov is important because
it implies that the underlying VAR(1) processes can be ignored,
and define the process generating the covariance structures
through the unconditional and conditional distributions of Σt , as
in the previous model. That is, we may specify

Σt |Σt−1 ∼ WN

(
ν,Ση,Σ−1

η ΦΣt−1ΦT
)

with

Σt ∼ WN (ν,S) , where S = Ση + ΦSΦT.

This allows us also to consider non-integer degrees of freedom
ν > N − 1, since both the Wishart and the non-central Wishart
distributions can be defined for any ν > N − 1.

In this case the WAR(1) process which generates the covariance
structures loses its interpretation in terms of the VAR(1) processes.
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The returns yt can be made to depend on the covariance Σt

generated by the WAR(1) process in the following ways

I set
yt |Σt ∼ N (0,Σt) .

I allow the returns to depend on the inverse Σ−1
t , that is

yt |Σt ∼ N
(
0,Σ−1

t

)
.
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Since the unconditional distribution of Σt is WN (ν,S) it follows,
using the relation between the Wishart and the inverse Wishart
distributions that

Σ−1
t ∼ IWN

(
ν + N + 1,S−1

)
Therefore, since

yt |Σt ∼ N
(
0,Σ−1

t

)
and, marginally

Σ−1
t ∼ IWN

(
ν + N + 1,S−1

)
it follows that the marginal distribution of yt is a multivariate
t-distribution, denoted

tp
(
ν − N + 1, 1, 0,S−1

)
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This latter result is interesting from a modelling point of view; it is
known that the distribution of the returns yt has fatter tails than
the normal distribution and that the kurtosis arising by accounting
for heteroscedasticity only cannot account for all of the excess
kurtosis.

This is the reason that most researchers consider extending the
standard SV model by allowing the observation errors to have
fat-tailed distributions. Recently, there have been attempts to
construct stationary time series which account for
heteroscedasticity and have specified marginal distributions with
heavy tails. Therefore, it is possible that using the above
distribution for the returns vector, we might be able to get a better
fit to actual financial returns data.
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