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Long Memory

Persistence Process {X;} with acvs {~,}
@ exhibits long-memory if the acvs is absolutely divergent

Z Vil = o0
k
@ exhibits long-range dependence if, Va > 0
—k
a
lim — =0
k—oo Yk
that is, the acf is slowly decaying.
@ in practice, diagnosed by observing large autocorrelation at
high lags, spectral power near frequency zero.
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Constructing Persistent Processes
Let {W;} be an i.i.d. Gaussian sequence with variance 1. Let
5 e (~1/2,1)2).

@ write

- F(k+d)
1-B) = —8)(—=B)¥ =
@ Set Xt = (1 - B)_(S Wt
@ § =0 gives i.i.d. sequence; § = 1 gives random walk.

e —1/2 < § < 1/2 gives fractional white noise
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Stationarity This fractional differencing yields a process that is
e stationary if 6 < 1/2
e long-memory if 0 < § < 1/2.
e long-range dependent if —1/2 < § < 1/2.

For k large,
1

Tk ™~ G125
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Seasonal Persistence Similar construction: replace {cx} sequence
by {gk} such that, for some )¢ € (0,1/2),

Xe = (1 — 2cos(2mAo)B + B?) W,

Recursion for {gx} given by g1 = 0,80 = 1 and for k > 0

2 260+ k-1
8k = (k—|—1> (5 + k) COS(27T)\0) — <k—|—1> 8k—1

but no simple explicit form.

{gk} are coefficients of the Gegenbauer polynomials (see Gray,
Zhang, Woodward (1989), Lapsa(1997)).
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This procedure yields a process {X;} that has persistence
associated with the frequency )\, and is stationary

e if § <1/2 when \g # 0, or
e if 6 <1/4 when \g =0
SDF has relatively straightforward form

1

S(f) = (2]cos(27F) — cos(2m o))

with
1 1

S(f) — .
) = R In@mr)) [2nf — 2500

f— X
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ACV/ACEF less straightforward

r1-20 . _
oxV = \/5?21/2+2)5 {sin(2mAg)}1/27%
[Pia_;}éz(cos(2on)) + (—l)kag__ljéz(— cos(2m o))

where P}/(x) is the associated Legendre function of the first kind.

A recursion formula for P/(x) gives the acvs to arbitrary lag.

(v —p+ )P (x) = (v + 1)PI(x) — (v + 1) P,_1(x)
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Gegenbauer Models Characteristic singularity (pole) in the
spectrum at Ag.
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Example: \g =0.14, § = 0.4

Data ACF
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Theoretical ACF

ACF

e
=

0.5

0.0

-0.5

-1.0

‘

|

|

}H}H}H}H}H}H}

David A. Stephens

Statistical Inference and Methods




Long Memory

Session 4: Multiple Time Series

Periodogram
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Periodogram and SDF
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Cointegration

Cointegration can be used to analyze co-movements in raw series
(asset prices, exchange rates or yields).

The modelling strategy allows the detection of stable or stationary
long-run relationships between non-stationary variables.

This allows the underlying relationships between the series to be
discovered, and perhaps may allow forecasting.
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The components of K—vector X; are said to be cointegrated of
order (d, b), denoted X; ~ Cl(d, b) if

(a) the components of X; are /(d) (stationary after d-times
differencing),

(b) there exists a linear combination of X;, Z; say, where
Zi=a'Xy, a#0

such that Z; ~ I(b) for some 0 < b < d. « is termed the
cointegrating vector.
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Two-Step Regression Strategy: Consider, for illustration,
Yt7Xt - ()(1_—]_7 e ,XtK)T ~ /(1)

1. Form the regression model
Ye =1 Xe1 + ...+ axXek + z:

with cointegrating vector

a = (1, -, ... ,aK)T
and estimate the parameters in the model (using
OLS/maximum likelihood)

o Engle/Granger demonstrate that the resulting estimators are
consistent.

o Under cointegration, residuals 2; should be /(0); this can be
tested using Dickey-Fuller procedures.
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2. If 2t ~ 1(0) is acceptable (the unit root hypothesis is rejected)
then an Error Correction Model (ECM) is specified of the
form (for K =1)

I L

BY: = to+miZa+ Y 1BXe i+ 1yBYe+ew
i=1 =1

| L
BX: = &o+ 7221+ Z £1;BY:—i + Z EoBYi—1 + €t
=1 =1

Again, these models can be estimated using standard
OLS/ML techniques.
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The ECM in the first equation states that changes in the series Y;
are explained by

@ the error in the long-run equilibrium from previous time point
(coefficient v;),

@ lagged changes in the X; series (coefficients 1),

o their own history (coefficients 1,).

~, determines the rate of re-adjustment; should have

A1 < 0.
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@ Model orders | and L need to be selected; typically start with
I, L large, and drop variables according to t-statistics, or using
model selection criteria

@ Can extend to systems of cointegrated variables
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Vector Autoregression
Univariate methods of time series analysis can be extended to
study parallel series.
Data may comprise

@ stocks in a sector
@ indices

@ exchange rates

all which may exhibit evolution in time in some dependent fashion.

One extension is the vector autoregression (VAR)
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A Simple VAR structure Suppose that Y; = (Yi1,..., Yig)T is a

d-dimensional time series process. A suitable model for Y, takes
the form

p
Y: =X+ Z DYkt e
i=k
where
@ X.[3 is a deterministic component

o ®, is a d x d matrix determining the dependence at lag
k=1,2,...,p.

@ €; is zero mean, i.i.d. vector process with

Elerel] =X
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@ The resulting process is similar to the univariate AR(p), and is
denoted the VAR(p) model.

o Usually
€t ~ N(O, Z)
is a suitable assumption. In this case, the resulting process is
a multivariate Gaussian process.

@ Estimation of the model can proceed using the usual
likelihood methods.

@ Restrictions on the model are required to preserve stationarity.
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Vector Cointegration/Error Correction Models
The ECM model of the previous section can be extended to cover

the case of vectors of cointegrated variables.

A d x 1 vector process Y; is said to be cointegrated if at least one
non-zero d x 1 vector 3; exists such that

g
is (trend) stationary.
If r such linearly independent vectors 34,...,3, exist, then Y; is
cointegrated with rank r, with
18 — (ﬁlw"?ﬂr)

the cointegrating matrix.
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VECM:
p—1
BY:=p+XcB+®Yep+ ) TuBYe i +e
i=1
where
"]
Fk:—(l—q)l—...—q),') i:].,...,p—l
o
P=—(1-®;—...— )

with all matrices d x d.
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