MATLAB FOR STATISTICS

DAvID A STEPHENS

March 4, 2004

OWith acknowledgements to Dr Rob Beardmore, Department of Mathematics.

1 INTRODUCTION TO MATLAB
1.1 THE MATLAB ENVIRONMENT

To make a directory into which you should put your Matlab work, type

mkdir MyMatlabDirectory
cd MyMatlabDirectory

Typing
1s
or
dir
lists the files available in the current directory. Typing
cd
returns the current directory. Typing
quit

closes the Matlab window and finishes the session.

1.2 BASIC COMMANDS

Matlab views most objects as vectors, even functions are generally viewed in the same way as vectors!
For example, the following Matlab code plots the sin function

x = 0:pi/100:2xpi;
y = sin(x);
plot(x,y);

xlabel('x = 0:\pi’);
ylabel('Sine of %');
title ('Plot of the Sine Function’,’FontSize’,12);

UL W -

Having entered these commands (although not the numbers), type
whos

followed by enter. This shows information regarding the variables that are kept for later use by Matlab.

Now type
X

followed by enter. This displays the elements of the vector x, although they disappear from the screen

rather quickly; this is because x is a row vector. So now type
/
X

and this displays the vector x in a column format.
To explain how the vector x is defined, consider again the Matlab expression
x = 0:pi/100:2xpi;

This says that x is defined to be the vector which has 0 in its first element, /100 in its second, 27/100
in its third, and so on, until you reach 27 in the final element of x. So, the command

MATLAB FOR STATISTICS: Page 1

z = 0:0.5:10;

defines the vector z = [0, %, 1, 1%, 2, 2%, 3, ..., 10]. You can manipulate vectors just as you would numbers,
so type

w = sin(z);

This defines the vector
. S S PN S NP S :
w = [sin(0), 81n(§), sin(1), 81n(1§), sin(2), 81n(2§), sin(3), ..., sin(10)].

Now type
plot(x,sin(x),’-k',z,sin(z),’xxr);

This is a multiple plot showing the original sine curve using a black line and the new dataset

{(2i,sin(2;))}, where z; is an element of the vector z. The vector z differs from the set Z = {0, 3, ..., 10}

as the elements of the set Z are in no particular order. In terms of notation, either square or round
brackets are used to denote vectors, whereas curly braces are used for sets.

Another way of defining a vector is to use square brackets and write, for instance,

u=[-120120];

1.3 MORE ON PLOTTING FUNCTIONS

Another method for plotting functions is to use the
ezplot

command. If you type
help ezplot

you will see some examples of how to use this command. For instance,
ezplot ('sin(x)’, [0,2*pil);

does the same job as the set of commands we issued above

1.4 IN-BUILT FUNCTIONS

Matlab has the usual array of mathematical operations and elementary functions and their inverses
such as

exp, cos, sin, In, ...;

type
help elfun;
to find out about these.

MATLAB FOR STATISTICS: Page 2

1.5 MATRICES AND VECTORS

You have seen in your first-year linear algebra course that matrices are objects that act on vectors via
a multiplication operation that is written

M x,
where M is a matrix and x is a vector. In the case of 2 x 2 matrices, this is defined by
ar+by | | a b x|
{cx—i—dy]_{c d] {y]_MX‘
In order to define matrices in Matlab, we use an extension of the vector notation. Thus, to define

the matrix
11
=0 1]

in Matlab, enter
M= [[1 1] [0 11Y
The apostrophe is an operator which takes a column vector and returns a row vector, and vice-versa.

Thus, [1 1]’ = {i] and {1

/
1] = [1 1]. This operation is called the vector transpose, and its

mathematical symbol is a superscript 7.

We can operate on the matrix M directly, for instance typing
M2

returns the matrix

It is also possible to apply some elementary mathematical functions to matrices, for instance you
can evaluate the matrix exponential

which returns

91783 2.1783
expn(M) = | 0 o g3 |-

You should also evaluate
Logm(M), sqrtm(M),
noting that

expm(logm(M)) =M and sqrtm(M) * sqrtm(M) = M.

MATLAB FOR STATISTICS: Page 3

It is actually possible to apply the elementary mathematical operations in a pointwise sense, which
simply means that the function is applied to each of the elements in turn, viz:

_ [2.7183 27183 |

exp(M) =1 1 0000 27183 |

and analogous commands work for other functions too. Matlab calls these operations array operations
as distinct from the mathematical or algebraic operations that we can perform on matrices. In this
context, array is a synonym for the term pointwise which we shall discuss in due course.

The command to obtain the determinant of a matrix M is
det(M),
and to multiply two matrices together one uses the asterisk notation
A xB.
Remark 1.1 One can also enter matrices using a command like
M=[11;0 1],

use whichever one you prefer.

1.6 LINEAR EQUATIONS

Let us now briefly discuss the solution of a linear system of equations. These are equations can be
written in the form

a11T1 + a12x2 + ... + a1y
(211 + a22x2 + ... + G2, Ty,

11 + Ap2Xo + ... + Qpp Ty

aj; aiz2 ... Qinp X1 bl
a1 ag2 ... QA9n X9 b2

pu— pu— 5
Apl Ap2 ... Qpp Tn by,

which, using a single matrix-vector multiplication can be written in the form
Az = 0. (1.1)

In order to find the solution of this equation, which is known to exist and be unique if det(A) # 0,
then we might think it reasonable to form the inverse matrix, B, of A:

AB =1, (1.2)
and then set
y = Bb.

It then follows that Ay = ABb=b.

MATLAB FOR STATISTICS: Page 4

This procedure will work and can be done in Matlab using the command
B = inv(A).

However, you may realise that equation (1.2), which is a single matrix equation, represents n vector
equations of the form (1.1). This means that we are doing far more work than is necessary to solve the
original problem (1.1).

For this reason, in order to solve (1.1) one should actually use the

slash

command. This is written using a backslash, \, so the actual Matlab command you should use is

y = A\b.
Example 1.1 In Matlab, enter the commands

A=1[[123] [234] [456]T
(or A=1[1 2 3;2 3 4; 4 5 6])
b=1[139]

Then type y = A\b, this should give an approximate solution of the equation Ax = b, which is written
i terms of coordinates as

r+2y+3z2 = 1,
204+ 3y +4z = 3,
4 +5y+62 = 9.

It actually returns a warning that the matriz 4 is singular, which means that it has no inverse. If you
now type

det(A)

you will see why.
Now type

A(1,1) = 2;
det (4)

and this returns the value —2. Now, typing
z = A\ b;

returns the vector [1 7 -5]'. And

A *z

returns the vector b, as expected.

1.7 THE DOT AND COLON OPERATORS

Example 1.2 In order to evaluate the integral

erf(z):/ e dx
0

MATLAB FOR STATISTICS: Page 5

in Matlab, one uses the Matlab functions quad and quadl.
If you type help quad then you should get help on numerical integration, however the command

quad(exp(-z°2)',0,2)

will not evaluate the integral

2
/ exp(—2?)dz.
0

In order to evaluate this integral it is necessary to put a “point” in the previous command:
quad(ezp(-z.2)',0,2)

which will work!

Why is this?

The reason is that the multiplication operator for matrices is the asterisk *, and to denote an
operation that works pointwise, we use a point in the notation. Thus, due to the rules of matrix-vector
multiplication, the command

[123]%[231]
makes no sense, whereas in Matlab the pointwise command
[123].%x[231]=[26 3]

does make sense.
This reasoning also applies to the power operator ~ which operates on matrices, so that for any
vector or matrix,

x.72
represents the pointwise product of x with itself:

[123].2=1[149].

Therefore, for any given vector x, the syntax
exp(x."2)

forms the pointwise square of x, which is then exponentiated pointwise, whereas
exp(x~2)

makes no sense because the square of a vector is not defined.
We shall see more of this in the next section where we define functions in Matlab.

The colon operator is fundamental to the way Matlab works, but its use will only become clear as
you become more experienced in using the package. Suffice to say, for now at least, that the colon is a
way of obtaining a subset of a vector or matrix. For instance, if we define the vector

z = [1:3:40]
so that

z=1[14710 13 16 19 22 25 28 31 34 37 40|,

MATLAB FOR STATISTICS: Page 6

then
z(2:5) =[47 10 13],
and
z(3:8) =[7 10 13 16 19 22].

These examples also show us that to obtain elements of arrays, matrices and vectors, we must use
parentheses (round brackets). So that if we issue the command

A= [[12] [34]7

then
A(L,1)=1,A(1,2) =2, A(2,1) =3, A(2,2) = 4.

Now, we can also use the colon operator in this context to extract rows and columns from the matrix
thus.

A(1,:) =11 2]
and

AC:,1) = [13)

and so on. Using the same logic,

2 MATLAB FUNCTIONS
2.1 M FILES

“M files” are the way in which we record sequences of Matlab operations that we want to perform
several times. In order to create an M-file, go to the menu and choose the option

file\New\M-file
which will bring up a new window. In the window type
% This is an mfile.

Now execute the menu command

file\Save
and at the prompt type
test.m
Return to the command window and type
help test
and you should see the message. Now, in the m-file type the commands

A= [[12] [34]1]
inv(A)
Axinv(A)

and save the mfile via the menu command file\Save
Go to the Matlab command window and type test

You will now see a 2 X 2 matrix, its inverse and an identity matrix.

MATLAB FOR STATISTICS: Page 7

2.2 PASSING PARAMETERS
In order to make the m-file more flexible, we can pass parameters into it and define a matlab function.
So, go to the top line of the file test.m and add the line
function test(a)
and alter the file so that it now reads

function test(a)
A=1[12; 3 a]
inv(A)

Axinv (A)

Back in the Matlab command window, typing test will force an error message, but entering
function test(1)
or
function test(2.4)

will return a matrix and its inverse.

2.3 RETURNING VARIABLES
Suppose that we want to return the determinant of the matrix which we might like to use later on in
our work. We then change the first line of test.m to read
function d = test(a)
and by adding the last line
d = det(d)
to the m-file, we can return the determinant. So, go to the command window and type
d = test(10);
and then type
whos

and you will see that a variable d has been defined.

2.4 FOR LOOPS

If you want to repeat a particular set of commands several times, and you know in advance how many
times to repeat them, then you should use a for loop. These are used as per the following example
which defines a particular matrix A:

n = 5;
for i = 1:n,
for j = 1:n,
A(i,j) = 1/(i+j-1);
end
end

MATLAB FOR STATISTICS: Page 8

2.5 IF STATEMENTS

Sometimes it is possible to avoid loops and if statements using Matlab’s wvectorisation properties. By
way of an example, take the following code.

n = 10;
for i = 1:n,
r = rand;
if (r>0.5),
v(i) = 2;
elseif (r <= 0.5)
v(i) = 0.5;
end
end

This codes defines a random vector v of length 10 by creating a sequence of random numbers denoted by
r, and the vector v satisfies v(i) = 2 if 1/2 < r(i) < 1andv(i) = 1/2 if 0 < r(i) < 1/2.

In order to form the logical expression evaluated in an if statement, the logical operators
and, or,not, xor,eq,ne, 1t, gt, le, ge
will be useful. Type help followed by one of these commands to find out what they do.

A more succinct way of achieving this is through the following commands which avoids the use of
loops and of if statements:

n = 10;
r = rand(1,n);
v = 2%(r(:)> 0.5) + (r(:)< 0.5)*0.5;

You should note from this that the Matlab statements
r =rand(1,n); T=1r(:) > 0.5

define a vector T which is either zero or one in each position according to the following rule: T(i) = 1
if r(i) > 0.5 and T(i)=0 otherwise.

When you get used to it, it is always more desirable from an efficiency point of view to write for
loops and if statements as operations on vectors, just as shown in the above example. From the point
of view of saving memory, it can be beneficial to use for-type loops as these do not necessarily require
the memory allocation to be done in advance in the way vectors do.

2.6 WHILE STATEMENTS

While statements provide a way of effecting a loop when you do not know in advance how many iterations
of a loop will be needed to effect a particular operation, and the way a loop terminates is given by a
logical expression (that is, an expression which evaluates to zero or one representing false or true). One
can think of a for loop as a special case of a while statement.

Let us consider an example.

error = 1;

tolerance = 1le-5;

x = 0.5;

while (error > tolerance)

MATLAB FOR STATISTICS: Page 9

X = cos(x);
error = abs(x-X);
x = X;

end

This piece of code takes z = 1/2 as an inital guess to find a solution of the equation
cos(z) = .

The iteration is obtained from the rule x,1; = cos(x,) and the decision to stop the iteration procedure
which accepts x, as being close enough to a solution is when

|Zp+1 — x| < tolerance.

2.7 FUNCTION M-FILES WITH FUNCTIONS AS PARAMETERS

In order to create a function in Matlab, one uses an extra line at the top of the m-file, for instance the
following m-file

function x = double(y)
X = 2%y;
return
is a simple function to double a given number. Note the syntax used.

The function

function [x,y] = PolarToCartesian(r,theta)
x = r cos(theta);
y = r sin(theta);
return
converts between polar and Cartesian coordinates. Notice this time that the function returns a vector.
Function files can be as complex as you like, their main purpose is to return a specific value that has
been calculated by some algorithm within the function to some other m-file.
For instance, we could extend our earlier while loop example to apply to any mathematical function,
not just to the cosine function. The code would be

function X = FindZero(f)
error = 1;
tolerance = le-5;
x = 0.5;
while (error > tolerance)
X = feval(f,x);
error = abs(x-X);
x = X;
end
return

Here, a function f is passed into the m-file as a parameter and the line X = feval (f,x) tells Matlab
to evaluate f as function of x. This gives the algorithm much more flexibility and generality to the
programmer and means that a call from within Matlab of the form

z
and

FindZero(cos)

FindZero(sin)
would both be valid, and would try and solve the equations z = cos(z) and z = sin(z).

Z

MATLAB FOR STATISTICS: Page 10

