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WEEK 1: Statistical Summaries & Statistical Testing
e Types of Study and their Statistical Analysis
e Motivation Elementary numerical and graphical summary methods
e Representing Uncertainty: Standard Deviations and Standard Errors
e Basic elements and logic of Probability Theory

e Statistical Hypothesis Testing: Introduction; One and Two sample
tests for Normal samples, Analysis of Variance

e Non-normal/integer valued data
e Non-parametric Tests
e Simulation-based methods

e Bayesian Methods
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SECTION 1.
STATISTICAL ANALYSIS

Statistical analysis involves the informal /formal comparison of hypothetical
or predicted behaviour with experimental results. For example, we wish
to be able to compare the predicted outcomes of an experiment, and the
corresponding probability model, with a data histogram.

We will use both qualitative and quantitative approaches.
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Broadly, the “Scientific Process” involves several different stages:

THEORETICAL MODELLING

!
MATHEMATICAL/PROBABILISTIC MODELLING

!
PREDICTION

l
EXPERIMENTATION/OBSERVATION

!
VALIDATION

Mathematical /Probabilistic modelling facilitates PREDICTION; Statis-
tical Analysis provides the means of VALIDATION of predicted be-

haviour.
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1.1 PRELIMINARIES

Suppose that an experiment or trial is to be repeated n times under iden-
tical conditions. This will result in n data points, possibly representing
multiple observations on the same individual, or one observation on many
individuals. The data may be

e univariate (single variable)
e multivariate (several variables)
Let
e X, denote the result of experiment ¢ before it is known
e 1; denote the observed result for experiment ¢

Eventually, we will build probability models for the X, in order to
facilitate inference (estimation, hypothesis testing, prediction, verifica-
tion /model validation).
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1.1.1 STATISTICAL OBJECTIVES

Suppose that we have observed experimental outcomes

® r1,....,x, on the n trials

e that is, we have observed X; = 1, Xo = 29, ..., X,, = x,,, termed a
random sample.

This sample can be used to answer qualitative and quantitative questions
about the nature of the experiment being carried out.

The objectives of a statistical analysis can be summarized as follows. We
want to, for example,

e SUMMARY : Describe and summarize the sample {x1, ..., x,}
in such a way that allows a specific probability model to be proposed.
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e INFERENCE : Deduce and make inference about the param-
eter(s) of the probability model 6.

e TESTING : Test whether 0 is “significantly” larger/smaller /different
from some specified value.

e GOODNESS OF FIT : Test whether the probability model en-
capsulated in the mass/density function f, and the other model as-
sumptions are adequate to explain the experimental results.

The first objective can be viewed as an exploratory data analysis exercise.
It is crucially important to understand whether a proposed probability dis-
tribution is suitable for modelling the observed data, otherwise the subse-
quent formal inference procedures (estimation, hypothesis testing, model
checking) cannot be used.

In any case it is often useful to a reader to see summary measures of the
data, irrespective of any subsequent formal analysis.
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1.2 TYPES OF STUDY

The data in an experimental study can be obtained in a number of different
situations that can be classified as follows:

e one sample

e two independent samples

e two related samples (“within individuals”)

e two related samples (predictor and response)
e Lk independent samples

e k related samples (multivariable, within individuals)
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1.2.1 ONE SAMPLE

e repeated, independent observations of some phenomenon
e aim to summarize “location/scale” of sample
e test hypothesized target values

e test distributional summaries

ONE SAMPLE ANALYSIS
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1.2.2 TWO INDEPENDENT SAMPLES

e repeated, independent observations under different conditions (fized

effects)

e control /treatment

e healthy/affected

e aim to compare two samples
e same mean level 7

e same variability 7

e same distribution ?

TWO SAMPLE ANALYSIS

10
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1.2.3 TWO RELATED SAMPLES I :
PAIRED ANALYSIS

e two repeated observations on same experimental units

e two observations on different but related (matched) experimental
units

e start/end of trial
e matched/paired analysis

e any change in mean level ?

TWO SAMPLE PAIRED ANALYSIS

11
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1.2.4 TWO RELATED SAMPLES II :
PREDICTOR AND RESPONSE

e two related observations on different features of same experimental
units

e predictor/response

e objective is to predict response
e normal data/non-normal data
e correlation 7

e any predictive ability 7

e classification 7

REGRESSION ANALYSIS

12
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1.2.5 £ INDEPENDENT SAMPLES

13

k > 2 sets of independent observations (fixed effects)

different experimental conditions (control, level 1,...,level £ — 1)
ordered levels 7

normal /non-normal data ?

any change in mean measure across treatment levels 7

ANOVA ANALYSIS
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1.2.6 k£ RELATED SAMPLES

e k > 2 sets of observations (on same experimental units)

e time dependent

e same feature, different experimental conditions (fixed effects)
e different (related) features

e normal/non-normal data 7

e regression/correlation ?

e comparison of fixed effects 7

REPEATED MEASURES/MULTIVARIATE ANALYSIS

14
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1.3 KEY CONSIDERATIONS

ANALYTICAL

15

what is the key outcome of interest 7

can some variables be omitted from the analysis 7
are all experimental units acceptable for the study 7
are there biases in the study design 7

are all sources of variability being acknowledged 7
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STATISTICAL

e summary
e inference

e testing

e distributional assumptions
e goodness of fit

e prediction

e study design

16
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1.4 EXPLORATORY DATA ANALYSIS

We wish first to produce summaries of the data in order to convey general
trends or features that are present in the sample. Secondly, in order to
propose an appropriate probability model, we seek to match features in
the observed data to features of one of the conventional probability dis-
tributions that may be used in more formal analysis. The four principal
features that we need to assess in the data sample are

(1) The location, or “average value” in the sample.

(2) The mode, or “most common” value in the sample.
(3) The scale or spread in the sample.

(4) The skewness or asymmetry in the sample.

These features of the sample are important because we can relate them
directly to features of probability distributions.

17
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1.4.1 NUMERICAL SUMMARIES

The following quantities are useful numerical summary quantities

e Sample mean

e Sample variance: either (5% or s* may be used)

n—1
1=1 =1

e Sample quantiles: sort data into ascending order and re-labelled

T(1) < ... < T(n)

18
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then x ;) is the i/n'™ sample quantile

Median

Lower quartile
Upper quartile

m = z®%  the 50th quantile

qd25
qd75

Inter-quartile range IQR = qg75 — qo5

Sample minimum Ty, = Z(7)
Sample maximum  Tyax = T(p)

Sample range

e Sample skewness

19

ko =xm) — )

1 — ~
i=1

2(25) " the 25th quantile
z(™)_ the 75th quantile
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NOTE: Key aspects of the sample can be summarized using the first four
sample moments and their transformations

1 n
o 1st Moment—LOCATION : — ) =,
"
1 n
e 2nd Moment—SCALE : — Zazf
s
1 n
o Jrd Moment—SKEWNESS : — Zazf’
s

e 4th Moment—KURTOSIS (“heavy-tailedness”) : — Y a7}

20
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1.4.2 REPORTING UNCERTAINTY

It is common to report a sample mean and variance, T,

%iazz 32:ni1i(azi—§:)2
i=1

1=1

X

and, in addition, a standard error of the mean

SEM =

Bk

But

e what is this quantity 7

e why this formula 7

e what if the data are proportions, or counts out of m 7

21
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For proportions, with x positive results out of n, then the estimate of the
proportion is

X
n

and the standard error of this estimate is

\ ; (1n . T

Note that

e this is strictly an estimated standard error

e all statistics (sample median, sample skewness, sample standard de-
viation etc.) have an associated standard error !

22



Statistical Analysis and Modelling Week 1 Spring 2004

It is common to report
x+t SEM

as a sample summary. However, it might be more appropriate to report a
confidence interval

T+1.96 x SEM

e what is the difference 7
e when is this formula valid ?

e why this formula 7

To understand the distinction, some results from probability theory are
needed (see section 2.7)

23
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1.4.3 GRAPHICAL SUMMARIES

27

e HISTOGRAMS: The most common graphical summary technique

is the histogram. Typically, the observation range, X, is divided into
a number of bins, Xi,..., Xy say, and the frequency with which a
data value in the sample is observed to lie in subset h = 1,..., H
is noted. This procedure leads to a set of counts nq,...,ng (where
n1 + ... + ng = n) which are then plotted on a graph as bars, where
the hth bar has height n; and occupies the region of X corresponding
to Xh

The histogram again aims to approximate the “true” probability dis-
tribution generating the data by the observed sample distribution. It
illustrates the concepts of location, mode, spread and skewness
and general shape features that have been recognized as important
features of probability distributions.
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HISTOGRAM

28
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e BOXPLOTS: A boxplot is a simple way of displaying the variation
in a number of data subgroups, or a mean/sem range, or a confidence
interval. Typically, a three point (min, median, max) or five point
(min, lower quartile, median, upper quartile, max) summary is used,
and often outlying observations are included. The exact form varies
from package to package; in SPSS, the following features are plotted

— The median (horizontal line)
— The box (the lower and upper quartiles, or hinges)
— The whiskers

— The fences (lower and upper horizontal lines, the smallest and
largest values that are not outliers or extreme values)

— outliers (plotted as circles, more than 1.5 box lengths above
the box)

— extreme values (plotted as asterisks, more than 3.0 box lengths
above the box)

29
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e SCATTERPLOTS: Scatterplots are used to illustrate the relation-
ships between variables, and can be useful in discovering

CORRELATION
DEPENDENCE

ASSOCIATION

between variables

31
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1.4.4 OUTLIERS

Sometimes, for example due to slight variation in experimental conditions,
one or two values in the sample may be much larger or much smaller in
magnitude than the remainder of the sample. Such observations are termed
outliers and must be treated with care, as they can distort the impression
given by some of the summary statistics.

For example, the sample mean and sample variance are extremely sen-
sitive to the presence of outliers in the sample. Other summary statistics,
for example those based on sample percentiles (median, quartiles) are less
sensitive to outliers. Outliers can usually be identified by inspection of the
raw data, or from careful plotting of histograms, or using boxplots.

33
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1.5 TRANSFORMATIONS

It may be necessary or advantageous to consider data transformations;
e y, =logz;, =Inx;

1/2

o Yy, = ¥ some «

L
® yi =log| T——

NOTE: This is not any form of statistical trickery, but may be
necessary to allow formal statistical assessment

34
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SECTION 2.
PROBABILITY THEORY

2.1 MOTIVATION

The random variation associated with “measurement” procedures in a sci-
entific analysis requires a framework in which the uncertainty and vari-
ability that are inherent in the procedure can be handled. The key goal
of Probability and Statistical modelling are to establish a mathematical
framework within which random variation (due to, for example, exper-
imental error or natural variation) can be quantified so that systematic

variation (arising due to potentially important biological differences) can
be studied.

35
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KEY QUESTION:

Is the result we observe the result of a
genuine, systematic phenomenon,
or is it the product of
entirely random variation 7

To explain the variation in observed data, we need to introduce the concept
of a probability distribution. Essentially we need to be able to model, or
specify, or compute the “chance” of observing the data that we collect or
expect to collect. This will then allow us to assess how likely the data
were to occur by chance alone, that is, how “surprising” the observed data
are in light of an assumed theoretical model.

36
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2.2 BASIC PROBABILITY CONCEPTS

EXPERIMENTS AND EVENTS
An experiment is any procedure

(a) with a well-defined set of possible outcomes - the sample space, S.
(b) whose actual outcome is not known in advance.

A sample outcome, s, is precisely one of the possible outcomes of the
experiment.

The sample space, S, is the entire set of possible outcomes.

Probability Theory is concerned with assigning “weights” or “probabilities”
to sets of possible outcomes.

37



Statistical Analysis and Modelling Week 1 Spring 2004

SIMPLE EXAMPLES:
(a) Coin tossing: S ={H,T}.
(b) Dice : S =1{1,2,3,4,5,6}.
(c) Proportions: S ={z:0<x <1}
(d) Time measurement: S = {x:x >0} =RT
(

e) Temperature measurement: S ={zr:a <x <b} CR

38
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There are two basic types of experiment, namely

COUNTING
and

MEASUREMENT

- we shall see that these two types lead to two distinct ways of specifying
probability distributions.

The collection of sample outcomes is a set (a collection of items) , so we
write

se S

if s is a member of the set S.

39
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DEFINITION
An event FE is a set of the possible outcomes of the experiment, that is £
is a subset of S, £ C S, E occurs if the actual outcome is in this set.

NOTE: the sets S and E can be either be written as a list of items, for
example,

E ={s1,82,...,8n, .-}

which may a finite or infinite list, or can only be represented by a continuum
of outcomes, for example

E={2:06<z<23}

40
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Events are manipulated using set theory notation; if £/, F' are two events,
E.FCS,

Union FUF “FE or F or both occurs”
Intersection ENF “F and F occur”
Complement E “E does not occur”

We can interpret the events KU F', ENF, and E’ in terms of collections of
sample outcomes, and use Venn Diagrams to represent these concepts.

41
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a N

N o)

Venn Diagram

42
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Another representation for this two event situation is given by the following
table:

E E’
F | ENF | E'NF
F'I ENF' | EENF’

so that, taking unions in the columns

(ENF)U(ENF)=E

(E'NFYU(E'NFE")=FE
and, taking unions in the rows

(ENFYUE'NF)=F

(ENF)U(E'NF')=F

43
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Special cases of events:

THE IMPOSSIBLE EVENT — O
the empty set, the collection of sample outcomes with zero elements
THE CERTAIN EVENT — Q)

the collection of all sample outcomes

DEFINITION
Events E and F' are mutually exclusive if

ENF=0Q0

that is, the collections of sample outcomes E and F' have no element in
comimon.

Mutually exclusive events are very important in probability and statistics,
as they allow complicated events to be simplified in such a way as to allow
straightforward probability calculations to be made.

44



Statistical Analysis and Modelling Week 1 Spring 2004

2.3 THE RULES OF PROBABILITY

We require that the probability function P(.) must satisfy the following
properties:

For any events I/ and F' in sample space S,
(L0 P(E)L1
(2) P(Q2) =1

(3)If ENF = @, then P(EUF) = P(E) + P(F)

45
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For the general two event situation:

E E’ Sum
F | P(ENF) | P(EENE) | P(F)
F [P(ENF) | P(ENE) | P(F)
Sum P (F) P(E')

so that, summing in the columns

P(ENF)+P(ENF)

- P(B)

P(E'NF)+P(E'NF)=P(E)

and summing in the rows

P(ENF)+P(E'NF)=P(F)

46

P(ENF )Y+ P((E'NF') =

P (F")
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A common type of statistical analysis investigates the analysis of 2 x 2
tables, where the entries in a table correspond to counts of occurrences of
particular cross-classified observations.

COLUMNS: Treatment 1/Treatment 2

ROWS : Outcome 1/Outcome 2

TMT 1 TMT 2
OUTCOME 1 n11 n12
OUTCOME 2 N91 Nn922

There are many types of analysis that can be performed on these data,

47



Statistical Analysis and Modelling Week 1 Spring 2004

EXAMPLE CALCULATION Examination Pass Rates

The examination performance of students in a year of eight hundred
students is to be studied: a student either chooses an essay paper or a
multiple choice test. The pass figures and rates are given in the table
below:

PASS FAIL PASS RATE

FEMALE 200 200 0.5
MALE 240 160 0.6

The result of this study is clear: the pass rate for MALES is higher than
that for FEMALES.

48
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Further investigation revealed a more complex result: for the essay paper,
the results were as follows;

PASS FAIL PASS RATE

FEMALE 120 180 0.4
MALE 30 70 0.3

so the pass rate for FEMALES is higher than that for MALES.

For the multiple choice test, the results were as follows;

PASS FAIL PASS RATE

FEMALE 80 20 0.8
MALE 210 90 0.7

so, again, the pass rate for FEMALES is higher than that for MALES.

49
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Hence we conclude that FEMALES have a higher pass rate on the essay
paper, and FEMALES have a higher pass rate on the multiple choice test,
but MALES have a higher pass rate overall.

IS THIS A CONTRADICTORY RESULT ?

In fact, this apparent contradiction can be resolved by careful use of the
probability definitions. First introduce notation; let E' be the event that
the student chooses an essay, F' be the event that the student is female,
and G be the event that the student passes the selected paper.

50
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A REAL EXAMPLE: Reintjes R., de Boer A, van Pelt W, Mintjes-
de Groot J. Simpson’s Paradox: an example from hospital epidemiology.
Epidemiology 2000; 11: 81-83

TABLE 1. Overall Data on Urinary Tract Infections
(UTI) and Antibiotic Prophylaxis, from eight Hospitals in
The Netherlands, 1992-93

Patients from All eight Hospitals
AB-proph. UTI no-UTI Total RR 95% CI

Yes 41 1237 1279 0.7 0.5-1.0
(29) (37)

No 104 2136 2240
(71) (63)

Total 146 3373 3519

AB-proph. = antibiotic prophylaxis.
N = 3,519 (percentages).

51
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TABLE 2. Data on Urinary Tract Infections (UTI) and Antibiotic Prophylaxis (AB-proph.) Stratified by Incidence of UTI
per Hospital in Two Strata of four Hospitals in The Netherlands, 1992-93,

Patients from four Hospitals with Low Incidence of UTI Patients from four Hospitals with High Incidence of UTI

(2.5%) (>2.5%)
ABproph. ~ UTl  noUTI  Towl  RR 95%Cl  UTl  noUTl  Toul RR 95%Cl
Ves 0109 13 26 1069 2 144 166 20 133l
80 (60) g 0
No 5 115 70 9 1 150
0 “) 8) 1)
Total 5 188 1833 21 1565 1686

AB-proph. = antibiotic prophylaxis.
N = 3,519 (percentages).

52
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THIS RESULT IS IMPORTANT FOR MANY TYPES OF STA-
TISTICAL ANALYSIS.

WE MUST TAKE CARE TO ENSURE THAT ANY REPORTED
SYSTEMATIC VARIATION IS DUE TO THE SOURCE TO
WHICH IT IS ATTRIBUTED, AND NOT DUE TO HIDDEN,
CONFOUNDING FACTORS.

53
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2.4 CONDITIONAL PROBABILITY

DEFINITION
For two events F and F' with P(F') > 0, the conditional probability
that F occurs, given that F' occurs, is written P(FE|F), and is defined by

P(ENF)

P(EIF) = =5

so that P(ENF)=P(E|F)P(F)

It is easy to show that this new probability operator P( . | . ) satisfies the
probability axioms.

[In the exam results problem, what we really have specified are conditional
probabilities. From the pooled table, we have

P(G|F)=05 P(G|F')=0.6,

54
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from the essay results table, we have

P(GIENF)=04 P(GIENF)=0.3,
and from the multiple choice table, we have

P(GIE NF)=08 P(GIE NF)=07

and so interpretation is more complicated than originally thought.]

The probability of the intersection of events FEq,..., B} is given by the
chain rule

P(EiN..NEy) = P(E\)P(Es|E)P(E3|Ey N E)...P(EL|E1 N EsN...N Ep_1)

55
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Special Case: Independence

Events F' and F' are independent if
P(E|F) = P(F)sothat PIENF) = P(E)P(F)

and so if E1,..., E/;, are independent events, then

k
P(EyxN...NEy) = || P(E:) = P(Ey)...P(Ey)

A simple way to think about joint and conditional probability is via a
probability tree:

56
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P(E n F)=P(E) x P(F | E)

p  P(ENF)=PE)xB(F E)

F' PEAF)=PE)xPF|E)

P P(EnF)=PE)x PF |E)

Probability Tree for the Theorem of Total Probability

57
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2.5 PARTITIONS

A partition of S

58
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A partition of /' C S implied by the partition of S
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2.6 TOTAL PROBABILITY

If events F1, ..., E;, form a partition of event F' C 5, and event G C S is
such that P(G) > 0, then

k
P(F) = ZP(F’Ei)P(Ei)

k
P(F|G) =) P(F|E;NG)P(E|G)

The results follows as

k k

F=|J(EnF) YI: P(E;NF)=Y P(F|E;)P(E;)

1=1 1=1

60
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2.7 BAYES THEOREM

For events E and F such that P(E), P(F) > 0,

P(F|E)P(E)

P(BIF) = ——p

If events F1, ..., By form a partition of S, with P(F;) > 0 for all ¢, then

psp) = ZEZIPE) _ PEIBIPE)
D _P(F|E;)P(E))

This result follows immediately from the conditional probability definition:

P(ENF)=P(E|F)P(F) and P(ENF)=P(F|E)P(E)

61
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Note that in the second part of the theorem,

_ P(F|E;)P(E;)  P(F|E))
PR === =P

P(E;)

so the probabilities P(F;) are re-scaled to P(F;|F) by conditioning on F.
Note that

k
Y PE|F) =1
=1

This theorem is very important because, in general,
P(E|F) # P(F|E)
and it is crucial to condition on the correct event in a conditional probability

calculation.

62
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EXAMPLE Lie-detector test.

In an attempt to achieve a criminal conviction, a lie-detector test is used
to determine the guilt of a suspect. Let G be the event that the suspect is
guilty, and let T" be the event that the suspect fails the test.

The test is regarded as a good way of determining guilt, because laboratory
testing indicate that the detection rates are high; for example it is known
that

P| Suspect Fails Test | Suspect is Guilty | = P(T|G)
= 0.95=1—-q, say

P| Suspect Passes Test | Suspect is Not Guilty ] = P(T'|G)
= 0.99 = 3, say

Suppose that the suspect fails the test. What can be concluded 7

63
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The probability of real interest is P(G|T); we do not have this proba-
bility but can compute it using Bayes Theorem. For example, we have

P(T|G)P(G)

P(GIT) = =55

where P(G) is not yet specified, but P(7T') can be computed using the
Theorem of Total probability, that is,

P(T) = P(T|G)P(G) + P(T|GP(G)

so that

P(T|G)P(G)
(TG)P(G) + P(T|G")P(G")

P(GIT) = —

64
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Clearly, the probability P(G), the probability that the suspect is guilty
before the test is carried out, plays a crucial role. Suppose, that P(G) =
p = 0.005, so that only 1 in 200 suspects taking the test are guilty. Then

P(T) = 0.95 x 0.005 4 0.01 x 0.995 = 0.0147

so that

0.95 x 0.005
P(G\T) = = 0.323
(GIT) 0.95 x 0.005 + 0.01 x 0.995

which is still relatively small. So, as a result of the lie-detector test being
tfailed, the probability of guilt of the suspect has increased from 0.005 to
0.323.

More extreme examples can be found by altering the values of o, 6 and p.

65
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EXAMPLE Diagnostic Testing.

A diagnostic test for a disease is to be given to each of the 100000 people
in a city. Let S be the event that an individual actually has the disease,
and let T' be the event that the individual tests positive for the disease.

/

S S TOTAL
T 4950 15000 19950

/

T 50 80000 80050
TOTAL 5000 95000 100000

What can be concluded if an individual, selected at random from the
city population, admits to having tested positive 7
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SECTION 3.

RANDOl\gléI/']%RIABLES
PROBABILITY DISTRIBUTIONS

3.1 RANDOM VARIABLES

A random variable X is a function from experimental sample space S to
some set of real numbers X that maps s € S to a unique x € X

X: §—XCR

SH—X

Interpretation A random variable is a way of describing the outcome of
an experiment in terms of real numbers.
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RANDOM VARIABLE
EXAMPLE 1 X =“No. days in Feb. with zero precipitation”

EXAMPLE 2 X =“No. goals in a football match”

EXAMPLE 3 X =“the measured operating temperature”

Therefore X is merely the count/number /measured value corresponding to
the outcome of the experiment.
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Depending on the type of experiment being carried out, there are two
possible forms for the set of values that X can take:

e A random variable is DISCRETE if the set X is a finite or infinite
set of distinct values x1, 22, ..., x,,.... Discrete random variables are
used to describe the outcomes of experiments that involve counting
or classification.

e A random variable is CONTINUOQOUS if the set X is the union of
intervals in R. Continuous random variables are used to describe
the outcomes of experiments that involve measurement.
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3.2 PROBABILITY DISTRIBUTIONS

We will specify two mathematical functions to describe the distribution of
probability across the possible values of the random variables:

e For DISCRETE random variables

— the probability mass function (pmf) f(z) =P [X = z]
— the cumulative distribution function (cdf) F(z) = P [ X < z]

e For CONTINUOQOUS random variables

— the probability density function (pdf) f(x)
— the cumulative distribution function (cdf) F(z) = P [X < 1]

F(z) = P[X < 2] = / F(t)dt
Most commonly, we deal with the “little- f” function.
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3.3 EXPECTATION AND VARIANCE

The expectation and variance of a probability distribution can be used to
ald description, or to characterize the distribution;

e the EXPECTATION is a measure of location (that is, the “centre
of mass” of the probability distribution.

e the VARIANCE is a measure of scale or spread of the distribution
(how widely the probability is distributed) .

Note : The expectation and variance of a probability distribution
are entirely different quantities from the sample mean and sample vari-
ance derived from a sample of data
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In the discrete case, the expectation is defined by
Ep [X] =) afx (x)
X
and in the continuous case

BrlX= [ afx(x)da

— o0

whenever the sum or integral is finite. The variance is defined by

0@ 0. @)

Varg, | X] :/

— o0 — o0

72
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3.3.1 SUMS OF RANDOM VARIABLES:

Suppose that X; and Xy are independent random variables, and a; and as
are constants. Then if Y = a1.X7 + a2 X5, it can be shown that

EfY [Y] — alEfxl [Xl] + a’2EfX2 [XQ]

Vary, [Y] = ajVary, [Xi1]+ azVary, [Xo]
so that, in particular (when a; = as = 1) we have

EfY [Y] — Efxl [Xl] + EfXQ [XQ]

Varfy [Y] = Val"fX1 [Xl] -+ Vaer2 [XQ]
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so we have a simple additive property for expectations and variances. Note
also that if a; = 1,a2 = —1, then

EfY [Y] — Efxl [Xl] o EfXQ [XQ]

Varfy [Y] = Val"fX1 [Xl] -+ Vaer2 [XQ]

Sums of random variables crop up naturally in many statistical calculations.
Often we are interested in a random variable Y that is defined as the sum
of some other independent and identically distributed (i.i.d) random
variables, Xq,...,X,,. If

Y=> X; with Ep [Xi]=p and Vary [Xj]=0
1=1

we have
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Ep[Y] = D Ep (X =) p=nu

i=1 i=1

Vary, Y] = ZVaeri X = Zaz = no?
= i=1

and ao, if
1 . :
= — Z is the sample mean random variable
n

then, using the properties listed above

-, 1 1 1 1 o
Er_[X] = ﬁEfY Y] = = p and Vary, [Y] = —Vary, [Y] = —no® = —

75



Statistical Analysis and Modelling Week 1 Spring 2004

3.3.2 SOME SPECIAL DISCRETE PROBABILITY
DISTRIBUTIONS

Discrete probability models are used to model the outcomes of counting
experiments. Depending on the experimental situation, it is often possible
to justify the use of one of a class of “Special” discrete probability distri-
butions. These are listed in this chapter, and are all motivated from the
central concept of a binary or 0-1 trial, where the random variable con-
cerned has range consisting of only two values with associated probabilities
0 and 1 — 0 respectively; typically we think of the possible outcomes as
“successes” and “failures”. All of the distributions in this section are de-
rived by making different modelling assumptions about sequences of 0-1
trials.
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Single 0-1 trial - count number of 1s
n independent 0-1 trials - count number of 1s

Sequence of independent 0-1 trials
- count number of trials until first 1

Sequence of independent 0-1 trials -
count number of trials until nth 1

Limiting case of binomial distribution
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3.3.3 SOME SPECIAL CONTINUOUS DISTRIBU-
TIONS

Here is a list of probability models are used in standard modelling situ-
ations. Unlike the discrete case, there are not really any explicit links
between most of them, although some connections can be made by means
of “transformation” from one variable to another.

UNIFORM DISTRIBUTION
EXPONENTIAL DISTRIBUTION
GAMMA DISTRIBUTION

BETA DISTRIBUTION
NORMAL DISTRIBUTION
STUDENT-T DISTRIBUTION
FISHER-F DISTRIBUTION
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3.3.4 THE NORMAL DISTRIBUTION X ~ N(u,oc?)

Range : X =R
Parameters : € R,0 € RT
Density function :

fX(x):( 1 )1/26Xp{2%2(xu)2} z € R.

2mo?

Interpretation : A probability model that reflects observed (empirical)
behaviour of data samples; this distribution is often observed in practice.

The pdf is symmetric about u, and hence p is controls the location of the
distribution and o2 controls the spread or scale of the distribution.

79



Statistical Analysis and Modelling Week 1 Spring 2004

Normal pdf
2 1 0 ) 2
NORMAL PDF
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NOTES

(1) The Normal density function is justified by the Central Limit The-
orem.

(2) Special case: = 0,02 = 1 - the standard or unit normal distribution.
In this case, the density function is denoted ¢(x), and the cdf is denoted
®(x) so that

d(x) = /_; o(t) dt = /_xoo (%)1/2 exp{—%z?} dt.

This integral can only be calculated numerically.

B)If X ~N(0,1),and Y = 06X + p, then Y ~ N(u,c?).
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(4) If X ~ N(0,1), and Y = X2, then
Y ~ Gamma(1/2,1/2) = x3
This is the Chi-squared distribution with 1 degree of freedom..

The Chi-squared distribution is another continuous probability distribu-
tion; its most general version is the Chi-squared distribution with «
degrees of freedom, where a is some non-negative whole number.

(5) If X ~ N(0,1) and Y ~ x? are independent random variables, then
random variable 1T', defined by

X
VY/a

has a Student-t distribution with a degrees of freedom.

T =

The Student-t distribution plays an important role in certain statistical
testing procedures.
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3.3.5 The Chi-Squared Distribution

For the Chi-squared distribution with o degrees of freedom,

e EXPECTATION is «
e VARIANCE is 2«
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Chi-Squared(n) pdf for n=1,..,10

0.5

0.4

f(x)

0.2

0.1

CHI-SQUARED PDF with n DEGREES OF FREEDOM
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3.3.6 The Student-t Distribution

For the Student-t distribution with o degrees of freedom,

a—+1
f(:v)=r( ) 1

a >~ (atD)/2
”O‘F(Q) {1+‘r—}

0%

x>0

e EXPECTATION is 0 (if o > 1)
e VARIANCE is a — 2 (if a > 2)

e I'(.) is a special function known as the Gamma Function
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Student(n) pdf for n=1,..,10

0.4

01.3

0.2

f(x)

0.1

STUDENT-T PDF with n DEGREES OF FREEDOM
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3.3.7 The Fisher-F Distribution

For the Fisher-F distribution with v; and v, degrees of freedom,

T (V1—|—V2) /

_ 2 s\ g

f(w)_r(ﬂ>r(£) (VQ) » (V1+V2)/2 CU>O
2 2 {14——:1:}

)

e EXPECTATION is vy/ (vg — 2) (if vo > 2)
e VARIANCE is

2

Vo (v1 +vo —2) .

2 f 4
(VQ—Q) V1 (V2—4) tve >
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F(n,20-n) pdf for n=1,..,20

1.0

f()
0.6

0.4

0.2

OI. 0

FISHER-F distribution with (n,20 — n) degrees of freedom
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3.4 TRANSFORMATIONS

Consider a discrete or continuous random variable X with range X and
probability distribution described by mass/pdf fx, or cdf Fx. Suppose g
is a function. Then Y = g(X) is also a random variable as Y and typically
we wish to derive the probability distribution of random variable Y.

Most transformations are 1-1 transformations (the exceptions being trans-
formations involving powers of X, like g(x) = 22, or g(z) = (1 — ). The
following result gives the distribution for random variable Y = g(X) when

g is 1-1.
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Some of the continuous distributions that we have studied are directly
connected by transformations

Distribution of X
X ~ Uniform(0,1)

X ~ Gamma(a, 1)
X ~ Normal(0,1)

X ~ Normal(0,1)

90

Transformation
Y = 1 log X
A
Y = X/
Y =p+oX
Y = X?

Distribution of Y
Y ~ Exponential(\)

Y ~ Gammal(a, §)
Y ~ Normal(p,c?)

Y ~ Gamma (%, %) =



Statistical Analysis and Modelling Week 1 Spring 2004

3.5 JOINT PROBABILITY DISTRIBUTIONS

Consider a vector of k£ random variables, X = (X7, ..., X}), (representing
the outcomes of k different experiments carried out once each, or of one
experiment carried out k times). The probability distribution of X is
described by a joint probability mass or density function.

Two concepts are key:
¢ COVARIANCE : The co-variability of two variables
Cov|X,Y]|=F|XY|—-FE|X]|E|Y]
e CORRELATION: A scaled version of covariance

Cov [ X, Y]
vV Var [X|Var[Y]

Corr [ X,Y] = so that —1 < Corr[X,Y]| <1
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Key interpretation

COVARIANCE AND CORRELATION ARE MEASURES
OF THE
DEGREE OF | ASSOCIATION | BETWEEN VARIABLES

that is, two variables for which the correlation is large in magnitude are
strongly associated, whereas variables that have low correlation are weakly
associated.

Note : The correlation between two random variables is a different
quantity from the sample correlation derived from a sample of data.
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SECTION 4.
STATISTICAL INFERENCE

It is often of interest to draw inference from data regarding the param-
eters of the proposed probability distribution; recall that many aspects of
the standard distributions studied are controlled by the distribution pa-
rameters.

It is therefore important to find a simple and yet general technique for
parameter estimation
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4.1 MAXIMUM LIKELIHOOD ESTIMATION

Maximum Likelihood Estimation is a systematic technique for estimating
parameters in a probability model from a data. Suppose a sample x4, ..., z,,
has been obtained from a probability model specified by mass or density
function f(x;60) depending on parameter(s) 6 lying in parameter space O.
The maximum likelihood estimate or m.l.e. is produced as follows;

STEP 1 Write down the likelihood function, L(#), where

n

1) = [ f(x30)

1=1

that is, the product of the n mass/density function terms (where the ith
term is the mass/density function evaluated at z;) viewed as a function of

0.
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STEP 2 Take the natural log of the likelihood, and collect terms involving
6.

STEP 3 Find the value of § € O, 0, for which log L(0) is maximized, for
example by differentiation. If 8 is a single parameter, find 6 by solving

% {log L(6)} =0

in the parameter space ©. If 6 is vector-valued, say 0 = (04, ...,04), then
find 6 = (64, ...,64) by simultaneously solving the d eqnarray™s given by

o
= {log L(O)} = =1
50 {logL(O)} =0 j=1,...d

in parameter space O.

Note that, if parameter space © is a bounded interval, then the maximum
likelihood estimate may lie on the boundary of ©.
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STEP 4 Check that the estimate 6 obtained in STEP 3 truly corresponds
to a maximum in the (log) likelihood function by inspecting the second
derivative of log L(6) with respect to 6. If

d2

at 0 = 0, then 0 is confirmed as the m.l.e. of @ (other techniques may be
used to verify that the likelihood is maximized at 6).

This procedure is a systematic way of producing parameter estimates from
sample data and a probability model; it can be shown that such an approach
produces estimates that have good properties. After they have been ob-
tained, the estimates can be used to carry out prediction of behaviour for
future samples.
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EXAMPLE A sample z1,...,x, is modelled by a Poisson distribution
with parameter denoted A; hence

)\CB
f(x;0) = f(x; \) = —'e_>‘ x=0,1,2,...
x!
for some A\ > 0.

STEP 1 Calculate the likelihood function L(\). For A > 0,

n n )\azz N )\azl—f—...—}—a:n oy
MM:Hﬂ%M:H{'e}: e

x;!
i=1 i=1 v

STEP 2 Calculate the log-likelihood log L(\).

log L(\) = Z x;log A\ — n\ — Z log(x;!)
i=1 i=1
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STEP 3 Differentiate log L(\) with respect to A, and equate the derivative
to zero.

{logL )\Z:Uz—n—() = Zazz—az

A

Thus the maximum likelihood estimate of A is A =

STEP 4 Check that the second derivative of log L(\) with respect to A is
negative at A\ = A.

d2
d2{log :——Zazz<0at)\ A

98



Statistical Analysis and Modelling Week 1 Spring 2004

4.2 SAMPLING DISTRIBUTIONS

EXAMPLE : Suppose z1, ..., v, have a Normal distribution with param-
eters 1 and o2, then the maximum likelihood estimates are
1 T
=1z &2:S2ZEZ(%_@2
=1
If five samples (from five different labs) of eight observations are collected,
the estimate ji of u is different each time:

Sl

I i) I3 Ty Is Ig X7 I8
104 11.2 98 10.2 105 &89 11.0 10.3 10.29
9.7 12.2 104 11.1 10.3 10.2 104 11.1 10.66
121 79 &6 96 11.0 11.1 &8 11.7 10.10
10.0 9.2 11.1 10.8 9.1 123 103 9.7 10.31
92 97 108 103 89 10.1 9.7 104 9.89
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We attempt to understand how Z varies by calculating the probability
distribution of the corresponding estimator, X.

e The estimator X is a random variable, the value of which is un-
known before the experiment is carried out.

e As arandom variable, X has a probability distribution, known as the
sampling distribution.

e The form of this distribution can often be calculated, and used to
understand how x varies.

e In the case where the sample data have a Normal distribution

The following theorem gives the sampling distributions of the maximum
likelihood estimators;
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THEOREM If X, ..., X,, are i.i.d. N(u,o0?) random variables, then

(1) X ~ N (u,0%/n),

2 2
—2_n5 (n—1)s 5
B

o o

(3) X and S? are independent random variables.

This theorem tells us how we expect the sample mean and sample variance
to behave. In particular, it tells us that

BX]=n  E[$?]=""0¢ FE[]=0
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Interpretation : This theorem tells us how the sample mean and variance
will behave if the original random sample is assumed to come from a Normal
distribution.

For example, if we believe that Xj, ..., Xj¢ are i.i.d random variables from
a Normal distribution with parameters © = 10.0 and o? = 25, then X has
a Normal distribution with parameters p = 10.0 and 02 = 25/10 = 2.5.

The result will be used to facilitate formal tests about model parameters.

For example, given a sample of experimental, we wish to answer specific
questions about parameters in a proposed probability model.
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4.3 HYPOTHESIS TESTING

Given a sample x1, ..., x, from a probability model f(x;60) depending on
parameter 6, we can produce an estimate 0 of 6, and in some circumstances
understand how @ varies for repeated samples. Now we might want to test,
say, whether or not there is evidence from the sample that true (but un-
observed) value of 6 is not equal to a specified value. To do this, we use
estimate of 6, and the corresponding estimator and its sampling distribu-
tion, to quantify this evidence.

In particular, we concentrate on data samples that we can presume to have
a normal distribution, and utilize the Theorem from the previous section.
We will look at two situations, namely one sample and two sample
experiments.
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e ONE SAMPLE

Random variables  Xi,..., X,, ~ N(p,0?)
sample observations x1, ...z,

Possible Models = [ o =0y

e TWO SAMPLE

Random variables X1, Xy ~ N(ux,o0%)
sample 1 observations x1,...Ty,

Random variables Y1, .., Y ~ N(uy,0%)
sample 2 observations yi,...yn

Possible Models : Ly = by ox =0y
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4.3.1 HYPOTHESIS TESTS FOR NORMAL DATA I
- THE Z-TEST (¢ KNOWN)

If Xq,...,X, ~ N(p,0?) are the i.i.d. outcome random variables of n
experimental trials, then

_ o2 n.S?

X ~N (u, ;) and 7 Xi—1
with X and S? statistically independent. Suppose we want to test the
hypothesis that © = g, for some specified constant p,, (where, for ex-
ample, 1y = 20.0) is a plausible model; more specifically, we want to test
the hypothesis Hy : i = py against the hypothesis H; : u # pg, that is, we
want to test whether Hj is true, or whether H; is true. From the results
above, the distribution of the estimator X is Normal, and

' o X -y
(u,n) YN (0,1)
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where Z is a random variable. Now, when we have observed the data
sample, we can calculate Z, and therefore we have a way of testing whether
[t = [y 1s a plausible model; we calculate T from x4, ..., z,, and then calcu-
late

_ T — g

o/Vn

It Hy is true, and pu = p, then the observed z should be an observation
from an N(0,1) distribution (as Z ~ N(0,1)), that is, it should be near
zero with high probability. In fact, z should lie between -1.96 and 1.96 with
probability 1 — a = 0.95, say, as

Z

P[-1.96 < Z < 1.96] = ®(1.96) — ®(—1.96) = 0.975 — 0.025 = 0.95.

If we observe z to be outside of this range, then there is evidence that H
i1s not true.
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Hyp=y,
Hy:p#p,
Z is test statistic

f@)

= ~Zan 0 Zon 3
1 1
] ]
Standard normal variablel(2)
H ]
Critical E Acceptance i Critical
region ! region { region
’ :
H i
H i
Reject Hy ! Accept Hy + Reject Hy
] ]
Fig. 164

CRITICAL REGIONS IN A Z-TEST (taken from Schaum’s ELEMENTS
OF STATISTICS 11, Bernstein & Bernstein)
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Alternatively, we could calculate the probability p of observing a z value
that is more extreme than the z we did observe; this probability is given

by

| 29(2) z <0
p—{ 2(1— ®(2)) 2z>0

If p is very small, say p < a = 0.05, then again. there is evidence that
Hj is not true. In summary, we need to assess whether z is a surprising
observation from an N (0, 1) distribution - if it is, then we can reject Hy.

p 1s probably the most important and widely-used quantity that is com-
puted during the hypothesis test; it quantifies the amount of “suprising-
ness” in the observed data by reporting how likely we were to observe

a more extreme test statistic than the one we did observe IF THE
MODEL REPRESENTED BY H; IS TRUE.

It is termed the p-value or achieved significance level of the test
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4.3.2 HYPOTHESIS TESTING TERMINOLOGY

There are five crucial components to a hypothesis test, namely

109

TEST STATISTIC

NULL DISTRIBUTION
SIGNIFICANCE LEVEL, denoted «
P-VALUE, denoted p.

CRITICAL VALUE(S)
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In the Normal example given above, we have that

z 1s the test statistic
The distribution of random variable Z if Hj is true is the null distribution

a = 0.05 is the significance level of the test (we could use a = 0.01 if we
require a “stronger” test).

p is the p-value of the test statistic under the null distribution

The solution Cr of ®(Cr) =1—a/2 (Cr = 1.96 above) gives the critical
values of the test =Cg.
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EXAMPLE : A sample of size 10 has sample mean £ = 19.7. Suppose
we want to test the hypothesis

Hy : = 20.0
Hy : p# 20.0

under the assumption that the data follow a Normal distribution with o =
1.0.

We have

- 19.7-20.0
1/4/10

which lies between the critical values £+£1.96, and therefore we have no
reason to reject Hy. Also, the p-value is given by p = 2®(—0.95) = 0.342,
which is greater than o = 0.05, which confirms that we have no reason to
reject Hy.

= —0.95

Z
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4.3.3 HYPOTHESIS TESTS FOR NORMAL DATA
IT - THE T-TEST (¢ UNKNOWN)

In practice, we will often want to test hypotheses about © when o is un-
known. We cannot perform the Z-test, as this requires knowledge of o to
calculate the z statistic. We proceed as follows; recall that we know the
sampling distributions of X and s?, and that the two estimators are statis-
tically independent. Now, from the properties of the Normal distribution,
if we have independent random variables Z ~ N(0,1) and Y ~ 2, then
we know that random variable T defined by

4
VY/v

has a Student-t distribution with v degrees of freedom.

T =

Using the previous results, we can derive the null distribution of 7.
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X —p
ol (X-p
\/(n1)82/02 s/vn

(n—1)

and T' has a Student-t distribution with n — 1 degrees of freedom, denoted
St(n—1). Thus we can repeat the procedure used in the o known case, but
use the sampling distribution of 7' rather than that of Z to assess whether
the test statistic is “surprising” or not. Specifically, we calculate

_(Z—p)
and find the critical values for a a = 0.05 significance test by finding the

ordinates corresponding to the 0.025 and 0.975 percentiles of a Student-¢
distribution, St(n — 1) (rather than a N(0,1)) distribution.

t
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EXAMPLE : A sample of size 10 has sample mean = 19.7. and s* =
0.782. Suppose we want to carry out a test of the hypotheses

Hy : = 20.0
Hy : p# 20.0

under the assumption that the data follow a Normal distribution with o
unknown.

We have test statistic ¢ given by
L 19.7-20.0
0.78/4/10

The upper critical value C'r is obtained by solving

—1.22.

n—1

where Fgy(,—1) 1s the c.d.f. of a Student-t distribution with n — 1 degrees
of freedom.
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Here n = 10, so we can use the statistical tables to find Cr = 2.262, and
not that, as Student-¢ distributions are symmetric the lower critical value
is —C R-

Thus t lies between the critical values, and therefore we have no reason
to reject Hj.

The p-value is given by

| 2F,_,(¢) t <0
b= { 21— F, (t)) t>0

so here, p = 2F; _, (—1.22) which we can find to give p = 0.253; this
confirms that we have no reason to reject Hy.
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4.3.4 HYPOTHESIS TESTS FOR NORMAL DATA
III - TESTING o.

The Z-test and T-test are both tests for the parameter . Suppose that we
wish to test a hypothesis about o, for example

Hy : 0? = oy
.2
Hy:0°# 09

2

We construct a test based on the estimate of variance, s*. In particular,

the random variable (), defined by

(n —1)s?
2 ~ X72’I,—1

Q =

o

if the data have an N (u,o?) distribution.
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Hence if we define test statistic ¢ by

n — 1)s?
= (=)
g0

then we can compare g with the critical values derived from a x? _; distribu-
tion; we look for the 0.025 and 0.975 quantiles - note that the Chi-squared
distribution is not symmetric, so we need two distinct critical values.

In the above example, to test
Hy:0%=1.0
Hy:0%#1.0
we compute test statistic

_ (n—1)s* 90.78
1= o 1.0

= 5.4375
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We compare this with

Cr, = F\2  (0.025) == Cg, = 2.700
CRQ = FXQ 1(0.975) — CRQ = 19.022

So ¢ is not a surprising observation from a x2 _; distribution, and hence we
cannot reject Hy.

We can compute the p-value by inspection of the cumulative distribution
function of the x2_; distribution. However, we know already that this
p-value will not be smaller than the significance level, as the test-statistic
does not lie in the critical region.
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4.3.5 TWO SAMPLE TESTS

It is straightforward to extend the ideas from the previous sections to two
sample situations where we wish to compare the distributions underlying
two data samples. Suppose that the sample mean and sample variance for
samples one and two are denoted (Z, s% ) and (¥, s3-) respectively.

First, consider testing the hypothesis

Ho:piy = py
Hy:px # py

when ocx = oy = o is known. Now, we have from the sampling distribu-
tions theorem we have

B 2 B 2 o 2 2
XNN(MX,Z—X) Y~N(uy,g—):>X—Y~N<0,Z—X+Z—Y)
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and hence
X-Y
7 = N(0,1)
1 1
O/ — + —
nx ny
giving us a test statistic z defined by
T—j
z =
\/ 1 1
O/ — + —
nx ny

which we can compare with the standard normal distribution; if z is a
surprising observation from N(0,1), and lies outside of the critical region,
then we can reject Hy. This procedure is the Two Sample Z-Test.
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If o x = oy = o is unknown, we parallel the one sample T-test by replacing
o by an estimate in the two sample Z-test. First, we obtain an estimate
of o by “pooling” the two samples; our estimate is the pooled estimate,

s%,, defined by

(nx — 1)3% + (ny — 1)3%

nx +ny — 2

52, =

which we then use to form the test statistic ¢ defined by
r—y
1 1
Spy/— + —
nx ny

| =

It can be shown that, if Hj is true then ¢ should be an observation from a
Student-t distribution with nx +ny — 2 degrees of freedom. Hence we can
derive the critical values from the tables of the Student-¢ distribution.
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If o x # oy, but both parameters are known, we can use a similar approach
to the one above to derive test statistic z defined by

T —y

2 2
) o
X | Y
\/
nx ny

which has an N (0, 1) distribution if Hy is true.

z =

If ox # oy, but both parameters are unknown, we can use a similar
approach to the one above to derive test statistic ¢ defined by

2 2
S S
X | Y
\/
nx ny

This statistic has an approximate Student-t distribution if Hy is true.
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Clearly, the choice of test depends on whether ox = oy or otherwise; we
may test this hypothesis formally; to test

H():O'X:O'y
H1:O'X§'50'y

We compute the test statistic

which has a null distribution known as the Fisher or F' distribution with
(nx —1,ny —1) degrees of freedom; this distribution can be denoted F'(nx —
1,ny — 1), and its quantiles are tabulated.

We can find the 0.025 and 0.975 quantiles of the F(nx — 1,ny — 1) distri-
bution and define the critical region; if the test statistic ¢ is very different
from 1, then it is a surprising observation from the F' distribution, and we
reject the hypothesis of equal variances.
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4.3.6 ONE-SIDED AND TWO-SIDED TESTS

So far we have considered hypothesis tests of the form

Ho :p=pyg
Hy p# py

which is referred to as a two-sided test, that is, the alternative hypothesis
is supported by an extreme test statistic in either tail of the distribution.
We may also consider a one-sided test of the form

Ho:p=pi Ho @ pp = pg

or .
Hy:p > g Hy:p < pg

Such a test proceeds exactly as the two-sided test, except that a significant
result can only occur in the right (or left) tail of the null distribution, and
there is a single critical value, placed, for example, at the 0.95 (or 0.05)
probability point of the null distribution.
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4.3.7 CONFIDENCE INTERVALS

The procedures above allow us to test specific hypothesis about the param-
eters of probability models. We may complement such tests by reporting a
confidence interval, which is an interval in which we believe the “true”
parameter lies with high probability. Essentially, we use the sampling dis-
tribution to derive such intervals. For example, in a one sample Z-test, we
saw that

X -
0/\7

that is, that, for critical values £C'r in the test at the 5 % significance level

Z =

~ N(0,1)

X —p
P|— < /4 < =P |- < < = U.
—Cr < Z < Cf] CR_U/\/E_CR 0.95
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Now, from tables we have C'r = 1.96, so re-arranging this expression we
obtain

_ o o

P|X —1.96— —

Vn vn

from which we deduce a 95 % Confidence Interval for ;1 based on the
sample mean I of

<pu<X+1.96 —0.95

o
T+ 1.96—
T NG

We can derive other confidence intervals (corresponding to different signif-
icance levels in the equivalent tests) by looking up the appropriate values
of the critical values. The general approach for construction of confidence
interval for generic parameter 6 proceeds as follows. >From the modelling
assumptions, we derive a pivotal quantity, that is, a statistic, T’pg, say,
(usually the test statistic random variable) that depends on 6, but whose
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sampling distribution is “parameter-free” (that is, does not depend on 6).
We then look up the critical values Cr, and Cg,, such that

P[CRl STPQSCRQ]:l—CV

where « is the significance level of the corresponding test. We then rear-
range this expression to the form

Pley <0<c]=1—-a

where c; and co are functions of Cr, and Cg, respectively. Then a 1 — «
% Confidence Interval for 4 is [cy, ca].
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4.3.8 PAIRED TESTS

In a two-sample testing situation, we may have data that are paired, in the
sense that each observation in one sample has a corresponding sample in
the other sample; this could arise if two measurements (pre-treatment /post
treatment) are available on a set of individuals, denoted (x;1,x;2). In a
paired t-test, the assumption of normality is necessary for the differences
in the measurements

i = Lj1 — T42

but not for the individual observations. Hence the paired sample gives
rise to a single sample of differences {z; = ;1 — x;2,7 =1, ...,n} that can
be tested using

e one sample Z-tests or one sample 1T-tests
depending on whether the variance of the differenced sample is to be pre-

sumed known or unknown respectively.
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SECTION 5.
HYPOTHESIS TESTING EXTENSIONS

1. consider a pair of competing hypotheses, Hy and H;

2. define a suitable test statistic random variable T" = T(Xq, ..., X},)
(that is, some function of the original random variables)

3. assume that H is true, and compute the sampling distribution of
T, fr or Frp; this is the null distribution

4. compute the observed value of T, t = T'(x1, ..., x,); this is the ob-
served test statistic

5. assess whether ¢ is a surprising observation from the distribution fr.
If it is surprising, we have evidence to reject Hy; if it is not surprising,
we cannot reject H
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KEY POINT:
This is a generic approach that we have seen applied in the normal, one
and two-sample case. Effectively, for the p-value, we have computed

P [Data at least as extreme as the data we did observe | Null model is TRUE]
or,
P[T(X) >t | HyTRUE]

This strategy can be applied to more complicated normal examples, and
also non-normal and non-parametric testing situations. It is a general
strategy for assessing the statistical evidence for or against a hypothesis.

Note that we only have to compute the probability conditional on the “null”
hypothesis being true.
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5.1 ANALYSIS OF VARIANCE

The first extension we consider still presumes a normality assumption for
the data, but extends the ideas from Z and 7' tests, which compare at most
two samples, to allow for the analysis of any number of samples.

Analysis of variance or ANOVA is used to display the sources of vari-
ability in a collection of data groups.

The ANOVA F-test compares variability between groups with the vari-
ability within groups.
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5.1.1 ONE-WAY ANOVA

The T-test can be extended to allow a test for differences between more
than two data samples. Suppose there are K groups of sizes ni,...,ng
(let n = ny + ... + nk) from different populations. Let y; be the jth
observation in the kth group, then

Ykj = Ui T €kj

for k=1,..,K, and g; ~ N (O, 02). This model assumes that
Yk] ~ N (:uka 0-2)

and that the expectations for the different groups are different. We can
view the data as a table comprising K columns, with each column corre-
sponding to a sample.

The groups are commonly referred to as FACTORS.
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EXAMPLE: ANTIBIOTIC/SERUM PROTEIN BINDING

Penicillin Tetra-  Strepto- Erythro- Chloram-

G cyclin mycin mycin phenicol
29.6 27.3 5.8 21.6 29.2
24.3 32.6 6.2 17.4 32.8
28.5 30.8 11.0 18.3 25.0
32.0 34.8 8.3 19.0 24.2
Mean 28.6 31.4 7.8 19.1 27.8

Is there any evidence that the amount of serum-binding differs across an-
tibioitics 7
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To test the hypothesis that each column (or “population”) has the same
mean, that is, the hypotheses

Ho : pg =g = ... = Ug
H1 . nOtH()

an Analysis of Variance (ANOVA) F-test may be carried out.

The alternative hypothesis H; corresponds to the model where at least
one of the i parameters, the mean levels for the factors, is different from
the others.
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To carry out a test of the hypothesis, the following ANOVA table should
be completed;

Source D.F. Sum of Mean ANOVA - F
squares square F,
FSS/(K —1)

Between Samples K -1 FSS  FSS/(K—-1)

RSS/(n — K)
Within Samples n—K RSS RSS/(n—K)
Total n—1 TSS

The test is completed by evaluating a p-value using the observed ANOV A—
F' statistic, f,, that is, the probability

P|F, > f,|F has a Fisher — F (K —1,n — K) distribution ]
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where

K ng K ng
TSS=3"> (e ~7.)" RSS=>Y (v — )
k=1 j=1 k=1j=1

K
FSS=Y nx (W —7.)°
k=1
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where

e T'SS is the total sum-of-squares (i.e. total deviation from the overall
data mean 7 )

e RSS is the residual sum-of-squares (i.e. sum of deviations from
individual group means 7., k =1, ..., K) and

e F'SS is the fitted sum-of-squares (i.e. weighted sum of deviations
of group means from the overall data mean, with weights equal to
number of data points in the individual samples)
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Note:that
TSS =FSS+ RSS

The definitions of these three sums of squares quantities gives insight into
how ANOVA works by decomposing the total variation in the observed
data

e ['SS is the overall variation

e F'SS is the variation caused by the systematic component (that is,
the differences in group means)

e 1SS is the random variation

If the F’ statistic is calculated in this way, and compared with an F distri-
bution with parameters K —1, n— K, the hypothesis that all the individual
samples have the same mean can be tested. We write F_1 ,_ for this
Fisher-F distribution.
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F(2,5) pdf F(2,10) pdf
0 1 2 3 4 5 0 1 2 3 4 5
X X
F(4,10) pdf F(10,4) pdf
0 1 2 3 4 5 0 1 2 3 4 5
X X
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EXAMPLE: ANTIBIOTIC/SERUM PROTEIN BINDING

Source D.F. Sum of squares Mean square F
SERUM 4 1480.82 370.21 40.88
Residual 15 135.82 9.05

Total 19 1616.64

which gives a p-value (of 6.74 x 107®) in comparison with a Fisher Fj 15
distribution)

This is a highly statistically significant result, and thus there is strong
evidence to reject the null hypothesis that the mean serum protein binding
is equal for all antibiotics (under the ANOVA assumptions).
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EXAMPLE Three genomic segments were used to studied in order to
discover whether the distances (in kB) between successive occurrences of
a particular motif were substantially different. Several measurements were
taken using for each segment;

Method
SEGMENT A SEGMENT B SEGMENT C
42.7 44.9 41.9
45.6 48.3 44.2
43.1 46.2 40.5
41.6 43.7
41.0
Mean 43.25 46.47 42.26
Variance 2.86 2.94 2.06
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For these data, the ANOVA table is as follows;

Source D.F. Sum of squares Mean square  F
SEGMENTS 2 34.1005 17.0503 6.11
Residual 9 25.1087 2.7899

Total 11 59.2092

and the I statistic must be compared with an Fj3g distribution. For a
significance test at the 0.05 level, F' must be compared with the 95th per-
centile (in a one-sided test) of the F5 ¢ distribution. This value is 4.26.
Therefore, the F' statistic is surprising, given the hypothesized model, and
therefore there is evidence to reject the hypothesis that the segments are
identical.
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5.1.2 POST-HOC TESTS

The hypothesis of equal means across all groups is not necessarily the only
hypothesis of interest. We may wish to test, for example

HO:IU/T‘ZIU/S

against the general alternative for any possible pair of columns r and s,
even if the null hypothesis of equal means in all columns is not rejected.

Pairwise tests for equality of column means that are carried out after an
F-test has led to the rejection of the ANOVA null hypothesis are referred to
as post-hoc tests. The key consideration for such tests is the appropriate
correction for multiple testing; a number of methods have been proposed.
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5.1.3 TWO-WAY ANOVA

One-way ANOVA can be used to test whether the underlying means of
several groups of observations are equal Now consider the following data
collection situation Suppose there are K treatments, and L groups of ob-
servations that are believed to have different responses, that all treatments
are administered to all groups, and measurement samples of size n are
made for each of the K x L combinations of treatments x groups. The
experiment can be represented as follows: let y;; be the jth observation
in the kth treatment on the [th group, then

Yklj = Mg + 01 + €ty

for k=1,...,K,l=1,..,L, and again ei;; ~ N (0,0?).
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This model assumes that Y;; ~ N (,uk + 01, 02) and that the expectations
for the different samples are different. @ We can view the data as a 3
dimensional-table comprising K columns and L rows, with n observations
for each column X row combination, corresponding to a sample.

It is possible to test the hypothesis that each treatment, and/or that each
group has the same mean, that is, the two null hypotheses

Ho @ py = pyp = . = g
H() . 61:62:...:6L

against the alternative Hy not H( in each case.

For these tests, a Two-way Analysis of Variance (ANOVA) F-test
may be carried out.
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The Two-Way ANOVA table is computed as follows

Source D.F. Sum of squares = Mean square F
FSS1 /(K —1)
TREATMENTS K —1 F F K -1
551 S5 ) RSS/(R+1)
FSSy/(L—1)
GROUPS L—1 F F L—1
552 552/ ) RSS/(R+1)
Residual R+1 RSS RSS/(R+1)
Total N —1 TSS

where N =K XL xn, R=N — L — K. and again

TSS =FS5S51 +FSSy + RSS.
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In the table below, there are K = 6 Treatments, and L = 3 Groups, and

n=1

I I1 11 GROUP totals

1 0.96 0.94 0.98 2.88

2 0.96 0.98 1.01 2.95

3 0.85 0.87 0.86 2.58

4 0.86 0.84 0.90 2.60

5 0.86 0.87 0.89 2.62

6 0.89 0.93 0.92 2.74
TREATMENT totals 5.38 5.43 5.56 16.37

There are two natural hypotheses to test; first, do the TREATMENTS
differ, and second, do the GROUPS differ ?
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Two-way analysis of variance can be used to analyze such data. Given
two sources of variation the data can be thought of as a table with the rows
and columns representing these two sources . T'wo-way analysis of variance
studies the variability due to

e the GROUP effect (here, variability between the columns),

e and the variability due to the TREATMENT effect (variability be-
tween the rows)

and calibrates them against the average level of variability in the data
overall. Having performed the appropriate calculations, the results are

displayed in an ANOVA table.
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For example, for the data above

Source D.F. Sum of squares Mean square F
TREATMENT 5 0.040828 0.0081656 31.54
GROUP 2 0.002878 0.001439 5.57
Residual 10 0.002589 0.0002589

Total 17 0.046295
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The two F' statistics can be interpreted as follows:;

e the first (F' = 31.54) is the test statistic for the test of equal means
in the rows, that is, that there is no difference between TREAT-
MENTS. This statistic must be compared with an

Fs.10

distribution (the two degrees of freedom being the entries in the de-
grees of freedom column in the specimens and residual rows of the
ANOVA table). The 95th percentile of the Fj ;¢ distribution is 3.33,
and thus the test statistic is more extreme than this critical value,
and thus the hypothesis that each specimen has the same mean can
be rejected.
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e The second F statistic, (F' = 5.57), is the test statistic for the test
of equal means in the columns, that is, that there is no difference
between GROUPS. This statistic must be compared with an

F3 10

distribution (the two degrees of freedom being the entries in the de-
grees of freedom column in the methods and residual rows of the
ANOVA table). The 95th percentile of the F5 ;¢ distribution is 4.10,
and thus the test statistic is more extreme than this critical value,
and thus the hypothesis that each method has the same mean can be
rejected.

Note: In this example, we do not have replicate data; this limits the
complexity of the model that we can fit. Ideally we would like to be able
to fit an interaction between the two-factors.
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Mean parameters in two-way cross classification (full models):

No Interaction model
I I1 11 IV Vv
1 ,LL1—|—61 ,LL1‘|‘62 ,LL1‘|‘63 ,LL1‘|‘64 ,LL1+65
2 ,L02‘|‘61 ,LL2‘|‘62 ,LL2‘|‘63 ,LL2‘|‘64 ,LL2_|_65
3 p3+o61 pz+oés pu3+o3 pus3+os  pg+0s

Interaction model
I 11 mr 1v V

I v11 72 Y13 Y4 Vs
2 Vo1 Yoo Vo3 Vo4 Vos
3 Y31 VY32 Y33 VY34 Vss

No Interaction Model: 8 = 3 + 5 parameters

Interaction Model: 15 = 3 x 5 parameters; can be fit if replicate data are
available.
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5.1.4 ANOVA: KEY ASSUMPTIONS
In ANOVA, there are three key assumptions

(i) all data are independent
(ii) the data are normally distributed

(iii) the data subgroups (defined by the cross classification by factors)
have equal variances.

Of these three points, (i) can be assessed by consideration of the study
design, (ii) can be be tested formally using methods that will be described
in later sections, and (iii) can be tested using statistical hypothesis testing
in the following way using Levene’s Test
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LEVENE’S TEST FOR HOMOGENEITY OF VARIANCE

The Levene test is defined for the two hypotheses as follows: suppose
that the data Y of size n is partitioned into K subgroups of sizes nq,...,ng
where n = n1 + ... + ng. It is of interest to test whether the subgroups
have the same variance, that is the hypothesis

Hy : o1=09=..=0x

H, : o0;# 0; for at least one pair (7, 7).

Test Statistic

(n—K)an (71 —7)2

W = Ry

(K — 1)22%1 (Z’LJ —77;)2

i=1 j=1

where Z;; can have one of the following three definitions:
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1. Zij =Y — Y;|, where Y] is the mean of the ith subgroup.

2. Zi; = |Yi; — YL-(MEDIAN)] where Yi(MEDIAN) is the median of the ¢th
subgroup.

3. Zi = |V, — Y TRIMMED)) Ghere VT RIMMED) 5o the 10% trimmed

mean of the :th subgroup.

The three choices for defining Z;; determine the robustness (to not falsely
detect unequal variances when the underlying data are not normally dis-
tributed) and power (to detect accurately unequal variances) of Levene’s
test. The Levene test rejects the hypothesis that the variances are equal
at significance level «a (typically, a = 0.05) if

W > FK—l,n—K(l — 04)

where Fx_1 n— k(1 — ) is the (1 — a) % quantile of the Fisher F' distribu-
tion with K — 1 and n — K degrees of freedom.
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5.2 NON-NORMAL DATA
5.2.1 COUNTS AND PROPORTIONS

The one and two sample tests described in earlier sections can also be
applied to non-normal data. A common form of non-normal data arise
when the counts of numbers of “successes” or “failures” that arise in a
fixed number of trials.

In this case, the Binomial distribution model is appropriate; in a one sample
testing, we model the number of successes, X, by assuming

X ~ Binomial(n, )

and test hypotheses about 6.
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In the two sample case, we assume that the number of successes in the two
samples are random variables X; and X5, where

X1 ~ Binomial(ny,01)

Xo ~ Binomial(ne, 02),
and perhaps test the null hypothesis
H() . 91 = 92

against some alternative hypothesis (61 #£ 02,601 > 05 or 01 < 05)
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5.2.2 ONE-SAMPLE TESTING

In the one sample case, two alternative approaches can be adopted:

e an exact test, where the distribution of the chosen test statistic under
Hy : 0 = 0y is computed exactly, giving exact critical values and p-
values

e an approximate test based on a Normal approximation to the bino-
mial distribution.
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For the exact test, we note that, if Hj is true, and 68 = 6, then X ~
Binomial(n,0y) so the critical values in a two-sided test can be computed
directly by inspection of the Binomial(n,6y) c.d.f; that is

FBIN (CRl;n,Q = 90) = 0.025 CRQ = FBIN (0.975;77,,9 = 90)

where Fprn (—;n,0) is the c.d.f. of the Binomial(n,#) distribution

|z ]
n ) n—i
Fpin (2;n,0) = Z (i)ﬁz (1-20)
i—0

where

| x| is largest whole number < .
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For the approximate test, we use the fact that
X ~ Binomial(n,0) ~ Normal (n,nf (1 — 0))

and hence random variable Z
P X —nb
\/nl(1 —0)

is approximately distributed as Normal(0,1). For the approximate test
of Hy: 0 = 0y, we therefore use the test statistic

L xr — nby
\/77,9()(1 — 9())

(x is the actual, observed count) and compare this with the standard normal
c.d.f.. This test is virtually equivalent to the one-sample t-test.
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5.2.3 TWO SAMPLE TESTING

For a two sample test of Hy : 61 = 65, we use a similar normal approx-
imation to the one-sample case. If Hj is true, then there is a common
probability 6 determining the success frequency in both samples, and the
maximum likelihood estimate of 6 is

z =

(n1 +n2) r1 + To 1_331 —+ X9
n1No ni + no N1+ N2

has an approximate standard Normal distribution.
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5.2.4 CONTINGENCY TABLES

Contingency tables are constructed when a sample of data of size n
are classified according to D factors, with each factor having k; levels or
categories, for d = 1,..., D. When the classification is complete, the result
can be represented by a D-way table of k1 X ko X ... X kp “cells”, with each
cell containing a fraction of the original data. For example, if D = 2, the
table consists of k1 rows and ks columns, and the number data in cell (7, j)
is denoted n;; for ¢ =1,...,k1 and 57 =1, ..., k2, where

ki ko

>y =

i=1 j=1

Such a table when D = 2, k; = 4 and ky = 6 is illustrated below
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COLUMN
1 2 3 4 D 6 | Total

n11 NnNi2 Ni13 MNi14 Ni15 MNi6 ni.

n21  M22 MN23 MN24 TN25  T26 na.

n31y MN32 N33 N34 N35 MN36 ns.
4 N4l N42  N43  Naa  N45  Nae | N4,

Total | n1 n2 n3 nag4 ns ne | n

W N =

ROW

This is a cross-classification table; it says that n;; out of a total of n
individuals had

e row classification 7

e column classification j
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5.2.5 CHI-SQUARED GOODNESS-OF-FIT TEST

It is often of interest to test whether row classification is independent of
column classification, as this would indicate independence between row
and column factors. An approximate test can be carried out using a Chi-
Squared Goodness-of-Fit statistic; if the independence model is correct,
the expected cell frequencies n;; can be calculated as

T M 4

Rij = i=1,. .k, j=1, .. ko

n

where n;. is the total of cell counts in row ¢ and n_; is the total of cell counts
in column j, and that, under independence, the x? test statistic

ki ko 2

>0y et

1=1 5=1

has an approximate chi-squared distribution with (k; — 1)(ks — 1) degrees
of freedom.
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5.2.6 LIKELIHOOD RATIO TEST
Another approximate test is based on a Likelihood Ratio (LR) statistic

ki ko

)

i=1 j=1

This statistic also has an approximate Chi-squared distribution

2
X(ky—1) (k2 —1)
again given that Hj is true.
It compares the “likelihood” under the independence model with the like-

lihood of the “saturated” model that fits a parameter for each cell in the
table;
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e the independence model has
14+ (k1 —1)+(ka—1)=ky + ko —1
parameters, and hence
(k1 X ko) — (k1 + ko —1) = (k1 — 1)(ka — 1)
degrees of freedom

e the saturated model has (k1 X ko) parameters, and hence 0 degrees
of freedom

e the difference in degrees of freedom is hence

(k1 —1)(k2 — 1)
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EXAMPLE: 4 x4 TABLE PHENOTYPIC RELATIONSHIP

Hair colour
Black Brunette Red Blonde Total

Brown 68 119 26 7 220

Blue 20 84 17 94 215

Eye color  Hazel 15 54 14 10 93
Green 5 29 14 16 64

Total 108 286 71 127 592

Number of tables: 1,225,914,276,276,768,514

Any evidence of dependence/association between traits ?
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EXAMPLE : DESCENDENTS OF QUEEN VICTORIA

Mont
.::; n Month of death

birth Jan Feb March April May June July Aug Sept Oct Nov Dec Total

Jan 1 0 0 0 1 2 0 0 1 0 - 0 6
Feb 1 0 0 1 0 0 0 0 0 1 0 2 5
March 1 0 0 0 2 1 0 0 0 0 0 1 5
April 3 0 2 0 0 0 1 0 1 3 1 1 12
May 2 1 1 1 1 1 1 1 1 1 1 0 12
June 2 0 0 0 1 0 0 0 0 0 0 0 3
July 2 0 2 1 0 0 0 0 1 1 1 2 10
Aug 0 0 0 3 0 0 1 0 0 1 0 2 7
Sept 0 0 0 1 1 0 0 0 0 0 1 0 3
Oct 1 1 0 2 0 0 1 0. 0 1 1 0 /)
Nov 0 1 1 1 2 0 0 2 0 1 1 0 9
Dec 0 1 1 0 0 0 1 0 0 0 0 0 3
Total 13 4 7 10 8 4 5 3 4 9 7 8 82

Any evidence of association between birth /death months 7
Note: A very “sparse” table.
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5.3 2 x 2 TABLES

When k1 = ko9 = 2, the contingency table reduces to a two-way binary
classification

COLUMN
1 2 Total
1 ni1 N2 ni.
ROW 2 no1 929 no.
Total | n1 no n

In this case we can obtain some more explicit tests: one is again an exact
test, the other is based on a normal approximation. The chi-squared test
described above is feasible, but other tests may also be constructed:
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e FISHER’S EXACT TEST FOR INDEPENDENCE

Suppose we wish to test for independence between the row and col-
umn variables of a contingency table. When the data consist of two
categorical variables, a contingency table can be constructed reflect-
ing the number of occurrences of each factor combination. Fisher’s
exact test assesses whether the classification according to one factor
is independent of the classification according to the other, that is the
test is of the null hypothesis Hy that the factors are independent,
against the general alternative, under the assumption that the
row and column totals are fixed.

170



Statistical Analysis and Modelling Week 1 Spring 2004

e — The data for such a table comprises the row and column totals
(n1.,m2.,m.1,n.2) and the cell entries

(n11, ni2, nai, n22)

The test statistic can be defined as the upper left cell entry
ny1; for the null distribution, we compute the probability of
the observing all possible tables with these row and column
totals.. Under Hg this distribution is hypergeometric and
the probability of observing the table (n11, 112, 121, n922) is

(m.)(nz)
ni1 n2i/) ni.n.ilng In o

( n ) n!nll!nlg!ngl!ngg!

n.a

p(nn) =

where n! =1x2x3x..x (n—1) xn.
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— For the p-value, we need to assess the whether or not the ob-
served table is surprising under this null distribution; suppose
we observe ni; = x, then we can compare p (z) with all p (y) for
all feasible y, that is y in the range max{0,n;, — (n —n.1)} <
y < min{n,n.;}. We are thus calculating the null distribution
exactly given the null distribution assumptions and the row and
column totals; if the observed test statistic lies in the tail of the
distribution, we can reject the null hypothesis of independent
factors.

e MANTEL-HAENSZEL TEST FOR INDEPENDENCE

This test allows you to test for independence between two factors in
the presence of a third, and possibly related variable. It extends
the two-way Chi-squared test of independence described above; the
test statistic is a chi-squared type statistic, and the null distribution
under independence is a Chi-squared distribution.
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e McNEMAR’S TEST FOR PAIRED SAMPLES

In a 2 x 2 table representing paired data (where observations are, for
example, matched in terms of medical history or genotype, or pheno-
type) the usual chi-squared test is not appropriate, and McNemar’s
test can instead be used. Consider the following table for a total of
n matched pairs of observations, in which each individual in the pair
has been classified (or randomized to class) A or B, with one A one
B in each pair, and then the outcome (disease status, survival status)
recorded.

A
YES NO | Total
YES | nig nia | na
B NO | na1  no2 | no
Total | n 1 no | N

that is, ny; pairs were observed for which both A and B classified
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individuals had disease/survival status YES, whereas nio pairs were

observed for which the A individual had status NO, but the B indi-
vidual had status YES, and so on.

An appropriate test statistic here for a test of symmetry or “discor-
dancy” in these results (that is, whether the two classifications are
significantly different in terms of outcome) is

Xg _ (n12 — n21)2
Nni2 + Na2i

which effectively measures how different the off-diagonal entries in
the table are. This statistic is an adjusted Chi-squared statistic,
and has a % distribution under the null hypothesis that there is
no asymmetry. Again a one-tailed test is carried out: “surprising”
values of the test statistic are large.
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SECTION 6.
NON-PARAMETRIC TESTS

The standard test for the equality of expectations of two samples is the
two-sample T-test. This test is predicated on the assumption of normality
of the underlying distributions. In many cases, such an assumption is
inappropriate, possible due to distributional asymmetry or the presence of
outliers, and thus other tests of the hypothesis of equality of population
locations must be developed.

Some of the standard non-parametric tests used in statistical analysis are
described below: we concentrate on two-sample tests for the most part.

All of these tests can be found in good statistics packages.

References: Conover, Practical Nonparametric Statistics
Hollander and Wolfe, Nonparametric Statistical Methods
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Non-parametric tests are usually based on the ranks of the data: typically,

we

176

sort the pooled data into ascending order (forming the order statis-
tics/empirical quantiles)

assign the ranks from 1 up to the total sample size to the data points

examine statistics based on functions of the ranks (for example, the
rank-sum) for data within the identified subgroups.

base group comparison on differences in the rank statistics

the rank statistics are used to construct a test statistic, whose distri-
bution is typically approximated using a normal approximation.

a “distribution-free” procedure.
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6.1 THE MANN-WHITNEY-WILCOXON TEST

Consider two samples z1,...,x,, and yi,...,Yn,. The Mann-Whitney-
Wilcoxon test proceeds as follows; first, sort the pooled sample into as-
cending order. Add up the ranks of the data from sample one to get uq
say. Repeat for sample two to get us. Note that

(n1 +mn2)(n1 +mn2 +1)
2

Ul + U2 =

The Mann-Whitney-Wilcoxon statistic is u1. It can be shown that, under
the hypothesis that the data are from populations with the equal medians,
then u; has an approximate normal distribution with mean and variance

ni(ny +n9 + 1) nina(nig +ng + 1)
2 12

This is the non-parametric alternative to the two sample t-test.
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6.2 THE KOLMOGOROV-SMIRNOV TEST

The two-sample Kolmogorov-Smirnov test is a non-parametric test for com-
paring two samples via their empirical cumulative distribution func-
tion. For data z1,...,x,, the empirical c.d.f. is the function F

F(z) = clw) c(x) = “Number of data < z”

Thus, for two samples, we have two empirical c.d.f., and the (two-sided)
Kolmogorov-Smirnov test that the two samples come from the same
underlying distribution is based on the statistic

P P

T = max | F] (x) — Fs(x)].

X
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It is easy to show that 0 < 1" < 1, but the null distribution of 7' is not
available in closed form. Fortunately, the p-value probability in the test
for test statistic ¢, p =P|T" > t| can be obtained for various different sample
sizes using statistical tables or packages.

NOTE : There is a one-sample version of the Kolmogorov-Smirnov test
for testing whether a sample are well represented by a specified probability
model with cdf Fj. It is based on the test statistic

P

T = max |F; (x) — Fo(z)| .

X

It can be used as a goodness-of-fit test, to test against a specific distri-
bution.
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6.3 TESTING NORMALITY

e THE CHI-SQUARED GOODNESS-OF-FIT TEST

The chi-squared goodness-of-fit test is a non-parametric test for
which the null distribution of the test statistic

k

X2 _ Z (Oz E'Ez)

1=1

can be well approximated by a Chi-squared distribution. In this
formula, £ is the number of “bins” into which the range of the data
is broken down, and

— (O; is the number of observations observed to fall into bin ¢

— FE; is the number of observations expected to fall into bin ¢
under the normal model
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Alternative tests/Assessments:

e The Shapiro-Wilk Test: The Shapiro-Wilk test can be used
to test this hypothesis; the test statistic is commonly denoted W,
and critical and p- values from its null distribution are available from
tables or statistics packages.

e The Kolmogorov-Smirnov one-sample test can be used in a one-
sample problem to test any distributional assumptions, including nor-
mality.

e Probability Plotting or Quantile-Quantile (QQ) plotting involves
plotting empirical quantiles versus theoretical quantiles; a straight
line in the QQ plot indicates that the distributional assumption is
valid.
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6.4 THE KRUSKAL-WALLIS TEST

The Kruskal-Wallis rank test is a nonparametric alternative to a one-
way analysis of variance.

e The null hypothesis is that the true location parameter is the same
in each of the samples.

e The alternative hypothesis is that at least one of the samples has a
different location.

e Unlike one-way ANOVA, this test does not require normality
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6.5 THE FRIEDMAN RANK SUM TEST

The Friedman rank sum test is a nonparametric alternative to a specific
two-way analysis of variance

e It is appropriate for data arising from an experiment in which exactly
one observation was collected from each experimental unit, or group,
under each treatment.

e The elements of the samples are assumed to consist of a treatment ef-
fect, plus a group effect, plus independent and identically distributed
residual errors
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SECTION 7.

EXACT TESTS AND
SIMULATION-BASED METHODS

Chi-squared tests involved the construction of a chi-squared statistic of
the form

k

X2 _ Z (Oz E'Ez)

1=1

The distribution of the test-statistic is approximated by a suitable Chi-
squared distribution. This approximation is

e good when the sample size is large

e poor when the table is “sparse”, with some low (expected) cell entries
(under the null hypothesis)
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We have also seen two examples of Exact Tests: the exact binomial
test in section (5.2.1) and Fisher’s Exact Test in section (5.3). For these
tests, we proceeded as follows, mimicking the general hypothesis strategy
outlined at the start of the section.

1. Write down a null hypothesis Hy and a suitable alternative hypothesis
H;y

2. Construct a test statistic 1' deemed appropriate for the hypothesis
under study

3. Compute the null distribution of 7', that is the sampling distribution
of T"it Hy is true, fr

4. Compare the observed value of T, ¢t = T'(x) for sample data x =
(1, ..., ) with the null distribution and assess whether the observed
test statistic is a surprising observation from fp; if it is reject Hy
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Step 3 is crucial: for some tests (for example, one and two sample tests
based on the Normal distribution assumption), it is possible to find fr an-
alytically for appropriate choices of 1" in Step 2. For others, such as the
chi-squared goodness of fit and related tests, fr is only available approxi-
mately.

However, the null distribution (and hence the critical regions and p-value)
can, in theory, always be found : it is the probability distribution of the
statistic T" under the model restriction imposed by the null hypothesis.

We may not be able to compute the null distribution analytically (as

for the tests for normal samples), but we can do it numerically, using
simulation.
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For most of the hypothesis tests above, we start with the assumptions and
work forward to derive the sampling distribution of the test statistic under
the null hypothesis.

e For permutation tests, we will reverse the procedure, since the
sampling distribution involves the permutations which give the pro-
cedure its name and are the key theoretical issue in understanding
the test.

e For resampling or bootstrap methods , we will resample the orig-
inal data uniformly and randomly so as to explore the variability of
a test statistic.
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7.1 PERMUTATION TESTS

A permutation is a reordering of the numbers 1,...,n. For example, (1,
2,3,4,5,6), (1, 3, 2, 4,5, 6), (4, 5, 2,6, 1, 3) (3, 2, 1, 6, 4, 5) are
all permutations of the numbers 1 through 6 (note that this includes the
standard order in first line). There are n! =1 x 2 x 3 X ... x n permutations
of n objects.

The central idea of permutation tests refers to rearrangements of the data.
The null hypothesis of the test specifies that the permutations are all
equally likely. The sampling distribution of the test statistic under the
null hypothesis is computed by forming all (or many) of the permutations,

calculating the test statistic for each and considering these values all equally
likely.
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Consider the following two group example, where we want to test for any
significant difference between the groups.

Group 1l : 55,58,60
Group 2 : 12,22,34

Here are the steps we will follow to use a permutation test to analyze the
differences between the two groups. For the original order the sum for
Group 1 is 173. In this example, if the groups were truly equal (and
the null hypothesis was true) then randomly moving the observations
among the groups would make no difference in the sum for Group 1. Some
of the sums would be a little larger than the original sum and some would
be a bit smaller. For the six observations there are 720 permutations of
which there are 20 distinct combinations for which we can compute the
sum of Group 1.
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GROUP 1

55,58,60
55,58,12
55,58,22
55,58,34
55.12,60
55.,22.60
55,34.60
12,58,60
22.58.60
34,58,60

12,22.34
60,22,34
12,60,34
12,22.34
58,22 34
12,58,34
12,22.58
55,22.34
12,55,34
12,22.55

GROUP 2 SUM

173
125
135
148
127
137
149
130
140
152

11
12
13
14
15
16
17
18
19
20

GROUP 1

12,22.60
12,58,22
55,12,22
12,34,60
12,58,34
55,12,34
22.34.60
22.58,34
55,22 34
12,22.34

55,58,34
55,60,34
12,5558
55,58,34
55.22.60
12,58,60
55,58,34
55.,22.60
12,58,60
55,58,60

GROUP 2 SUM

94
92
89
106
104
101
116
114
111
68

Only one of the twenty orderings has a Group 1 sum that greater than that
of the original ordering; thus the probability of a sum at least this large by
chance alone is 1/20 = 0.05; it can be considered statistically significant.
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7.2 MONTE CARLO METHODS

Above, the permutation yielded an exact test because we were able to
enumerate all of the possible combinations. In larger examples it will not
be possible , so we will have to take a large number of random orderings,
sampled uniformly from the permutation distribution.

Monte Carlo methods replace an analytic calculation of the probability
function by a numerical, simulation-based one. The principal is that
large samples from probability distributions can be used accurately to

approximate the probability distribution itself.

A general Monte Carlo strategy for two sample testing is outlined below:
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. For two sample tests for samples of size n1 and ngy, compute the value

of the test statistic for the observed sample t*

. Randomly select one of the (n; + n9)! permutations, re-arrange the

data according to this permutation, allocate the first n; to pseudo-
sample 1 and the remaining ns to pseudo-sample 2, and then compute
the test statistic ¢t

. Repeat 2. N times to obtain a random sample of 1, %o, ...,t Ny of test

statistics from the TRUE null distribution.

. Compute the p-value by reporting

Number of ¢1,t9,...,ty more extreme than t*
N

this value will be a good approximation to the true p—value if the
Monte Carlo sample size N is large enough.
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7.3 THE BOOTSTRAP AND JACKKNIFE

In statistical analysis, we usually interested in obtaining estimates of a
parameter via some statistic, and also an estimate of the variability or
uncertainty attached to this point estimate, and a confidence interval for
the true value of the parameter.

Traditionally, researchers have relied on normal approximations to obtain
standard errors and confidence intervals. These techniques are valid only
if the statistic, or some known transformation of it, is asymptotically nor-
mally distributed. If the normality assumption does not hold, then the
traditional methods should not be used to obtain confidence intervals. A
major motivation for the traditional reliance on normal-theory methods
has been computational tractability, computational methods remove the
reliance on asymptotic theory to estimate the distribution of a statistic.
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Resampling techniques such as the bootstrap and jackknife pro-
vide estimates of the standard error, confidence intervals, and distributions
for any statistic. The fundamental assumption of bootstrapping is that
the observed data are representative of the underlying population. By
resampling observations from the observed data, the process of sampling
observations from the population is mimicked. The key techniques are

e THE BOOTSTRAP: In bootstrap resampling, B new samples,
each of the same size as the observed data, are drawn with replace-
ment from the observed data. The statistic is first calculated using
the observed data and then recalculated using each of the new sam-
ples, yielding a bootstrap distribution. The resulting replicates are
used to calculate the bootstrap estimates of bias, mean, and standard
error for the statistic.
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e THE JACKKNIFE: In jackknife resampling, a statistic is calcu-
lated for the n possible samples of size n—1, each with one observation
left out. The default sample size is n — 1, but more than one ob-
servation may be removed. Jackknife estimates of bias, mean, and
standard error are available and are calculated differently than the
equivalent bootstrap statistics.

Using the bootstrap and jackknife procedures, all informative summaries
(mean, variance, quantiles etc) for the sample-based estimates’ sampling
distribution can be approximated.

This is vitally important if we want to compute measures of uncer-

tainty (standard errors, confidence intervals) for parameters in the model,
or statistics.
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SECTION 8.
BAYESIAN INFERENCE

The classical (maximum-likelihood) view of Statistical Inference Theory
contrasts with the alternative Bayesian approach.

e In Bayesian theory, the likelihood function still plays a central role,

e the likelihood is combined with a prior probability distribution to
give a posterior distribution for the parameters in the model.

e Inference, estimation, uncertainty reporting and hypothesis testing
can be carried out within the Bayesian framework.
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8.1 PRIOR AND POSTERIOR DISTRIBU-
TIONS

In the Bayesian framework, inference about an unknown parameter 6 is
carried out via the posterior probability distribution that combines
prior opinion about the parameter with the information contained in the
likelihood fx|g (x;0) which represents the data contribution. In terms of
events, Bayes Theorem says that

P(A|B)P(B)
P(A)

P(B|A) =

that is, it relates the two conditional probabilities P(A|B) and P(B|A).
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Carrying this idea over to probability distributions, it follows that we can
carry out inference via the conditional probability distribution for param-
eter 0 given data X = x. Specifically for parameter 6, the posterior
probability distribution for ¢ is denoted py x (6|x), and is calculated as

_ Ixie@0)pe(0)
| fxio (z;0) po (8) df

say, where fx|g (x;0) is the likelihood, and py (¢) is the prior probability
distribution for #. @ The denominator in (1) can be regarded as the
marginal distribution (or marginal likelihood) for data X evaluated
at the observed data x

poix (0]x) c(x) fxo0 (7;0) pa (0) (1)

Ix(x) = / Ixjo (2:0) pa (6) db. (2)
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EXAMPLE: Binomial /Beta
e Likelihood: BINOMIAL

fxo (z;0) = (

n

)9@“ (1—6)""

X

e Prior: BETA
I'(a +

a—1 _ \B-1
rare)’ 9

e Posterior :

Po|x (Olz) o Ix\ (z;0) po (0)
x O (1 _ g)n—w w 9oL (1 _ 9)6—1 _ prta—l (1 B H)n—x—f-ﬁ—l
so that the posterior is BETA
Po|x (0|x) = Beta (x + a,n — x + )
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8.2 ESTIMATION AND UNCERTAINTY IN-
TERVALS

Inference for the parameter 0 via the posterior myy (6|y) can be carried
out once the posterior has been computed. Intuitively appealing methods
rely on summaries of this probability distribution, that is, moments or
quantiles.

For example, one Bayes estimate, 53 of 0 is the posterior expectation
0 = By (01X =] = [ 0pox(6la)as

Another estimate is the posterior mode, 0 MODE

Oropr = arg mgXp0|X(9’I)
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Uncertainty intervals are also available (and more natural in the Bayesian
setting)

e A 100(1 — a)%Bayesian Credible Interval for 6 is a subset C' of
O such that

PoeCl>1-a

e The 100(1 — )% Highest Posterior Density Bayesian Credible
Interval for 0, subject to P[6 € C] > 1 — « is a subset C' of © such
that

C={0e0O:pyx(0x) >k}
where k is the largest constant such that

PloeC]>1-a.
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8.3 HYPOTHESIS TESTING

To mimic the Likelihood Ratio testing procedure outlined in previous sec-
tions. For two hypotheses Hy and H; define

CV():P[H()’XZCU] C¥1:P[H1’X:£U]

For example,
P [Hol X = 2] :/ rorx (0]2)do
R
where R is some region of ©. Typically, the quantity

P [Hy|X = z]
P[H,|X = z]

(the posterior odds on Hj) is examined.
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EXAMPLE: To test two simple hypothesis

define the prior probabilities of Hy and Hjas py and p; respectively. Then,
by Bayes Theorem

fxo(w;01)p1
P H| X =2] fx10(x;00)po + fxio(;01)p1 B fx10(x;01)p1
P[Ho|X =] fx16(z;00)po  fxje(@; 00)po
fx16(x;00)po + fx|0(z;01)p1
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More generally, two hypotheses or models can be compared via the observed
marginal likelihood that appears in (2), that is if

fx (2 Model 1) J fily (3 61) po, (61) dby

fx (x; Model 0) [ f)(&)@ (2300) po, (00) dbo

is greater than one we would favour Model 1 (with likelihood f )(; |)9 and prior

po,) over Model 0 (with likelihood £}, and prior pg,).
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