Intro.ssc

HHBHH TR
#Introduction to SPLUS#

HHHH AR

#(note # is a "comment" symbol)

#If you want to find out about a particular command,
#type "help"; for example

help(sum)

help("sum"

#to find out about the "sum" function or

help("%*%")

#to find out about the strange looking operator %*%.

HH R R R R R R R R

#1. Declarations

#The way to declare a scalar quantity x equal to numerical value 6.24,
is

X<-6.24

#The "<-" symbol is the "define equal to" symbol.
#We can do the same for character strings

x<-"This is X

#You can type these commands in the Commands Window
#(go to the Window pulldown, select "Commands Window")
#

#Alternately, you can create a "Script" file (such as this one)

#and then execute it by highlighting a command, and then either

#(i) pressing the F10 function button on the keyboard

#(ii) clicking the triangle button (just above where it says "Intro.ssc
program”

at the top of the script window, or on the Splus button bar)

#To see what the object x contains type

X
#or

print(x)

#2. Data Obijects

#There are four basic types of Splus object that we will use
#(i) single values/scalars as above

#(ii) vectors

#(iil) matrices

#(iv) data frames

#(i) We create a vector like this, using the concatenation function
xvec<-c(1,2,3,4,5,10)

#Alternately

xvec<-c(1:5,10)

#The colon symbol in this expression 1:5 means
#take all the numbers from 1 up to 5.

#Another way to create a vector is to use "rep".
#For example, for a vector of zeros of length 20

xvec<-rep(0,20)

&oe

say,

Intro.ssc
#A further way to create a structured vector is to use the sequence
function "seq".

xvec<-seq(from=1,t0=20,by=1)

#Elements of a vector are accessed using square bracket notation

xvec[10]
#In fact, all non-scalar guantities are referenced via square brackets
#(iii) Matrices: we create a matrix using the "matrix" function

xmat<-matrix(0,nrow=10,ncol=4)

#xmat is a 10x4 matrix of zeros

#The third row of the matrix xmat is accessed by
xmat[3,]

#The second column is

xmat[,2]

#The (i,j)th entry is

i<-1

j<-2

xmat[i,j]

#for integers i and j - for xmat, we must have i between 1 and 10, |
between 1 and 4.

xmat[7,3]
#To create a matrix from a vector

xvec<-c(1:40)
xmat<-matrix(xvec,nrow=10,ncol=4,byrow=T)

#which means read in row by row - T here means "TRUE"
#and which gives a different result from

xmat<-matrix(xvec,nrow=10,ncol=4,byrow=F)
#and, of course,a different result from
xmat<-matrix(xvec,nrow=5,ncol=8,byrow=T)

#A final way to construct matrices is by "binding" vectors together
#either as rows (using rbind) or columns (using cbind)

xvec.1<-¢(1:10)
xvec.2<-¢(11:20)
xmat<-rbind(xvec.1,xvec.2)

xmat<-cbind(xvec.1,xvec.2)
#Note: There is a difference between a vector of length n

#and a (1xn) matrix; Splus always regards a matrix object
#as a 2 dimensional entity

#(iii) Data frames

#Data frames are essentially special, more sophisticated types of matrix
xvec.1<-¢c(1:10)

xvec.2<-¢(11:20)

xdataframe<-data.frame(xvec.1,xvec.2)

#To access the entries in a data frame, we can either use the

Intro.ssc

#standard matrix indexing

xdataframe[1,2]

xdataframe[4,]

xdataframel[,2]

#or the "names" of the columns in the dataframe, and a dollar symbol "$"
names(xdataframe)

xdataframe$xvec.1

#3. Operators

#The numerical operations of addition, multiplication etc are implemented
in the

#obvious ways for scalars

x<-2.3

y<-3.8

z<-x+y #Add

zZ<-x*y #Multiply

z<-X-y #Subtract

z<-xly #Divide

z<-x"2 #Power (square)

z<-exp(X) #Exponential

z<-log(x) #Natural log

z<-10g10(x) #lLog base 10

z<-X %%2 #Modulo

#For matrices, the symbol %is used in a different way

xmat<-matrix(c(1,2,3,4),nrow=2,byrow=T)
ymat<-matrix(c(1,2,3,4),nrow=2,byrow=T)

zmat<-xmat %*% ymat #Matrix multiply

#If you just use the command

zmat<-xmat*ymat

#then you get component by component multiplication
#0Other useful operations with vectors and matrices are

xvec<-c(1:10)
xmat<-matrix(c(1,2,3,4),nrow=2,byrow=T)

tot<-sum(xvec) #Sum of entries
tot<-sum(xmat)

m<-mean(xvec) #arithmetic of a vector

rowtotal.1<-sum(xmat[1,])
coltotal.2<-sum(xmatf[,2])

t(xmat) #Transpose

solve(xmat) #lnverse of xmat

#4. Logical Operators

2 == 2 #Equal to should return T for - True

2 1= 2 #Not Equal To should return F for - False
2 < 2 #less Than - False

2 <= 2 #less Than or Equal to - True

#lLogical indexing of elements in a vector

x<-¢(1:200)
X[x %%10 == 0]<-1000

Intro.ssc

#5. Plotting
#The plot function

is used to produce point

#The points function is used to add points

x<-seq(from=0,t0=100,by=0.1)

y<-x"2

plot(x,y)
plot(x,y,type="1")
plot(x,cos(x),type="1")

x<-seq(from=0,to=1,by=0.001)
plot(x,x*(1-log(x)),type="1")
xp<-seq(from=0,to=1,by=0.05)
points(xp,xp*(1-log(xp))*cos(xp))

#6. Loops
#Loop construction

x<-rep(0,100)

for(i in 1:100){
X[i]<-i

count<-0

or line plots

proceeds as for most computer code

while(count < 100){
count<-count+1
x[count]<-10*count

}

count<-0
x<-rep(0,100)

while(count < 100){
count<-count+1

if(count

> 50 & count <= 75) next

X[count]<-count
== 90) break #Terminate the loop

if(count

#This Worksheet

has been completed

#move to the end of the

loop

&oe

