BIOINFORMATICS MSc
PROBABILITY AND STATISTICS

SPLUS SHEET 1

A data set containing a segment of human chromosome 13 containing the BRCA2 breast cancer
gene; it was obtained from the National Center for Biotechnology Information (NCBI) website

http://www.ncbi.nlm.nih.gov/
and is held at the Probability and Statistics course website
http://stats.ma.ic.ac.uk/"das01/BioinformaticsMSc/

Using a Web browser, go to this link and then click on the link

BRCA2 segment direct from the NCBI site

in the Data Sets segment. Two processed versions of this data set are also available;

o A processed version with base characters has just the 127079 base characters

e Another processed version contains a numerical representation of the sequence. This is the file
to download.

Click on the link, and when the file has fully downloaded, use File -> Save to save the file as z74739.txt
in the c:\TEMP directory on the hard drive. Of course, you may ultimately save the data to a floppy
disk, or to your home directory. It is possible (and quite straightforward) to read in data from different
types of file apart from plain text files, and from files with different formats. The numerical data in
the file 274739.txt are coded so that

1=A 2=C 3=G 4=T
1. STARTING AN SPLUS SESSION

Double click the SPLUSicon, or start the program from the Start menu. When the program
has opened up the Object Browser window, start a Commands Window by using the Window ->
Commands Window pull down menus.

2. LOADING THE DATA INTO SPLUS

There are two ways to load the data. First using the File -> Import Data -> From File pull
down menus, find the c:\TEMP\z74739.txt file using the dialog box (remember that the file extension
is .txt, so the SPLUSdialog box may not find the file initially). However, when you find the file and
click Open, the data will be downloaded into an SPLUSdata frame called z74739 - if you return to
the Commands Window and type

>length(z74739[,11)
(always press Enter or Return at the end of a line command) you get the response

[1] 127079



which is the length of the sequence. A line command that achieves the same outcome is
>z74739<-importData("c:\\TEMP\\z74739.txt",type="ASCII")

To read the data into a vector, type the following at the command line:
>brca2<-z74739[, 1]

which creates the vector brca2 containing the data. The other way to read in the data is to type a
command at the command line

>brca2<-scan("c:\\TEMP\\z74739.txt")

which creates the same brca2 vector. To check the steps have worked correctly, type
>length(brca2)

you should again get the response

[1] 127079
3. SUMMARY ANALYSIS

For a simple summary of the sequence, type
>table(brca?2)
You should get the response

1 2 3 4
38514 24631 25685 38249

which is the breakdown of the sequence by base, that is there are 38514 As, 24631 Cs, 25685 Gs and
38249 Ts. To analyse a sub-sequence, say the first 50000 bases, type

>table(brca2[1:50000])
that is, look at only the positions 1 to 50000 in the brca2 vector. You then get the response

1 2 3 4
14901 10397 9908 14794

Therefore, to obtain the sample probabilities, of each base, type

>brca2.p <- table(brca2)/length(brca2)
>brca2.p

which calculates the probability vector brca2.p vector by dividing the values obtained by the table
command by the total length of the sequence. You should get the response

1 2 3 4
0.3030713 0.1938243 0.2021184 0.300986

Note that the probabilities are not (even approximately) equal. Note also that by typing

>brca2sub.p <- table(brca2[1:50000])/length(brca2[1:50000])
>brca2sub.p



which calculates the probability vector brca2sub.p vector by repeating the calculation for the first
50000 bases, you get the response

1 2 3 4
0.29802 0.20794 0.19816 0.29588

indicating a similar collection of probabilities.

4. ADJACENT BASE PAIRS ANALYSIS

Suppose now that an analysis of adjacent pairs in the sequence is required Type the following
sequence of commands (take care not to miss any brackets):

>brca2.mat <- matrix(0,4,4)

>brca2.pmat <- matrix(0,4,4)

>brca2.totals <- table(brca2)

>for(i in 2:length(brca2))

+ {brca2.mat[brca2[i-1],brca2[i]] <- brca2.mat[brca2[i-1],brca2[i]]+1}
>for(i in 1:4) {brca2.pmat[i,] <- brca2.mat[i,]/sum(brca2.mat[i,])}

(the + sign in line 4 appears automatically when you hit return from line 3). These commands construct
a matrix counting the number of adjacent pairs of each type are present in the sequence, that is a matrix

Next base
A C G T
NAA NAC NAG TNAT | NA
nca Tncc nNccg ner | o
nga ngc nNgc Ner | NG
nra nrc Nrg NrT | NT

Base

HQAQ»

where the row totals are just the total numbers of bases of that type (as calculated in step 2 to produce
vector brca2.totals. Don’t worry too much about the exact meaning of each command at this stage.

The third step (which essentially counts the number of adjacent AA, AC, AG etc pairs) may take a
while. The fourth step divides each row in the matrix of counts by the row totals, to produce the final
matrix of probabilities:

> brca2.pmat

[,1] [,2] [,3] [,4]
[1,] 0.3451732 0.1628239 0.23978294 0.2522200
[2,] 0.3525638 0.2431895 0.05440299 0.3498031
[3,] 0.3011485 0.2029200 0.23262605 0.2633054
[4,] 0.2300975 0.1871421 0.23880363 0.3439567

Note that the row sums in this matrix are 1 (by construction). From this analysis we see that “transi-
tions” from C to G in the sequence are relatively rare.

Two things to consider:

(a) are the transition probabilities approximately equal in different segments of the entire sequence ?

(b) are the coding regions/exons/introns (that can be identified from the file from the Bioinformatics
MSc.page (or the NCBI site) fundamentally different in terms of their composition by base ?.



5. PROBABILITY DISTRIBUTION CALCULATIONS

SPLUS has many facilities for carrying out calculations for probability distributions. There are
functions that calculate the probability mass function fx and the discrete cumulative distribution func-
tion F'x for DISCRETE random variables, and the probability density function fx and the continuous
cumulative distribution function F'x for CONTINUOUS random variables. Also, SPLUS has functions
that allows you to simulate random numbers from many standard probability distributions.

The probability distributions that SPLUS has specially written functions for include the following;:

DISCRETE DISTRIBUTIONS CONTINUOUS DISTRIBUTIONS
Binomial Uniform
Geometric Exponential
Negative Binomial Gamma
Poisson Chi-squared
Beta
Normal
Student-t
Cauchy
F

The task today is to use the SPLUS functions to carry out probability calculations for these distribu-
tions

There are four basic functions that are used for probability calculations: using the binomial distri-
bution as an example, the four functions are

dbinom
pbinom
gbinom
rbinom

notice the first letters d,p,q and r; these letters determine the type of operation that is being carried
out. For different distributions, these first letters will always indicate the same type of operation; the
last part of the function name determines which distribution is to be used. Specifically

dbinom :

computes the probability mass function
pbinom :

computes the discrete cumulative distribution function
gbinom :

computes the inverse cumulative distribution function
rbinom :

simulates a random sample from the distribution



If you type
>help(dbinom)

at the command line, a help screen explains how each function is used. Each function takes a number
of arguments that will be described below.

We will initially concentrate on the binomial distribution, but the commands issued are essentially the
same for each distribution we wish to use. Recall that the binomial distribution has the following
probability mass function:

n!

”)em ) pp—— T L ()|

x zl(n — z)!

M@Z(

for parameters n (a positive integer) and € (a probability lying between 0 and 1). In SPLUS | the
parameter 6 is written as p

6. MASS AND DENSITY FUNCTION CALCULATIONS.

The probability mass function for the binomial distribution is obtained using the function
dbinom(x, size, prob)

where x is the vector of points at which we wish to evaluate the mass function, size is the parameter
n, and prob is the parameter p (or §) Hence to evaluate all the probabilities in a Binomial (10, 0.3)
distribution, we issue the following sequence of commands at the command line:

>x <- ¢c(0:10)
>n <- 10
>p <- 0.3
>dbinom(x,n,p)

for which the response is

[1] 0.0282475249 0.1210608210 0.2334744405 0.2668279320 0.2001209490 0.1029193452
[7] 0.036756909 0.0090016920 0.0014467005 0.0001377810 0.0000059049

What this calculation has done is to create a vector of the integers from 0 to 10 (the range of this
distribution), then specified n = 10, then specified p = 0.3, and then evaluated the mass function at
each value in the vector. That is we have evaluated

10

fx(0) =P[X =0]= (0

) (0.3)° (1 —0.3)10-0 = 0.0282475249

fx(1) =PX=1= (110> (0.3)' (1 —0.3)10-1 = 0.1210608210

and so on. We can easily assign the probabilities to a vector, and plot the resulting function:

>y <- dbinom(x,n,p)
>plot (x,y)



for which the response is a point plot of the mass function.

The d- functions for the various distributions, for example,

dbinom, dgeom, dnbinom, dpois, dexp, dgamma, dnorm,

and so on all have this same basic syntax - the only difference is that the parameters for each distribution
change. For example, for the Gamma distribution, which we have seen with pdf

fx(z) = Pﬁ(:)xo‘_le_ﬁx x>0

has an SPLUS function

dgamma(x, shape, rate=1)

where shape is the o parameter, and rate is the § parameter (which has the default value 1 in the
function). Hence to plot four Gamma pdfs

Gamma(2,2) Gamma(2,1) Gamma(2,0.5) Gamma(4,2)
on the range we use the following commands

>x <= ¢(0:1000) /100
>yl <- dgamma(x,2,2)
>y2 <- dgamma(x,2,1)
>y3 <- dgamma(x,2,0.5)
>y4 <- dgamma(x,4,2)
>plot(x,yl,type="1")
>lines(x,y2,1ty=2)
>lines(x,y3,1ty=3)
>lines(x,y4,lty=4)

for which the response is a series of line plots of the pdf. The x vector created is a series of 1000 points
equally spaced on 0 to 10, and y1,y2,y3 and y4 are the four evaluated pdf curves. For information the
type="1" command produces a line (rather than a point) plot, lines adds a line to the current plot,
and the lty=2,3,4 commands produce different line styles.

For the different probability models, you need to use the help command to find out the precise
syntax and parameter specification for each distribution.

7. DISTRIBUTION FUNCTION CALCULATIONS.

Again we begin with the Binomial model, for which the cumulative distribution function is obtained
using the function

pbinom(q, size, prob)

where ¢ is the vector of points (or quantiles) at which we wish to evaluate the cdf, size is the parameter
n, and prob is the parameter p (or ) Hence to evaluate the cdf in a Binomial (10,0.3) distribution,
we use the following commands:



>x <- ¢(0:10)
>n <- 10

>p <- 0.3
>pbinom(x,n,p)

(with x acting as ¢ in the specification for convenience) for which the response is

[1] 0.02824752 0.14930835 0.38278279 0.64961072 0.84973167 0.95265101
[7] 0.98940792 0.99840961 0.99985631 0.99999410 1.00000000

Again, this calculation has created a vector x of the integers from 0 to 10, then specified n = 10, then
specified p = 0.3, and then evaluated the cdf function at each value in the vector. That is we have

evaluated
Fx(0) =P[X<0]=P[X =0]

Fx(1) =P[X<1]=P[X=0+P[X =1]
and so on. Again, we assign the cumulative probabilities to a vector, and plot the resulting function:

>y <- pbinom(x,n,p)
>plot(x,y)

for which the response is a point plot of the cdf.
The p- functions for the various distributions, for example,

pbinom, pgeom, pnbinom, ppois, pexp, pgamma, pnorm,

and so on all have this same basic syntax - the only difference is that the parameters for each distribution
change. For continuous distributions, we proceed as above

>x <= ¢(0:1000)/100
>y <- pgamma(x,2,2)
>plot(x,y,type="1")

produces a plot of the required cdf

Again, for the different probability models, you need to use the help command to find out the precise
syntax and parameter specification for each distribution.

8. INVERSE DISTRIBUTION FUNCTION CALCULATIONS.

Again we begin with the Binomial model, for which the inverse cumulative distribution function,
that is the function that solves the equation

Fx(z) = po
for z with pg fixed, is obtained using the function
gbinom(p, size, prob)

where p = pg is the probability at which we wish to evaluate the inverse cdf. This calculation is very
important in many statistical problems. To evaluate the inverse cdf in a Binomial (10, 0.3) distribution,
we use the following commands - we will use = to replace p as the argument of the function, to avoid
confusion:



>p0 <- 0.265

>n <- 10

>p <- 0.3
>x_qgbinom(p0,n,p)
>x

for which the response is

(11 2

Again, we can use a vector argument to this function, solve for z, and plot the resulting function:

>p0 <- ¢(1:100)/100
>x <- gbinom(pO,n,p)
>plot (p0,x)
>plot(x,p0)

The g- functions for the various distributions, for example,
gbinom, ggeom, gnbinom, qpois, qexp, qgamma, qnorm,

and so on all have this same basic syntax but slightly different parameter specifications. For continuous
distributions, we proceed as above for the Gamma(2,2) distribution:

>p0 <- ¢(0:1000) /1000
>x <- qgamma(p0,2,2)
>plot(p0,x,type="1")
>plot (x,p0,type="1")

produces a plot of the required inverse cdf. For the different probability models, you need to use the
help command to find out the precise syntax and parameter specification for each distribution.

9. RANDOM NUMBER SIMULATION

It is often useful to be able to generate a random sample from a given probability distribution.
Concentrating first on the Binomial(10,0.3) we use the function

rbinom(n, size, prob)

where n is the required simulated sample size. To simulate a sample of size 500 from this Binomial
model and store it in vector x, and then to plot a histogram of this simulated data, we can issue the
following commands:

>n <- 10

>p <- 0.3

>X <- rbinom(500,n,p)
>hist(x)

which produces a histogram. We can change the number and/or positions of bars or “bins” in the
histogram by using the commands



>hist(x,nclass=b)
>hist (x,breaks=c(0:10))

The r- functions for the various distributions, for example,
rbinom, rgeom, rnbinom, rpois, rexp, rgamma, rnorm,

and so on all have this same basic syntax but slightly different parameter specifications. For continuous
distributions, we proceed identically to the discrete case: for the Gamma(2,2) distribution:

>x <- rgamma(500,2,2)
>hist (x)
>hist(x,nclass=20)

For the different probability models, you need to use the help command to find out the precise
syntax and parameter specification for each distribution.

10. TRANFORMATIONS

For simulated data, generating a “transformed” sample is straightforward. If we wish to gener-
ate a sample from a continuous Uniform(0,1) distribution, and then to transform it using a —log
transformation, we can proceed as follows:

>x1 <- runif(5000,0,1)
>hist(x1)

>x2 <- -log(x1)

>hist (x2)

EXERCISES:

1. Evaluate P[X = 5] if X ~ Geometric(0.6) (note: take care with the parameterization - for example
check P[X = 0] and compare this with the parameterization given in lecture notes; the SPLUS
Geometric functions are based on the mass function

(1-6)°0 z=0,1,2,...
which is a slightly different model to ours)
2. Evaluate P[X = 15] if X ~ Poisson(9)
3. Evaluate P[X < 12] if X ~ Binomial(20,0.6)
4. Evaluate P[X > 20] if X ~ Poisson(15)
5. Evaluate P[30 < X < 45] if X ~ Binomial(100,0.35)
6. Plot the pmf of the Poisson(8) distribution on the range 0 < x < 20
7.  Plot the pdf of the Gamma(5,2) distribution on the range 0 < x < 10

8.  Plot the pdf of the Normal(—5,5%) distribution on the range —20 < x < 20



9. Plot the cdf of the Normal(0, 1) distribution on the range —3 < x <3

10. Produce a sample of 5000 values from a Normal(0,1) distribution, plot a histogram, and then
plot a histogram of the squares of these values.

It is also possible to generate a random sequence that is similar to a biological sequence using the
SPLUS function sample: we proceed by issung the following command:

>bases <- C(IIAH s IIC" s IIGll s IIT")

>pvec <- ¢(0.25,0.25,0.25,0.25)

>x <- sample(bases,size=50,replace=T,prob=pvec)
>X

that will produce (something like) the following output
[1] "C" "A"™ "T" "G" "A" "G" "C" "C" "A" "A"
[11]"G" "G" "C" "T" "C" "T" "C" "C" "C" "C"
[21]"G" "C" "T" "A" "A"™ MTU NCM NGM TN NG
[31]"C" "A"™ "C" "A" MA" "G" A" "T" "C" "A"

[41] IICll IITII IITll IIGII IIAll IIGII IICH IIGII IICH IITII

The commands created some base labels A, C,G and T, and then a probability for each label (in this
case the probability is 0.25 for each label), and then produced a sample of size 50 independently sampled
from this distribution.

The prob vector determines how probable each label is; in nature, it is unlikely that each base is
observed with equal probability, and also that the base sequence is not independentlt generated (that
is, the base observed at one position is influenced by bases observed in previous positions). In light
of the analysis carried out for the BRCA2 sequence, how could a more realistic biological sequence be
generated ?
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