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PROBABILITY AND STATISTICS

EXAMINATION 2004-2005: SOLUTIONS

1. (a) p-value: a p-value is a quantity that facilitates the completion of a statistical hypothesis test. Let T be
a (scalar) test statistic for testing hypothesis H0, and let t be the observed value of the test statistic. Let the
distribution of T be dependent on parameter θ, and consider tests about θ. The p-value, p, is defined as

p = Pr[T at least as extreme (numerically) as t|H0].

In the most straightforward case, when H0 is a simple null hypothesis and alternative H1 is a two-sided general
alternative, that is

H0 : θ = θ0

H1 : θ 6= θ0

then the p-value is a tail-probability in the null distribution of T under H0, that is, p = Pr[|T | ≥ t|θ0]. This
calculation is adjusted if the nature of the alternative hypothesis changes. The p-value is compared with the
significance level, α, in order to complete the test; if α ≥ p, then H0 is rejected. The p-value is calculated in every
form of statistical testing; for example, in tests for differential expression in microarray analysis.

5 MARKS
(b)Family-wise error rate: the FWER is the probability of falsely rejecting at least one of a sequence or family of
null hypotheses, under the assumption that all of the null hypothesis are in fact true. That is, the FWER is the
composite Type I error probability across the family of tests. It is considered whenever a number of statistical
hypothesis tests are carried out, as the FWER is generally higher than the single test significance level α. Several
standard procedures are available for the control of the FWER; most adjust the single-test α so that the overall
FWER is maintained at the original target level. The simplest procedure is the Bonferroni correction, a slightly
less conservative correction is the Bonferroni-Sidak. The control of FWER is important in gene expression analysis,
where large numbers of genes are being inspected simultaneously.

5 MARKS
(c)Randomization or permutation test: a randomization or permutation test is a statistical hypothesis test in which
the key quantity of interest, the distribution of a specified test statistic under the null hypothesis, is computed
exactly by considering all possible configurations of the data that are equally likely under the null hypothesis. For
example, in a two-group comparison, under the null hypothesis that data from the two groups have no distributional
difference, all possible allocations of data of to groups are considered, with a suitable test statistic computed for
each allocation. Such tests are useful whenever distributional assumptions about the data need to be relaxed, or
whenever the distribution of the test statistic cannot be computed analytically.

5 MARKS
(d)Hidden Markov model: a HMM is a stochastic model for a latent process, {Xt} say, that underlies a discrete-
time/space sequence of observations, {Yt}. The latent process is Markov, in that

Pr[Xt|Xs, s < t] ≡ Pr[Xt|Xt−1].

Typically, in discrete time, the stochastic nature of {Xt} is determined by an initial state, X0, and a transition
matrix, P , that determines the probability of moving from one state to another state. HMMs are used in biological
sequence analysis to make inference about hidden structure; for example, for gene-finding, CpG island detection in
DNA sequence analysis, or the discovery of motifs or secondary structure in protein sequence analysis.

5 MARKS
(e) Principal components analysis: PCA is a technique used in high dimensional data analysis, for example in the
analysis of microarray data. It is used to reduce the dimensionality of a data set or data matrix. Iit describes
the data set in terms of its components of variance. Each principal component describes a percentage of the
total variance of a data set, and computes loadings or weights that each variate contributes to this variance. For
example, the first principal component of a data set describes the dimension which accounts for the greatest amount
of variance of the data set. The coefficients of the principal components quantify the loading or weight of each
variate to that amount of variance. The mathematical assumptions behind PCA include multivariate normality of
the underlying observations. PCA can be used as the basis for classification procedures.

5 MARKS
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2. (a) Let A indicate population A, E indicate genotype 0 and F indicate unaffected status. The total number of
individuals in the study is

(72 + 12 + 30 + 15) + (108 + 67 + 22 + 78) = 129 + 275 = 404

(a) (i) the probability that the person is Affected

P (F ′) =
30 + 15 + 22 + 78

404
=

145
404

= 0.3589

2 MARKS
(ii) the probability that the person is from Population B

P (A′) =
108 + 67 + 22 + 78

404
=

275
404

= 0.6807

2 MARKS
(iii) the conditional probability that the person is Affected, given that they are from Population A

P (F ′|A) =
30 + 15

72 + 12 + 30 + 15
=

45
129

= 0.3488

3 MARKS
(iv) the conditional probability that the person is Affected, given that they are from Population A and have
genotype code 1.

P (F ′|A,E′) = 1512 + 15 = 1527 = 0.5556

3 MARKS

(b) Pooled and fitted table given below

Pooled over Popn.
Genotype

Disease Status 0 1
Unaffected 180 79
Affected 52 93

Fitted Under Independence
Genotype

Disease Status 0 1
Unaffected 148.73 110.26
Affected 83.27 61.73

which yields a test statistic χ2 = 43.02 and thus a highly significant result (with p < 0.001 from tables of the
Chi− squared(1) distribution).

8 MARKS
(c) (i) Using the facts given, we have that, approximately

log ψ̂A − log ψA ∼ N(0, s2
A) log ψ̂B − log ψB ∼ N(0, s2

B)

so that
(log ψ̂A − log ψA)− (log ψ̂B − log ψB) ∼ N(0, s2

A + s2
B)

suggesting a test statistic

z =
(log ψ̂A − log ψ̂B)− (log ψA − log ψB)√

s2
A + s2

B

which, under this null hypothesis, should resemble an observation from an N(0,1) distribution. Under H0, we
compute

z =
(log ψ̂A − log ψ̂B)√

s2
A + s2

B

=
log 3− log 5.72√
0.1972 + 0.0824

= −1.218

which is not extreme under the null, and hence the null hypothesis cannot be rejected.
4 MARKS

(ii) Given this result, it seems that the chi-squared analysis in (b) might be valid, and hence we can reject indepen-
dence between the genotype and the trait, that is, there seems to be a degree of association. Note that assessing
the compatibility for pooling in this way is not necessarily completely satisfactory; it may be more appropriate
to inspect various conditional probabilities (as in the Simpson’s paradox/confounding examples). However if the
study design is not known (case-control or cohort), the comparison of odds-ratios might be all that is possible.

3 MARKS
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3. (a) We will use two-sample t-tests, under the assumption of equal variances in the two groups. The degrees
of freedom in the null distribution is (16.1)+(16.1) = 30. The equal-variance assumption can be tested using a
two-sample F-test; the sample variance ratio s2

1/s2
2 is Fisher(15, 15) distributed under the null hypothesis of equal

variances. NOTE: We will use the significance level of α = 0.01; using Bonferroni, this controls the FWER to be
at most 0.05 in each family of tests (one family for mean comparison, one family for variance comparison). Thus
the critical values for the F-test are the 0.005 and the 0.995 quantiles of the Fisher(15, 15) distribution. Now, the
tables given only have the 0.025 and 0.975 quantiles, which are 0.349 and 2.862 respectively; but this is sufficient,
as all test statistics lie between these two critical values.

s2
P t p-val s2

1/s2
2 Reject Equal Variances

GENE 1 1.516 6.216 0.000 0.438 NO
GENE 2 0.582 -0.163 0.872 0.459 NO
GENE 3 0.843 -5.357 0.000 0.371 NO
GENE 4 0.921 -0.557 0.582 0.665 NO
GENE 5 0.541 12.582 0.000 0.590 NO

Thus genes 1, 3 and 5 are differentially expressed between the two tumour types in terms of mean level. However,
it may be that the distribution of observations in one sample is different from that in the other - we cannot check
this with only summary statistics.

15 MARKS
(b)The biggest likely difficulty is the systematic difference that is often observed between arrays; due to different
spotters, scanners operators etc., the gene expression measures in the two channels are often dramatically different
between supposedly replicate arrays. Therefore efforts must be made to carry out appropriate normalization; using
boxplots the need for normalization can be assessed, and then, for example quantile normalization methods can be
used to correct for differences between arrays.

5 MARKS
(c) Can either use non-parametric methods (Mann-Whitney-Wilcoxon or Kolmogorov-Smirnov two sample tests),
or randomization or permutation procedures, or both in combination. The former relies on asymptotic properties
of rank-sums, and so may be inappropriate for such small samples. The latter computes the exact (or Monte Carlo
exact) null distribution of a specified test statistic. Note that in both cases, the original data and not merely the
sample summary statistics must be used.

5 MARKS
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4. (a) Hierarchical Algorithms: A hierarchical algorithm yields an entire hierarchy of clusterings for the given
data set. Agglomerative methods start with the situation where each object in the data set forms its own cluster,
and then successively merges clusters until only one large cluster (the entire data set) remains. Divisive methods
start by considering the whole data set as one cluster, and then splits up clusters until each object is separated.
Data sets for clustering of N observations can have either of the following structures:

• an N × p data matrix, where rows contain the different observations, and columns contain the different
variables.

• an N ×N dissimilarity matrix, whose (i, j)th element is dij , the distance or dissimilarity between obser-
vations i and j that has the properties

– dii = 0

– dij ≥ 0

– dji = dij

• Typical data distance measures between two data points i and j with measurement vectors xi and xj include

– the Euclidean distance for continuous measurements

dij =

√√√√
p∑

k=1

(xik − xjk)2 =
√

(xi − xj)T(xi − xj)

– the Manhattan distance for continuous or discrete measurements

dij =
p∑

k=1

|(xik − xjk)2| =
p∑

k=1

√
(xik − xjk)2

In conventional hierarchical clustering, the method of agglomeration or combining clusters is determined by the
distance between the clusters themselves, and there are several available choices. For merging two clusters Ci and
Cj , with N1 and N2 elements respectively, the following criteria can be used

• In average (or average linkage) clustering, the two clusters that have the smallest average distance between
the points in one cluster and the points in the other

d(Ci, Cj) =
1

N1N2

∑

k∈Ci,l∈Cj

dkl

are merged .

• In connected (single linkage, nearest-neighbour) clustering, the two clusters that have the smallest distance
between a point in the first cluster and a point in the second cluster

d(Ci, Cj) = min
k∈Ci,l∈Cj

dkl

are merged

• In compact (complete linkage, furthest-neighbour) clustering, the two clusters that have the largest distance
between a point in the first cluster and a point in the second cluster

d(Ci, Cj) = max
k∈Ci,l∈Cj

dkl

are merged.

10 MARKS
(b) One advantage of a model-based approach to clustering is that it allows the use of statistical model assessment
procedures to assist in the choice of the number of clusters. A common method is to use approximate Bayes
factors to compare models of different orders (i.e. models with different numbers of clusters). This method gives
a systematic means of selecting the parameterization of the model, the clustering method, and also the number
of clusters. The Bayes factor is the posterior odds for one model against the other assuming neither is favored a
priori. Two methods based on the Bayes factor have been used.
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• The Approximate Weight of Evidence (AWE) This is a heuristically derived approximation to twice the
log Bayes factor

• The Bayesian Information Criterion (BIC) A more reliable approximation to twice the log Bayes factor
called the Bayesian Information Criterion, which, for model M is given by

BICM = 2 log LM + const ≈ 2 log LM (θ̂)− dM log N

where LM is the model-based marginal likelihood from, LM (θ̂) is the maximized log likelihood of the data
for the model M , and dM is the number of parameters estimated in the model. The number of clusters is
not considered a parameter for the purposes of computing the BIC. The larger the value of the BIC, the
stronger the evidence for the model.

In a non model-based setting, an approximate likelihood measure, and either of these two measures can be used.
Choice of the approximate likelihood may need some careful consideration.

6 MARKS

(c) (i) If a model-based procedure is used, p(y|k) can be obtained using marginal likelihood type-arguments. For
example, in a Gaussian model, the marginal likelihood is analytically available, and can be computed in a routine
fashion. Approximate marginal likelihood calculations can also be attempted. For non model-based procedures,
the classification procedure can proceed by using a transformed heuristic measure of distance between y and the
cluster k, perhaps using the linkage measures described above, for example, could set

p(y|k) ∝ exp{−λ(y, Ck)}

for some parameter λ and distance measure d(y, Ck) between y and cluster k, with summary measure Ck.
5 MARKS

(ii) The classification procedure could be assessed.using within sample prediction error or cross-validation; both
methods rely on training the method on data in the original clustering with a subset of genes held back for testing.
The proportion of correct classifications of the test data gives an indication of the out-of-sample prediction accuracy,
and this indication is more accurate using cross-validation.

4 MARKS
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