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Abstract

This paper studies the cooperative stochas-
tic k-armed bandit problem, where m agents
collaborate to identify the optimal action.
Rather than adapting a specific single-agent
algorithm, we propose a general-purpose
black-box reduction that extends any single-
agent algorithm to the multi-agent setting.
Under mild assumptions, we prove that our
black-box approach preserves the regret guar-
antees of the chosen algorithm, and is capa-
ble of achieving minimax-optimality up to an
additive graph-dependent term. Our method
applies to various bandit settings, including
heavy-tailed and duelling bandits, and those
with local differential privacy. Empirically,
it is competitive with or outperforms special-
ized multi-agent algorithms.

1 INTRODUCTION

The stochastic multi-armed bandit problem is a fun-
damental model for sequential decision-making. Here,
a single agent sequentially interacts with the environ-
ment over a series of rounds. In each round, the agent
selects an action and receives a reward drawn from
an unknown distribution associated with that action.
(Lattimore and Szepesvári, 2020).

There are numerous provably efficient algorithms for
this setting, and there are various mechanisms for bal-
ancing the exploration-exploitation trade-off. Exam-
ples include optimism, posterior sampling, bootstrap-
ping, and softmax exploration (Auer et al., 2002a;
Thompson, 1933; Kveton et al., 2019; Bian and Jun,
2022).
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However, decision-making tasks naturally arise in dis-
tributed settings, such as recommender systems and
sensor networks (Tekin et al., 2014; Tran-Thanh et al.,
2011). Here, there exist multiple decision-makers in-
teracting with the environment. For example, large-
scale recommender systems are often a distributed sys-
tem of servers, where each server hosts a decision-
maker. Every time a user arrives to one of the servers,
the corresponding decision-maker chooses an item to
recommend, and the user will provide a reward signal
in response. The decision-makers can update their own
knowledge on the quality of the item with this feed-
back. They can also share this information with neigh-
bouring servers to improve future decision-making at
all servers.

Motivated by distributed applications, we study an ex-
tension of the traditional multi-armed bandit model
where there is a network of m agents who each inter-
act with the same k-armed bandit environment. This
extension allows each agent to communicate over the
network and possibly collaborate with other agents to
speed up the learning process.

1.1 Related Work

Designing provably efficient algorithms for the multi-
agent setting is more challenging than the single-agent
setting. Previous work has extended specific single-
agent algorithms to the multi-agent setting using ei-
ther a gossip-based or a leader-based approach.

Gossip-Based. The gossiping protocol is a popular
technique from distributed computing. The main idea
is to use an iterative averaging procedure to aggre-
gate information from neighbouring agents to approx-
imate the full network information (Xiao and Boyd,
2004; Duchi et al., 2012). This technique has been
combined with two well-known single-agent bandit al-
gorithms. Landgren et al. (2016) and Mart́ınez-Rubio
et al. (2019) focus on the upper confidence bound algo-
rithm (Auer et al., 2002a). They each use variants of
the gossiping protocol to approximate the number of
plays and the sum of rewards across the entire network,
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which the agents use to compute their upper confi-
dence bounds. Lalitha and Goldsmith (2021) com-
bine the gossiping protocol, used to approximate the
full network posterior, with Thompson Sampling in
bandit problems with Bernoulli rewards (Thompson,
1933). These algorithms are all asymptotically opti-
mal. However, the analyses of these algorithms are
complex, and specific to the algorithm and variant of
the gossiping protocol considered. Furthermore, their
performance depends on the choice of communication
matrix that the gossip procedure uses for iterative av-
eraging. Even when the network is known, choosing
this matrix is a non-trivial task, and it is common to
use heuristics (Xiao and Boyd, 2004).

Leader-Based. The leader-based approaches nom-
inate one or more leading agents. These agents di-
rect the exploration of their followers. Bar-On and
Mansour (2019) consider the non-stochastic setting
and analyse the exponential weights algorithm with
numerous leaders, who each send their action distri-
butions to the non-leading agents in their neighbour-
hood. Wang et al. (2020) consider the stochastic set-
ting with limited communication. Their algorithm
elects a single leading agent who performs all the ex-
ploration, using an upper confidence bound algorithm,
and all the communication. The remaining agents
act greedily with respect to the empirical means of
the leader. Again, these papers analyse extensions of
specific single-agent bandit algorithms. Our approach
also fits into the category of leader-based approaches.
However, we develop a leader-based black-box reduc-
tion where the leading agent can use any single-agent
bandit algorithm for decision-making. Specifically, we
build upon queuing methods commonly used to handle
delayed feedback (Joulani et al., 2013; Mandel et al.,
2015). However, extending these queuing methods to
the multi-agents setting introduces unique theoretical
challenges that do not arise in single-agent scenarios.

Additional Related Work. There exist many vari-
ations of the multi-agent bandit problem in the litera-
ture. Szorenyi et al. (2013) study the multi-armed ban-
dit problem in peer-to-peer networks where each agent
communicates with two randomly chosen agents in ev-
ery round. Yang et al. (2021) and Chen et al. (2023)
consider the setting where each agent on the network
plays at different and possibly unknown times. Mad-
hushani et al. (2021) study the setting where there is
imperfect communication between agents. Shahram-
pour et al. (2017); Hossain et al. (2021) study the
case where every agent has their own distribution over
the rewards for each action. Perhaps the best-studied
multi-agent problem is where agents receive zero or
degraded rewards if they play the same action at the

same time. See (Boursier and Perchet, 2024) for an
extensive and recent survey on this topic.

1.2 Contributions

This paper proposes and analyses a general purpose
algorithm for cooperative stochastic k-armed bandit
problems. Our main contributions are as follows:

• We propose a black-box reduction, QuACK, that
accepts any single-agent bandit algorithm as in-
put and immediately extends it to the multi-agent
setting.

• Theorem 1 shows that we can upper bound the
performance over the entire network in terms of
the guarantees of the chosen single-agent bandit
algorithm. Pairing our reduction with a near op-
timal algorithm yields a near optimal algorithm
for the multi-agent version of the standard k-
armed bandit problem, up to an additive graph-
dependent quantity. These results are competi-
tive with or better than the case-by-case analyses
of previous works.

• Our theoretical guarantees hold under mild as-
sumptions on the bandit environment. We require
that the distribution of the reward depends only
on the chosen action, and each distribution has a
finite first moment. Hence, if there exists a prov-
ably efficient algorithm for a single-agent bandit
problem, and this bandit problem satisfies the as-
sumptions, our reduction guarantees that it will
be provably efficient in the multi-agent setting.
This makes developing provably efficient multi-
agent algorithms for various bandit problems sim-
ple. In particular, in Section 4:

• We demonstrate the simplicity by using our
reduction to design multi-agent algorithms
for heavy-tailed bandits and duelling bandits,
which have all been considered separately in
the literature (Landgren et al., 2016; Dubey
and Pentland, 2020; Raveh et al., 2024). The
resulting algorithms have comparable guar-
antees to those developed specifically for each
setting.

• We demonstrate how to use our theoreti-
cal findings to develop provably efficient al-
gorithms for new multi-agent settings, such
as local differential privacy, by using an ap-
propriate single-player algorithm (Ren et al.,
2020).

• Finally, we perform an experimental comparison
to existing works which shows that our reduction
is competitive or outperforms existing methods
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when paired with a comparable single-agent ban-
dit algorithm.

2 PROBLEM SETTING

This paper considers cooperative multi-agent variants
of stochastic multi-armed bandit problems where we
have a finite set of actions: A such that |A| = k. For-
mally, we will represent the network of m agents and
their connections through an undirected graph G with:

G = (V,E)

V = {1, 2, · · · ,m}
E ⊆ {(v, w) ∈ V × V : v ̸= w}

where v ∈ V and e ∈ E represent an agent and a
communication channel between a pair of agents, re-
spectively. Throughout, we consider the setting where
the agents can communicate with any other agent in
their neighbourhood, which we define for all v ∈ V as
follows:

Nv = {w ∈ V : (v, w) ∈ E} .

Each round consists of every agent simultaneously
playing their own action, receiving their own reward
and communicating with their neighbours. Formally,
for each t ∈ {1, 2, · · · , n}:

• Each agent v ∈ V plays action Av
t ∈ A.

• Each agent v ∈ V receives reward Xv
t ∈ R.

• Each agent v ∈ V communicates with all w ∈ Nv.

Throughout, we will make use of a standard and mild
assumption on the bandit environment (Lattimore and
Szepesvári, 2020).

Assumption 1. The bandit environment generates
feedback that depends only on the chosen action. Let-
ting Pa denote the reward distribution for action a, we
assume that:

Xv
t |Av

t = a
iid∼ Pa and µa = EX∼Pa [X] < ∞

for all t ∈ N, a ∈ A and v ∈ V .

Additionally, we make a mild assumption on the graph
and the communication protocol.

Assumption 2. Let dvw denote the length of the
shortest path between agents (v, w) ∈ V ×V with dvv =
0. Messages can be passed from v to w in dvw rounds
and the graph diameter is finite:

d = max
(v,w)∈V×V

dvw < ∞ .

2.1 Measuring Performance

Our focus is on the cooperative stochastic multi-armed
bandit problems, where the network of agents collabo-
rate to minimise the regret of the entire network, also
known as the group regret :

RG (n) =
∑
a∈A

∆a E

[
m∑

v=1

Tav (n)

]

where the expectation is over the network of agents
interacting with the bandit environment. Here, ∆a =
µ⋆ − µa is the sub-optimality gap of action a where
µ⋆ = maxµa denotes the expected reward of the opti-
mal action, and

Tav (n) =

n∑
t=1

1 {Av
t = a} (1)

is the number of times agent v ∈ V chooses action
a ∈ A over the course of n rounds. Applying standard
arguments gives a minimax lower bound on the group
regret when all reward distributions have bounded
support (Auer et al., 2002b):

RG (n) ≥ 1

20

√
mn (k − 1). (2)

This lower bound holds for cases where each agent can
communicate immediately with any other agent on the
graph. Hence, it may not be tight for graphs with
certain structures. However, it does demonstrate that
information sharing can be used to improve the group
performance in the worst-case.

3 BLACK-BOX REDUCTION

We present QuACK, a queuing algorithm for coopera-
tive k-armed bandits. QuACK is a multipurpose black-
box reduction that can be paired with any single-agent
bandit algorithm to extend it to the multi-agent case.

QuACK is a leader-based algorithm that builds on the
queuing approach that was developed for the setting of
delayed feedback (Joulani et al., 2013; Mandel et al.,
2015). Essentially, the idea is to select a leader in the
network and provide them with an arbitrary single-
agent bandit algorithm to select actions for the whole
network. The leader begins by initialising an empty
queue for each action. These queues will store the re-
wards that other agents observe from the environment
and have passed to the leader. Intuitively, the leader
can use the reward samples in these queues instead of
playing actions in the real environment.

Specifically, in each round, the leader begins by asking
the bandit algorithm for an action. Whenever there
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Algorithm 1 QuACK

Input: Leader v ∈ V
Input for Leader: Bandit Algorithm π
Initialisation for Leader: Qa = ∅ for all a ∈ A
for t = 1, 2, · · · , n do
Leader (v)

Receive messages via shortest path:

Mt = {(Aw
t−dvw

, Xw
t−dvw

)}w ̸=v

Append messages to the queues:

Qa = Qa ∪ {x : (a′, x) ∈ Mt and a′ = a}
Select a with π
while Qa ̸= ∅ do
Remove x from Qa

Update π with (a, x)
Select a with π

end while
Play Av

t = a
Observe Xv

t ∼ PAv
t

Send Av
t to all w ̸= v via shortest path

Follower (w ̸= v)
if t > dvw then
Receive Av

t−dvw
from v via shortest path

Play Aw
t = Av

t−dvw

else
Play Aw

t uniformly at random
end if
Observe Xw

t ∼ PAw
t

Send (Aw
t , X

w
t ) to v via shortest path.

end for

is a reward in the queue for that action, the leader
will take the reward from the queue and use this to
update the bandit algorithm. Importantly, the leader
does not play this action in the environment. This
continues until the bandit algorithm suggests playing
an action whose queue is empty. Once this occurs, the
leader will play the action in the environment and will
use the observed reward to update the bandit algo-
rithm. The leader then communicates this decision
to the other, follower, agents. Once a follower re-
ceives the decision from the leader, they will proceed
to play the instructed action and communicate the re-
ward back to the leader. Once the leader receives re-
wards from their followers, they will place the rewards
in the corresponding queues, and begin the process
again. Notably, the process of sending decisions and
rewards can take several rounds because the message
needs to travel across the network.

Algorithm 1 presents the pseudo-code for QuACK. For
clarity, we have made two simplifications in the pre-
sentation of the algorithm. Firstly, the index of the
leading agent is given as input. Secondly, the shortest
path between each follower and the chosen leader is

known. However, these quantities need not be known
in practice. Appendix A explains how to nominate
the leader and compute the required shortest paths in
a distributed manner, e.g. each agent only knows the
structure of the graph locally.

3.1 Message-Passing Protocol

The message a follower w ̸= v sends to the leader v in
round t contains only the action and the reward:

(Aw
t , X

w
t ).

Sending such simple messages is possible since there is
a known fixed route between the leader and any fol-
lower. Although multiple routes with the minimum
path length might exist, the algorithm determines ex-
actly one and adheres to it throughout. Comput-
ing these routes can be done in a distributed man-
ner before the start of the interaction. Specifically,
this amounts to constructing the shortest path tree of
the graph, which can be done by solving the single-
source shortest-path problem before interacting with
the bandit environment (Ahuja et al., 1993). Figure
1 illustrates the shortest path tree for the grid graph,
where the black vertex represents the leader.

Figure 1: Grid Graph and its Shortest Path Tree.

The Distributed Bellman-Ford algorithm can solve
the single-source shortest-path problem exactly and
it does so using approximately m iterations, whilst
only requiring that each agent knows their neighbours
and has a unique identifier (Ford, 1956; Bellman, 1958;
Moore, 1959; Elkin, 2020). Appendix A presents full
details of this algorithm for completeness.

Sending instructions from the leader to the followers
using the shortest path tree is straightforward. The
leader communicates the action they played to their
children, and the children send this action to their
children at the end of the next round, and so forth.
Using the shortest path tree also makes passing mes-
sages to the leader straightforward. Each follower will
forward messages from their children to their parent,
and send their own message to their parents. Let, Cw
and Pw denote the children and the parent of agent w
on the shortest path tree, respectively. Then, in the
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t-th round, each follower w will perform the following
communication:

• Forward Aw
t = Av

t−dvw
to each z ∈ Cw.

• Send Mv
t = (Aw

t , X
w
t ) ∪ {Mz

t−1}z∈Cw
to Pz.

The leader v only needs to send the action they choose
in each round to their children, which corresponds to
just the first item in the above list. Thus, the commu-
nication complexity, in terms of the number of mes-
sages sent in each round, for each agent w is upper
bounded by the diameter of the graph.

Note that we could use any other message-passing pro-
tocol that satisfies Assumption 2. For example, each
agent could forward everything they have been sent in
the past m rounds. However, in this case, all messages
would have to contain additional information about
who originally sent the message and the time the mes-
sage was sent, e.g. a unique agent identifier and the
round. This extra information is required so that the
followers can identify the most recent action sent to
them by the leader. Furthermore, this additional in-
formation can be used by the leader to ensure that
each message is added to the queue only once.

3.2 Theoretical Analysis

This subsection provides an analysis of QuACK, as
presented in Algorithm 1. Throughout, we will prove
guarantees for an arbitrarily chosen leader and bandit
algorithm. This will allow us to show that the lead-
ing order term in the group regret depends only on
the quality of the chosen algorithm, with the graph-
dependence being relegated to a lower order term.

We will now show that, by maintaining the queues,
the leader creates a simulated single-player version of
the environment for the bandit algorithm. For this,
we need to define the number of times the single-agent
bandit algorithm chooses each action up to and includ-
ing their τ -th decision. Letting Ãs denote the s-th ac-
tion chosen by the bandit algorithm and the counter
as follows:

T ′
a (τ) =

τ∑
s=1

1{Ãs = a} (3)

for all (a, τ) ∈ A× N.

Define P = {P1, · · · , Pk} to be the set of reward distri-
butions that characterise the multi-armed bandit en-
vironment faced by the network of agents, as in As-
sumption 1. Then, the cumulative regret of the ban-
dit algorithm after directly interacting with the bandit
environment for τ rounds can be defined in the usual

manner:

Sπ (τ) =
∑
a ̸=⋆

∆a EP [T ′
a (τ)] ,

where EP is used to make it explicit that the bandit
algorithm is interacting directly with the environment.
Lemma 1 shows that the cumulative regret of the ban-
dit algorithm interacting directly with the bandit en-
vironment for τ rounds is equivalent to its cumulative
regret over τ rounds in the queued version of the en-
vironment.

Lemma 1. Under Assumption 1, QuACK guarantees,
for all τ ∈ N, that:

Sπ (τ) =
∑
a̸=⋆

∆a E [T ′
a (τ)]

where E denotes expectation with respect to the inter-
action between the network of agents and the multi-
armed bandit environment.

Proof. Under Assumption 1, the rewards for each
action-agent pair are independent and identically dis-
tributed random variables. Properties of exchangeable
random variables guarantee that the sequence of re-
wards the leading agent feeds to the bandit algorithm
has the same distribution as in the single-player envi-
ronment. Therefore, the expectation in the definition
of the single-player regret and in the multi-agent set-
ting are the same. See Appendix B.1 for a formal
proof.

Recall that the group regret is defined in terms of the
number of times the network of agents plays each ac-
tion. Thus, Lemma 1 is only going to be useful if we
can relate the number of times the network of agents
plays each action to the number of times the bandit
algorithm plays each action in the queues. This rela-
tionship is what we now establish.

In QuACK, the bandit algorithm is primarily updated
using rewards from the queues. Occasionally, the
leader must play an action in the bandit environment
if the corresponding queue is empty. Therefore, Equa-
tion (3) accounts for both the number of times the
leader performs this action in the bandit environment
and the number of samples taken from the queue.

Let st denote the number of simulated rounds the ban-
dit algorithm has completed in the queued version of
the environment by the end of the t-th round. Algo-
rithm 1 tells us that the action played by the leader
in the t-th round of its interaction with the bandit en-
vironment will be the action suggested by the bandit
algorithm in the corresponding simulated round:

Ãst = Av
t .
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Thus, by the end of the final round, we can write down
the number of times the single-agent bandit algorithm
chooses each action as follows:

T ′
a (sn) =

n∑
t=1

st∑
s=st−1+1

1{Ãs = a} . (4)

Lemma 2 uses Equation (4) to relate the number of
times the network of agents plays each action to the
number of times the bandit algorithm chooses each
action.

Lemma 2. Running QuACK with an arbitrary v ∈ V
as the leader guarantees that:

m∑
w=1

Taw (t− dvw) ≤ T ′
a (st) + 2

m∑
w=1

dvw

for all t ∈ N.

Proof. See Appendix B.2

Lemmas 1 and 2 provide crucial insights into the prop-
erties of Algorithm 1. Namely, that the queuing mech-
anism simulates the bandit environment and that the
decision-making of the bandit algorithm in the queues
is directly related to the network of agents in the envi-
ronment. Given these, the following theorem upper
bounds the group regret by the regret of the ban-
dit algorithm in the queues, plus an additive graph-
dependent quantity that measures the speed of infor-
mation flow to and from the leader.

Theorem 1. Under Assumptions 1 and 2, the group
regret of QuACK run with single-player bandit algo-
rithm π and leading agent v ∈ V is bounded by:

RG (n) ≤ Sπ (mn) +

(
3

m∑
w=1

dvw

)
k∑

a=1

∆a.

Proof. The proof begins by upper bounding the group
plays for action a ∈ A at the end of the final round as:

m∑
w=1

Taw (n) ≤
m∑

w=1

Taw (n− dvw) +
∑
w ̸=v

dvw. (5)

From Section 3.1, we know that the leader appends
each message to the queue exactly once, which implies
that sn < mn almost surely. Combining Equation (5)
with Lemma 2 and sn < mn allows us to upper bound
the number of times the entire network plays action a
by the number of times π has played this action:

m∑
w=1

Taw (n) ≤
m∑

w=1

Taw (n− dvw) +
∑
w ̸=v

dvw

≤ T ′
a (mn) + 3

∑
w ̸=v

dvw. (6)

Plugging Equation (6) into the definition of the group
regret gives us:

RG (n) =
∑
a̸=⋆

∆a E

[
m∑

w=1

Taw (n)

]

≤
∑
a̸=⋆

∆a E [T ′
a (mn)] +

3
∑
w ̸=v

dvw

∑
a̸=⋆

∆a

= Sπ (mn) +

3
∑
w ̸=v

dvw

∑
a ̸=⋆

∆a

where the final line follows from Lemma 1. Appendix
B.3 presents further details.

Theorem 1 suggests that we should pick the leading
agent as follows:

v⋆ = argmin
v∈V

m∑
w=1

dvw .

This intuitively makes sense. Indeed, minimising the
sum of the shortest paths will minimise the total de-
lay in sending and receiving instructions and feedback
from the followers. Appendix A presents an approach
for finding this agent in a distributed manner. Never-
theless, Assumption 2 guarantees that the worst-case
graph-dependence is given by:

m∑
w=1

dvw ≤ d (m− 1) ,

which holds for any choice of leading agent.

Theorem 1 holds for any choice of bandit algorithm
and makes weak assumptions on the rewards. This
is in contrast to existing works, where it is com-
mon to analyse a specific bandit algorithm and make
stronger assumptions on the reward distributions, such
as having a particular parametric form or subgaussian
tails. Section 4 shows that the guarantees presented in
this subsection are competitive with the case-specific
analyses that exist in the literature when providing
QuACK with the corresponding single-agent bandit al-
gorithm.

4 INSTANCES OF QuACK

Theorem 1 holds under the assumption that the re-
wards are conditionally independent given the actions
and the expected reward for each of the actions is fi-
nite. Therefore, we can apply our reduction in nu-
merous bandit environments by choosing an appropri-
ate single-agent algorithm. Here, we present a non-
exhaustive selection of bandit problems that satisfy
Assumption 1.
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In each bandit problem, QuACK will be provided with
a specific single-agent algorithm. The specific choices
are made so that we can draw comparisons with the
existing literature wherever possible. However, any
other provably efficient single-player algorithm could
be combined with our reduction to get similar results.

4.1 Standard Bandits

The standard multi-armed bandit problem consists of
playing an action and receiving a reward drawn inde-
pendently from a distribution that depends only on the
chosen action (Lattimore and Szepesvári, 2020). Typ-
ically, it is assumed that each distribution has support
or has subgaussian tails.

Thus, Assumption 1 holds and we turn our attention to
the bandit environments containing distributions with
support bounded in [0, 1]. Corollaries 1 and 2 presents
the group regret bound for our algorithm when the
leader uses UCB1 (Auer et al., 2002a) and MOSS (Au-
dibert and Bubeck, 2009), respectively.

Corollary 1. Running QuACK with UCB1 of Auer
et al. (2002a) and an arbitrary leader guarantees that:

RG (n) ≤
∑
a ̸=⋆

8 ln (mn)

∆a
+

(
3 + 3

m∑
w=1

dvw

)∑
a̸=⋆

∆a.

Proof. Theorem 1 of Auer et al. (2002a) provides an
upper bound on the regret of the upper confidence
bound algorithm over a τ -round interaction with the
bandit environment:

Sπ (τ) ≤
∑
a̸=⋆

8 ln (τ)

∆a
+ 3

∑
a̸=⋆

∆a. (7)

Combining this upper bound with Theorem 1 and tak-
ing τ = mn gives the result.

Corollary 2. Running QuACK with MOSS of Audib-
ert and Bubeck (2009) and an arbitrary leader guaran-
tees that:

RG (n) ≤ 49
√
mnk +

(
3

m∑
w=1

dvw

)∑
a ̸=⋆

∆a.

Equation (2) presents the minimax lower bound for
the multi-agent version of the standard multi-armed
bandit problem. Corollary 2 shows that QuACK is
capable of attaining this minimax rate up to an ad-
ditive term that is independent of the horizon. Con-
versely, prior works miss the minimax lower bound by
at least a poly-logarithmic factor involving the hori-
zon and the number of agents (Landgren et al., 2016;
Mart́ınez-Rubio et al., 2019; Lalitha and Goldsmith,
2021).

Mart́ınez-Rubio et al. (2019) analyse a multi-agent ex-
tension of UCB1 (Auer et al., 2002a). This is not
the only extension of this well-known algorithm to the
multi-agent setting (Landgren et al., 2016). However,
Mart́ınez-Rubio et al. (2019) offer the best theoretical
guarantees, and prove the upper bound on the group
regret:

RG (n) ≤
∑
a̸=⋆

8η
(
1 + ϵ

2

)
ln (mn)

∆a
+ CG

∑
a ̸=⋆

∆a

where η > 1 and ϵ ∈ (0, 1) are tunable hyperpa-
rameters of their algorithm. Further, CG is a graph-
dependent quantity with the following definition:

CG =

⌈
6m ln

(
2m
ϵ

)√
2 ln|λ|−1

⌉
+m+ 4

where λ is the second largest singular value of the com-
munication matrix they use for the gossiping proce-
dure. Corollary 1 shows a strict improvement in the
leading-order term. Comparing the graph-dependence
is a little more challenging and requires specifying the
communication matrix. Following their recommenda-
tions, we can show that for regular graphs, our graph-
dependence is smaller than a function of theirs:

3

m∑
w=1

dvw <
CG√

2 ln|λ|−1

which suggests the dependence in our bounds is better
in regular graphs with a small spectral gap. Addition-
ally, we can prove a strict improvement on the graph-
dependence for networks with a specific structure, such
as the star graph. Generally, the communication com-
plexity of their algorithm and ours comparable but not
equivalent. See Appendix C.1 for further details.

4.2 Heavy-Tailed Bandits

Bubeck et al. (2013) introduced the single-agent heavy
tailed bandit problem. The decision-making process
is exactly the same as the standard bandit setting.
However, the reward distributions only have finite mo-
ments of order 1+ϵ where ϵ > 0 controls the heaviness
of the tails. Consequently, Assumption 1 still holds
because the expected values of each distribution are
still finite in this setting. Thus, QuACK can be used
for the multi-agent heavy-tailed bandit problem

Bubeck et al. (2013) propose a generic solution for
the single-agent setting that they call the robust upper
confidence bound algorithm. This algorithm replaces
the empirical mean with a robust estimator of the ex-
pected value, such as the truncated-mean, median-of-
means, or Catoni’s M (Bickel, 1965; Alon et al., 1999;
Catoni, 2012).
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Indeed, QuACK can be used with any of the robust
upper confidence bound strategies, as defined by these
robust estimators of the expected rewards. Corollary
3 presents a guarantee on the group regret when the
leading agent uses the truncated-mean estimator.

Corollary 3. Running QuACK with Robust UCB of
Bubeck et al. (2013) using the truncated mean and an
arbitrary leader guarantees that:

RG (n) ≤ O

∑
a̸=⋆

σ1/ϵ ln (mn)

∆
1/ϵ
a

+

(
m∑

w=1

dvw

)∑
a ̸=⋆

∆a


where EX∼Pa [X

1+ϵ] ≤ σ for all a ∈ A.

Dubey and Pentland (2020) study the multi-agent
heavy-tailed bandit problem and devise two algorithms
based on the truncated-mean estimator. Their best al-
gorithm achieves a similar guarantee. However, their
leading order term is scaled by the independence num-
ber of the γ-th power of the graph, where γ is a hy-
perparameter of their algorithm. Our bound is strictly
better when this quantity is greater than one, which
occurs when γ < d. Since they also employ a leader-
based algorithm that uses a message passing proce-
dure, the additive terms in their bound and their per-
round communication are comparable. See Appendix
C.2 for further details.

4.3 Duelling Bandits

Yue et al. (2009) introduced the single-agent duelling
bandit problem. Here, feedback from the environment
is the outcome of a duel between two actions. Modi-
fying Algorithm 1 for the multi-agent duelling bandit
problem amounts to maintaining a queue for each pair
of actions: A+ = A × A. Now, each agent will com-
municate the pair of actions and the outcome of the
duel to their neighbours.

Assumption 1 holds since the outcomes of the duels are
assumed to depend only on the pair of actions chosen
in each round. Recall that we define the group regret
relative to a fixed optimal action. Therefore, Theorem
1 applies to solution concepts, such as the Condorcet,
Copeland, and Borda winners (Zoghi et al., 2014, 2015;
Jamieson et al., 2015). Corollary 4 presents an upper
bound on the group regret for an algorithm designed
under the assumption that the Condorcet winner ex-
ists (Zoghi et al., 2014).

Corollary 4. Running QuACK with an arbitrary
leader following the relative upper confidence bound al-
gorithm of Zoghi et al. (2014) guarantees:

RG (n) ≤ O

∑
a̸=⋆

ln (mn)

∆̃a

+

(
m∑

w=1

dvw

)∑
a̸=⋆

∆̃a



where ∆̃a = P (a⋆ ≻ a)−1/2 denotes the sub-optimality
gap of action a in the duelling bandit setting.

Raveh et al. (2024) develop several algorithms for the
multi-agent duelling bandit problem. Their best algo-
rithm builds on the relative upper confidence bound
algorithm and achieves a similar guarantee. However,
their leading order term is scaled by the clique cov-
ering number of the γ-th power of the graph, where
γ is a hyperparameter of their algorithm. Thus, we
obtain a strict improvement whenever this quantity is
greater than one, which occurs when γ < d. Since
their algorithm employs a message passing procedure,
the additive terms in their bound and the per-round
communication are comparable to ours. See Appendix
C.3 for further details.

4.4 Local Differential Privacy

Privacy is a topic of growing interest in the machine
learning community and seeks to protect private in-
formation within datasets. Ren et al. (2020) study
local differential privacy (LDP) in the bandit setting,
where the environment uses a mechanism to make the
rewards private before sending them to the agent. For-
mally, in the multi-agent setting, the only difference is
that the rewards each agent receives are privatised:

Xv
t = fϵ (X) for X

iid∼ PAv
t

where fϵ denotes the privatising mechanism that en-
sures ϵ-LDP of the rewards before handing them to
the agent. Procedures for privatising rewards include
adding Bernoulli or Laplace noise to the rewards, and
proving the mechanism provides the specified level of
privacy are independent of the bandit algorithm, e.g.
Lemmas 2 and 5 of Ren et al. (2020).

Therefore, we can directly use these mechanisms in
the multi-agent setting and guarantee that the rewards
are ϵ-LDP. Furthermore, Assumption 1 is satisfied in
this setting because the curator adds independent and
identically distributed noise to the rewards.

Corollary 5. Running QuACK with LDP-UCB-L of
Ren et al. (2020) and an arbitrary leader is ϵ-LDP and
guarantees:

RG (n) ≤ O

∑
a̸=⋆

1

ϵ2
ln (mn)

∆a
+

(
m∑

w=1

dvw

)∑
a ̸=⋆

∆a

 .

Corollary 5 uses QuACK to get the first provably effi-
cient algorithm for multi-agent bandits with local dif-
ferential privacy.
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Figure 2: Group Regret for a Network of 196 Agents.

5 EXPERIMENTAL RESULTS

Theorem 1 and its corollaries suggest that our algo-
rithm will be competitive with existing multi-agent ap-
proaches when paired with a comparable single-agent
bandit algorithm. Naturally, we seek to verify these
theoretical insights through experiment.

Here, we consider a simple bandit environment with
ten actions where each reward distribution is Bernoulli
with µ1 = 0.5 and µ2 = · · · = µ10 = 0.45. Following
existing works, we conduct our experiments on cycle
and grid graphs. Additionally, we investigate the star
graph to verify our theoretical insights. Our results are
averaged over 100 independent runs and we represent
uncertainty by shading between the 2.5-th and 97.5-th
quantiles.

QuACK is initialised with UCB1 (Auer et al., 2002a)
and Thompson Sampling (Thompson, 1933). This
allows for a fair comparison with existing methods
that extend these single-agent algorithms to the multi-
agent setting. Specifically, we seek to compare:

• QuACK with UCB1 against Coop-UCB (Land-
gren et al., 2016) and DDUCB (Mart́ınez-Rubio
et al., 2019)

• QuACK with Thompson Sampling against DecTS
(Lalitha and Goldsmith, 2021).

Appendix A provides additional details about the hy-
perparameters used in these algorithms and presents
experimental results for bandits with heavy tails.

Figure 2 compares the group regret of each algorithm
across various graph structures. For UCB-based algo-
rithms, we observe that QuACK significantly outper-
forms Coop-UCB and DDUCB. These empirical find-

ings support the claims we made based on the theoreti-
cal results in Section 4. For Thompson Sampling algo-
rithms, we observe that our algorithm is competitive
with existing work on the cycle and grid structures,
and performs significantly better on the star structure,
also supporting our theoretical claims.

6 CONCLUSION

This paper proposes a generic black-box algorithm
that can extend any single-agent bandit algorithm to
the multi-agent setting. Under mild assumptions on
the bandit environment, we show that our black-box
approach immediately transfers the theoretical guar-
antees of the chosen bandit algorithm from the single-
agent setting to the multi-agent setting.

For the standard bandit setting, we can pair our al-
gorithm with any minimax optimal single agent al-
gorithm and match the minimax lower bound in the
multi-agent setting, up to an additive graph-dependent
quantity. We suspect that the lower bound is loose be-
cause it fails to capture the structure of the graph and
the communication delays. Proving graph-dependent
lower bounds is an interesting open problem.

Additionally, we assumed that each agent can commu-
nicate real-valued messages to each neighbour at the
end of every round with arbitrary precision. However,
some practical applications impose constraints on the
amount of communication in terms of frequency or the
number of bits. Relaxing these assumptions are an im-
portant next step for this line of research.
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1. For all models and algorithms presented, check if
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ting, assumptions, algorithm, and/or model.
[Yes: See Section 2, Assumptions 1 and 2,
and Section 3]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes: See Sections 3]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [No]

2. For any theoretical claim, check if you include:
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all theoretical results. [Yes: Stated within
the statement of theoretical results that re-
quire the assumptions.]

(b) Complete proofs of all theoretical results.
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See Appendix D]
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statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes: See Section 5]
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cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Supplementary Material

A IMPLEMENTATION DETAILS

Section 3 presents QuACK assuming that we have elected a leader and have computed a shortest path tree for
our message passing protocol. However, these quantities need not be known in advance and can be computed in
a distributed manner using well-known algorithms.

A.1 Shortest Path Tree

Algorithm 1 requires that each agent knows their parents and children on the shortest path tree, and is presented
assuming that these have been pre-computed. Constructing the shortest path tree rooted at a fixed vertex
amounts to solving the single-source shortest path problem. Traditionally, we can solve this problem in non-
distributed systems using the Bellman-Ford algorithm (Ford, 1956; Bellman, 1958). However, using this algorithm
would require the existence of an agent who possesses knowledge of the entire network topology. Therefore, we
will present the distributed variant of this algorithm (Bertsekas and Gallager, 1992). Here, each agent knows
only their neighbours.

Algorithm 2 presents the pseudo-code for the Distributed Bellman-Ford algorithm. Briefly, this algorithm takes
a source agent as input, and each agent keeps track of their distances from the source and their parent on the
shortest path tree.

Algorithm 2 Distributed Bellman-Ford (DBF)

Input. Index of a source agent v
Set d1v = 0 and d1w = ∞ for w ̸= v
Set Pw = ∅ for each w ∈ V to initialise their parent.
for t ∈ {1, 2, · · ·m− 1} do
Each w ∈ V sends dtw to z ∈ Nw

Each w ∈ V receives dtz from z ∈ Nw

Each w ∈ V updates their distance from the source

dt+1
w = min

z∈Nw∪{w}

{
dtz + 1{z ̸= w}

}
Each w ∈ V updates their parent:

Pw =

{
argminz∈Nw

dtz + 1 if dt+1
w < dtw

Pw if dt+1
w = dtw

end for
Each w ∈ V sends their identifier w to their parent Pw.
Each w ∈ V receives the identifiers from their children and creates their set of children:

Cw = {z ∈ V : Pz = w}

After Algorithm 2 terminates, each agent will know their children and parent on the shortest path tree rooted
at the index of the input agent. These are exactly the quantities we require to implement the message-passing
scheme described in Section 3.1.
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A.2 Leader Election

Leader Election (LE) is a well-known problem in distributed computing (Santoro, 2006; Fokkink, 2013). Here, we
want the network to unanimously agree upon a single agent as a leader. Generally, there are impossibility results
for anonymous networks (Fokkink, 2013). Therefore, we will assume that each agent has a unique identifier.

Wang et al. (2020) devise a simple leader election scheme that requires at most d+ 1 iterations, where d is the
diameter of the graph. Algorithm 3 presents a slight modification of their procedure that will ease the exposition
of finding the optimal leader in the next subsection.

Algorithm 3 Leader Election (LE)

Each v ∈ V sets fv arbitrarily.
Section A.3 has each agent set fv to their sum of shortest paths.

Each v ∈ V saves their initial value Iv = (v, fv)
Each v ∈ V creates their state value S1

v = (v, fv)
for t ∈ {1, 2, · · · ,m} do
Each v ∈ V receives St

w from w ∈ Nv

if ∃w ∈ Nv such that fw < fv then
Update St+1

v = (w, fw)
else if ∃w ∈ Nv such that fw = fv then

Update St+1
v = (min{w, v}, fv)

else
St+1
v = St

v

end if
end for
if Iv = Sm+1

v then
Agent v is the leader.

end if

Running Algorithm 3 requires at most m iterations because every agent will have seen the identifier of every
other agent in the graph at the end of this iteration. Furthermore, Algorithm 3 will always terminate with
exactly one leader. To see this, we can consider two possible cases.

• Unique Minimum. Here, there exists exactly one agent v who possesses the smallest fv value. Therefore,
they never get to update their state, and the network elects them as the leader.

• Non-Unique Minimum. Let f = minv∈V fv and suppose multiple agents attain this value. Algorithm 3
implements an index-based tie-breaking rule to handle this case. Notably, agents with fv = f will eventually
receive an fw = f and they will proceed to check if their index is minimal. Since each agent is assumed to
have a unique index, there will be exactly one agent who possesses fv = f with the minimum index. This
agent will never update their state, and the network will elect them as the leader.

A.3 Optimising the Leader

Combining Sections A.1 and A.2 allows us to find the best-positioned leading agent in the network according to
our theoretical guarantees. Algorithm 4 presents the pseudo-code for finding and electing the leader.

Briefly, this procedure starts with each agent calling Algorithm 2. Afterwards, we perform several rounds of
message passing so that agent v can calculate the sum of shortest paths: fv. Finally, Algorithm 3 performs
leader election with fv equal to the sum of shortest paths.
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Algorithm 4 Optimise the Leader

for v ∈ V = {1, 2, · · · ,m} do
Compute Sum of Shortest Paths
Execute DBF(v)

Each agent now knows dvw (distance from source v)
Each agent now knows Pw (their parent on the shortest path tree with source v)

Each w ∈ V creates message Mw
1 = (w, dvw)

for t ∈ {1, 2, · · · ,m} do
Each w ∈ V sends Mw

t to Pw

Each w ∈ V updates Mw
t+1 = Mw

t ∪ {Mz
t }z∈Cw

end for
Agent v calculates fv =

∑
w dvw from the messages.

end for
Use Sum of Shortest Paths as fv in Leader Election
Each agent now knows their value for fv =

∑m
w=1 dvw

Execute LE to elect the leader with minimal sum of shortest paths.

B MISSING PROOFS

Throughout the main paper we deferred several proofs to the appendix and gave sketches of the proofs for the
main results. Here, we present full proofs of the claims made in the main paper and we do so in chronological
order. Specifically, the remainder of this section will have the following structure:

• Section B.1 presents a proof of Lemma 1 which establishes the equivalence of playing in the bandit environ-
ment and the queued version of the environment created by the feedback from non-leading agents.

• Section B.2 presents a proof of Lemma 2 which tells us that the difference between the group plays and the
pseudo plays of the leader is almost surely bounded by a graph-dependent constant.

• Section B.3 presents a full proof of Theorem 1 and fills in steps missing from the proof sketches given in the
main paper.

B.1 Proof of Lemma 1

In QuACK, the leader uses rewards from the queues as well as their own observations to simulate an environment
for updating the bandit algorithm. Recall that the rewards in the queues have been gathered by other agents in
the network, who all interact with the same bandit environment. Lemma 1 relates the cumulative regret suffered
by the bandit algorithm in the queued environment, created by the leader and the followers, to the cumulative
regret that the same algorithm would suffer if it were to just interact bandit environment directly. More precisely
it states that: ∑

a̸=⋆

∆a EP [T ′
a (τ)] =

∑
a̸=⋆

∆a E [T ′
a (τ)] . (8)

where

T ′
a (τ) =

τ∑
s=1

1{Ãs = a}

In Equation (8), the first expectation is with respect to the bandit algorithm π interacting directly with the
bandit environment. The second expectation is with respect to bandit algorithm π interacting with the simulated
environment created by the leader and the followers, who all follow Algorithm 1.

For each action a ∈ A, let Pa be the distribution over possible rewards when playing action a in the bandit
environment, as defined in Assumption 1. For each a, we also define P̃a which is a probability measure over the
possible rewards for playing action a in the simulated environment created for the algorithm by the leader and
the followers. In addition let pπ be the density over action-reward pairs up to time τ when the single player
bandit algorithm π interacts with the environment, and let p̃π be the density over action-reward pairs in the
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simulated environment up to time n. Following the notation of Lattimore and Szepesvári (2020), we can write
down these densities as follows:

pπ (a1, x1, · · · , aτ , xτ ) =

τ∏
s=1

π (as | a1, x1, · · · , as−1, xs−1) pas (xs)

p̃π (a1, x1, · · · , aτ , xτ ) =

τ∏
s=1

π (as | a1, x1, · · · , as−1, xs−1) p̃as
(xs)

where pa and p̃a denote the Radon-Nikodym derivatives of Pa and P̃a, respectively.

Letting h = (x1, a1, . . . aτ , xτ ) ∈ Hτ = (A× R)τ represent a possible sequence of τ action-reward pairs, and
using these notations, allows us to define the two expectations in Equation (8) more precisely:

EP [T ′
a (τ)] =

∫
h∈Hτ

∑
(as,xs)∈h

1{as = a} pπ(h) dh

whereas

E [T ′
a (τ)] =

∫
h∈Hτ

∑
(as,xs)∈h

1{as = a} p̃π(h) dh

Under Assumption 1 we know that the rewards for each action-agent pair are independent and identically
distributed random variables. Furthermore, the queuing mechanism reorders the rewards independently of the
values they take, e.g. the re-ordering depends on the length of the shortest path. Therefore, using exchangeability
of independent and identically distributed random variables, we have that:

Pa
d
= P̃a

The Radon-Nikodym Theorem tells us that the pa is unique, e.g. see Theorem 4.2.2 of Cohn (2013). Combining
Pa = P̃a with this well-known result tells us that pa(x) = p̃a(x) for all x ∈ R. Therefore pπ(h) = p̃π(h) for all
h ∈ Hτ = (A× R)τ and hence, ∫

h∈Hτ

f (h) pπ (h) dh =

∫
h∈Hτ

f (h) p̃π (h) dh

for any arbitrary function f : Hτ → R. Choosing f(h) =
∑

(as,xs)∈h 1{as = a} completes the proof.

B.2 Proof of Lemma 2

Define the last round that the leading agent plays action a in the bandit environment as follows:

z = max
{
j ≤ t : Av

j = a
}
.

Recall st denotes the pseudo round counter when the leading agent makes their t-th decision in the bandit
environment. Using Equation (4) and leveraging the fact that the round in the previous display is associated
with a play of action a gives us the following:

T ′
a (st) =

st∑
s=1

1{Ãs = a}

=

sz∑
s=1

1{Ãs = a}+
st∑

s=sz+1

1{Ãs = a}

= T ′
a (sz) +

st∑
s=sz+1

1{Ãs = a}

(⋆)
=

m∑
w=1

Taw (z − dvw) +

st∑
s=sz+1

1{Ãs = a}

≥
m∑

w=1

Taw (z − dvw) (9)
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where (⋆) follows from the fact that the leader plays action a in round z so the number of times they play this
action in the queue must be equivalent to the group plays of this action in the bandit environment.

Now, Equation (9) relates the number of times the bandit algorithm has played action a to the number of times
the network has chosen this action. Recall that each follower will play action a for the last time in round:

zw = z + dvw

where z is the last round that the leader plays action a in the bandit environment. Using Equation (1) with
the definition and properties of zw allows us to get an upper bound on the number of plays for any non-leading
agent w as follows:

Taw (t− dvw) =

t−dvw∑
j=1

1{Aw
j = a}

=

z−dvw∑
j=1

1{Aw
j = a}+

t−dvw∑
j=z−dvw+1

1{Aw
j = a}

= Taw (z − dvw) +

t−dvw∑
j=z−dvw+1

1{Aw
j = a}

(⋆)

≤ Taw (z − dvw) +

z+dvw∑
j=z−dvw+1

1{Aw
j = a}

≤ Taw (z − dvw) + 2dvw (10)

where (⋆) follows from analysing the two possible cases. When t − dvw ≥ zw = z + dvw, zw is the last round
follower w plays this action up to and including the t-th round and the summation is empty. Otherwise,
t − dvw < zw = z + dvw and we are extending the summation to include more rounds, which gives us the
inequality.

Summing Equation (10) over all agents and employing the inequality from Equation (9) gives us:

m∑
w=1

Taw (t− dvw) ≤
m∑

w=1

Taw (z − dvw) + 2

m∑
w=1

dvw (Equation (10))

≤ T ′
a (st) + 2

m∑
w=1

dvw (Equation (9))

as required.

B.3 Proof of Theorem 1

Within Section 3, we provided a nearly complete proof. Here, we present each step for completeness. Firstly, we
can rewrite the group plays for action a at the end of the final round as follows:

m∑
w=1

Taw (n) = Tav (n) +
∑
w ̸=v

Taw (n)

= Tav (n) +
∑
w ̸=v

n∑
t=1

1{Aw
t = a}

= Tav (n) +
∑
w ̸=v

n−dvw∑
t=1

1{Aw
t = a}+

∑
w ̸=v

n∑
t=n−dvw+1

1{Aw
t = a}

= Tav (n) +
∑
w ̸=v

Taw (n− dvw) +
∑
w ̸=v

n∑
t=n−dvw+1

1{Aw
t = a}

≤ Tav (n) +
∑
w ̸=v

Taw (n− dvw) +
∑
w ̸=v

dvw (11)
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Secondly, combining Equation (11) with Lemma 2 allows us to upper bound the group plays by the number of
times the leader plays the action in the queued version of the environment:

m∑
w=1

Taw (n) ≤ Tav (n) +
∑
w ̸=v

Tav (n− dvw) +
∑
w ̸=v

dvw (Equation (11))

=

m∑
w=1

Taw (n− dvw) +

m∑
w=1

dvw (Since dvv = 0)

≤ T ′
a (sn) + 3

∑
w ̸=v

dvw (12)

where the final line follows from Lemma 2. Plugging Equation (12) allows us to get an upper bound on the
group regret:

RG (n) =
∑
a̸=⋆

∆a E

[
m∑

w=1

Taw (n)

]

≤
∑
a̸=⋆

∆a E

T ′
a (sn) + 3

∑
w ̸=v

dvw

 (Equation (12))

=
∑
a̸=⋆

∆a E [T ′
a (sn)] +

3
∑
w ̸=v

dvw

∑
a ̸=⋆

∆a

≤
∑
a̸=⋆

∆a E [T ′
a (mn)] +

3
∑
w ̸=v

dvw

∑
a̸=⋆

∆a (Since sn ≤ mn)

= Sπ (mn) +

3
∑
w ̸=v

dvw

∑
a ̸=⋆

∆a (13)

where the final line follows from Lemma 1.

C COMPARISON TO EXISTING WORKS

Our theoretical results span several multi-agent bandit problems, which include: subgaussian rewards, heavy-
tailed rewards, duelling bandits and bandits with local differential privacy, amongst any other bandit problems
that satisfy Assumption 1. Here, we compare our bounds to existing works in the literature.

C.1 Standard Bandits

Several works design algorithms under the standard assumptions on the reward distributions, such as bounded
support, subgaussian tails or specific parametric assumptions (Landgren et al., 2016; Mart́ınez-Rubio et al.,
2019; Lalitha and Goldsmith, 2021). These algorithms all fit into the gossip-based category. Essentially, these
algorithms all use an iterative averaging scheme so that each agent can approximate full network information,
which requires the specification of a communication matrix that must possess certain properties.

Suppose P ∈ Rm×m is this communication matrix and it has properties:

• Pvw = 0 if (v, w) ̸∈ E

• P must have rows that sum to one.

• P must have columns that sum to one.

• P must have real-valued eigenvalues satisfying:

1 = λ1 (P ) > |λ2 (P )| ≥ |λ3 (P )| ≥ · · · ≥ |λm (P )| ≥ 0
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Xiao and Boyd (2004) show that these proprties imply the following:

lim
s→∞

P s → 1

m
1⃗⃗1T

Thus, the communication matrix can be used to maintain an approximation of full network information. This is
best illustrated through an example. Suppose that we want to approximate the average number of times each
agent has played each action. That is, we want to maintain an approximation of the following:∑m

w=1 Taw (t)

m

Define T̂a (t) ∈ Rm as the vector containing each agent’s approximation of the above quantity. Letting ζa (t) ∈
{0, 1}m denote the vector whose entries indicate whether the correspond agent chosen action a in the t-th round.
Then, gossip-based algorithms will use a linear iteration of the following form (Xiao and Boyd, 2004):

T̂a (t+ 1) = PT̂a (t) + ζa (t) =

t∑
s=1

P t−s+1 ζa (s)

where T̂a (0) = 0⃗. For s ≪ t we can use the properties of the communication matrix to argue that:

P t−s+1ζa (s) ≈
∑m

w=1 ζaw (s)

m

Therefore, summing many such terms will give an approximation of the average plays for each action across
the network, and multiplying this by the number of agents gives an approximation of the full network plays.
Generally, gossip-based algorithms will use linear iterations of the above form, or a variant thereof, to approximate
all quantities required by the chosen bandit algorithm (Landgren et al., 2016; Mart́ınez-Rubio et al., 2019; Lalitha
and Goldsmith, 2021). For UCB1, this is the full network plays and the full network sum of rewards for each
action.

Landgren et al. (2016) utilise the linear iterations presented above to devise an upper confidence bound algorithm
for the multi-agent setting. Lalitha and Goldsmith (2021) apply the same idea to Thompson Sampling. Mart́ınez-
Rubio et al. (2019) propose DDUCB, which uses a variant of the scheme that can be viewed as truncating the
summation to ensure that it only includes terms where the approximation is sufficiently accurate. They show
that this modification leads to improved theoretical guarantees. Thus, DDUCB of Mart́ınez-Rubio et al. (2019)
is the focus of our comparison, who prove the following bound on the group regret for reward distributions
bounded in [0, 1]: ∑

a̸=⋆

8η
(
1 + ϵ

2

)
ln (mn)

∆a
+ (CG +m+ 4)

∑
a̸=⋆

∆a

where η > 1 and ϵ ∈ (0, η−1/7(η+1)) are tune-able hyperparameters. Furthermore, CG is a graph-dependent
quantity defined as:

CG =

⌈
6m ln

(
2m
ϵ

)√
2 ln|λ|−1

⌉
.

Corollary 1 shows that QuACK with UCB1 has a comparable but smaller constant pre-multiplying the leading
order term. Therefore, we focus on comparing the additive graph dependent terms. These terms are lower order
and become negligible for n sufficiently large. However, it is still interesting to provide a comparison, as these
terms are informative of how the network topology impacts the performance. Throughout, we will assume that
the communication matrix is chosen as-per the recommendations of Mart́ınez-Rubio et al. (2019):

P = I − 1

1 + maxv∈V |Nv|
(D −M)

where D and M denote the degree matrix and the adjacency matrix of the graph. Formally, D and M have the
following element-wise definitions:

Dvw =

{
|Nv| if w = v

0 otherwise
and Mvw =

{
1 if (v, w) ∈ E

0 otherwise



QuACK: A Multipurpose Queuing Algorithm for Cooperative k-Armed Bandits

Star Graphs. The star graph consists of m − 1 vertices connected to a single central vertex. Here, we can
exactly evaluate the spectrum of the communication matrix. Notably, the spectrum of L := D−M is known for
this graph (Chung, 1997):

λ (L) =


m with multiplicity 1

1 with multiplicity m− 2

0 with multiplicity 1

Therefore, the spectrum of the communication matrix P can be found by plugging in these quantities:

λ (P ) = 1− λ (L)

m
=


0 with multiplicity 1
m−1
m with multiplicity m− 2

1 with multiplicity 1

which gives us λ = λ2(P ) = m−1/m. Plugging this into their graph-dependent term yields:

CG +m+ 4 =


6m ln

(
m
ϵ

)√
2 ln

(
m

m−1

)
+m+ 4

≥ 6m ln (m)√
2 ln

(
m

m−1

) +m+ 4

> 7m+ 4

where the final inequality follows from the fact that m ≥ 2 is required for the multi-agent setting. Running
Algorithm 4 will choose the central vertex as the leading agent. Therefore, the length of the shortest path from
every follower to the leader is 1 and this will give make the graph-dependence in our algorithm:

3 + 3

m∑
w=1

dvw = 3 + 3(m− 1) = 3m

which is strictly smaller than that of Mart́ınez-Rubio et al. (2019).

Regular Graphs. Graphs are called δ-regular if every agent has exactly δ neighbours, e.g. |Nv| = δ for all
v ∈ V . For these graphs, the expression for P simplifies and allows us to obtain an expression for the spectral
term found in the graph-dependent term of Mart́ınez-Rubio et al. (2019):

P =
I +M

1 + δ
=⇒ λ := λ2 (P ) =

1 + λ2 (M)

1 + δ
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Chung (1989) provide an upper bound on the diameter d for regular graphs, which we can substitute into the
graph-dependent term in the group regret of QuACK-UCB:

3 + 3

m∑
w=1

dvw ≤ 3 + 3d (m− 1)

≤ 3 +

3 (m− 1) ln (m− 1)

ln
(

1+δ
|1+λ2(M)|

)


= 3 +

⌈
3 (m− 1) ln (m− 1)

ln|λ|−1

⌉
= 3 +

⌈
6 (m− 1) ln (m− 1)√
2 ln|λ|−1

√
2 ln|λ|−1

⌉
(a)
< 3 +

⌈
6 (m− 1) ln

(
2m
ϵ

)√
2 ln|λ|−1

√
2 ln|λ|−1

⌉

= 3 +
CG − 6 ln(m− 1)√

2 ln|λ|−1

≤ 3 +
CG√

2 ln|λ|−1

where (a) follows from the fact that ln(2m/ϵ) > ln(m− 1) for m ≥ 2 and ϵ ∈ (0, 1). This establishes that we can
upper bound the graph-dependence in our theoretical guarantees by the a function involving the graph-dependent
term found in that of Mart́ınez-Rubio et al. (2019). Notably, better dependence for our algorithm is guaranteed
whenever: √

2 ln|λ|−1 ≥ 1 =⇒ |λ| ≥ exp

(
−1

2

)
Generally, this suggests that the graph-dependence of our leader-based approach is better for δ-regular graphs
where the communication matrix has large enough values for |λ|.

C.2 Heavy-Tailed Rewards

Dubey and Pentland (2020) design a multi-agent extension of the robust upper confidence bound algorithm
using the truncated mean estimator. To the best of our knowledge, this is the only work addressing heavy-tailed
environments in the multi-agent setting. Before stating their theoretical results, we first define the independence
number of a graph:

α (G) = max
S⊆V

{|S| : (v, w) ̸∈ E for all (v, w) ∈ S}

which is the size of the largest subset of vertices where no two vertices are adjacent. Dubey and Pentland (2020)
develop several algorithms, and their best guarantee on the group regret up to absolute constants is given by:

α (Gγ)
∑
a ̸=⋆

σ
1
ϵ ln (n)

∆
1
ϵ
a

+ (mγ · α (Gγ) + α (Gγ) +m)
∑
a̸=⋆

∆a

where ϵ controls the heaviness of the tails for the reward distributions, γ is a parameter their algorithm takes as
input that governs how far each agent can communicate, and the γ-th power of the graph is defined as:

Gγ = (V,Eγ) where Eγ = 1{(v, w) ∈ V × V : dvw ≤ γ}

which adds an edge to the graph whenever dvw ≤ γ. From Corollary 3, the group regret of running QuACK
with the robust upper confidence bound using the truncated-mean estimator has the following upper bound:

RG (n) ≤ O

∑
a̸=⋆

σ
1
ϵ ln (mn)

∆
1
ϵ
a

+

(
m∑

w=1

dvw

)∑
a̸=⋆

∆a
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Thus, we obtain a smaller leading order term whenever:

nα(Gγ)−1 ≥ m

Notably, α (Gγ) ∈ [1,m] for all graphs. Therefore, our graph-dependence is smaller whenever α (Gγ) > 1 and
m < n, e.g. the number of agents is smaller than the number of rounds.1 Specifying γ ≥ d as the input parameter
will yields an independence number of 1 in the bound Dubey and Pentland (2020). However, their analysis is
specific to the robust upper confidence bound algorithm and the truncated mean estimator, whereas Theorem 1
is strictly more general.

Dubey and Pentland (2020) have an additive graph-dependent term that displays a trade-off between the input
parameter γ and the independent number. Generally, increasing γ will decrease the independence number and
decreasing γ will increase the independent number. Therefore, we expect their additive term to be comparable
to ours in many cases. For example, choosing γ = d will minimise the leading order term in the regret bound
and yields an additive graph-dependence of:

mγ · α (Gγ) + α (Gγ) +m = md+m+ 1

Conversely Corollary 3 shows that our additive graph-dependence of the order:

m∑
w=1

dvw ≤ m (d− 1)

C.3 Duelling Bandits

Raveh et al. (2024) design a multi-agent extension of various duelling bandit algorithms. To the best of our
knowledge, this is this only work addressing the multi-agent duelling bandit problem. Their best guarantee is
for an extension of the relative upper confidence bound algorithm (Zoghi et al., 2014). Up to absolute constants,
they show that this algorithm achieves an upper bound on the group regret given by:

χ (Gγ)
∑
a ̸=⋆

ln (n)

∆̃a

+m2k2 (1 + ln (1 + |Nγ
⋆ |)) ∆̃max + (1 + γ) km∆̃max

where χ(Gγ) ∈ [1,m] denotes the clique covering number of the γ-th power of the graph and γ is an input
parameter. From Corollary 4, we can upper bound the group regret when running QuACK with the relative
upper confidence bound algorithm:

RG (n) ≤ O

∑
a̸=⋆

ln (mn)

∆̃a

+

(
m∑

w=1

dvw

)∑
a̸=⋆

∆̃a


Comparing the leading-order term reveals that we obtain a strictly better leading order term whenever:

nχ(Gγ)−1 ≥ m

Therefore, our graph-dependence is smaller whenever χ (Gγ) > 1 and m < n, e.g. the number of agents is smaller
than the number of rounds. Specifying γ ≥ d as the input parameter will yield a clique covering number of 1
in the bound of Raveh et al. (2024). However, their analysis is specific to the relative upper confidence bound
algorithm, whereas Theorem 1 is strictly more general.

Raveh et al. (2024) have an additive graph-dependent term that is strictly larger. Notably, their graph-
dependence is always quadratic in the network size, whereas ours scales as md. Notably, d < m in connected
graphs.

1Note that m > n implies that all multi-agent bounds on the group regret become linear in the horizon.
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D ADDITIONAL EXPERIMENTS

Experimentally, we seek to compare our black-box reduction to existing works, who design and analyse extensions
of well-known single agent bandit algorithms. Our simulations were conducted on a personal machine (Intel i5-
10310U CPU @ 1.70Ghz x 8). Furthermore, all results are averaged over 100 independent runs.

D.1 Subgaussian Experiments

Here, we describe the missing experimental details for the experiments found in the main paper, such as the
hyperparameters for existing algorithms. Firstly, Landgren et al. (2016), Mart́ınez-Rubio et al. (2019) and
Lalitha and Goldsmith (2021) are all gossip-based algorithms. Thus, they all require the specification of a
communication matrix. All authors recommend choosing this matrix based on the graph Laplacian. Formally,
they use the following doubly stochastic matrix:

P = I − 1

1 + maxv∈V |Nv|
(D −M)

where M , D and δ denote the adjacency matrix, the degree matrix and the maximum degree of the underlying
graph. Below, we provide specific details on additional hyperparameters of each algorithm.

• Landgren et al. (2016) (coop-UCB) has been implemented by other researchers (Mart́ınez-Rubio et al.,
2019). Their algorithm requires an exploration hyperparameter γ > 1; we choose this parameter based on
the empirical results of existing work (Mart́ınez-Rubio et al., 2019; Lalitha and Goldsmith, 2021).

• Exploration Parameter: γ = 1.01.

• Mart́ınez-Rubio et al. (2019) (DDUCB) provide an implementation of their algorithm on Github. Their
algorithm requires specifying two hyperparameters; we use the values stated in their theorems and chosen
in their experiments.

• Exploration Parameter (Theorem 3.2 of Mart́ınez-Rubio et al. (2019)): η = 2.

• Approximation Parameter (Theorem 3.2 of Mart́ınez-Rubio et al. (2019)): ϵ = 1/22.

• Lalitha and Goldsmith (2021) (DecTS) provide an implementation of their algorithm on Github. Their
algorithm requires the specification of a learning rate. We use the value found in the theoretical results that
they use in their experiments.

• Learning Rate (Theorem 1 of Lalitha and Goldsmith (2021)): η = m.

• Algorithm 1 requires the specification of a leader and a single-player bandit algorithm.

• Leader: As Theorem 1 suggests, we select the leader as the solution to the graph median problem for
each experimental setting. We do so using Algorithm 4.

• Bandit Algorithm: Our goal is to compare how well our black-box reduction performs relative to existing
works, who design and analyse specific algorithms designed for the setting. Therefore, we consider UCB
(Auer et al., 2002a) and Thompson Sampling (Thompson, 1933) to compare with existing literature.

Our experiments consider three network structures, namely cycle, grid and star graphs with varying network
sizes. Figure 2 in the main paper shows the experimental results for the largest network size of m = 196 agents.
Here, we present the experimental results for smaller network sizes.

https://github.com/damaru2/decentralized-bandits
https://github.com/anushalalitha5/Decentralized-Thompson-Sampling
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Cycle Graph. The cycle graph consists of agents organised in a circle who are connected to their clockwise
and anti-clockwise neighbours. Thus, the graph is 2-regular. Section 5 presents the empirical results for a cycle
with m = 196 agents. Figure 3 displays the group regret for cycle graphs with varying numbers of agents.

Figure 3: Group Regret for Cycle Graphs.

Figure 3, shows that QuACK-UCB outperforms the other UCB-based algorithms on all network sizes. As
Section C.1 suggests, the performance gap increases with the size of the network. Furthermore, QuACK-TS is
competitive with DecTS.

Grid Graph. The grid graph consists of agents organised in a square lattice and each agent can have two,
three or four neighbours. Section 5 presents the results of our experiments for a grid graph with m = 196 agents.
Figure 4 displays the group regret for grid graphs with varying numbers of agents.

Figure 4: Group Regret for Grid Graphs.

Here, QuACK-UCB out performs the other UCB-based algorithms on all network sizes. Furthermore, QuACK-
TS is competitive with DecTS.

Star Graph. The star graph is a common sub-structure that appears in social networks. This particular graph
consists of a single central vertex, who is connected to all other vertices. The non-central vertices have exactly
one neighbour, which is the central vertex. Section 5 presents the empirical results for a star with m = 196
agents. However, we also conduct experiments on smaller stars to verify our theoretical results. Figure 4 displays
the group regret for cycle graphs with varying numbers of agents.
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Figure 5: Group Regret for Star Graphs.

Here, QuACK-UCB out performs the other UCB-based algorithms on all network sizes. Furthermore, QuACK-
TS is competitive with DecTS on the smallest star network. However, QuACK-TS achieves smaller group regret
for larger star networks.

Network Scaling. Finally, Figure 6 visualises the group regret at the end of the final round as a function of
the network size for each graph structure.

Figure 6: Network Size Scaling of Group Regret.

Notably, we can see the group regret of Coop-UCB and DDUCB scales quickly with the network size for each
graph and this validates the theoretical insights from Section C.1. Conversely, the group regret of QuACK-UCB,
QuACK-TS and Dec-TS have a shallower gradient, indicating a better dependence on the network size and
topology.

D.2 Heavy-Tailed Experiments

Following Dubey and Pentland (2020), we conduct our experiments on standard α-stable densities. Specifically,
α = 1.9 in our experiments and we select the location of the densities such that:

µa =

{
0.7 if a = 1

0.4 if a ̸= 1
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where A = {1, 2, · · · , 5}. Below, we provide specific details of the hyperparameters used for each algorithms.

• Dubey and Pentland (2020) obtain the best theoretical guarantees for CMP-UCB and this algorithm effec-
tively partitions the graph into disjoint subsets. Each of these subset has one leader that uses the robust
upper confidence bound algorithm. Following their guidance, we select the leaders such that they form the
maximal weighted independent set of each graph.

• To test our theoretical predictions, we run their algorithm with 1, 2 and 4 leaders on each graph.
Notably, with 1 leader we expect their algorithm to outperform ours. With ≥ 2 leaders, we expect our
algorithm to perform best.

• Algorithm 1 requires a single-agent heavy-tailed bandit algorithm as input. For a direct comparison, we
choose the robust upper confidence bound algorithm with the truncated mean estimator (Bubeck et al.,
2013). Similarly to the subgaussian setting, we select the leader as the argmin of the graph-median problem.

Our experiments in this setting consider the cycle and grid network structures with m ∈ {16, 36, 64} agents.
These experiments use a smaller number of agents and fewer rounds because the computational complexity of
computing the truncated mean estimator grows linearly with the number of reward samples for each action.2

Figure 7: Group Regret for Cycle and Grid Graphs.

Figure 7 displays the group regret for the various cycle and grid graphs. From Section C.2, we expect QuACK
will perform better than CMP-UCB when it receives a γ such that the resulting graph has independence number
is greater than 1. Notably, our experimental results align exactly with our theoretical predictions.

2The number of rewards for each action depends implicitly on the network size in the multi-agent setting.


	INTRODUCTION
	Related Work
	Contributions

	PROBLEM SETTING
	Measuring Performance

	BLACK-BOX REDUCTION
	Message-Passing Protocol
	Theoretical Analysis

	INSTANCES OF QuACK
	Standard Bandits
	Heavy-Tailed Bandits
	Duelling Bandits
	Local Differential Privacy

	EXPERIMENTAL RESULTS
	CONCLUSION
	IMPLEMENTATION DETAILS
	Shortest Path Tree
	Leader Election
	Optimising the Leader

	MISSING PROOFS
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

	COMPARISON TO EXISTING WORKS
	Standard Bandits
	Heavy-Tailed Rewards
	Duelling Bandits

	ADDITIONAL EXPERIMENTS
	Subgaussian Experiments
	Heavy-Tailed Experiments


