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Abstract

The stochastic knapsack problem is a
stochastic resource allocation problem that
arises frequently and yet is exceptionally
hard to solve. We derive and study an op-
timistic planning algorithm specifically de-
signed for the stochastic knapsack problem.
Unlike other optimistic planning algorithms
for MDPs, our algorithm, OpStoK, avoids the
use of discounting and is adaptive to the
amount of resources available. We achieve
this behavior by means of a concentration
inequality that simultaneously applies to ca-
pacity and reward estimates. Crucially, we
are able to guarantee that the aforementioned
confidence regions hold collectively over all
time steps by an application of Doob’s in-
equality. We demonstrate that the method
returns an ε-optimal solution to the stochas-
tic knapsack problem with high probability.
To the best of our knowledge, our algorithm
is the first which provides such guarantees
for the stochastic knapsack problem. Fur-
thermore, our algorithm is an anytime algo-
rithm and will return a good solution even
if stopped prematurely. This is particularly
important given the difficulty of the prob-
lem. We also provide theoretical conditions
to guarantee OpStoK does not expand all poli-
cies and demonstrate favorable performance
in a simple experimental setting.

1 INTRODUCTION

The stochastic knapsack problem (Dantzig, 1957), is
a classic resource allocation problem that consists of
selecting a subset of items to place into a knapsack
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of given capacity. Placing each item in the knapsack
consumes a random amount of the capacity and pro-
vides a stochastic reward. Many real world scheduling,
investment, portfolio selection, and planning problems
can be formulated as the stochastic knapsack problem.
Consider, for instance, a fitness app that suggests a one
hour workout to a user. Each exercise (item) will take
a random amount of time (size) and burn a random
amount of calories (reward). To make optimal use of
the available time the app needs to track the progress
of the user and adjust accordingly. Once an item is
placed in the knapsack, we assume we observe its re-
alized size and can use this to make future decisions.
This enables us to consider adaptive or closed loop
strategies, which will generally perform better (Dean
et al., 2008) than open loop strategies in which the
items chosen are invariant of the remaining budget.
We assume that we do not know the reward and size
distributions of the items but are able to sample these
from a generative model.

Finding exact solutions to the simpler deterministic
knapsack problem, in which item weights and rewards
are deterministic, is known to be NP-hard and it has
been stated that the stochastic knapsack problem is
PSPACE-hard (Dean et al., 2008). Due to the dif-
ficulty of the problem, there are currently no algo-
rithms that are guaranteed to find satisfactory ap-
proximations in acceptable computation time. While
ultimately one aims to have algorithms that can ap-
proach large scale problems, the current state-of-the-
art makes it apparent that the small scale stochastic
knapsack problem must be tackled first. The emphasis
in this paper is therefore on this small scale stochas-
tic knapsack setting. The current state-of-the-art ap-
proaches to the stochastic knapsack problem where the
reward and size distributions are known, were intro-
duced in Dean et al. (2008). Their algorithm splits the
items into small and large items and fills the knapsack
exclusively with items of one of the two groups, ignor-
ing potentially good items in the other group. This
returns a solution that comes within a factor of 1/(3+κ)

of the optimal, where κ > 0 is used to set a thresh-
old for the small items. The strategy for small items is
non-adaptive and places items in the knapsack accord-
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ing to their reward - consumption ratio. For the large
items, a decision tree is built to some predefined depth
and an exhaustive search for the best solution in that
decision tree is performed. For most non-trivial prob-
lems, this tree can be exceptionally large. The notion
of small items is also underlying recent work in ma-
chine learning where the reward and consumption dis-
tributions are assumed to be unknown (Badanidiyuru
et al., 2013). The approach in Badanidiyuru et al.
(2013) works with a knapsack size that converges (in a
suitable way) to infinity, rendering all items small. In
Burnetas et al. (2015) adaptive strategies are consid-
ered for deterministic item sizes and renewable capac-
ities. The stochastic knapsack problem is also a gener-
alization of the pure exploration combinatorial bandit
problem Chen et al. (2014); Gabillon et al. (2016).

It is desirable to have methods for the stochastic knap-
sack problem that can make use of all available re-
sources and adapt to the remaining capacity. For this,
the tree structure from Dean et al. (2008) can be use-
ful. We propose using ideas from optimistic planning
(Busoniu and Munos, 2012; Szörényi et al., 2014) to
significantly accelerate the tree search approach and
find adaptive strategies. Most optimistic planning al-
gorithms were developed for discounted MDPs and as
such rely on discount factors to limit future rewards,
effectively reducing the search tree to a tree with small
depth. However, these discount factors are not present
in the stochastic knapsack problem. Furthermore, in
our problem, the random variables representing state
transitions (item sizes) also provide us with informa-
tion on the remaining capacity which relates to pos-
sible future rewards. To avoid the use of discount
factors and use the transition information, we work
with confidence bounds that incorporate estimates of
the remaining capacity. We also use these estimates
to determine how many samples we need from the
generative model of the reward/size of an item. For
this, we need techniques that can deal with weak de-
pendencies and give confidence regions that hold si-
multaneously for multiple sample sizes. We therefore
combine Doob’s martingale inequality (Doob, 1990)
with Azuma-Hoeffding bounds (Azuma, 1967) to cre-
ate our high probability bounds. Following the op-
timistic planning approach, we use these bounds to
develop an algorithm that adapts to the complexity of
the problem instance. In contrast to the current state-
of-the-art, it is guaranteed to find an ε-good approx-
imation for all problem instances and, if the problem
instance is easy to solve, it expands only a moderate
sized tree. Our algorithm, OpStoK, is also an ‘anytime’
algorithm in the sense that it improves rapidly to be-
gin with and, even if stopped prematurely, it will still
return a good solution. For OpStoK, we only require
access to a generative model of item sizes and rewards,

and no further knowledge of the distributions.

A solution to the stochastic knapsack problem will take
the form of a policy. A policy can be thought of as a
sub-tree or a set of rules telling us which item to play
next depending on previous item sizes (see supplemen-
tary material for examples). We define the value of
policy to be its expected cumulative reward and seek
to find policies whose value is within ε of the optimal
value. The performance of our algorithm is measured
in terms of the number of policies it expands in order
to find such an ε-optimal policy, since this quantity re-
lates to the run-time and complexity. In practice, the
number of policies explored by our algorithm OpStoK

is small and compares favorably to Dean et al. (2008).

1.1 Related Work

Due to the difficulty of the stochastic knapsack prob-
lem, the main approximation algorithms focus on the
variant of the problem with deterministic sizes and
stochastic rewards (eg. Steinberg and Parks (1979)
and Morton and Wood (1998)), or stochastic sizes
and deterministic rewards (eg. Dean et al. (2008) and
Bhalgat et al. (2011)), where the relevant distributions
are known. Of these, the most relevant to us are Dean
et al. (2008) and Bhalgat et al. (2011) where decision
trees are used to obtain approximate adaptive solu-
tions. To limit the size of the decision tree, Dean et al.
(2008) use a greedy strategy for ‘small’ items while
Bhalgat et al. (2011) group items together. Morton
and Wood (1998) use a Monte-Carlo sampling strat-
egy to generate a non-adaptive solution in the case
with stochastic rewards and deterministic sizes.

The UCT style of bandit based tree search algorithms
(Kocsis and Szepesvári, 2006) uses upper confidence
bounds at each node of the tree to select the best ac-
tion. UCT has been shown to work in practice, how-
ever, it may be too optimistic (Coquelin and Munos,
2007) and theoretical results on the performance have
proved difficult to obtain. Optimistic planning was
developed for tree search in large deterministic (Hren
and Munos, 2008) and stochastic systems, both open
(Bubeck and Munos, 2010) and closed loop (Busoniu
and Munos, 2012). The general idea is to use the upper
confidence principle of the UCB algorithm for multi-
armed bandits (Auer et al., 2002) to expand a tree.
This is achieved by expanding nodes that have the po-
tential to lead to good solutions, by using bounds that
take into account both the reward received in getting
to a node and the reward that could be obtained after
moving on from that node. The closest work to ours is
Szörényi et al. (2014) who use optimistic planning in
discounted MDPs, requiring only a generative model
of the rewards and transitions. Instead of the UCB
algorithm, like ours their work relies on the best arm
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identification algorithm of Gabillon et al. (2012).

There are several key differences between our problem
and the MDPs optimistic planning algorithms are typ-
ically designed for. Generally, in optimistic planning
it is assumed that the state transitions do not provide
any information about future reward. However, in the
stochastic knapsack problem this information is rele-
vant and should be taken into account when defining
the high confidence bounds. Furthermore, optimistic
planning algorithms are typically used to approximate
complex systems at just one point and so only return
a near optimal first action. In our case, the decision
tree is a good approximation to the entire problem,
so we output a near-optimal policy. Furthermore, to
the best of our knowledge, our algorithm is the first
optimistic planning algorithm to iteratively build con-
fidence bounds which are used to determine whether it
is necessary to sample more. One would imagine that
the StOP algorithm from Szörényi et al. (2014) could
be easily adapted to the stochastic knapsack problem.
However, as discussed in Section 4.1, the assumptions
required for this algorithm to terminate are too strong
for it to be considered feasible for this problem.

1.2 Our Contribution

Our main contributions are the anytime algo-
rithm OpStoK (Algorithm 1) and subroutine
BoundValueShare (Algorithm 2). These are sup-
ported by the confidence bounds in Proposition 2 that
allow us to simultaneously estimate remaining capac-
ity and value with guarantees that hold uniformly over
multiple sample sizes. Proposition 4 shows how we
can avoid discount based arguments and use adaptive
capacity estimates in our algorithm, and still return
an adaptive policy whose value comes within ε of the
optimal policy with high probability. Theorem 5 and
Corollary 6 provide bounds on the number of samples
our algorithm uses in terms of how many policies are
ε-close to the best policy. The empirical performance
of OpStoK is considered in Section 7.

2 PROBLEM FORMULATION

We consider the problem of selecting a subset of items
from a set, I, of K items, to place into a knapsack of
capacity (or budget) B where each item can be played
at most once. For each item i ∈ I, let Ci and Ri be
non-negative, bounded random variables defined on a
joint probability space (Ω,A, P ) which represent its
size and reward. It is assumed that we can simulate
from the generative model of (Ri, Ci) for all i ∈ I and
we will use lower case ci and ri, to denote realiza-
tions of these random variables. We assume that the
random variables (Ri, Ci) are independent of (Rj , Cj)

for all i, j ∈ I, i 6= j. Further, it is believed that
item sizes and rewards do not change dependent on the
other items in the knapsack. We assume the problem
is non-trivial, in the sense that it is not possible to fit
all items in the knapsack at once. If we place an item
i in the knapsack and the consumption ci is strictly
greater than the remaining capacity then we gain no
reward for that item. Our final important assumption
is that there exists a known, non-decreasing function
Ψ(·), satisfying limb→0 Ψ(b) = 0 and Ψ(B) <∞, such
that the total reward that can be achieved with budget
b is upper bounded by Ψ(b). It will always be possi-
ble to define such a Ψ, however, the choice of Ψ will
impact the performance of the algorithm, so we will
choose it to be as tight as possible.

Representing the stochastic knapsack problem as a
tree requires that all item sizes take discrete values.
While in this work, it will generally be assumed that
this is the case, in some problem instances, continu-
ous item sizes need to be discretized. In this case, let
ξ∗ be the discretization error of the optimal policy.
Then Ψ(ξ∗) is an upper bound on the extra reward
that could be gained from the space lost due to dis-
cretization. For discrete sizes, we assume there are s
possible values the random variable Ci can take and
that there exists θ > 0 such that Ci ≥ θ for all i ∈ I.

2.1 Planning Trees and Policies

The stochastic knapsack problem can be thought of
as a planning tree with the initial empty state as the
root at level 0. The branches from the root represent
playing an item. Similarly, each node on an even level
is an action node and its branches represent placing
an item in the knapsack. The nodes on odd levels
are transition nodes with branches representing item
sizes. We define a policy Π as a finite subtree where
each action node has at most one branch from it and
each transition node has s branches (see supplemen-
tary material for examples). The depth of a policy Π,
d(Π), is the number of transition nodes in any realiza-
tion of the policy (where each transition node links to
one branch), or equivalently, the number of items. Let
d∗ = bB/θc be the maximal depth of any policy. For
any 1 ≤ d ≤ d∗, the number of policies of depth d is,

Nd =

d−1∏
i=0

(K − i)s
i

(1)

where K = |I| is the number of items, and s the num-
ber of discrete sizes.

We define a child policy, Π′, of a policy Π as a policy
that follows Π up to depth d(Π) then plays additional
items and has depth d(Π′) = d(Π) + 1. We say Π is
the parent policy of Π′. A policy Π′ is a descendant
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policy of Π, if Π′ follows Π up to depth d(Π) but is
then continued to depth d(Π′) ≥ d(Π) + 1. Corre-
spondingly, we say Π is an ancestor of Π′. A policy is
said to be incomplete if the remaining capacity allows
for another item to be inserted into the knapsack (see
Section 4.2 for a formal definition). Note that the pol-
icy outputted by an algorithm may be incomplete, as
it could be that any continuation of it is optimal.

The (expected) value of a policy Π is defined as the
cumulative expected reward obtained by playing items

according to Π, VΠ =
∑d(Π)
d=1 E[Ri(d)] where i(d) is the

d-th item chosen by Π. Let P be the set of all policies,
then define the optimal policy as Π∗ = arg maxΠ∈P VΠ,
and corresponding optimal value as v∗ = maxΠ∈P VΠ.
Our algorithm returns an ε-optimal policy with value
v∗ − ε. For any policy Π, we define a sample of Π as
follows. The first item of any policy is fixed so we take
a sample of the reward and size from the generative
model of that item. We then use Π and the observed
size of the previous item to tell us which item to sample
next and sample the reward and size of that item. This
continues until the policy finishes or the cumulative
sampled sizes of the selected items exceeds B.

3 HIGH CONFIDENCE BOUNDS

In order to select policies to expand, we require confi-
dence bounds for the value of a continuation of a pol-
icy. A policy Π may not consume all available budget,
and our algorithm will work by constructing iteratively
longer policies, starting from the shortest policies of
playing a single item. Consequently, we are interested
in R+

Π, the expected maximal extra reward that can be
obtained after playing according to policy Π until all
the budget is consumed. Let BΠ be a random variable
representing the remaining budget after playing pol-
icy Π. Our assumptions guarantee that there exists a
function Ψ such that R+

Π ≤ EΨ(BΠ). We then define
V +

Π to be the maximal expected value of any continu-
ation of policy Π, so V +

Π = VΠ +R+
Π ≤ VΠ +EΨ(BΠ).

From m1 samples of the value of policy Π, we estimate

the true value of Π as VΠm1
= 1

m1

∑m1

j=1

∑d(Π)
d=1 r

(j)
i(d),

where r
(j)
i(d) is the reward of item i(d) chosen at

depth d of sample j. However, we wish to iden-
tify the policy with greatest value when continued
until the budget is exhausted, so our real interest
is in the value of V +

Π . From Hoeffding’s inequality,

P

(
|VΠm1

− V +
Π | > EΨ(BΠ) +

√
Ψ(B)2 log(2/δ)

2m1

)
≤ δ.

This bound depends on the quantity EΨ(BΠ) which
is typically not known. Lemma 1 shows how this
bound can be significantly improved by independently
sampling BΠ m2 times to get samples ψ1, · · · , ψm2

of

Ψ(BΠ) and estimating Ψ(BΠ)m2
= 1

m

∑m2

j=1 ψj .

Lemma 1 Let (Ω,A, P ) be the probability space from
Section 2, then for m1 + m2 independent samples of
policy Π and δ1, δ2 > 0, with probability 1− δ1 − δ2,

VΠm1
− k1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ k1 + k2.

Where, k1 :=
√

Ψ(B)2 log(2/δ1)
2m1

, k2 :=
√

Ψ(B)2 log(1/δ2)
2m2

.

We will not use the bound in this form since our algo-
rithm will sample Ψ(BΠ) until we are sufficiently con-
fident that it is small or large. This introduces weak
dependencies into the sampling process so we need
guarantees to hold simultaneously for multiple sample
sizes, m2. For this, we work with martingales and use
Azuma-Hoeffding like bounds (Azuma, 1967), similar
to the technique used in Perchet et al. (2016). Specif-
ically, in Lemma 8 (supplementary material), we use
Doob’s maximal inequality (Doob, 1990) and a peel-
ing argument to get bounds on the maximal deviation
of Ψ(BΠ)m2

from its expectation. Assuming we sam-
ple the value of a policy m1 times and the remaining
budget m2 times, the following key result holds.

Proposition 2 The Algorithm BoundValueShare

(Algorithm 2) returns confidence bounds,

L(V +
Π ) = VΠm1

− c1
U(V +

Π ) = VΠm1
+ Ψ(BΠ)m2

+ c1 + c2

which hold with probability 1− δ1 − δ2, where

c1 =
√

Ψ(B)2 log(2/δ1)
2m1

, c2 = 2Ψ(B)

√
1
m2

log
(

8n
δ2m2

)
.

This upper bound depends on n, the maximum num-
ber of samples of Ψ(BΠ). For any policy Π, the min-
imum width a confidence interval of Ψ(BΠ) will ever
need to be is ε/4. Hence, taking

n =

⌈
162Ψ(B)2 log(8/δ)

ε2

⌉
, (2)

ensures that for all policies, 2c2 ≤ ε/4 when m2 = n.
This is a necessary condition for the termination of our
algorithm, OpStoK, as will be discussed in Section 4.2

4 ALGORITHMS

Before presenting our algorithm for optimistic plan-
ning of the stochastic knapsack problem, we first dis-
cuss a simple adaptation of the algorithm StOP from
Szörényi et al. (2014).

4.1 Stochastic Optimistic Planning for
Knapsacks

One naive approach to optimistic planning in the
stochastic knapsack problem is to adapt the algorithm



Ciara Pike-Burke, Steffen Grünewälder

StOP from Szörényi et al. (2014). We call this adap-

tation StOP-K and replace the γd

1−γ discounting term

used to control future rewards with Ψ(B − dθ). This
is the best upper bound on the future reward that can
be achieved without using samples of item sizes. The
upper bound on V +

Π is then VΠm + Ψ(B − dθ) + c, for
m samples and confidence bound c. With this, most
of the results from Szörényi et al. (2014) follow fairly
naturally. Although StOP-K appears to be an intuitive
extension of StOP to the stochastic knapsack setting,
it can be shown that for a finite number of samples,
unless Ψ(B − θd∗) ≤ ε

2 , the algorithm will not ter-
minate. As such, unless this restrictive assumption is
satisfied StOP-K will not converge.

4.2 Optimistic Stochastic Knapsacks

In OpStoK we aim to be more efficient by only explor-
ing promising policies and making better use of all
information. In the stochastic knapsack problem, in
order to sample the value of a policy, we must sample
item sizes to decide which item to play next. We pro-
pose to make better use of these samples by calculating
U(Ψ(BΠ)) from the item size samples, and then incor-
porating this into U(V +

Π ). We also pool samples of the
reward and size of items across policies, thus reducing
the number of calls to the generative model. OpStoK

benefits from an adaptive sampling scheme that re-
duces sample complexity and ensures that an entire
ε-optimal policy is returned when the algorithm stops.
The performance of this sampling strategy is guaran-
teed by Proposition 2.

In the main algorithm, OpStoK (Algorithm 1) is very
similar to StOP-K Szörényi et al. (2014) with the
key differences appearing in the sampling and con-
struction of confidence bounds which are defined in
BoundValueShare (Algorithm 2). The general in-
tuition is that only promising policies are explored.
OpStoK maintains a set of ‘active’ policies. As in
Szörényi et al. (2014) and Gabillon et al. (2012), at
each time step t, a policy, Πt to expand is chosen by
comparing the upper confidence bounds of the two best
active policies. We select the policy with most uncer-
tainty in the bounds since we want our estimates of
the near-optimal policies to be such that we can con-
fidently conclude that the policy we output is better
(see Figure 5, supplementary material). Once we have
selected a policy, Πt, if the stopping criteria in Line 12
is not met, we replace Πt in the set of active policies
with all its children. We refer to this as expanding a
policy. For each child policy, Π′, we bound its value
using BoundValueShare with parameters

δd(Π′),1 =
δ0,1
d∗

N−1
d(Π′) and, δd(Π′),2 =

δ0,2
d∗

N−1
d(Π′) (3)

where Nd is the number of policies of depth d as given
in (1). This ensures that all our bounds to hold simul-
taneously with probability greater than 1− δ0,1 − δ0,2
(as shown in Lemma 12, supplementary material).
The algorithm stops in Line 12 and returns a policy
Π∗ if L(V +

Π∗) + ε ≥ maxΠ∈Active\{Π∗} U(V +
Π ) and we

can be confident Π∗ is within ε of optimal. OpStoK

relies on BoundValueShare (Algorithm 2) and sub-
routines, EstimateValue and SampleBudget (Algo-
rithms 3 and 4, supplementary material), which sam-
ple the value and budget of policies.

In BoundValueShare, we use samples of both item size
and reward to bound the value of a policy. We define
upper and lower bounds on the value of any extension
of a policy Π as,

U(V +
Π ) = VΠm1

+ Ψ(BΠ)m2
+ c1 + c2,

L(V +
Π ) = VΠm1

− c1,

with c1 and c2 as in Proposition 2. It is also possi-
ble to define upper and lower bounds on Ψ(BΠ) with
m2 samples and confidence δ2. From this, we can
formally define a complete policy as a policy Π with
U(BΠ) = Ψ(BΠ)m2

+ c2 ≤ ε
2 . For complete policies,

since there is very little capacity left, it is more im-
portant to get tight confidence bounds on the value
of the policy. Hence, in BoundValueShare, we sample
the remaining budget of a policy as much as is nec-
essary to conclude whether the policy is complete or
not. As soon as we realize we have a complete policy
(U(BΠ) ≤ ε/2), we sample the value of that policy suf-
ficiently to get a confidence interval on V +

Π of width
less than ε. Then, when it comes to choosing an op-
timal policy to return, the confidence intervals of all
complete policies will be narrow enough for this to
happen. This is appropriate since pre-specifying the
number of samples may not lead to confidence bounds
tight enough to select an ε-optimal policy. Further-
more, we focus sampling efforts only on promising poli-
cies that are near completion. If a complete policy is

chosen as Π
(1)
t in OpStoK, for some t, the algorithm will

stop and this policy will be returned. For this to hap-
pen, we check the stopping criterion before selecting
a policy to expand. Note that in BoundValueShare,
the value and remaining budget of a policy must be
sampled separately as we are considering closed-loop
planning so the item chosen may depend on the size of
the previous item, and hence the value will depend on
the instantiated item sizes. For an incomplete policy,
the number of samples of the value, m1, is defined to
ensure that the uncertainty in the estimate of VΠ is
less than u(Ψ(BΠ)) = min{U(Ψ(BΠ)),Ψ(B)}, since a
maximal upper bound for the value of Π is Ψ(B).

Since at each time step OpStoK expands the policy with
best or second best upper confidence bound, the policy



Optimistic Planning for the Stochastic Knapsack Problem

Algorithm 1: OpStoK (I, δ0,1, δ0,2, ε)

Initialization: Active = ∅.
1 for all i ∈ I do
2 Πi = policy consisting of just playing item i;
3 d(Πi) = 1;

4 δ1,1 =
δ0,1
d∗ N

−1
1 , δ1,2 =

δ0,2
d∗ N

−1
1 ;

5 (L(V +
Πi

), U(V +
Πi

)) = BoundValueShare

(Πi, δ1,1, δ1,2,S∗, ε);
6 Active = Active ∪ {Πi};
7 end
8 for t = 1, 2, . . . do

9 Π
(1)
t = arg maxΠ∈Active U(V +

Π );

10 Π
(2)
t = arg max

Π∈Active\{Π(1)
t }

U(V +
Π );

11 if L(V +

Π
(1)
t

) + ε ≥ U(V +

Π
(2)
t

) then

12 Stop: Π∗ = Π
(1)
t ;

13 a∗ = arg maxa∈{1,2} U(Ψ(B
Π

(a)
t

));

14 Πt = Π
(a∗)
t ;

15 Active = Active \ {Πt}
16 for all children Π′ of Πt do
17 d(Π′) = d(Πt) + 1;

18 δd(Π′),1 =
δ0,1
d∗ N

−1
d(Π′), δd(Π′),2 =

δ0,2
d∗ N

−1
d(Π′)

19 (L(V +
Π′), U(V +

Π′)) = BoundValueShare

(Π′, δd(Π′),1, δd(Π′),2,S∗, ε);
20 Active = Active ∪ {Π′};
21 end

22 end

it expands will always have the potential to be opti-
mal. Therefore, if the algorithm is stopped before the
termination criteria is met and the active policy with
best estimated value is selected, this policy will be the
best of those with the potential to be optimal that have
already been explored. Hence, it will be a good policy
(or beginning of policy). OpStoK considerably reduces
the number of calls to the generative model by creating
sets S∗i of samples of the reward and size of each item
i ∈ I. When it is necessary to sample the reward and
size of an item, i, for the evaluation of a policy, we sam-
ple without replacement from S∗i until |S∗i | samples
have been taken. At this point new calls to the gener-
ative model are made and the new samples added to
the sets for use by future policies. This is illustrated in
EstimateValue and SampleBudget(Algorithms 3 and
4, supplementary material). We denote by S∗ the col-
lection of all sets S∗i .

5 ε-CRITICAL POLICIES

The set of ε-critical policies associated with an algo-
rithm is the set of all policies the algorithm may poten-

Algorithm 2: BoundValueShare(Π, δ1, δ2, S
∗, ε)

Initialization: For all i ∈ I, Si = S∗i .

1 Set m2 = 1 and (ψ1,S) = SampleBudget(Π,S);

/* sample the remaining budget */

2 Ψ(BΠ)m2
= 1

m2

∑m2

j=1 ψj ;

3 U(Ψ(BΠ)) = Ψ(BΠ)m2
+ 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
,

L(Ψ(BΠ)) = Ψ(BΠ)m2
− 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
;

/* calculate bounds on Ψ(BΠ) */

4 if U(Ψ(BΠ)) ≤ ε
2 then

m1 =
⌈

8Ψ(B)2 log(2/δ1)
ε2

⌉
;;

5 else if L(Ψ(BΠ)) ≥ ε
4 then

6 m1 =
⌈

1
2

Ψ(B)2 log(2/δ1)
u(Ψ(BΠ))2

⌉
;

7 else

8 Set m2 = m2 + 1;

9 (ψm2
,S) = SampleBudget(Π,S) and go to 2

10 VΠm1
= EstimateValue(Π,m1);

11 L(V +
Π ) = VΠm1

−
√

Ψ(B)2 log(2/δ1)
2m1

;

12 U(V +
Π ) = VΠm1

+ Ψ(BΠ)m2
+
√

Ψ(B)2 log(2/δ1)
2m1

+2Ψ(B)

√
1
m2

log
(

8n
δm2

)
;

13 return (L(V +
Π ), U(V +

Π ))

tially expand in order to obtain an ε-optimal solution.
Hence, the number of ε-critical policies represents a
bound on the number of policies an algorithm may
explore in order to obtain this ε-optimal solution.

To define the set of ε-critical policies associated with
OpStoK, let

QεIC = {Π;VΠ + 6EΨ(BΠ)− 3ε/4 ≥ v∗

−6EΨ(BΠ) + 3ε/4 + ε}
and QεC = {Π;VΠ + ε ≥ v∗} ,

represent the set of potentially optimal incomplete and
complete policies. The set of all ε-critical policies is
then Qε = QεIC

⋃
QεC . The following lemma shows

that all policies expanded by OpStoK are in Qε.

Lemma 3 Assume that L(V +
Π ) ≤ VΠ ≤ U(V +

Π )
holds simultaneously for all policies Π ∈ Active with
U(V +

Π ) and L(V +
Π ) as defined in Proposition 2. Then,

Πt ∈ Qε for every policy, Πt, selected by OpStoK at
every time point t, except for possibly the last one.

We now turn to demonstrating that under certain con-
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ditions, OpStoK will not expand all policies (although
in practice this claim should hold even when some of
the assumptions are violated). From considering the
definition of QεIC from Section 6, it can be shown that
if there exists a subset I ′ of items and λ > 0 satisfying,∑

i∈I′
E[Ri] < v∗ − ε, and,

E

[
Ψ

(
B −

∑
i∈I′

Ci

)]
<

5ε

24
+

λ

12

(4)

then QεIC is a proper subset of all incomplete policies
and as such, not all incomplete policies will need to
be evaluated by OpStoK. Furthermore, since any pol-
icy of depth d > 1 will only be evaluated by OpStoK

if a descendant of it has previously been evaluated, it
follows that a complete policy in QεC must have an in-
complete descendant in QεIC . Therefore, since QεIC is
not equal to the set of all incomplete policies, QεC will
also be a proper subset of all complete policies and so
Qε ( P. Note that the bounds used to obtain these
conditions are worst case as they involve assuming the
true value of Ψ(BΠ) lies at one extreme of the confi-
dence interval. Hence, even if the conditions in (4) are
not satisfied, it is unlikely that OpStoK will evaluate
all policies. However, the conditions in (4) are easily
satisfied. Consider, for example, the problem instance
where ε = 0.05,Ψ(b) = b ∀0 ≤ b ≤ B, v∗ = 1 and
B = 1. Assume there are 3 items i1, i2, i3 ∈ I with
E[Ri] < 1/8 and E[Ci] = 8/25. Then if I ′ = {i1, i2, i3}
and λ = 5/8, the conditions of (4) are satisfied and
OpStoK will not evaluate all policies.

6 ANALYSIS

In this section we give theoretical guarantees on the
performance of OpStoK, with the proofs of all results
in the supplementary material. We begin with the
consistency result:

Proposition 4 With probability at least (1 − δ0,1 −
δ0,2), the algorithm OpStoK returns a policy with value
at least v∗ − ε for ε > 0.

To obtain a bound on the sample complexity of
OpStoK, we return to the definition of ε-critical policies
from Section 5. The set of ε-critical policies, Qε, can
be represented as the union of three disjoint sets, Qε =
Aε∪Bε∪Cε, as illustrated in Figure 1 where Aε = {Π ∈
Qε|EΨ(BΠ) ≤ ε/4},Bε = {Π ∈ Qε|EΨ(BΠ) ≥ ε/2} and
Cε = {Π ∈ Qε|ε/4 < EΨ(BΠ) < ε/2}. Using this, in
Theorem 5 the total number of samples of item size or
reward required by OpStoK can be bounded as follows.

Theorem 5 With probability greater than 1−δ0,2, the
total number of samples required by OpStoK is bounded

ε
2

ε
4

Case 1 Case 2 Case 3

Ψ(BΠ)

Figure 1: The three possible cases of EΨ(BΠ). In
the first case, EΨ(BΠ) ≤ ε

4 so Π ∈ Aε, in the second
case EΨ(BΠ) ≥ ε

2 so Π ∈ Bε, and in the final case
ε
4 < EΨ(BΠ) < ε

2 so Π ∈ Cε.

from above by,∑
Π∈Qε

(m1(Π) +m2(Π)) d(Π).

Where, for Π ∈ Aε,m1(Π) =
⌈

8Ψ(B)2 log( 2
δd(Π),1

)/ε2
⌉
,

for Π ∈ Bε,m1(Π) ≤
⌈

Ψ(B)2 log( 2
δd(Π),1

)/2EΨ(BΠ)2
⌉
,

and for Π ∈ Cε,m1(Π) ≤ max
{⌈

8Ψ(B)2 log( 2
δd(Π),1

)/ε2
⌉
,⌈

2Ψ(B)2 log( 2
δd,1

)/EΨ(BΠ)2
⌉}
.

And m2(Π) = m∗, where m∗ is the smallest integer
satisfying,

32Ψ(B)2
/(EΨ(BΠ)−ε/2)2 ≤ m/log(4n/mδ2) for Π ∈ Aε,

32Ψ(B)2
/(EΨ(BΠ)−ε/4)2 ≤ m/log(4n/mδ2) for Π ∈ Bε,

32Ψ(B)2
/(ε/4)2 ≤ m/log(4n/mδ2) for Π ∈ Cε.

We now bound the number of calls to the genera-
tive model required by OpStoK. We consider the ex-
pected number of times item i needs to be sampled
by a policy Π. Let i1, . . . , iq denote the q nodes in
policy Π where item i is played. Then for each node
ik(1 ≤ k ≤ q), denote by ζik the unique route to node
ik. Define d(ζik) to be the depth of node ik, or the
number of items played along route ζik . Then the
probability of reaching node ik (or taking route ζik) is

P (ζik) =
∏d(ζik )

`=1 p`,Π(ik,`), where ik,` denotes the `th
item on the route to node ik and pl,Π(i) is the probabil-
ity of playing item i at depth l of policy Π for given size
distributions. Denote the probability of playing item i
in policy Π by PΠ(i), then PΠ(i) =

∑q
k=1 P (ζik). Us-

ing this, the expected number of samples of the reward
and size of item i required by policy Π are less than
m1(Π)PΠ(i) and m2(Π)PΠ(i), respectively. Since sam-
ples are shared between policies, the expected number
of calls to the generative model of item i is as given
below and used in Corollary 6,

M(i) ≤ max
Π∈Qε

{
max{m1(Π)PΠ(i),m2(Π)PΠ(i)}

}
.
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Figure 2: Item sizes and rewards. Each color is an
item with horizontal lines between the two sizes and
vertical lines between minimum and maximum reward.
The lines cross at the point (mean size, mean reward).

Corollary 6 The expected total number of calls to the
generative model by OpStoK for a stochastic knapsack

problem of K items is less than or equal to
∑K
i=1M(i).

7 EXPERIMENTAL RESULTS

We demonstrate the performance of OpStoK on a sim-
ple experimental setup with 6 items. Each item i can
take two sizes and is larger with probability xi. The re-
wards come from scaled and shifted Beta distributions.
The budget is 7 meaning that a maximum of 3 items
can be placed in the knapsack. We take Ψ(b) = b and
set the parameters of the algorithm to δ0,1 = δ0,2 = 0.1
and ε = 0.5. Figure 2 illustrates the problem.

We compare the performance of OpStoK in this set-
ting to the algorithm in Dean et al. (2008) run with
various values of κ, the parameter used to define the
small items threshold. We chose κ to ensure that we
consider all cases from 0 small items to 6 small items.
Note that the algorithm in Dean et al. (2008) is de-
signed for deterministic rewards so we sampled the re-
wards for each item at the start to get estimates of
the true rewards. When sampling item sizes for Dean
et al. (2008), we used the OpStoK sampling strategy.
For both algorithms, when evaluating the value of a
policy, we re-sampled the value of the chosen policies
as discussed in Section 2.1. The results of this exper-
iment are shown in Figure 3. From this, the anytime
property of our algorithm can be seen; it is able to
find a good policy early on (after less than 100 poli-
cies) so if it was stopped early, it would still return
a policy with a high expected value. Furthermore, at
termination, the algorithm has almost reached the best
solution from Dean et al. (2008) which required more
than twice as many policies to be evaluated. Thus this
experiment has shown that our algorithm not only re-
turns a policy with near optimal value, but it does this
after evaluating significantly fewer policies and, even

Figure 3: Num policies vs value. The blue line is
the estimated value of the best policy so far found by
OpStoK which terminates at the square. The green di-
amonds are the best value for Dean et al. (2008) when
small items are chosen, and red circles when it chooses
large items. The estimated value of the best solution
from Dean et al. (2008) is given by the red dashed line.

if stopped prematurely, it will return a good policy.

These experimental results were obtained using the
OpStoK algorithm as stated in Algorithm 1. This al-
gorithm incorporates the sharing of samples between
policies and preferential sampling of complete policies
to improve performance. For large problems, the com-
putational performance of OpStoK can be further im-
proved by parallelization. In particular, the expansion
of a policy can be done in parallel with each leaf of the
policy being expanded on a different core and then re-
combined. It is also possible to sample the value and
remaining budget of a policy in parallel.

8 CONCLUSION

In this paper we have presented OpStoK, a new anytime
optimistic planning algorithm specifically tailored to
the stochastic knapsack problem. For this algorithm,
we have provided confidence intervals, consistency re-
sults, bounds on the sample size and shown that it
needn’t evaluate all policies to find an ε-optimal solu-
tion; making it the first such algorithm for the stochas-
tic knapsack problem. By using estimates of the re-
maining budget and value, OpStoK is adaptive and also
benefits from a unique streamlined sampling scheme.
While OpStoK was developed for the stochastic knap-
sack problem, it is hoped that it is just the first step
towards using optimistic planning to tackle many fre-
quently occurring resource allocation problems.
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B. Szörényi, G. Kedenburg, and R. Munos. Optimistic
planning in markov decision processes using a gen-
erative model. In Advances in Neural Information
Processing Systems, pages 1035–1043, 2014.

D. Williams. Probability with martingales. Cambridge
university press, 1991.



Optimistic Planning for the Stochastic Knapsack Problem

Supplementary Material

A Illustration of Policies

(a) A policy of just playing item 3. This policy has
depth 1.

(b) A policy that plays item 2 first. If it is small, it
plays item 1 whereas if it is large it plays item 3. After
this, the final item is determined due to the fact that
there are only 3 items in the problem. This policy has
depth 2.

Figure 4: Examples of policies in the simple 3 item, 2 sizes stochastic knapsack problem. Each blue line represents
choosing an item and the red lines represent the sizes of the previous items.

B Illustration of Bounds

U(VΠ)

VΠ

L(VΠ)

U(V ∗Π)

v∗

L(V ∗Π)

Figure 5: Example of where just looking at the optimistic policy might fail: If we always play the optimistic
policy then, since U(V +

Π∗) ≥ U(V +
Π ), we will always play Π∗ and so the confidence bounds on Π will not shrink.

This means that L(V +
Π∗) will never be (epsilon) greater than the best alternative upper bound so there will not

be enough confidence to conclude we have found the best policy.

C Algorithms

In these algorithms Generate(i) samples a reward and item size pair from the generative model of item i, whereas
sample(A, k) samples from a set A with replacement to get k samples. The notation i(d) = Π(d, b) indicates
that item i(d) was chosen by policy Π at depth d when the remaining capacity was b.
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Algorithm 3: EstimateValue(Π,m)

Initialization: For all i ∈ I, Si = S∗i
1 for j = 1, . . . ,m do
2 B0 = B;
3 for d = 1, . . . , d(Π) do
4 i(d) = Π(d,Bd−1);
5 if |Si(d)! ≤ 0 then (ri(d), ci(d)) = Generate(i(d)), S∗i = S∗i ∪ {ri(d), ci(d))};
6 else (ri(d), ci(d)) = sample(Si, 1), and Si = Si \ {(ri(d), ci(d))};
7 Bd = Bd−1 − ci(d);
8 if Bd < 0 then ri(d) = 0;

9 end

10 VΠ
(j)

=
∑d(Π)
d=1 ri(d);

11 end

12 return (VΠm = 1
m

∑m
j=1 VΠ

(j)
,S∗)

Algorithm 4: SampleBudget(Π,S)

Initialization: B0 = B and for all i ∈ I, Si = S∗i
1 for d = 1, . . . , d(Π) do
2 i(d) = Π(d,Bd−1);
3 if |Si(d)| ≤ 0 then (ri(d), ci(d)) = Generate(i(d)), S∗i = S∗i ∪ {ri(d), ci(d))};
4 else (ri(d), ci(d)) = sample(Si, 1), and Si = Si \ {(ri(d), ci(d))};
5 Bd = Bd−1 − ci(d);

6 end

7 Ψ(BΠ)
(j)

= Ψ(max{B −
∑d(Π)
d=1 ci(d), 0});

8 return
(

Ψ(BΠ)
(j)
,S∗

)

D Proofs of Theoretical Results

For convenience we restate any results that appear in the main body of the paper before proving them.

D.1 Bounding the Value of a Policy

Lemma 7 (Lemma 1 in main text) Let (Ω,A, P ) be the probability space from Section 2, then for m1 + m2

independent samples of policy Π, and δ1, δ2 > 0, with probability 1− δ1 − δ2,

VΠm1
− c1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ c1 + c2.

Where c1 :=
√

Ψ(B)2 log(2/δ1)
2m1

and c2 :=
√

Ψ(B)2 log(1/δ2)
2m2

.

Proof: Consider the average value of policy Π over m1 many trials. By Hoeffding’s Inequality,

P
(
|VΠm1

− E[VΠ]| > c1
)
≤ δ1 and, similarly, P

(
|Ψ(BΠ)m2

− E[Ψ(BΠ)]| > c2

)
≤ δ2. We are interested in

the probability,

P (|VΠm1
− V +

Π | > t) ≤ P (|VΠm1
− E[VΠ]|+ |E[VΠ]− V +

Π | > t)

≤ P (|VΠm1
− E[VΠ]|+ E[Ψ(BΠ)] > t).

where the first line follows from the triangle inequality and the second from the definition of
Ψ(BΠ). From the Hoeffding bounds and defining t = Ψ(BΠ)m2

+ c1 + c2, we consider

P
(
|VΠm1

− E[VΠ]|+ E[Ψ(BΠ)] > Ψ(BΠ)m2
+ c1 + c2

)
. Define the events

A1 = {|VΠm1
− VΠ|+ E[Ψ(BΠ)] ≤ E[Ψ(BΠ)] + c1} and A2 =

{
|Ψ(BΠ)m2

− E[Ψ(BΠ)]| ≤ c2
}
.
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Then,

P
(
|VΠm1

− E[VΠ]|+ E[Ψ(BΠ)] > Ψ(BΠ)m2
+ c1 + c2

)
≤ P (Ω\(A1 ∩A2))

≤ P (Ω\A1) + P (Ω\A2)

≤ δ1 + δ2.

Hence,
P
(
VΠm1

− V +
Π > c1

)
≤ P

(
VΠm1

− VΠ > c1
)
≤ δ1 < δ1 + δ2

which gives the left hand side of the result. For the right hand side,

P
(
VΠm1

− V +
Π < −Ψ(BΠ)m2

− c1 − c2
)

≤ P
(
VΠm1

− E[VΠ]− E[Ψ(BΠ)] < −Ψ(BΠ)m2
− c1 − c2

)
≤ δ1 + δ2.

�

Lemma 8 Let {Zm}∞m=1 be a martingale with Zm defined on the filtration Fm, E[Zm] = 0 and |Zm−Zm−1| ≤ d
for all m where Z0 = 0. Then,

P

(
∃m ≤ n;

Zm
m
≥ 2d2

√
2

m
log

(
n

m

4

δ

))
≤ δ

Proof: The proof is similar to that of Lemma B.1 in Perchet, Rigollet, Chassang, and Snowberg (2016) and will
make use of the following standard results:

Theorem 9 Doob’s maximal inequality: Let Z be a non-negative submartingale. Then for c > 0,

P

(
sup
k≤n

Zk ≥ c
)
≤ E[Zn]

c
.

Proof: See, for example, Williams (1991), Theorem 14.6, page 137. �

Lemma 10 Let Zn be a martingale such that |Zi − Zi−1| ≤ di for all i with probability 1. Then, for λ > 0,

E[eλZn ] ≤ eλ
2D2

2 ,

where D2 =
∑n
i=1 d

2
i .

Proof: See the proof of the Azuma-Hoeffding inequality in Azuma (1967). �

Then, for the proof of Lemma 8, we first notice that since {Zm}∞m=1 is a martingale, by Jensen’s inequality for
conditional expectations, it follows that for any λ > 0,

E[eλZm |Fm−1] ≥ eλE[Zm|Fm−1] = eλZm−1 .

Hence, for any λ > 0, {eλZm}∞m=1 is a positive sub-martingale so we can apply Doob’s maximal inequality
(Theorem 9) to get

P

(
sup
m≤n

Zm ≥ c
)

= P

(
sup
m≤n

eλZm ≥ eλc
)
≤ E[eλZn ]

eλc
.

Then, by Lemma 10, since |Zi − Zi−1| ≤ d for all i, it follows that

P

(
sup
m≤n

Zm ≥ c
)
≤ E[eλZn ]

eλc
≤ eλ

2D2/2

eλc
= exp

{
λ2D2

2
− λc

}
. (5)
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Minimizing the right hand side with respect to λ gives λ̂ = c
D2 and substituting this back into (5) gives,

P

(
sup
m≤n

Zm ≥ c
)
≤ exp

{
− c2

2D2

}
.

Then, since we are considering the case where di = d for all i, D2 = nd2 and so,

P

(
sup
m≤n

Zm ≥ c
)
≤ exp

{
− c2

2nd2

}
.

Further, if we are interested in P (supk≤m≤n Zm ≥ c), we can redefine the indices to get

P

(
sup

k≤m≤n
Zm ≥ c

)
= P

(
sup

m′≤n−k+1
Zm ≥ c

)
≤ exp

{
− c2

2(n− k + 1)d2

}
. (6)

We then define εm = 2d
√

1
m log

(
n
m

8
δ

)
and use a peeling argument similar to that in Lemma B.1 of Perchet et al.

(2016) to get

P

(
∃m ≤ n;

Zm
m
≥ εm

)
≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{
Zm
m
≥ εm

} (by union bound)

≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{
Zm
m
≥ ε2t+1

} (since εm decreasing in m)

≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{Zm ≥ 2tε2t+1}

 (as m ≥ 2t)

≤
blog2(n)c+1∑

t=0

exp

{
− (2tε2t+1)2

2t+1d2

}
(from (6))

≤
blog2(n)c+1∑

t=0

2t+1δ

8n
(substituting ε2t+1)

≤ 2log2(n)+3δ

8n
= δ. (since

k∑
i=1

2i = 2k+1 − 1)

�

Proposition 11 (Proposition 2 in main text) The Algorithm BoundValueShare (Algorithm 2) returns confidence
bounds,

L(V +
Π ) = VΠm1

−

√
Ψ(B)2 log(2/δ1)

2m1
U(V +

Π ) = VΠm1
+Ψ(BΠ)m2

+

√
Ψ(B)2 log(2/δ1)

2m1
+2Ψ(B)

√
1

m2
log

(
8n

δ2m2

)
which hold with probability 1− δ1 − δ2.

Proof: We begin by noting that our samples of item size are dependent since in each iteration we construct a
bound based on past samples and we use this bound to decide if we need to continue sampling or if we can stop.
To model this dependence let us introduce a stopping time τ such that τ(ω) = n if our algorithm exits the loop
at time n. Consider the sequence

Ψ(BΠ)1∧τ ,Ψ(BΠ)2∧τ , . . .

and define for m ≥ 1
Mm = (m ∧ τ)(Ψ(BΠ)m∧τ − E[Ψ(BΠ)]) with M0 = 0.
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Furthermore, define the filtration Fm = σ(BΠ,1, . . . , BΠ,m) then for m ≥ 1

E[Mm|Fm−1] = E[Mm|Fm−1, τ ≤ m− 1] + E[Mm|Fm−1, τ > m− 1].

Now
E[Mm|Fm−1, τ ≤ m− 1] = E[Mm−1|τ ≤ m− 1].

and due to independence of the samples BΠ,1, . . . , BΠ,m

E[Mm|Fm−1, τ > m− 1]

= E[m(Ψ(BΠ)m − E[Ψ(BΠ)])|Fm−1, τ > m− 1]

= E

m−1∑
j=1

Ψ(BΠ,j) + Ψ(BΠ,m)−mE[Ψ(BΠ)]

∣∣∣∣Fm−1, τ > m− 1


= (m− 1)E[Ψ(BΠ)m−1 − E[Ψ(BΠ)]|Fm−1, τ > m− 1]

+ E[Ψ(BΠ,m)− E[Ψ(BΠ)]|Fm−1, τ > m− 1]

= E[Mm−1|τ > m− 1] + E[Ψ(BΠ,m)]− E[Ψ(BΠ)] = E[Mm−1|τ > m− 1].

Hence, E[Mm|Fm−1] = Mm−1 and Mm is a martingale with increments |Mm−Mm−1| ≤ |Ψ(BΠ,m)−E[Ψ(BΠ)]| ≤
Ψ(B). We could apply the Azuma-Hoeffding inequality to gain guarantees for individual m-values. Alternatively,
we can use Lemma 8 to get,

P

(
sup
m≤n

Mm

m
≥ 2Ψ(B)

√
1

m
log

(
8n

δm

))
≤ δ2.

Combining this with the argument in Lemma 1 gives

VΠm1
− c1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ c1 + c2,

where c1 :=
√

Ψ(B)2 log(2/δ1)
2m1

and c2 := 2Ψ(B)

√
1
m2

log
(

8n
δ2m2

)
and these bounds hold with probability 1−δ1−δ2.

�

Lemma 12 With probability 1 − δ0,1 − δ0,2, the bounds generated by BoundValueShare with parameters δ1,d =
δ0,1
d∗ N

−1
d and δ2,d =

δ0,2
d∗ N

−1
d hold for all policies Π of depth d = d(Π) ≤ d∗ simultaneously.

Proof: The probability that all bounds hold simultaneously is P (
⋂

Π∈P{L(V +
Π ) ≤ VΠ ≤ U(V +

Π )}) where P is

the set of all policies. From Proposition 2, for any policy Π of depth d = d(Π), P (L(V +
Π ) ≤ VΠ ≤ U(V +

Π )) ≥
1− δd,1 − δd,2. Then,

P

( ⋂
Π∈P
{L(V +

Π ) ≤ VΠ ≤ U(V +
Π )}

)
= 1− P

( ⋃
Π∈P
{L(V +

Π ) ≤ VΠ ≤ U(V +
Π )}c

)
≥ 1−

∑
Π∈P

P ({L(V +
Π ) ≤ VΠ ≤ U(V +

Π )}c)

≥ 1−
∑
Π∈P

(δd(Π),1 + δd(Π),2)

= 1−
d∗∑
d=1

Nd(δd,1 + δd,2)

≥ 1−
d∗∑
d=1

Nd

(
δ0,1
d∗

N−1
d +

δ0,2
d∗

N−1
d(Πt)

)

= 1−
d∗∑
d=1

1

d∗
(δ0,1 + δ0,2) = 1− δ0,1 − δ0,2

�
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D.2 Theoretical Results for Optimistic Stochastic Knapsacks (OpStoK)

Proposition 13 (Proposition 4 in main text) With probability at least (1 − δ0,1 − δ0,2), the algorithm OpStoK

returns a policy with value at least v∗ − ε.

Proof: The proof follows from the following lemma.

Lemma 14 For every round of the algorithm and incomplete policy Π, let D(Π) be the set of all descendants of
Π. Define the event A =

⋂
Π′∈D(Π){VΠ′ ∈ [L(V +

Π ), U(V +
Π )]}. Then P (A) ≥ 1− δ0,1 − δ0,2.

Proof: When BoundValueShare is called for a policy Π with d(Π) = d, it is done so with parameters δd,1 =
δ0,1
d∗ N

−1
d and δd,2 =

δ0,2
d∗ N

−1
d , where δd,1 and δd,2 are used to control the accuracy of the estimated value of VΠ

and EΨ(BΠ) respectively. It follows from Proposition 2, that for any active policy Π, the probability that the

interval
[
VΠm1

− c1, VΠm1
+ Ψ(BΠ)m2

+ c1 + c2

]
generated by BoundValueShare does not contain V +

Π is less

than δd,1 + δd,2. Furthermore, from standard Hoeffding bounds, the probability that VΠ is outside the interval
[VΠ − c1, VΠ + c1] is less than δd,1. Since any descendant policy Π′ of Π consists of adding at least one item to
the knapsack and item rewards are all ≥ 0, it follows that VΠ ≤ VΠ′ ≤ V +

Π . Hence, the probability of the value
of a descendant policy being outside the interval [L(V +

Π ), U(V +
Π )] is less than δd,1 + δd,2. By the same argument

as in Lemma 12, it can be shown that P (A) > 1−
∑d∗

d=1(δd,1 + δd,2)Nd = 1− δ0,1 − δ0,2. �

The result of the proposition follows by noting that the true optimal policy ΠOPT will be a descendant of Πi

for some i ∈ I. Let Π∗ be the policy outputted by the algorithm. By the stopping criterion, L(V +
Π∗) + ε ≥

maxΠ∈Active\{Π∗} ≥ U(V +
Π ) for any Π ∈ Active. From the expansion rule of OpStoK, it follows that either

ΠOPT ∈ Active or there exists some ancestor policy Π′ of ΠOPT in Active. In the first case, VΠOPT = v∗ ≤
U(V +

ΠOPT
) whereas in the latter VΠOPT = v∗ ≤ U(V +

Π′) with high probability from Lemma 14. In either case, it

follows that L(V +
Π∗) + ε ≥ v∗ and so VΠ∗ + ε ≥ v∗.

�

Lemma 15 If Π is a complete policy then, U(V +
Π )− L(V +

Π ) ≤ ε, otherwise U(V +
Π )− L(V +

Π ) ≤ 6EΨ(BΠ)− 3
4ε.

Proof: By the bounds in Proposition 2, U(V +
Π ) − L(V +

Π ) ≤ Ψ(BΠ)m2
+ c2 + 2c1 = U(Ψ(BΠ)) + 2c1. For a

complete policy, U(Ψ(BΠ)) ≤ ε
2 and according to BoundValueShare, m1 is chosen such that 2c1 ≤ ε

2 which

implies U(V +
Π )− L(V +

Π ) ≤ ε.
If Π is not complete, by the sampling strategy in BoundValueShare, we continue sampling the remaining budget
until L(Ψ(BΠ)) ≥ ε

4 . In this setting, the maximal width of the confidence interval of EΨ(BΠ) will satisfy

2c2 ≤ EΨ(BΠ)− ε

4
. (7)

Hence,

U(V +
Π )− L(V +

Π ) ≤ U(Ψ(BΠ)) + 2c1

≤ 3U(Ψ(BΠ)) (8)

≤ 3(EΨ(BΠ) + 2c2)

≤ 3
(
EΨ(BΠ) + EΨ(BΠ)− ε

4

)
(9)

≤ 6EΨ(BΠ)− 3

4
ε.

Where (8) follows since, when L(Ψ(BΠ)) ≥ ε
4 , we sample the value of policy Π until c1 ≤ U(Ψ(BΠ)), and (9) by

substituting in (7). �

Lemma 16 (Lemma 3 in main text) Assume that L(V +
Π ) ≤ VΠ ≤ U(V +

Π ) holds simultaneously for all policies
Π ∈ Active with U(V +

Π ) and L(V +
Π ) as defined in Proposition 2. Then, Πt ∈ Qε for every policy selected by

OpStoK at every time point t, except for possibly the last one.
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Proof: Since, when we expand a policy, we replace it in Active by all its child policies, at any time point t ≥ 1
there will be one ancestor of Π∗ in the active set, denote this policy by Π∗t . If Πt = Π∗t , then by Lemma 14,
VΠ∗ ∈ [L(V +

Πt
), U(V +

Πt
)]. Hence,

VΠ + 6EΨ(BΠ) +
3

4
ε ≥ U(V +

Π ) ≥ v∗ ≥ v∗ − 6EΨ(BΠ)− 3

4
ε+ ε.

Where the last inequality will hold for any incomplete policy (since for an incomplete policy L(BΠ) ≥ ε
4 ) and

so, Πt ∈ Qε. For Πt = Π∗, since 6
4ε ≥ ε, Πt ∈ Qε.

Assume Πt 6= Π∗t . If Πt is a complete policy, U(V +
Πt

) − L(V +
Πt

) ≤ ε. For a complete policy Π to be selected, it

must have the largest U(V +
Π ), since most alternative policies will have larger U(Ψ(BΠ)). Hence Π

(1)
t = Πt and

L(V +

Π
(1)
t

) + ε ≥ U(V +

Π
(1)
t

) ≥ max
Π∈Active\{Π(1)

t }
U(V +

Π ),

so the algorithm stops.

Assume Πt = Π
(1)
t 6= Π∗t is an incomplete policy. By Lemma 15, for an incomplete policy,

U(V +
Π )− L(V +

Π ) ≤ 3U(Ψ(BΠ)) ≤ 6EΨ(BΠ)− 3

4
ε. (10)

Then, if the termination criteria is not met,

VΠt ≥ L(V +
Πt

) =⇒ VΠt + 6EΨ(BΠ)− 3

4
ε− ε ≥ L(V +

Πt
) + 6EΨ(BΠ)− 3

4
ε− ε

≥ U(V +
Πt

)− ε
≥ max

Π∈Active\{Πt}
U(V +

Π )− ε

≥ L(V +
Πt

)

≥ U(V +
Πt

)− 6EΨ(BΠ) +
3

4
ε

≥ U(V +
Π∗t

)− 6EΨ(BΠ) +
3

4
ε

≥ v∗ − 6EΨ(BΠ) +
3

4
ε

which follows since Π
(1)
t is chosen to be the policy with largest upper bound. Therefore, Πt ∈ Qε.

By the stopping criteria of OpStoK, if the algorithm does not stop and select Π
(1)
t as the optimal policy, then

Πt = Π
(2)
t and

L(V +

Π
(1)
t

) + ε < max
Π∈Active\{Π(1)

t }
U(V +

Π ) = U(V +

Π
(2)
t

).

By equation (10),

L(V +

Π
(1)
t

) + 6EΨ(BΠ)− 3

4
ε ≥ U(V +

Π
(1)
t

).
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and by the selection criterion U(Ψ(B
Π

(2)
t

)) ≥ U(Ψ(B
Π

(1)
t

)). Therefore, for Πt = Π
(2)
t 6= Π∗t ,

VΠt + 12EΨ(BΠ)− 6

4
ε− ε ≥ L(V +

Πt
) + 6EΨ(BΠt)−

3

4
ε+ 6EΨ(BΠt)−

3

4
ε− ε

≥ U(V +
Πt

) + 6EΨ(BΠt)−
3

4
ε− ε

≥ U(V +
Πt

) + 3U(Ψ(BΠt))− ε
≥ U(V +

Πt
) + 3U(Ψ(B

Π
(1)
t

))− ε

≥ L(V +

Π
(1)
t

) + 3U(Ψ(B
Π

(1)
t

))

≥ U(V +

Π
(1)
t

)

≥ U(V +
Π∗t

)

≥ v∗.

Hence Πt ∈ Qε. �

Theorem 17 (Theorem 5 in main text) The total number of samples required by OpStoK is bounded from above
by, ∑

Π∈Qε
(m1(Π) +m2(Π)) d(Π),

with probability 1− δ0,2.

Proof: The result follows from the following three lemmas.

Lemma 18 For Π ∈ Aε of depth d = d(Π), then, with probability 1− δd,2, the minimum number of samples of
the value and remaining budget of the policy Π are bounded by

m1(Π) =

⌈
8Ψ(B)2 log( 2

δd,1
)

ε2

⌉
and m2(Π) = m∗,

where m∗ is the smallest integer satisfying 16Ψ(B)2

(EΨ(BΠ)−ε/2)2 ≤ m
log(8n/mδ2) with n defined as in (2).

Proof: When EΨ(BΠ) ≤ ε
4 , the event {U(Ψ(BΠ)) ≤ ε

2} will eventually occur with enough samples of the
remaining budget of the policy. With probability greater than 1−δd,2, this will happen when 2c2 ≤ ε

2−EΨ(BΠ),

since by Hoeffding’s Inequality we know Ψ(BΠ)m2
∈ [EΨ(BΠ) − c2, EΨ(BΠ) + c2] where c2 is as defined in

Lemma 1. From this, it follows that U(Ψ(BΠ)) ∈ [EΨ(BΠ), EΨ(BΠ) + 2c2]. We want to make sure that
U(Ψ(BΠ)) ≤ ε

2 will eventually happen so we need to construct a confidence interval such that c2 satisfies
EΨ(BΠ) + 2c2 ≤ ε

2 . Therefore we select m2 such that,

2c2 ≤
ε

2
− EΨ(BΠ)

=⇒ 4Ψ(B)

√
2 log( 8n

m2δd,2
)

m2
≤ ε

2
− EΨ(BΠ)

=⇒ 16Ψ(B)2

(EΨ(BΠ)− ε/2)2
≤ m2

log(4n/m2δ2)
.

Defining, m2(Π) = m∗, where m∗ is the smallest integer satisfying the above, is therefore an upper bound on
the minimum number of samples necessary to ensure that U(Ψ(BΠ)) ≤ ε

2 with probability greater than 1− δd,2.

When U(Ψ(BΠ)) ≤ ε
2 , BoundValueShare requires m1(Π) =

⌈
2Ψ(B)2 log( 2

δd,1
)

ε2

⌉
samples of the value of the policy

to ensure 2c1 ≤ ε
2 . �
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Lemma 19 For Π ∈ Bε of depth d = d(Π), then, with probability 1 − δd,2, the minimum number of samples of
the value and remaining budget of the policy Π are bounded by

m1(Π) ≤

⌈
Ψ(B)2 log( 2

δd,1
)

2EΨ(BΠ)2

⌉
and m2(Π) = m∗,

where m∗ is the smallest integer satisfying 16Ψ(B)2

(EΨ(BΠ)−ε/4)2 ≤ m
log(8n/mδ2) with n defined as in (2).

Proof: When EΨ(BΠ) ≥ ε
2 , by noting that the event {L(Ψ(BΠ)) ≥ ε

4} will eventually happen and using a very
similar argument to Lemma 18, it follows that m2(Π) is the smallest integer solution to

16Ψ(B)2

(EΨ(BΠ)− ε/4)2
≤ m

log(8n/mδ2)
,

with probability greater than 1 − δd,2. Whenever L(Ψ(BΠ)) ≥ ε
4 , BoundValueShare requires m1(Π) =⌈

2Ψ(B)2 log( 2
δd,1

)

(U(Ψ(BΠ))2

⌉
samples of the value of policy Π. Since U(Ψ(BΠ)) ∈ [EΨ(BΠ), EΨ(BΠ) + 2c2] with prob-

ability 1− δ0,2, U(Ψ(BΠ)) ≥ EΨ(BΠ), and so,

m1(Π) =

⌈
2Ψ(B)2 log( 2

δd,1
)

(U(Ψ(BΠ))2

⌉
≤

⌈
2Ψ(B)2 log( 2

δd,1
)

EΨ(BΠ)2

⌉

and the result holds. �

Lemma 20 For Π ∈ Cε of depth d = d(Π), then, with probability 1 − δd,2, the minimum number of samples of
the value and remaining budget of the policy Π are bounded by

m1(Π) ≤ max

{⌈
8Ψ(B)2 log( 2

δd,1
)

ε2

⌉
,

⌈
Ψ(B)2 log( 2

δd,1
)

2EΨ(BΠ)2

⌉}

and m2(Π) = m∗,where m∗ is the smallest integer satisfying 16Ψ(B)2

(ε/4)2 ≤ m
log(8n/mδ2) with n defined as in (2).

Proof: When ε
4 < EΨ(BΠ) < ε

2 , then the minimum width we will need a confidence interval to be is ε/4. By

an argument similar to Lemma 18, we can deduce that m2(Π) will be the smallest integer satisfying 16Ψ(B)2

(ε/4)2 ≤
m

log(8n/mδ2) .

In order to determine the number of samples of the value required by BoundValueShare, we need to know which
of {U(Ψ(BΠ)) ≤ ε

2} or {L(Ψ(BΠ)) ≥ ε
4} occurs first. However, when Π ∈ Cε, we do not know this so the best

we can do is bound m1(Π) by the maximum of the two alternatives,

m1(Π) ≤ max

{⌈
2Ψ(B)2 log( 2

δd,1
)

ε2

⌉
,

⌈
2Ψ(B)2 log( 2

δd,1
)

EΨ(BΠ)2

⌉}
.

�

The result of the theorem then follows by noting that for any policy Π of depth d(Π), it will be necessary to
have m1(Π) samples of the value of the policy and m2(Π) samples of the value of the policy. This requires
m1(Π)d(Π) samples of item rewards, m1(Π)d(Π) samples of item sizes (to calculate the rewards) and m2(Π)d(Π)
samples of item sizes (to calculate remaining budget), thus a total of (m1(Π)+m2(Π))d(Π) calls to the generative
model. From Lemma 3, any policy expanded by OpStoK will be in Qε so it suffices to sum over all policies in
Qε. This result assumes that all confidence bounds hold, whereas we know that for any policy Π of depth d(Π),
the probability of the confidence bound holding is greater than 1− δd,2. By an argument similar to Lemma 12,
the probability that all bounds hold is greater than 1− δ0,2. Note that, since |Qε| ≤ |P|, the probability should
be considerably greater than 1− δ0,2. �
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