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Abstract
We study a variant of the stochastic K-armed
bandit problem, which we call “bandits with de-
layed, aggregated anonymous feedback”. In this
problem, when the player pulls an arm, a reward
is generated, however it is not immediately ob-
served. Instead, at the end of each round the
player observes only the sum of a number of pre-
viously generated rewards which happen to ar-
rive in the given round. The rewards are stochas-
tically delayed and due to the aggregated nature
of the observations, the information of which arm
led to a particular reward is lost. The question is
what is the cost of the information loss due to this
delayed, aggregated anonymous feedback? Pre-
vious works have studied bandits with stochastic,
non-anonymous delays and found that the regret
increases only by an additive factor relating to the
expected delay. In this paper, we show that this
additive regret increase can be maintained in the
harder delayed, aggregated anonymous feedback
setting when the expected delay (or a bound on it)
is known. We provide an algorithm that matches
the worst case regret of the non-anonymous prob-
lem exactly when the delays are bounded, and
up to logarithmic factors or an additive variance
term for unbounded delays.

1. Introduction
The stochastic multi-armed bandit (MAB) problem is
a prominent framework for capturing the exploration-
exploitation tradeoff in online decision making and exper-
iment design. The MAB problem proceeds in discrete se-
quential rounds, where in each round, the player pulls one
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of the K possible arms. In the classic stochastic MAB set-
ting, the player immediately observes stochastic feedback
from the pulled arm in the form of a ‘reward’ which can be
used to improve the decisions in subsequent rounds. One
of the main application areas of MABs is in online adver-
tising. Here, the arms correspond to adverts, and the feed-
back would correspond to conversions, that is users buy-
ing a product after seeing an advert. However, in practice,
these conversions may not necessarily happen immediately
after the advert is shown, and it may not always be pos-
sible to assign the credit of a sale to a particular showing
of an advert. A similar challenge is encountered in many
other applications, e.g., in personalized treatment planning,
where the effect of a treatment on a patient’s health may be
delayed, and it may be difficult to determine which out of
several past treatments caused the change in the patient’s
health; or, in content design applications, where the effects
of multiple changes in the website design on website traffic
and footfall may be delayed and difficult to distinguish.

In this paper, we propose a new bandit model to handle on-
line problems with such ‘delayed, aggregated and anony-
mous’ feedback. In our model, a player interacts with an
environment ofK actions (or arms) in a sequential fashion.
At each time step the player selects an action which leads
to a reward generated at random from the underlying re-
ward distribution. At the same time, a nonnegative random
integer-valued delay is also generated i.i.d. from an under-
lying delay distribution. Denoting this delay by τ ≥ 0 and
the index of the current round by t, the reward generated
in round t will arrive at the end of the (t + τ)th round. At
the end of each round, the player observes only the sum
of all the rewards that arrive in that round. Crucially, the
player does not know which of the past plays have con-
tributed to this aggregated reward. We call this problem
multi-armed bandits with delayed, aggregated anonymous
feedback (MABDAAF). As in the standard MAB problem,
in MABDAAF, the goal is to maximize the cumulative re-
ward from T plays of the bandit, or equivalently to mini-
mize the regret. The regret is the total difference between
the reward of the optimal action and the actions taken.

If the delays are all zero, the MABDAAF problem reduces
to the standard (stochastic) MAB problem, which has been
studied considerably (e.g., Thompson, 1933; Lai & Rob-
bins, 1985; Auer et al., 2002; Bubeck & Cesa-Bianchi,
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Multi-Armed Bandits
(eg. Auer et al. (2002))

O(
√
KT log T )

Delayed Feedback Bandits
(eg. Joulani et al. (2013))
O(
√
KT log T + KE[τ ])

Bandits with Delayed, Aggre-
gated Anonymous Feedback
O(
√
KT logK + KE[τ ])

Difficulty

Figure 1: The relative difficulties and problem independent regret bounds of the different problems. For MABDAAF, our
algorithm uses knowledge of E[τ ] and a mild assumption on a delay bound, which is not required by Joulani et al. (2013).

2012). Compared to the MAB problem, the job of the
player in our problem appears to be significantly more diffi-
cult since the player has to deal with (i) that some feedback
from the previous pulls may be missing due to the delays,
and (ii) that the feedback takes the form of the sum of an
unknown number of rewards of unknown origin.

An easier problem is when the observations are delayed,
but they are non-aggregated and non-anonymous: that is,
the player has to only deal with challenge (i) and not (ii).
Here, the player receives delayed feedback in the shape of
action-reward pairs that inform the player of both the indi-
vidual reward and which action generated it. This problem,
which we shall call the (non-anonymous) delayed feed-
back bandit problem, has been studied by Joulani et al.
(2013), and later followed up by Mandel et al. (2015) (for
bounded delays). Remarkably, they show that compared
to the standard (non-delayed) stochastic MAB setting, the
regret will increase only additively by a factor that scales
with the expected delay. For delay distributions with a fi-
nite expected delay, E[τ ], the worst case regret scales with
O(
√
KT log T + KE[τ ]). Hence, the price to pay for the

delay in receiving the observations is negligible. QPM-D
of Joulani et al. (2013) and SBD of Mandel et al. (2015)
place received rewards into queues for each arm, taking one
whenever a base bandit algorithm suggests playing the arm.
Throughout, we take UCB1 (Auer et al., 2002) as the base
algorithm in QPM-D. Joulani et al. (2013) also present a di-
rect modification of the UCB1 algorithm. All of these algo-
rithms achieve the stated regret. None of them require any
knowledge of the delay distributions, but they all rely heav-
ily upon the non-anonymous nature of the observations.

While these results are encouraging, the assumption that
the rewards are observed individually in a non-anonymous
fashion is limiting for most practical applications with de-
lays (e.g., recall the applications discussed earlier). How
big is the price to be paid for receiving only aggregated
anonymous feedback? Our main result is to prove that es-
sentially there is no extra price to be paid provided that the
value of the expected delay (or a bound on it) is available.
In particular, this means that detailed knowledge of which
action led to a particular delayed reward can be replaced by
the much weaker requirement that the expected delay, or a
bound on it, is known. Fig. 1 summarizes the relationship
between the non-delayed, the delayed and the new problem

by showing the leading terms of the regret. In all cases,
the dominant term is

√
KT . Hence, asymptotically, the de-

layed, aggregated anonymous feedback problem is no more
difficult than the standard multi-armed bandit problem.

1.1. Our Techniques and Results

We now consider what sort of algorithm will be able
to achieve the aforementioned results for the MABDAAF
problem. Since the player only observes delayed, aggre-
gated anonymous rewards, the first problem we face is how
to even estimate the mean reward of individual actions.
Due to the delays and anonymity, it appears that to be able
to estimate the mean reward of an action, the player wants
to have played it consecutively for long stretches. Indeed, if
the stretches are sufficiently long compared to the mean de-
lay, the observations received during the stretch will mostly
consist of rewards of the action played in that stretch. This
naturally leads to considering algorithms that switch ac-
tions rarely and this is indeed the basis of our approach.

Several popular MAB algorithms are based on choosing the
action with the largest upper confidence bound (UCB) in
each round (e.g., Auer et al., 2002; Cappé et al., 2013).
UCB-style algorithms tend to switch arms frequently and
will only play the optimal arm for long stretches if a
unique optimal arm exists. Therefore, for MABDAAF, we
will consider alternative algorithms where arm-switching
is more tightly controlled. The design of such algorithms
goes back at least to the work of Agrawal et al. (1988)
where the problem of bandits with switching costs was
studied. The general idea of these rarely switching algo-
rithms is to gradually eliminate suboptimal arms by playing
arms in phases and comparing each arm’s upper confidence
bound to the lower confidence bound of a leading arm at the
end of each phase. Generally, this sort of rarely switching
algorithm switches arms onlyO(log T ) times. We base our
approach on one such algorithm, the so-called Improved
UCB1 algorithm of Auer & Ortner (2010).

Using a rarely switching algorithm alone will not be suffi-
cient for MABDAAF. The remaining problem, and where
the bulk of our contribution lies, is to construct appropri-

1The adjective “Improved” indicates that the algorithm im-
proves upon the regret bounds achieved by UCB1. The improve-
ment replaces log(T )/∆j by log(T∆2

j )/∆j in the regret bound.
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ate confidence bounds and adjust the length of the peri-
ods of playing each arm to account for the delayed, aggre-
gated anonymous feedback. In particular, in the confidence
bounds attention must be paid to fine details: it turns out
that unless the variance of the observations is dealt with,
there is a blow-up by a multiplicative factor of K. We
avoid this by an improved analysis involving Freedman’s
inequality (Freedman, 1975). Further, to handle the depen-
dencies between the number of plays of each arm and the
past rewards, we combine Doob’s optimal skipping theo-
rem (Doob, 1953) and Azuma-Hoeffding inequalities. Us-
ing a rarely switching algorithm for MABDAAF means we
must also consider the dependencies between the elimina-
tion of arms in one phase and the corruption of observations
in the next phase (ie. past plays can influence both whether
an arm is still active and the corruption of its next plays).
We deal with this through careful algorithmic design.

Using the above, we provide an algorithm that achieves
worst case regret of O(

√
KT logK + KE[τ ] log T ) using

only knowledge of the expected delay, E[τ ]. We then show
that this regret can be improved by using a more careful
martingale argument that exploits the fact that our algo-
rithm is designed to remove most of the dependence be-
tween the corruption of future observations and elimination
of arms. Particularly, if the delays are bounded with known
bound 0 ≤ d ≤

√
T/K, we can recover worst case regret

ofO(
√
KT logK+KE[τ ]), matching that of Joulani et al.

(2013). If the delays are unbounded but have known vari-
ance V(τ), we show that the problem independent regret
can be reduced to O(

√
KT logK +KE[τ ] +KV(τ)).

1.2. Related Work

We have already discussed several of the most relevant
works to our own. However, there has also been other
work looking at different flavors of the bandit problem with
delayed (non-anonymous) feedback. For example, Neu
et al. (2010) and Cesa-Bianchi et al. (2016) consider non-
stochastic bandits with fixed constant delays; Dudik et al.
(2011) look at stochastic contextual bandits with a constant
delay and Desautels et al. (2014) consider Gaussian Pro-
cess bandits with a bounded stochastic delay. The general
observation that delay causes an additive regret penalty in
stochastic bandits and a multiplicative one in adversarial
bandits is made in Joulani et al. (2013). The empirical per-
formance of K-armed stochastic bandit algorithms in de-
layed settings was investigated in Chapelle & Li (2011).
A further related problem is the ‘batched bandit’ problem
studied by Perchet et al. (2016). Here the player must fix
a set of time points at which to collect feedback on all
plays leading up to that point. Vernade et al. (2017) con-
sider delayed Bernoulli bandits where some observations
could also be censored (e.g., no conversion is ever actually
observed if the delay exceeds some threshold) but require

complete knowledge of the delay distribution. Crucially,
here and in all the aforementioned works, the feedback is
always assumed to take the form of arm-reward pairs and
knowledge of the assignment of rewards to arms under-
pins the suggested algorithms, rendering them unsuitable
for MABDAAF. To the best of our knowledge, ours is the
first work to develop algorithms to deal with delayed, ag-
gregated anonymous feedback in the bandit setting.

1.3. Organization

The reminder of this paper is organized as follows: In the
next section (Section 2) we give the formal problem defini-
tion. We present our algorithm in Section 3. In Section 4,
we discuss the performance of our algorithm under various
delay assumptions; known expectation, bounded support
with known bound and expectation, and known variance
and expectation. This is followed by a numerical illustra-
tion of our results in Section 5. We conclude in Section 6.

2. Problem Definition
There are K > 1 actions or arms in the set A. Each
action j ∈ A is associated with a reward distribution ζj
and a delay distribution δj . The reward distribution is
supported in [0, 1] and the delay distribution is supported
on N .

= {0, 1, . . . }. We denote by µj the mean of ζj ,
µ∗ = µj∗ = maxj µj and define ∆j = µ∗ − µj to be
the reward gap, that is the expected loss of reward each
time action j is chosen instead of an optimal action. Let
(Rl,j , τl,j)l∈N,j∈A be an infinite array of random variables
defined on the probability space (Ω,Σ, P ) which are mutu-
ally independent. Further, Rl,j follows the distribution ζj
and τl,j follows the distribution δj . The meaning of these
random variables is that if the player plays action j at time
l, a payoff of Rl,j will be added to the aggregated feed-
back that the player receives at the end of the (l + τl,j)th
play. Formally, if Jl ∈ A denotes the action chosen by the
player at time l = 1, 2, . . . , then the observation received
at the end of the tth play is

Xt =

t∑
l=1

K∑
j=1

Rl,j × I{l + τl,j = t, Jl = j}.

For the remainder, we will consider i.i.d. delays across
arms. We also assume discrete delay distributions, al-
though most results hold for continuous delays by redefin-
ing the event {τl,j = t− l} as {t− l− 1 < τl,j ≤ t− l} in
Xt. In our analysis, we will sum over stochastic index sets.
For a stochastic index set I and random variables {Zn}n∈N
we denote such sums as

∑
t∈I Zt

.
=
∑
t∈N I{t ∈ I} × Zt.

Regret definition In most bandit problems, the regret is
the cumulative loss due to not playing an optimal action.
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In the case of delayed feedback, there are several possible
ways to define the regret. One option is to consider only
the loss of the rewards received before horizon T (as in
Vernade et al. (2017)). However, we will not use this defi-
nition. Instead, as in Joulani et al. (2013), we consider the
loss of all generated rewards and define the (pseudo-)regret
by

RT =

T∑
t=1

(µ∗ − µJt) = Tµ∗ −
T∑
t=1

µJt .

This includes the rewards received after the horizon T and
does not penalize large delays as long as an optimal action
is taken. This definition is natural since, in practice, the
player should eventually receive all outstanding reward.

Lai & Robbins (1985) showed that the regret of any algo-
rithm for the standard MAB problem must satisfy,

lim inf
T→∞

E[RT ]

log(T )
≥

∑
j:∆j>0

∆j

KL(ζj , ζ∗)
, (1)

where KL(ζj , ζ
∗) is the KL-divergence between the re-

ward distributions of arm j and an optimal arm. Theorem
4 of Vernade et al. (2017) shows that the lower bound in
(1) also holds for delayed feedback bandits with no censor-
ing and their alternative definition of regret. We therefore
suspect (1) should hold for MABDAAF. However, due to
the specific problem structure, finding a lower bound for
MABDAAF is non-trivial and remains an open problem.

Assumptions on delay distribution For our algorithm
for MABDAAF, we need some assumptions on the delay
distribution. We assume that the expected delay, E[τ ], is
bounded and known. This quantity is used in the algorithm.

Assumption 1 The expected delay E[τ ] is bounded and
known to the algorithm.

We then show that under some further mild assumptions on
the delay, we can obtain better algorithms with even more
efficient regret guarantees. We consider two settings: delay
distributions with bounded support, and bounded variance.

Assumption 2 (Bounded support) There exists some
constant d > 0 known to the algorithm such that the
support of the delay distribution is bounded by d.

Assumption 3 (Bounded variance) The variance, V(τ),
of the delay is bounded and known to the algorithm.

In fact the known expected value and known variance as-
sumption can be replaced by a ‘known upper bound’ on
the expected value and variance respectively. However, for
simplicity, in the remaining, we use E[τ ] and V(τ) directly.
The next sections provide algorithms and regret analysis for
different combinations of the above assumptions.

3. Our Algorithm
Our algorithm is a phase-based elimination algorithm
based on the Improved UCB algorithm by Auer & Ortner
(2010). The general structure is as follows. In each phase,
each arm is played multiple times consecutively. At the end
of the phase, the observations received are used to update
mean estimates, and any arm with an estimated mean below
the best estimated mean by a gap larger than a ‘separation
gap tolerance’ is eliminated. This separation tolerance is
decreased exponentially over phases, so that it is very small
in later phases, eliminating all but the best arm(s) with high
probability. An alternative formulation of the algorithm is
that at the end of a phase, any arm with an upper confidence
bound lower than the best lower confidence bound is elimi-
nated. These confidence bounds are computed so that with
high probability they are more (less) than the true mean, but
within the separation gap tolerance. The phase lengths are
then carefully chosen to ensure that the confidence bounds
hold. Here we assume that the horizon T is known, but we
expect that this can be relaxed as in Auer & Ortner (2010).

Algorithm overview Our algorithm, ODAAF, is given in
Algorithm 1. It operates in phases m = 1, 2, . . .. Define
Am to be the set of active arms in phase m. The algorithm
takes parameter nm which defines the number of samples
of each active arm required by the end of phase m.

In Step 1 of phase m of the algorithm, each active arm j
is played repeatedly for nm − nm−1 steps. We record all
timesteps where arm j was played in the first m phases
(excluding bridge periods) in the set Tj(m). The active
arms are played in any arbitrary but fixed order. In Step 2,
the nm observations from timesteps in Tj(m) are averaged
to obtain a new estimate X̄m,j of µj . Arm j is eliminated
if X̄m,j is further than ∆̃m from maxj′∈Am X̄m,j′ .

A further nuance in the algorithm structure is the ‘bridge
period’ (see Figure 2). The algorithm picks an active arm
j ∈ Am+1 to play in this bridge period for nm − nm−1

steps. The observations received during the bridge period
are discarded, and not used for computing confidence inter-
vals. The significance of the bridge period is that it breaks
the dependence between confidence intervals calculated in
phasem and the delayed payoffs seeping into phasem+1.
Without the bridge period this dependence would impair
the validity of our confidence intervals. However, we sus-
pect that, in practice, it may be possible to remove it.

Choice of nm A key element of our algorithm design is
the careful choice of nm. Since nm determines the number
of times each active (possibly suboptimal) arm is played,
it clearly has an impact on the regret. Furthermore, nm
needs to be chosen so that the confidence bounds on the es-
timation error hold with given probability. The main chal-
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Algorithm 1 Optimism for Delayed, Aggregated Anony-
mous Feedback (ODAAF)
Input: A set of arms, A; a horizon, T ; choice of nm for

each phase m = 1, 2, . . ..
Initialization: Set ∆̃1 = 1/2 (tolerance), the set of active

arms A1 = A. Let Ti(1) = ∅, i ∈ A, m = 1 (phase
index), t = 1 (round index)
while t ≤ T do

Step 1: Play arms.
for j ∈ Am do

Let Tj(m) = Tj(m− 1)
while |Tj(m)| ≤ nm and t ≤ T do

Play arm j, receive Xt. Add t to Tj(m). Incre-
ment t by 1.

end while
end for
Step 2: Eliminate sub-optimal arms.
For every arm in j ∈ Am, compute X̄m,j as the av-
erage of observations at time steps t ∈ Tj(m). That
is,

X̄m,j =
1

|Tj(m)|
∑

t∈Tj(m)

Xt .

Construct Am+1 by eliminating actions j ∈ Am with

X̄m,j + ∆̃m < max
j′∈Am

X̄m,j′ .

Step 3: Decrease Tolerance.

Set ∆̃m+1 = ∆̃m

2 .
Step 4: Bridge period.
Pick an arm j ∈ Am+1 and play it νm = nm − nm−1

times while incrementing t ≤ T . Discard all observa-
tions from this period. Do not add t to Tj(m).
Increment phase index m.

end while

lenge is developing these confidence bounds from delayed,
aggregated anonymous feedback. Handling this form of
feedback involves a credit assignment problem of deciding
which samples can be used for a given arm’s mean esti-
mation, since each sample is an aggregate of rewards from
multiple previously played arms. This credit assignment
problem would be hopeless in a passive learning setting
without further information on how the samples were gen-
erated. Our algorithm utilizes the power of active learning
to design the phases in such a way that the feedback can be
effectively ‘decensored’ without losing too many samples.

A naive approach to defining the confidence bounds for de-
lays bounded by a constant d ≥ 0 would be to observe that,∣∣∣∣ ∑

t∈Tj(m)\Tj(m−1)

Xt −
∑

t∈Tj(m)\Tj(m−1)

Rt,j

∣∣∣∣ ≤ d,

Phase i

Tj(i) \ Tj(i− 1) Bridge

Figure 2: An example of phase i of our algorithm.

since all rewards are in [0, 1]. Then we could use Hoeffd-
ing’s inequality to boundRt,Jt (see Appendix F) and select

nm =
C1 log(T ∆̃2

m)

∆̃2
m

+
C2md

∆̃m

for some constants C1, C2. This corresponds to worst case
regret of O(

√
KT logK + K log(T )d). For d � E[τ ]

and large T , this is significantly worse than that of Joulani
et al. (2013). In Section 4, we show that, surprisingly, it is
possible to recover the same rate of regret as Joulani et al.
(2013), but this requires a significantly more nuanced ar-
gument to get tighter confidence bounds and smaller nm.
In the next section, we describe this improved choice of
nm for every phase m ∈ N and its implications on the re-
gret, for each of the three cases mentioned previously: (i)
Known and bounded expected delay (Assumption 1), (ii)
Bounded delay with known bound and expected value (As-
sumptions 1 and 2), (iii) Delay with known and bounded
variance and expectation (Assumptions 1 and 3).

4. Regret Analysis
In this section, we specify the choice of parameters nm and
provide regret guarantees for Algorithm 1 for each of the
three previously mentioned cases.

4.1. Known and Bounded Expected Delay

First, we consider the setting with the weakest assumption
on delay distribution: we only assume that the expected
delay, E[τ ], is bounded and known. No assumption on the
support or variance of the delay distribution is made. The
regret analysis for this setting will not use the bridge period,
so Step 4 of the algorithm could be omitted in this case.

Choice of nm Here, we use Algorithm 1 with

nm =
C1 log(T ∆̃2

m)

∆̃2
m

+
C2mE[τ ]

∆̃m

(2)

for some large enough constants C1, C2. The exact value
of nm is given in Equation (14) in Appendix B.

Estimation of error bounds We bound the error be-
tween X̄m,j and µj by ∆̃m/2. In order to do this we first
bound the corruption of the observations received during
timesteps Tj(m) due to delays.
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Fix a phase m and arm j ∈ Am. Then the observations
Xt in the period t ∈ Tj(m) \ Tj(m− 1) are composed of
two types of rewards: a subset of rewards from plays of
arm j in this period, and delayed rewards from some of the
plays before this period. The expected value of observa-
tions from this period would be (nm − nm−1)µj but for
the rewards entering and leaving this period due to delay.
Since the reward is bounded by 1, a simple observation is
that expected discrepancy between the sum of observations
in this period and the quantity (nm − nm−1)µj is bounded
by the expected delay E[τ ],

E

 ∑
t∈Tj(m)\Tj(m−1)

(Xt − µj)

 ≤ E[τ ]. (3)

Summing this over phases ` = 1, . . .m gives a bound

|E[X̄m,j ]− µj | ≤
mE[τ ]

|Tj(m)|
=
mE[τ ]

nm
. (4)

Note that given the choice of nm in (2), the above is smaller
than ∆̃m/2, when large enough constants are used. Using
this, along with concentration inequalities and the choice of
nm from (2), we can obtain the following high probability
bound. A detailed proof is provided in Appendix B.1.

Lemma 1 Under Assumption 1 and the choice of nm given
by (2), the estimates X̄m,j constructed by Algorithm 1 sat-
isfy the following: For every fixed arm j and phase m, with
probability 1− 3

T ∆̃2
m

, either j /∈ Am, or:

X̄m,j − µj ≤ ∆̃m/2 .

Regret bounds Using Lemma 1, we derive the following
regret bounds in the current setting.

Theorem 2 Under Assumption 1, the expected regret of Al-
gorithm 1 is upper bounded as

E[RT ] ≤
K∑
j=1
j 6=j∗

O

(
log(T∆2

j )

∆j
+ log(1/∆j)E[τ ]

)
. (5)

Proof: Given Lemma 1, the proof of Theorem 2 closely fol-
lows the analysis of the Improved UCB algorithm of Auer
& Ortner (2010). Lemma 1 and the elimination condition in
Algorithm 1 ensure that, with high probability, any subop-
timal arm j will be eliminated by phase mj = log(1/∆j),
thus incurring regret at most nmj

∆j We then substitute in
nmj

from (2), and sum over all suboptimal arms. A de-
tailed proof is in Appendix B.2. As in Auer & Ortner
(2010), we avoid a union bound over all arms (which would
result in an extra logK) by (i) reasoning about the regret of
each arm individually, and (ii) bounding the regret resulting

from erroneously eliminating the optimal arm by carefully
controlling the probability it is eliminated in each phase. �

Considering the worst-case values of ∆j (roughly
√
K/T ),

we obtain the following problem independent bound.

Corollary 3 For any problem instance satisfying Assump-
tion 1, the expected regret of Algorithm 1 satisfies

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] log(T )).

4.2. Delay with Bounded Support

If the delay is bounded by some constant d ≥ 0 and a sin-
gle arm is played repeatedly for long enough, we can re-
strict the number of arms corrupting the observation Xt at
a given time t. In fact, if each arm j is played consecutively
for more than d rounds, then at any time t ∈ Tj(m), the ob-
servation Xt will be composed of the rewards from at most
two arms: the current arm j, and previous arm j′. Further,
from the elimination condition, with high probability, arm
j′ will have been eliminated if it is clearly suboptimal. We
can then recursively use the confidence bounds for arms j
and j′ from the previous phase to bound |µj − µj′ |. Be-
low, we formalize this intuition to obtain a tighter bound
on |X̄m,j − µj | for every arm j and phase m, when each
active arm is played a specified number of times per phase.

Choice of nm Here, we define,

nm =
C1 log(T ∆̃2

m)

∆̃2
m

+
C2E[τ ]

∆̃m

(6)

+ min

{
md,

C3 log(T ∆̃2
m)

∆̃2
m

+
C4mE[τ ]

∆̃m

}
for some large enough constants C1, C2, C3, C4 (see Ap-
pendix C, Equation (18) for the exact values). This choice
of nm means that for large d, we essentially revert back to
the choice of nm from (2) for the unbounded case, and we
gain nothing by using the bound on the delay. However, if d
is not large, the choice of nm in (6) is smaller than (2) since
the second term now scales with E[τ ] rather than mE[τ ].

Estimation of error bounds In this setting, by the elim-
ination condition and bounded delays, the expectation of
each reward entering Tj(m) will be within ∆̃m−1 of µj ,
with high probability. Then, using knowledge of the upper
bound of the support of τ , we can obtain a tighter bound
and get an error bound similar to Lemma 1 with the smaller
value of nm in (6). We prove the following proposition.
Since ∆̃m = 2−m, this is considerably tighter than (3).

Proposition 4 Assume ni − ni−1 ≥ d for phases i =
1, . . . ,m. Define Em−1 as the event that all arms j ∈ Am
satisfy error bounds |X̄m−1,j − µj | ≤ ∆̃m−1/2. Then, for
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every arm j ∈ Am,

E

 ∑
t∈Tj(m)\Tj(m−1)

(Xt − µj)
∣∣∣∣Em−1

 ≤ ∆̃m−1E[τ ].

Proof: (Sketch). Consider a fixed arm j ∈ Am. The
expected value of the sum of observations Xt for t ∈
Tj(m) \ Tj(m− 1) would be (nm − nm−1)µj were it not
for some rewards entering and leaving this period due to
the delays. Because of the i.i.d. assumption on the delay,
in expectation, the number of rewards leaving the period
is roughly the same as the number of rewards entering this
period, i.e., E[τ ]. (Conditioning on Em−1 does not effect
this due to the bridge period). Since nm − nm−1 ≥ d, the
reward coming into the period Tj(m)\Tj(m−1) can only
be from the previous arm j′. All rewards leaving the period
are from arm j. Therefore the expected difference between
rewards entering and leaving the period is (µj − µj′)E[τ ].
Then, if µj is close to µj′ , the total reward leaving the pe-
riod is compensated by total reward entering. Due to the
bridge period, even when j is the first arm played in phase
m, j′ ∈ Am, so it was not eliminated in phase m − 1.
By the elimination condition in Algorithm 1, if the error
bounds |X̄m−1,j−µj | ≤ ∆̃m−1/2 are satisfied for all arms
in Am, then |µj − µj′ | ≤ ∆̃m−1. This gives the result. �

Repeatedly using Proposition 4 we get,

m∑
i=1

E

 ∑
t∈Tj(i)\Tj(i−1)

(Xt − µj)
∣∣∣∣Ei−1

 ≤ 2E[τ ]

since
∑m
i=1 ∆̃i−1 =

∑m−1
i=0 2−i ≤ 2. Then, observe that

P(ECi ) is small. This bound is an improvement of a factor
of m compared to (4). For the regret analysis, we derive
a high probability version of the above result. Using this,
and the choice of nm ≥ Ω

(
log(T ∆̃2

m)

∆̃2
m

+ E[τ ]

∆̃m

)
from (6), for

large enough constants, we derive the following lemma. A
detailed proof is given in Appendix C.1.

Lemma 5 Under Assumptions 1 of known expected delay
and 2 of bounded delays, and choice of nm given in (6), the
estimates X̄m,j obtained by Algorithm 1 satisfy the follow-
ing: For any arm j and phase m, with probability at least
1− 12

T ∆̃2
m

, either j /∈ Am or

X̄m,j − µj ≤ ∆̃m/2.

Regret bounds We now give regret bounds for this case.

Theorem 6 Under Assumption 1 and bounded delay As-
sumption 2, the expected regret of Algorithm 1 satisfies

E[RT ] ≤
K∑

j=1;j 6=j∗
O

(
log(T∆2

j )

∆j
+ E[τ ]

+ min

{
d,

log(T∆2
j )

∆j
+ log(

1

∆j
)E[τ ]

})
.

Proof: (Sketch). Given Lemma 5, the proof is similar to
that of Theorem 2. The full proof is in Appendix C.2. �

Then, if d ≤
√

T logK
K + E[τ ], we get the following

problem independent regret bound which matches that of
Joulani et al. (2013).

Corollary 7 For any problem instance satisfying Assump-

tions 1 and 2 with d ≤
√

T logK
K +E[τ ], the expected regret

of Algorithm 1 satisfies

E[RT ] ≤ O(
√
KT log(K) +KE[τ ]).

4.3. Delay with Bounded Variance

If the delay is unbounded but well behaved in the sense that
we know (a bound on) the variance, then we can obtain sim-
ilar regret bounds to the bounded delay case. Intuitively,
delays from the previous phase will only corrupt observa-
tions in the current phase if their delays exceed the length
of the bridge period. We control this by using the bound on
the variance to bound the tails of the delay distributions.

Choice of nm Let V(τ) be the known variance (or bound
on the variance) of the delay, as in Assumption 3. Then, we
use Algorithm 1 with the following value of nm,

nm = C1
log(T ∆̃2

m)

∆̃2
m

+ C2
E[τ ] + V(τ)

∆̃m

(7)

for some large enough constants C1, C2. The exact value
of nm is given in Appendix D, Equation (25).

Regret bounds We get the following instance specific
and problem independent regret bound in this case.

Theorem 8 Under Assumption 1 and Assumption 3 of
known (bound on) the expectation and variance of the de-
lay, and choice of nm from (7), the expected regret of Algo-
rithm 1 can be upper bounded by,

E[RT ] ≤
K∑

j=1:µj 6=µ∗
O

(
log(T∆2

j )

∆j
+ E[τ ] + V(τ)

)
.

Proof: (Sketch). See Appendix D.2. We use Chebychev’s
inequality to get a result similar to Lemma 5 and then use
a similar argument to the bounded delay case. �

Corollary 9 For any problem instance satisfying Assump-
tions 1 and 3, the expected regret of Algorithm 1 satisfies

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] +KV(τ)).
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(a) Bounded delays. Ratios of regret of ODAAF (solid
lines) and ODAAF-B (dotted lines) to that of QPM-D.

0 50000 100000 150000 200000 250000
Time

0

10

20

30

40

Re
gr

et
 ra

tio

Exp, E[τ] = 50
Pois, E[τ] = 50
+(50, 25)
+(50, 250)

(b) Unbounded delays. Ratios of regret of ODAAF (solid
lines) and ODAAF-V (dotted lines) to that of QPM-D.

Figure 3: The ratios of regret of variants of our algorithm
to that of QPM-D for different delay distributions.

Remark If E[τ ] ≥ 1, then the delay penalty can be re-
duced to O(KE[τ ] +KV(τ)/E[τ ]) (see Appendix D).

Thus, it is sufficient to know a bound on variance to obtain
regret bounds similar to those in bounded delay case. Note
that this approach is not possible just using knowledge of
the expected delay since we cannot guarantee that the re-
ward entering phase i is from an arm active in phase i− 1.

5. Experimental Results
We compared the performance of our algorithm (under dif-
ferent assumptions) to QPM-D (Joulani et al., 2013) in var-
ious experimental settings. In these experiments, our aim
was to investigate the effect of the delay on the perfor-
mance of the algorithms. In order to focus on this, we
used a simple setup of two arms with Bernoulli rewards
and µ = (0.5, 0.6). In every experiment, we ran each algo-
rithm to horizon T = 250000 and used UCB1 (Auer et al.,
2002) as the base algorithm in QPM-D. The regret was av-
eraged over 200 replications. For ease of reading, we de-
fine ODAAF to be our algorithm using only knowledge of
the expected delay, with nm defined as in (2) and run with-
out a bridge period, and ODAAF-B and ODAAF-V to be the
versions of Algorithm 1 that use a bridge period and infor-
mation on the bounded support and the finite variance of
the delay to define nm as in (6) and (7) respectively.

We tested the algorithms with different delay distributions.
In the first case, we considered bounded delay distributions
whereas in the second case, the delays were unbounded.
In Fig. 3a, we plotted the ratios of the regret of ODAAF and
ODAAF-B (with knowledge of d, the delay bound) to the re-
gret of QPM-D. We see that in all cases the ratios converge
to a constant. This shows that the regret of our algorithm
is essentially of the same order as that of QPM-D. Our al-
gorithm predetermines the number of times to play each
active arm per phase (the randomness appears in whether
an arm is active), so the jumps in the regret are it changing
arm. This occurs at the same points in all replications.

Fig. 3b shows a similar story for unbounded delays with
mean E[τ ] = 50 (where N+ denotes the the half nor-
mal distribution). The ratios of the regret of ODAAF and
ODAAF-V (with knowledge of the delay variance) to the
regret of QPM-D again converge to constants. Note that
in this case, these constants, and the location of the jumps,
vary with the delay distribution and V(τ). When the vari-
ance of the delay is small, it can be seen that using the vari-
ance information leads to improved performance. How-
ever, for exponential delays where V(τ) = E[τ ]2, the large
variance causes nm to be large and so the suboptimal arm is
played more, increasing the regret. In this case ODAAF-V
had only just eliminated the suboptimal arm at time T .

It can also be illustrated experimentally that the regret of
our algorithms and that of QPM-D all increase linearly in
E[τ ]. This is shown in Appendix E. We also provide an
experimental comparison to Vernade et al. (2017) in Ap-
pendix E.

6. Conclusion
We have studied an extension of the multi-armed bandit
problem to bandits with delayed, aggregated anonymous
feedback. Here, a sum of observations is received after
some stochastic delay and we do not learn which arms con-
tributed to each observation. In this more difficult setting,
we have proven that, surprisingly, it is possible to develop
an algorithm that performs comparably to those for the sim-
pler delayed feedback bandits problem, where the assign-
ment of rewards to plays is known. Particularly, using only
knowledge of the expected delay, our algorithm matches
the worst case regret of Joulani et al. (2013) up to a log-
arithmic factor. This logarithmic factors can be removed
using an improved analysis and slightly more information
about the delay; if the delay is bounded, we achieve the
same worst case regret as Joulani et al. (2013), and for un-
bounded delays with known finite variance, we have an ex-
tra additive V(τ) term. We supported these claims experi-
mentally. Note that while our algorithm matches the order
of regret of QPM-D, the constants are worse. Hence, it is
an open problem to find algorithms with better constants.
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Appendix

A. Preliminaries
A.1. Table of Notation

For ease of reading, we define here key notation that will be used in this Appendix.

T : The horizon.
∆j : The gap between the mean of the optimal arm and the mean of arm j, ∆j = µ∗ − µj .

∆̃m : The approximation to ∆j at round m of the ODAAF algorithm, ∆̃m = 1
2m .

nm : The number of samples of an active arm j ODAAF needs by the end of round m.
νm : The number of times each arm is played in phase m, νm = nm − nm−1.
d : The bound on the delay in the case of bounded delay.

mj : The first round of the ODAAF algorithm where ∆̃m < ∆j/2.
Mj : The random variable representing the round arm j is eliminated in.

Tj(m) : The set of all time point where arm j is played up to (and including) round m.
Xt : The reward received at time t (from any possible past plays of the algorithm).
Rt,j : The reward generated by playing arm j at time t.
τt,j : The delay associated with playing arm j at time t.
E[τ ] : The expected delay (assuming i.i.d. delays).
V(τ) : The variance of the delay (assuming i.i.d. delays).
X̄m,j : The estimated reward of arm j in phase m. See Algorithm 1 for the definition.
Sm : The start point of the mth phase. See Appendix A.2 for more details.
Um : The end point of the mth phase. See Appendix A.2 for more details.
Sm,j : The start point of phase m of playing arm j. See Appendix A.2 for more details.
Um,j : The end point of phase m of playing arm j. See Appendix A.2 for more details.
Am : The set of active arms in round m of the ODAAF algorithm.

Ai,t, Bi,t, Ci,t : The contribution of the reward generated at time t in certain intervals relating to phase
i to the corruption. See (11) for the exact definitions.

Gt : The smallest σ-algebra containing all information up to time t, see (8) for a definition.

A.2. Beginning and End of Phases

We formalize here some notation that will be used throughout the analysis to denote the start and end points of each
phase. Define the random variables Si and Ui for each phase i = 1, . . . ,m to be the start and end points of the phase.
Then let Si,j , Ui,j denote the start and end points of playing arm j in phase i. See Figure 4 for details. By convention,
let Si,j = Ui,j = ∞ if arm j is not active in phase i, Si = Ui = ∞ if the algorithm never reaches phase i and let
S0,j = U0,j = S0 = U0 = 0 for all j. It is important to point out that nm are deterministic so at the end of any phase
m − 1, once we have eliminated sub-optimal arms, we also know which arms are in Am and consequently the start and
end points of phase m. Furthermore, since we play arms in a given order, we also know the specific rounds when we start
and finish playing each active arm in phase m. Hence, at any time step t in phase m, Sm, Um, Sm+1 and Um,j , Sm,j for
all active arms j ∈ Am will be known. More formally, define the filtration {Gt}∞t=0 where

Gt = σ(X1, . . . , Xt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . , Rt,Jt , J1, . . . , Jt) (8)

and G0 = {∅,Ω}. This means the joint events like {Si ≤ t} ∩ {Si,j = s′} ∈ Gt for all s′ ∈ N, j ∈ A.

A.3. Useful Results

For our analysis, we will need Freedman’s version of Bernstein’s inequality for the right-tail of martingales with bounded
increments:

Theorem 10 (Freedman’s version of Bernstein’s inequality; Theorem 1.6 of Freedman (1975)) Let {Yk}∞k=0 be a
real-valued martingale with respect to the filtration {Fk}∞k=0 with increments {Zk}∞k=1: E[Zk|Fk−1] = 0 and Zk =
Yk−Yk−1, for k = 1, 2, . . . . Assume that the difference sequence is uniformly bounded on the right: Zk ≤ b almost surely
for k = 1, 2, . . . . Define the predictable variation process Wk =

∑k
j=1 E[Z2

j |Fj−1] for k = 1, 2, . . . . Then, for all t ≥ 0,
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Si,j Ui,j Ui,j′ + 1
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Tj(i) \ Tj(i− 1) Bridge

Figure 4: An example of phase i of our algorithm. Here j′ is the last active arm played in phase i.

σ2 > 0,

P
(
∃k ≥ 0 : Yk ≥ t and Wk ≤ σ2

)
≤ exp

{
− t2/2

σ2 + bt/3

}
.

This result implies that if for some deterministic constant, σ2, Wk ≤ σ2 holds almost surely, then P (Yk ≥ t) ≤
exp

{
− t2/2
σ2+bt/3

}
holds for any t ≥ 0.

We will also make use of the following technical lemma which combines the Hoeffding-Azuma inequality and Doob’s
optional skipping theorem (Theorem 2.3 in Chapter VII of Doob (1953))):

Lemma 11 Fix the positive integers m,n and let a, c ∈ R. Let F = {Ft}nt=0 be a filtration, (εt, Zt)t=1,2,...,n be a se-
quence of {0, 1}×R-valued random variables such that for t ∈ {1, 2, . . . , n}, εt isFt−1-measurable, Zt isFt-measurable,
E[Zt|Ft−1] = 0 and Zt ∈ [a, a+ c]. Further, assume that

∑n
s=1 εs ≤ m with probability one. Then, for any λ > 0,

P
( n∑
t=1

εtZt ≥ λ
)
≤ exp

{
− 2λ2

c2m

}
. (9)

Proof: This lemma appeared in a slightly more general form (where n = ∞ is allowed) as Lemma A.1 in the paper by
Szita & Szepesvári (2011) so we refer the reader to the proof there. �

B. Results for Known and Bounded Expected Delay
B.1. High Probability Bounds

Lemma 1 Under Assumption 1 and the choice of nm given by (2), the estimates X̄m,j constructed by Algorithm 1 satisfy
the following: For every fixed arm j and phase m, with probability 1− 3

T ∆̃2
m

, either j /∈ Am, or:

X̄m,j − µj ≤ ∆̃m/2 .

Proof: Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

3mE[τ ]

nm
. (10)

We first show that with probability greater than 1− 3
T ∆̃2

m

, j /∈ Am or 1
nm

∑
t∈Tj(m)(Xt − µj) ≤ wm.

For arm j and phase m, assume j ∈ Am. For notational simplicity we will use in the following Ii{H} := I{H ∩ {j ∈
Ai}} ≤ I{H} for any event H . If j ∈ Am for a particular experiment ω then Ii(H)(ω) = I(H)(ω). Then for any phase
i ≤ m and time t, define,

Ai,t = Rt,JtI{τt,Jt + t ≥ Si}, Bi,t = Rt,JtI{τt,Jt + t ≥ Si,j}, Ci,t = Rt,JtI{τt,Jt + t > Ui,j}, (11)

and note that since Si,j = Ui,j = ∞ if arm j is not active in phase i, we have the equalities Ii{τt,Jt + t ≥ Si,j} =
I{τt,Jt + t ≥ Si,j} and Ii{τt,Jt + t > Ui,j} = I{τt,Jt + t > Ui,j}. Define the filtration {Gs}∞s=0 by G0 = {Ω, ∅} and

Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt). (12)
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Then, we use the decomposition,

m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj) ≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si−1∑
t=Si−1,j

Rt,JtI{τt,Jt + t ≥ Si}+

Si,j−1∑
t=Si

Rt,JtI{τt,Jt + t ≥ Si,j}

+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtI{τt,Jt + t > Ui,j}
)

=

m∑
i=1

( Si−1∑
t=Si−1,j

Ai,t +

Si,j−1∑
t=Si

Bi,t +

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

(13)

+

( Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

)
,︸ ︷︷ ︸

Term IV.

where,

Qt =

m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})

Pt =

m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j}.

Recall that the filtration {Gs}∞s=0 is defined by G0 = {Ω, ∅}, Gt =
σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt) and we have defined Si,j = ∞ if arm j is eliminated
before phase i and Si =∞ if the algorithm stops before reaching phase i.

Outline of proof We will bound each term of the above decomposition in (13) in turn, however first we need to prove
several intermediary results. For term II., we will use Freedman’s inequality so we first need Lemma 12 to show that
Zt = Qt − E[Qt|Gt−1] is a martingale difference and Lemma 13 to bound the variance of the sum of the Zt’s. Similarly,
for term III., in Lemma 14, we show that Z ′t = E[Pt|Gt−1] − Pt is a martingale difference and bound its variance in
Lemma 15. In Lemma 16, we consider term IV. and bound the conditional expectations of Ai,t, Bi,t, Ci,t. Finally, in
Lemma 17, we bound term I. using Lemma 11. We then combine the bounds on all terms together to conclude the proof.

Lemma 12 Let Ys =
∑s
t=1(Qt − E[Qt|Gt−1]) for all s ≥ 1, Y0 = 0. Then {Ys}∞s=0 is a martingale with respect to the

filtration {Gs}∞s=0 with increments Zs = Ys − Ys−1 = Qs −E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, Zs ≤ 1 for all s ≥ 1.

Proof: To show {Ys}∞s=0 is a martingale with respect to {Gs}∞s=0, we need to show that Ys is Gs measurable for all s and
E[Ys|Gs−1] = Ys−1.

Measurability: First note that by definition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s. Then, for each i, either t is
in a phase later than i so Si−1,j and Si are Gt-measurable, or Si−1,j and Si are not Gt-measurable, but I{t ≥ Si,j} = 0
so I{t ≥ Si,j} is Gt-measurable. In the first case, since Si−1,j and Si are Gt-measurable Ai,tI{Si−1,j ≤ t ≤ Si − νi} is
Gt-measurable. In the second case, Ai,tI{Si−1,j ≤ t ≤ Si − 1} = Ai,tI{{Si−1,j ≤ t}I{t ≤ Si − 1} = 0 so it is also
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Gt-measurable. Similarly, if t is after Si , Si and Si,j will be G-measurable or I{Si ≤ t ≤ Si,j − 1} = 0. In both cases,
Bi,tI{Si ≤ t ≤ Si,j − 1} is Gt-measurable. Hence, Qt is Gt-measurable, and also Qt is Gs measurable for any s ≥ t. It
then follows that Ys is Gs-measurable for all s.

Expectation: Since Qt is Gs measurable for all t ≤ s,

E[Ys|Gs−1] = E
[ s∑
t=1

(Qt − E[Qt|Gt−1])|Gs−1

]

= E
[ s−1∑
t=1

(Qt − E[Qt|Gt−1])|Gs−1

]
+ E[(Qs − E[Qs|Gs−1])|Gs−1]

=

s−1∑
t=1

(Qt − E[Qt|Gt−1]) + E[Qs|Gs−1]− E[Qs|Gs−1]

=

s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Ys−1

Hence, {Ys}∞s=0 is a martingale with respect to the filtration {Gs}∞s=0.

Increments: For any s = 1, . . . , we have that

Zs = Ys − Ys−1 =

s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].

Then,
E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0.

Lastly, since for any t, there is only one i where one of I{Si−1,j ≤ t ≤ Si−1} = 1 or I{Si ≤ t ≤ Si,j −1} = 1 (and they
cannot both be one), and since Rt,Jt ∈ [0, 1], Ai,t, Bi,t ≤ 1, so it follows that Zs = Qs − E[Qs|Gs−1] ≤ 1 for all s. �

Lemma 13 For any t, let Zt = Qt − E[Qt|Gt−1], then, for any s < Sm,j ,

s∑
t=1

E[Z2
t |Gt−1] ≤ 2mE[τ ].

Proof: First note that

s∑
t=1

E[Z2
t |Gt−1] =

s∑
t=1

V(Qt|Gt−1) ≤
s∑
t=1

E[Q2
t |Gt−1]

=

s∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
)2∣∣∣∣Gt−1

]
.

Then, given Gt−1, all indicator terms I{Si−1,j ≤ t ≤ Si − 1} and I{Si ≤ Si,j − 1} for all i = 1, . . . ,m are measurable
and only one can be non zero. Hence, all interaction terms in the expansion of the quadratic are 0 and so we are left with

s∑
t=1

E[Z2
t |Gt−1] ≤

s∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
)2∣∣∣∣Gt−1

]

=

s∑
t=1

E
[ m∑
i=1

(A2
i,tI{Si−1,j ≤ t ≤ Si − 1}2 +B2

i,tI{Si ≤ t ≤ Si,j − 1}2)

∣∣∣∣Gt−1

]

=

m∑
i=1

s∑
t=1

E[A2
i,tI{Si−1,j ≤ t ≤ Si − 1}|Gt−1] +

m∑
i=1

s∑
t=1

E[B2
i,tI{Si ≤ t ≤ Si,j − 1}|Gt−1]
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≤
m∑
i=1

Si−1∑
t=Si−1,j

E[A2
i,t|Gt−1] +

m∑
i=1

Si,j−1∑
t=Si

E[B2
i,t|Gt−1].

Then, for any i ≥ 1,
Si−1∑

t=Si−1,j

E[A2
i,t|Gt−1] =

Si−1∑
t=Si−1,j

E[R2
t,JtI{τt,Jt + t ≥ Si}|Gt−1]

≤
Si−1∑

t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {t ≥ Si−1,j , Si = s′} ∈ Gt−1)

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si−1,j , Si = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑
l=0

P(τ > l)

≤ E[τ ].

Likewise, for any i ≥ 1,
Si,j−1∑
t=Si

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑
t=Si

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ Si,j}|Gt−1]

(Since {t ≥ Si, Si,j = s′} ∈ Gt−1)

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ s′}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si, Si,j = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
∞∑
l=0

P(τ ≥ l)
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≤ E[τ ].

Hence, combining both terms and summing over the phases m gives the result. �

Lemma 14 Let Y ′s =
∑s
t=1(E[Ps|Gs−1] − Ps) for all s ≥ 1, Y ′0 = 0. Then {Y ′s}∞s=0 is a martingale with respect to the

filtration {Gs}∞s=0 with increments Z ′s = Y ′s − Y ′s−1 = E[Ps|Gs−1]− Ps satisfying E[Z ′s|Gs−1] = 0, Z ′s ≤ 1 for all s ≥ 1.

Proof: The proof is similar to that of Lemma 12. To show {Y ′s}∞s=0 is a martingale with respect to {Gs}∞s=0, we need to
show that Y ′s is Gs measurable for all s and E[Y ′s |Gs−1] = Y ′s−1.

Measurability: As before, by definition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s. Also, we can reduce
measurability again to measurability of I{τs,Js + s ≥ Ui,j , Si,j ≤ s ≤ Ui,j}. But, {Ui,j = s′} ∩ {Si,j ≤ s} ∈ Gs for all
s′ ∈ N and Y ′s is adapted to Gs.

Increments: For any s ≥ 1, we have that

Z ′s = Y ′s − Y ′s−1 =

s∑
t=1

(E[Pt|Gt−1]− Pt)−
s−1∑
t=1

(E[Pt|Gt−1]− Pt) = E[Ps|Gs−1]− Ps.

Then,
E[Z ′s|Gs−1] = E[E[Ps|Gs−1]− Ps|Gs−1] = E[Ps|Gs−1]− E[Ps|Gs−1] = 0.

Lastly, since for any t and ω ∈ Ω, there is at most one i for which I{Si,j ≤ t ≤ Ui,j} = 1, and by definition of Rt,Jt ,
Ci,t ≤ 1, so it follows that Z ′s = E[Ps|Gs−1]− Ps ≤ 1 for all s. �

Lemma 15 For any t, let Z ′t = E[Pt|Gt−1]− Pt, then

Um,j∑
t=1

E[Z ′t
2|Gt−1] ≤ mE[τ ].

Proof: The proof is similar to that of Lemma 13. First note that

Um,j∑
t=1

E[Z ′t
2|Gt−1] =

Um,j∑
t=1

V(Pt|Gt−1) ≤
Um,j∑
t=1

E[P 2
t |Gt−1]

=

Um,j∑
t=1

E
[( m∑

i=1

(Ci,tI{Si,j ≤ t ≤ Ui,j}
)2

|Gt−1

]
.

Then, given Gt−1, all indicator terms I{Si,j ≤ t ≤ Ui,j} for i = 1, . . . ,m are measurable and at most one can be non zero.
Hence, all interaction terms are 0 and so we are left with

Um,j∑
t=1

E[Z ′t
2|Gt−1] ≤

Um,j∑
t=1

E
[( m∑

i=1

(Ci,tI{Si,j ≤ t ≤ Ui,j}
)2

|Gt−1

]

=

m∑
i=1

Um,j∑
t=1

E[C2
i,tI{Si,j ≤ t ≤ Ui,j}|Gt−1]

≤
m∑
i=1

Ui,j∑
t=Si,j

E[C2
i,t|Gt−1] (since the indicator is Gt−1-measurable)

=

m∑
i=1

Ui,j∑
t=Si,j

E[R2
t,JtI{τt,Jt + t > Ui,j}|Gt−1]
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≤
m∑
i=1

Ui,j∑
t=Si,j

E[I{τt,Jt + t > Ui,j}|Gt−1]

=

m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

E[I{τt,Jt + t > Ui,j}|Gt−1]

=

m∑
i=1

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[I{Si,j = s, Ui,j = s′, τt,Jt + t > Ui,j}|Gt−1]

=

m∑
i=1

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[I{Si,j = s, Ui,j = s′, τt,Jt + t > s′}|Gt−1]

=

m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

P(τt,Jt + t > s′)

≤
m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
∞∑
l=0

P(τ > l)

≤
m∑
i=1

E[τ ] = mE[τ ].

�

Lemma 16 For Ai,t, Bi,t and Ci,t defined as in (11), let νi = ni − ni−1 be the number of times each arm is played in
phase i and j′i be the arm played directly before arm j in phase i. Then, it holds that, for any arm j and phase i ≥ 1,

(i)
Si−1∑

t=Si−1,j

E[Ai,t|Gt−1] ≤ E[τ ]

(ii)
Si,j−1∑
t=Si

E[Bi,t|Gt−1] ≤ E[τ ] + µj′i

νi∑
l=0

P(τ > l)

(iii)
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] = µj

νi∑
l=0

P(τ > l)

Proof: We prove each statement individually. Several of the proofs are similar to those appearing in Lemmas 13 and 15.

Statement (i):

Si−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
Si−1∑

t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {t ≥ Si−1,j , Si = s′} ∈ Gt−1)

=

∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]
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=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si−1,j , Si = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑
l=0

P(τ > l)

=

∞∑
l=0

P(τ > l) = E[τ ].

Statement (iii):
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] =

Ui,j∑
t=Si,j

E[Rt,JtI{τt,Jt + t > Ui,j}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

E[Rt,JtI{τt,Jt + t > Ui,j}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[Rt,JtI{Si,j = s, Ui,j = s′, τt,Jt + t > Ui,j}|Gt−1]

(Since {Si,j = s, Ui,j = s′} ∈ Gt−1 for s ≤ t)

=

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[Rt,JtI{Si,j = s, Ui,j = s′, τt,Jt + t > s′}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

µjP(τt,Jt + t > s′)

(Since {Si,j = s, Ui,j = s′} ∈ Gt−1 and given Gt−1, Rt,Jt and τt,Jt are independent)

=

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}µj
νi∑
l=0

P(τ > l)

= µj

νi∑
l=0

P(τ > l)

Statement (ii): For statement (ii), we have that for (i, j) 6= (1, 1),

Si,j−1∑
t=Si

E[Bi,t|Gt−1] =

Si,j−νi−1−2∑
t=Si

E[Bi,t|Gt−1] +

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1].

Then, Si,j is Gt−1 measurable for t ≥ Si, so we can use the same technique as for statement (i) to bound the first term. For
the second term, since we will only be playing arm j′i for Si,j − νi−1 − 1, . . . , Si,j − 1, we can use the same technique as
for statement (iii). Hence,

Si,j−1∑
t=Si

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ > l) + µj′i

νi−1∑
l=0

P(τ > l) ≤ E[τ ] + µj′i

νi∑
l=0

P(τ > l).

Note that, for (i, j) = (1, 1), the amount seeping in will be 0, so using ν0 = 0, µ′11
= 0, the result trivially holds. Hence

the result holds for all i, j ≥ 1. �

Lemma 17 For any arm j ∈ {1, . . . ,K} and phase m, it holds that for any λ > 0,

P
( ∑
t∈Tj(m)

(Rt,j − µj) ≥ λ
)
≤ exp

{
− 2λ2

nm

}
.
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Proof: The result follows from Lemma 11. When applying this lemma, we use n = T , m = nm, for t = 0, 1, . . . , T
set Ft = σ(X1, . . . , Xt, R1,j , . . . , Rt,j) and for t = 1, 2, . . . , T define Zt = Rt,j − µj and εt = I{Jt = j, t ≤ Um,j}.
Note that Tj(m) = {t ∈ {1, . . . , T} : εt = 1} and hence

∑
t∈Tj(m)(Rt,j − µj) =

∑T
t=1 εt(Rt,j − µj). Further,∑T

t=1 εt = |Tj(m)| ≤ nm with probability one.

Fix 1 ≤ t ≤ T . We now argue that εt is Ft−1-measurable. First, notice that by the definition of ODAAF, the index M of
the phase that t belongs to can be calculated based on the observations X1, . . . , Xt−1 up to time t− 1. Since t ≤ Um,j is
equivalent to whether for this phase indexM , the inequalityM ≤ m holds, it follows that {t ≤ Um,j} isFt−1-measurable.
The same holds for {Jt = j} for the same reason. Hence, it follows that εt is indeed Ft−1-measurable.

Now, Zt is Ft-measurable as Rt,j is clearly Ft-measurable. Furthermore, by our assumptions on (Rt,j)t,j and (Xt)t,
E[Rt,j |Ft−1] = µj also holds, implying that Zt also satisfies the conditions of the lemma with a = −µj and c = 1. Thus,
the result follows by applying Lemma 11. �

We now bound each term of the decomposition in (13) in turn.

Bounding Term I.: For Term I., we use Lemma 17 to get that with probability greater than 1− 1
T ∆̃2

m

,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.

Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 10). From Lemma 12, {Ys}∞s=0 with
Ys =

∑s
t=1(Qt−E[Qt|Gt−1]) is a martingale with respect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0

and Zs ≤ 1 for all s. Further, by Lemma 13,
∑s
t=1 E[Z2

t |Gt−1] ≤ 2mE[τ ] ≤ 6m×2mE[τ ]
12 ≤ nm/12 with probability 1.

Hence we can apply Freedman’s inequality to get that with probability greater than 1− 1
T ∆̃2

m

,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) ≤ 2

3
log(T ∆̃2

m) +

√
1

12
nm log(T ∆̃2

m).

Bounding Term III.: For Term III., we again use Freedman’s inequality (Theorem 10) but using Lemma 14 to show that
{Y ′s}∞s=0 with Y ′s =

∑s
t=1(E[Pt|Gt−1]− Pt) is a martingale with respect to {Gs}∞s=0 with increments {Z ′s}∞s=0 satisfying

E[Z ′s|Gs−1] = 0 and Z ′s ≤ 1 for all s. Further, by Lemma 15,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤ nm/12 with probability 1.
Hence, with probability greater than 1− 1

T ∆̃2
m

,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) ≤
2

3
log(T ∆̃m) +

√
1

12
nm log(T ∆̃2

m).

Bounding Term IV.: We bound term IV. using Lemma 16,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

=

Sm,j∑
t=1

E
[ m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
∣∣∣∣Gt−1

]

−
Um,j∑
t=1

E
[ m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j}
∣∣∣∣Gt−1

]

=

m∑
i=1

Sm,j∑
t=1

E[Ai,tI{Si−1,j ≤ t ≤ Si − 1}|Gt−1] +

m∑
i=1

Sm,j∑
t=1

E[Bi,tI{Si ≤ t ≤ Si,j − 1}|Gt−1]

−
m∑
i=1

Um,j∑
t=1

E[Ci,tI{Si,j ≤ t ≤ Ui,j}|Gt−1]
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=

m∑
i=1

( Si−1∑
t=Si−1,j

E[Ai,t|Gt−1] +

Si,j−1∑
t=Si

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)

≤
m∑
i=1

(
2E[τ ] + µj′i

νi∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l)

)
≤ 3mE[τ ].

since Rt,j ∈ [0, 1].

Combining all terms: To get the final high probability bound, we sum the bounds for each term I.-IV.. Then, with
probability greater than 1− 3

T ∆̃2
m

, either j /∈ Am or arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
12

+
1√
2

)√
log(T ∆̃2

m)

nm
+

3mE[τ ]

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

3mE[τ ]

nm
= wm.

Defining nm: Setting

nm =

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 6∆̃mmE[τ ]

)2⌉
. (14)

ensures that wm ≤ ∆̃m

2 which concludes the proof. �

B.2. Regret Bounds

Here we prove the regret bound in Theorem 2 under Assumption 1 and the choice of nm given by (14). Under Assump-
tion 1, the bridge period is not necessary so the results here hold for the version of Algorithm 1 with the bridge period
omitted. Note that if we were to include the bridge period, we would be playing each arm at most 2nm times by the end of
phase m so our regret would simply increase by a factor of 2.

Theorem 2 Under Assumption 1, the expected regret of Algorithm 1 is upper bounded as

E[RT ] ≤
K∑
j=1
j 6=j∗

O

(
log(T∆2

j )

∆j
+ log(1/∆j)E[τ ]

)
. (5)

Proof: Our proof is a restructuring of the proof of (Auer & Ortner, 2010). For any arm j, define Mj to be the random
variable representing the phase when arm j is eliminated in. We set Mj = ∞ if the arm did not get eliminated before
time step T . Note that if Mj is finite, j ∈ AMj

(this also means that AMj
is well-defined) and if AMj+1 is also defined

(Mj is not the last phase) then j 6∈ AMj+1. We also let mj denote the phase arm j should be eliminated in, that is
mj = min{m ≥ 1 : ∆̃m <

∆j

2 }. From the definition of ∆̃m in our algorithm, we get the relations

2mj =
1

∆̃mj

≤ 4

∆j
<

1

∆̃mj+1

and
∆j

4
≤ ∆̃mj

≤ ∆j

2
. (15)

Define Nj =
∑T
t=1 I{Jt = j} be the number of times arm j is used and let R(j)

T = Nj∆j be the “pseudo”-regret

contribution from each arm 1 ≤ j ≤ K so that E[RT ] = E
[∑K

j=1 R
(j)
T

]
. Let M∗ be the round when the optimal arm j∗

is eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ K∑
j=1

R
(j)
T I {M∗ ≥ mj}

]
︸ ︷︷ ︸

Term I.

+E
[ K∑
j=1

R
(j)
T I {M∗ < mj}

]
︸ ︷︷ ︸

Term II.

.
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We will bound the regret in each of these cases in turn. To do so, we need the following results which consider the
probabilities of confidence bounds failing and arms being eliminated in the incorrect rounds.

Lemma 18 For any suboptimal arm j,

P(Mj > mj and M∗ ≥ mj) ≤
6

T ∆̃2
mj

.

Proof: Define
E = {X̄mj ,j ≤ µj + wmj} and H = {X̄mj ,j∗ > µ∗ − wmj} .

If both E and F occur, it follows that,

X̄mj ,j ≤ µj + wmj

= µ∗j −∆j + wmj
(since ∆j = µj∗ − µj)

≤ X̄mj ,j∗ + wmj −∆j + wmj

< X̄mj ,j∗ − 2∆̃mj
+ 2wmj

(by (15))

≤ X̄mj ,j∗ − ∆̃mj
(since nm is such that wm ≤ ∆̃m/2)

and arm j would be eliminated. Hence, on the event M∗ ≥ mj , Mj ≤ mj . Thus, M∗ ≥ mj and Mj > mj imply that
either E or H does not occur and so P(Mj > mj and M∗ ≥ mj) ≤ P({Ec ∪ Hc} ∩ {j, j∗ ∈ Amj}) ≤ P(Ec ∩ j ∈
Amj ) + P(Hc ∩ j∗ ∈ Amj ). Using Lemma 1, we then get that,

P(Mj ≥ mj and M∗ ≥ mj) ≤
6

T ∆̃2
mj

.

�

Note that the random set Am may not be defined for certain ω ∈ Ω. That is, Am is a partially defined random element.
For convenience, we modify the definition of Am so that it is an emptyset for any ω when it is not defined by the previous
definition. Define the event Fj(m) = {X̄m,j∗ < X̄m,j − ∆̃m} ∩ {j, j∗ ∈ Am} to be the event that arm j∗ is eliminated
by arm j in phase m (given our note on Am, this is well-defined). The probability of this occurring is bounded in the
following lemma.

Lemma 19 The probability that the optimal arm j∗ is eliminated in round m <∞ by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 6

T ∆̃2
m

.

Proof: First note that for a suboptimal arm j to eliminate arm j∗ in round m, both j and j∗ must be active in round m and
X̄m,j − wm > X̄m,j∗ + wm. Hence,

P(Fj(m)) = P(j, j∗ ∈ Am and X̄m,j − wm > X̄m,j∗ + wm)

Then, observe that if
E = {X̄m,j ≤ µj + wm} and H = {X̄m,j∗ > µ∗ − wm}

both hold in round m, it follows that,

X̄m,j − ∆̃m ≤ µj + wm − ∆̃m ≤ µj −
∆̃m

2
≤ µj∗ −

∆̃m

2
≤ X̄m,j∗ + wm −

∆̃m

2
≤ X̄m,j∗

so arm j∗ will not be eliminated by arm j in round m. Hence, for arm j∗ to be eliminated by arm j in round m, one of E
or H must not occur and the probability of this is bounded by Lemma 1 as,

P(Fj(m)) ≤ P((EC ∪HC) ∩ (j, j∗ ∈ Am)) ≤ P(EC ∩ (j ∈ Am)) + P(HC ∩ (j∗ ∈ Am)) ≤ 6

T ∆̃2
m

.

�

We now return to bounding the expected regret in each of the two cases.
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Bounding Term I. To bound the first term, we consider the cases where arm j is eliminated in or before the correct round
(Mj ≤ mj) and where arm j is eliminated late (Mj > mj). Then, by Lemma 18,

E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}

]

= E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj ≤ mj}

]
+ E

[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj > mj}

]

≤
K∑
j=1

E[R
(j)
T I{Mj ≤ mj}] +

K∑
j=1

E[T∆jI{M∗ ≥ mj ,Mj > mj}]

≤
K∑
j=1

∆jnmj +

K∑
j=1

T∆jP(Mj > mj and M∗ ≥ mj)

≤
K∑
j=1

∆jnmj +

K∑
j=1

T∆j
6

T ∆̃2
mj

≤
K∑
j=1

(
∆jnmj

+
24

∆̃mj

)
≤

K∑
j=1

(
96

∆j
+ ∆jnmj

)
.

Bounding Term II For the second term, let mmax = maxj 6=j∗ mj . and recall that Nj is the total number of times arm j
is played. Then,

E
[ K∑
j=1

R
(j)
T I {M∗ < mj}

]
= E

[mmax∑
m=1

∑
j:m<mj

R
(j)
T I{M∗ = m}

]

=

mmax∑
m=1

E
[
I{M∗ = m}

∑
j:mj>m

R
(j)
T

]

=

mmax∑
m=1

E
[
I{M∗ = m}

∑
j:mj>m

Nj∆j

]

≤
mmax∑
m=1

E
[
I{M∗ = m}T max

j:mj>m
∆j

]

≤
mmax∑
m=1

4P(M∗ = m)T ∆̃m .

Now consider the probability that arm j∗ is eliminated in round m. This includes the probability that it is eliminated by
any suboptimal arm. For arm j∗ to be eliminated in round m by a suboptimal arm with mj < m, arm j must be active
(Mj > mj) and the optimal arm must also have been active in round mj (M∗ ≥ mj). Using this, it follows that

P(M∗ = m) =

K∑
j=1

P(Fj(m)) =
∑

j:mj<m

P(Fj(m)) +
∑

j:mj≥m

P(Fj(m))

≤
∑

j:mj<m

P(Mj > mj and M∗ ≥ mj) +
∑

j:mj≥m

P(Fj(m)).

Then, using Lemmas 18 and 19 and summing over all m ≤M gives,

mmax∑
m=1

( ∑
j:mj<m

4P(Mj > mj and M∗ ≥ mj)T ∆̃m +
∑

j:mj≥m

4P(Fj(m))T ∆̃m

)
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≤
mmax∑
m=1

( ∑
j:mj<m

4
6

T ∆̃2
mj

T
∆̃mj

2m−mj
+

∑
j:mj≥m

24

T ∆̃2
m

T ∆̃m

)

≤
K∑
j=1

24

∆̃mj

mmax∑
m=mj

2−(m−mj) +

K∑
j=1

mj∑
m=1

24

2−m

≤
K∑
j=1

96 · 2
∆j

+

K∑
j=1

24 · 2mj+1

≤
K∑
j=1

192

∆j
+

K∑
j=1

48 · 4

∆j
=

K∑
j=1

384

∆j
.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
480

∆j
+ ∆jnmj

)
.

Hence, all that remains is to bound nm in terms of ∆j , T and d,

nmj
=

⌈
1

∆̃2
mj

(√
2 log(T ∆̃2

mj
) +

√
2 log(T ∆̃2

mj
) +

8

3
∆̃mj

log(T ∆̃2
mj

) + 6∆̃mj
mjE[τ ]

)2⌉

≤

⌈
1

∆̃2
mj

(
8 log(T ∆̃2

mj
) +

16

3
∆̃mj

log(T ∆̃2
mj

) + 12∆̃mj
mjE[τ ]

)⌉

≤ 1 +
8 log(T∆2

j/4)

∆̃2
mj

+
16 log(T∆2

j/4)

3∆̃mj

+
12 log2(4/∆j)E[τ ]

∆̃mj

≤ 1 +
128 log(T∆2

j )

∆2
j

+
32 log(T∆2

j )

3∆j
+

96 log(4/∆j)E[τ ]

∆j
,

where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0 and log2(x) ≤ 2 log(x) for x > 0.

Hence, the total expected regret from ODAAF with bounded delays can be bounded by,

E[Rt] ≤
K∑

j=1:j 6=j∗

(
128 log(T∆2

j )

∆j
+

32

3
log(T∆2

j ) + 96 log(4/∆j)E[τ ] +
480

∆j
+ ∆j

)
. (16)

�

We now prove the problem independent regret bound,

Corollary 3 For any problem instance satisfying Assumption 1, the expected regret of Algorithm 1 satisfies

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] log(T )).

Proof: Let

λ =

√
K log(K)e2

T

and note that for ∆ > λ, log(T∆2)/∆ is a decreasing function of ∆. Then, for some constants C1, C2, and using the
previous theorem, we can bound the regret by,

E[RT ] ≤
∑

j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+KdC2 log(1/λ) + Tλ.

Then, subsituting the above value of λ gives a worst case regret bound that scales with O(
√
KT log(K) +KE[τ ] log(T )).

�
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C. Results for Delays with Bounded Support
C.1. High Probability Bounds

Lemma 5 Under Assumptions 1 of known expected delay and 2 of bounded delays, and choice of nm given in (6), the
estimates X̄m,j obtained by Algorithm 1 satisfy the following: For any arm j and phase m, with probability at least
1− 12

T ∆̃2
m

, either j /∈ Am or

X̄m,j − µj ≤ ∆̃m/2.

Proof: Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ]

nm
. (17)

We show that with probability greater than 1− 12
T ∆̃2

m

, either j /∈ Am or 1
nm

∑
t∈Tj(m)(Xt − µj) ≤ wm. For now, assume

that nm ≥ md.

For arm j and phase m, assume j ∈ Am and define pi to be the probability of the confidence bounds on arm j failing at the
end of each phase i ≤ m, ie. pi

.
= P(

∑
t∈Tj(i)(Xt − µj) ≥ niwi) with p0 = 0. Again, let Bi,t = RtI{τt,Jt + t ≥ Si,j}

and Ci,t = RtI{τt,Jt + t > Ui,j} (note that we don’t need to consider Ai,t since νi = ni − ni−1 ≥ d so all reward
entering [Si,j , Ui,j ] will be from the last νi ≥ d plays) and for any event H , let Ii{H} := I{H ∩ {j ∈ Ai}}. Recall the
filtration {Gt}∞t=0 from (12) where Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . , Rt,Jt) and G0 = {∅,Ω}.
Now, defining,

Qt =

m∑
i=1

Bi,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}),

Pt =

m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j},

we use the decomposition

∑
t∈Tj(m)

(Xt − µj) =

m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj)

≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si,j−1∑
t=Si,j−d

Bi,t +

Ui,j∑
t=Si,j

(Rt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

+

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1].︸ ︷︷ ︸
Term IV.

Outline of proof Again, the proof continues by bounding each term of this decomposition in turn. Note that we do
not have the Ai,t terms in this decomposition since there will be no reward from phase i − 1 (before the bridge period)
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received in [Si,j , Ui,j ]. We bound each of these terms with high probability. For terms I. and III., this is the same as
in the general case (see the proof of Lemma 1, Appendix B),. For term II. we need the following results to show that
Zt = Qt − E[Qs|Gt−1] is a martingale difference (Lemma 20) and to bound its variance (Lemma 21) before we can apply
Freedman’s inequality. The bound for term IV. is also different due to the bridge period and boundedness of the delay.
After bounding each term, we collect them together and recursively calculate the probability with which the bounds hold.

Lemma 20 Let Ys =
∑s
t=1(Qt − E[Qt|Gt−1]) for all s ≥ 1, and Y0 = 0. Then {Ys}∞s=0 is a martingale with respect to

the filtration {Gs}∞s=0 with increments Zs = Ys − Ys−1 = Qs − E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, |Zs| ≤ 1 for all
s ≥ 1.

Proof: To show {Ys}∞s=0 is a martingale we need to show that Ys is Gs-measurable for all s and E[Ys|Gs−1] = Ys−1.

Measurability: We show that Bi,sI{Si,j − d − 1 ≤ s ≤ Si,j − 1} is Gs-measurable. This then suffices to show that Ys is
Gs-measurable since the filtration Gs is non-decreasing in s.

First note that by definition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s. Hence, it is sufficient to show that I{τs,Js +
s ≥ Si,j , Si,j − d − 1 ≤ s ≤ Si,j − 1} is Gs-measurable since the product of measurable functions is measurable. For
any s′ ∈ N ∪ {∞}, {Si,j = s′, s′ − d − 1 ≤ s} ∈ Gs for s ≥ Si − νi−1 and so the union

⋃
s′∈N∪{∞}{τs,Js + s ≥

s′, s′ − d− 1 ≤ s ≤ s′ − 1, Si,j = s′} = {τs,Js + s ≥ Si,j , Si,j − d− 1 ≤ s ≤ Si,j − 1} is an element of Gs.

Increments: Hence, {Ys}∞s=0 is a martingale with respect to the filtration {Gs}∞s=0 if the increments conditional on the past
are zero. For any s ≥ 1, we have that

Zs = Ys − Ys−1 =

s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].

Then,
E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0

and so {Ys}∞s=0 is a martingale.

Lastly, since for any t and ω ∈ Ω, there is at most one i where I{Si,j − d ≤ t ≤ Si,j − 1}(ω) = 1, and by definition of
Rt,Jt , Bi,t ≤ 1, it follows that |Zs| = |Qs − E[Qs|Gs−1]| ≤ 1 for all s. �

Lemma 21 For any t ≥ 1, let Zt = Qt − E[Qt|Gt−1], then

Sm,j−1∑
t=1

E[Z2
t |Gt−1] ≤ mE[τ ].

Proof: Let us denote S′ .= Sm,j − 1. Observe that

S′∑
t=1

E[Z2
t |Gt−1] =

S′∑
t=1

V(Qt|Gt−1) ≤
S′∑
t=1

E[Q2
t |Gt−1] =

S′∑
t=1

E
[( m∑

i=1

(Bi,tI{Si,j − d ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]
.

Then for all i = 1, . . . ,m, all indicator terms I{Si,j − d ≤ t ≤ Si,j − 1} are Gt−1-measurable and only one can be non
zero for any ω ∈ Ω. Hence, for any i, i′ ≤ m, i 6= i′,

Bi,t × I{Si,j − d− 1 ≤ t ≤ Si,j − 1} ×Bi′,t × I{Si′,j − d− 1 ≤ t ≤ Si′,j − 1} = 0,

Using the above we see that

S′∑
t=1

E[Z2
t |Gt−1] ≤

S′∑
t=1

E
[(
Bi,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}

)2∣∣∣Gt−1

]

=

S′∑
t=1

E
[ m∑
i=1

B2
i,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}2

∣∣∣Gt−1

]
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=

m∑
i=1

S′∑
t=1

E[B2
i,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}|Gt−1]

(using that the indicator is Gt−1-measurable)

≤
m∑
i=1

Si,j−1∑
t=Si,j−d−1

E[B2
i,t|Gt−1].

Then, for any i ≥ 1,

Si,j−1∑
t=Si,j−d−1

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si,j−d−1

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑

t=Si,j−d−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

I{Si,j = s}
s−1∑

t=s−d−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

s−1∑
t=s−d−1

E[I{Si,j = s, τt,Jt + t ≥ Si,j}|Gt−1]

(Since Si,j ≥ Si and so, due to the bridge period, {Si,j = s} ∈ Gt−1 for any t ≥ s− d)

=

∞∑
s=0

s−1∑
t=s−d−1

E[I{Si,j = s, τt,Jt + t ≥ s}|Gt−1]

=

∞∑
s=0

I{Si,j = s}
s−1∑

t=s−d−1

P(τt,Jt + t ≥ s)

(Since {Si,j = s} ∈ Gt−1 for any t ≥ s− d)

≤
∞∑
s=0

I{Si,j = s}
∞∑
l=0

P(τ > l)

≤ E[τ ].

Combining all terms gives the result. �

We now return to bounding each term of the decomposition

Bounding Term I.: For term II., as in Lemma 1, we can use Lemma 17 to get that with probability greater than 1− 1
T ∆̃2

m

,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.

Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 10). From Lemma 20, {Ys}∞s=0 with
Ys =

∑s
t=1(Qt−E[Qt|Gt−1]) is a martingale with respect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0

and Zs ≤ 1 for all s. Further, by Lemma 21,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤ 4×2mE[τ ]
8 ≤ nm/8 with probability 1. Hence

we can apply Freedman’s inequality to get that with probability greater than 1− 1
T ∆̃2

m

,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) ≤ 2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).
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Bounding Term III.: For Term III., we again use Freedman’s inequality (Theorem 10). As in Lemma 1, we use
Lemma 14 to show that {Y ′s}∞s=0 with Y ′s =

∑s
t=1(E[Pt|Gt−1] − Pt) is a martingale with respect to {Gs}∞s=0 with in-

crements {Z ′s}∞s=0 satisfying E[Z ′s|Gs−1] = 0 and Z ′s ≤ 1 for all s. Further, by Lemma 15,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤
nm/8 with probability 1. Hence, with probability greater than 1− 1

T ∆̃2
m

,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).

Bounding Term IV.: For term IV., we consider the expected difference at each round 1 ≤ i ≤ m and exploit the
independence of τt,Jt and Rt,Jt . Consider first i ≥ 2 and let j′i be the arm played just before arm j is played in the ith
phase (allowing for j′i to be the last arm played in phase i− 1). Then, much in the same way as Lemma 21,

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1] =

Si,j−1∑
t=Si,j−d−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s′=d+1

∞∑
s=s′

I{Si = s′, Si,j = s}
s−1∑
t=s−d

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

E[Rt,JtI{Si = s′, Si,j = s, τt,Jt + t ≥ Si,j , Jt = k}|Gt−1]

(Due to the bridge period {Si = s′, Si,j = s} ∈ Gt−1 for t ≥ s− d ≥ s′ − d)

=

∞∑
s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

I{Si = s′, Si,j = s, Jt = k}E[Rt,kI{τt,k + t ≥ s}|Gt−1]

=

∞∑
s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

µkI{Si = s′, Si,j = s, Jt = k}P(τ ≥ s− t)

= µj′i

d−1∑
l=0

P(τ > l).

A similar argument works for i = 1, j > 1 with the simplification that Si,j is not a random quantity but known . Finally,
for i = 1, j = 1 the sum is 0. Furthermore, using a similar argument, for all i, j,

Ui,j∑
t=Si,j

E[Ci,t|Gt−1] =

Ui,j∑
t=Ui,j−d+1

E[Ci,t|Gt−1]

=
∞∑

s′=d+1

∞∑
s=s′

s∑
t=s−d

E[Rt,jI{τt,j + t > s}I{Ui,j = s, Si = s′}|Gt−1]

= µj

∞∑
s=d+1

I{Ui,j = s, Si = s′}
s∑

t=s−d

P(τ + t > s)

= µj

d−1∑
l=0

P(τ > l).

Combining these we get the following bound for term IV for all (i, j) 6= (1, 1),

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] ≤ µj′i
d−1∑
l=0

P(τ > l)− µj
d−1∑
l=0

P(τ > l)

≤ |µj′i − µj |E[τ ].
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If (i, j) = (1, 1) then we have the upper bounded by µ1E[τ ] ≤ E[τ ] = ∆̃0E[τ ] since no pay-off seeps in and we define
∆̃0 = 1.

Let pi be the probability that the confidence bounds for one arm hold in phase i and p0 = 0. Then, the probability that
either arm j′i or j is active in phase i when it should have been eliminated in or before phase i − 1 is less than 2pi−1. If
neither arm should have been eliminated by phase i, this means that their mean rewards are within ∆̃i−1 of each other.
Hence, with probability greater than 1− 2pi−1,

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] ≤ ∆̃i−1E[τ ].

Then, summing over all phases gives that with probability greater than 1− 2
∑m−1
i=0 pi,

m∑
i=1

( Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)
≤ E[τ ]

m∑
i=1

∆̃i−1 = E[τ ]

m−1∑
i=0

1

2i
≤ 2E[τ ].

Combining all Terms: To get the final high probability bound, we sum the bounds for each term I.-IV.. Then, with
probability greater than 1− ( 3

T ∆̃2
m

+ 2
∑m−1
i=1 pi) either j /∈ Am or arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
8

+
1√
2

)√
log(T ∆̃2

m)

nm
+

2E[τ ]

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ]

nm
= wm.

Using the fact that p0 = 0 and substituting the other pi’s using the recursive relationship pi = 3
T ∆̃2

i

+ 2
∑i−1
l=1 pl gives,

3

T ∆̃2
m

+ 2

m−1∑
i=0

pi =
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 2(pm−2 + · · ·+ p1) + pm−2 + · · ·+ p1)

=
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 3(pm−2 + · · ·+ p1))

=
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 3(
3

T ∆̃2
m−2

+ 3(pm−3 + · · ·+ p1))

≤
m∑
i=1

3m−i
3

T ∆̃2
i

=
3

T

m∑
i=1

3m−i22i

=
3

T

m∑
i=1

3m−i4i

=
3

T

m∑
i=1

(
3

4
)m−i4m−i4i

=
3× 4m

T

m∑
i=1

(
3

4
)m−i

≤ 12

T ∆̃2
m

.

Hence, with probability greater than 1− 12
T ∆̃2

m

, either j /∈ Am or 1
nm

∑
t∈Tj(m)(Xt − µj) ≤ wm.
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Defining nm: The above results rely on the assumption that nm ≥ md, so that only the previous arm can corrupt our
observations. In practice, if d is too large then we will not want to play each active arm d times per phase because we will
end up playing sub-optimal arms too many times. In this case, it is better to ignore the bound on the delay and use the
results from Lemma 1 to set nm as in (14). Formalizing this gives

nm = max

{
md̃m,

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 4∆̃mE[τ ]

)2⌉}
(18)

where d̃m = min{d, (14)
m }. This ensures that if d is small, we play each active arm enough times to ensure that wm ≤ ∆̃m

2

for wm in (17). Similarly, for large d, by Lemma 1, we know that nm is suffiently large to guarantee wm ≤ ∆̃m

2 for wm
from (10). �

C.2. Regret Bounds

We now prove the regret bound given in Theorem 6. Note that for these results, it is necessary to use the bridge period of
the algorithm.

Theorem 6 Under Assumption 1 and bounded delay Assumption 2, the expected regret of Algorithm 1 satisfies

E[RT ] ≤
K∑

j=1;j 6=j∗
O

(
log(T∆2

j )

∆j
+ E[τ ]

+ min

{
d,

log(T∆2
j )

∆j
+ log(

1

∆j
)E[τ ]

})
.

Proof: For any sub-optimal arm j, define Mj to be the random variable representing the phase arm j is eliminated in
and note that if Mj is finite, j ∈ AMj

but j 6∈ AMj+1. Then let mj be the phase arm j should be eliminated in, that is
mj = min{m|∆̃m <

∆j

2 } and note that, from the definition of ∆̃m in our algorithm, we get the relations

2m =
1

∆̃m

, 2∆̃mj
= ∆̃mj−1 ≥

∆j

2
and so,

∆j

4
≤ ∆̃mj

≤ ∆j

2
. (19)

Define R
(j)
T to be the regret contribution from each arm 1 ≤ j ≤ K and let M∗ be the round where the optimal arm j∗is

eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ ∞∑
m=0

K∑
j=1

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}+

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

I.

+E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

II.

We will bound the regret in each of these cases in turn. First, however, we need the following results.

Lemma 22 For any suboptimal arm j, if j∗ ∈ Amj , then the probability arm j is not eliminated by round mj is,

P(Mj > mj and M∗ ≥ mj) ≤
24

T ∆̃2
mj

Proof: The proof is exactly that of Lemma 18 but using Lemma 5 to bound the probability of the confidence bounds on
either arm j or j∗ failing. �

Define the event Fj(m) = {X̄m,j∗ < X̄m,j − ∆̃m} ∩ {j, j∗ ∈ Am} to be the event that arm j∗ is eliminated by arm j in
phase m. The probability of this occurring is bounded in the following lemma.
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Lemma 23 The probability that the optimal arm j∗ is eliminated in round m <∞ by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 24

T ∆̃2
m

Proof: Again, the proof follows from Lemma 19 but using Lemma 5 to bound the probability of the confidence bounds
failing. �

We now return to bounding the expected regret in each of the two cases.

Bounding Term I. To bound the first term, we consider the cases where arm j is eliminated in or before the correct round
(Mj ≤ mj) and where arm j is eliminated late (Mj > mj). Then,

E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
= E

[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}

]

= E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj ≤ mj}

]
+ E

[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj > mj}

]

≤
K∑
j=1

E[R
(j)
T I{Mj ≤ mj}] +

K∑
j=1

E[T∆jI{M∗ ≥ mj ,Mj > mj}]

≤
K∑
j=1

2∆jnmj ,j +

K∑
j=1

T∆jP(Mj > mj and M∗ ≥ mj)

≤
K∑
j=1

2∆jnmj ,j +

K∑
j=1

T∆j
24

T ∆̃2
mj

≤
K∑
j=1

(
2∆jnmj ,j +

384

∆j

)
,

where the extra factor of 2 comes from the fact that each arm will be played nm times by the end of phase m to get the data
for the estimated mean, then in the worst case, arm j is chosen as the arm to be played in the bridge period of each phase
that it is active, and thus is played another nm times.

Bounding Term II For the second term, we use the results from Theorem 2, but using Lemma 22 to bound the probability
a suboptimal arm is eliminated in a later round and Lemma 23 to bound the probability j∗ is eliminated by a suboptimal
arm. Hence,

E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

1536

∆j
.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
1920

∆j
+ 2∆jnmj ,j

)

Hence, all that remains is to bound nm in terms of ∆j , T and d. Using Lm,T = log(T ∆̃2
m), we have that,

nmj ,j = max

{
mj d̃mj ,

⌈
1

∆̃2
m

(√
2 log(T ∆̃m) +

√
2 log(T ∆̃m) +

8

3
∆̃m log(T ∆̃m) + 4∆̃mE[τ ]

)2⌉}
≤ max

{
mj d̃mj

,

⌈
1

∆̃2
mj

(
8Lmj ,T +

16

3
∆̃mj

Lmj ,T + 8∆̃mj
E[τ ]

)⌉}
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≤ max

{
mj d̃mj , 1 +

8Lmj ,T

∆̃2
mj

+
8Lmj ,T

3∆̃mj

+
8E[τ ]

∆̃mj

}
≤ max

{
mj d̃mj

, 1 +
128Lmj ,T

∆2
j

+
32Lmj ,T

∆j
+

32E[τ ]

∆j
.

}
where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0.

Hence, using the definition of d̃m = min{d, (14)
m } and the results from Theorem 2, the total expected regret from ODAAF

with bounded delays can be bounded by,

E[Rt] ≤
K∑

j=1;j 6=j∗
max

{
min{d, (16)},

(
256 log(T∆2

j )

∆j
+ 64E[τ ] +

1920

∆j
+ 64 log(T∆2

j ) + 2∆j

)}
. (20)

≤
K∑

j=1;j 6=j∗

(
256 log(T∆2

j )

∆j
+ 64E[τ ] +

1920

∆j
+ 64 log(T∆2

j ) + 2∆j

+ min

{
d,

128 log(T∆2
j )

∆j
+ 96 log(4/∆j)E[τ ]

})
�

Note that the constants in these regret bounds can be improved by only requiring the confidence bounds in phase m to hold
with probability 1

T ∆̃m
rather than 1

T ∆̃2
m

. This comes at a cost of increasing the logarithmic term to log(T∆j). We now
prove the problem independent regret bound,

Corollary 7 For any problem instance satisfying Assumptions 1 and 2 with d ≤
√

T logK
K + E[τ ], the expected regret of

Algorithm 1 satisfies
E[RT ] ≤ O(

√
KT log(K) +KE[τ ]).

Proof: We consider the maximal value each part of the regret in (20) can take. From Corollary 3, the first term is bounded
by

O(min{Kd,
√
KT logK +K log(T )E[τ ]}).

For the first term, we again set λ =
√

K log(K)e2

T . Then, as in corollary Corollary 3, for constants C1, C2 > 0, we bound
the regret contribution by ∑

j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+ C2KE[τ ] + Tλ.

Then, substituting in for λ implies that the second term of (20) is O(
√
KT logK +KE[τ ]).

For d ≤
√

T logK
K +E[τ ], min{Kd,

√
KT logK+K log TE[τ ]} ≤

√
KT logK+KE[τ ]. Hence the bound in (20) gives

E[RT ] ≤ O(
√
KT logK +KE[τ ] +

√
KT logK +KE[τ ]) = O(

√
KT logK +KE[τ ]).

�

D. Results for Delay with Known and Bounded Variance and Expectation
D.1. High Probability Bounds

Lemma 24 Under Assumption 1 of known expected value and 3 of known (bound on) the expectation and variance of the
delay, and choice of nm given in (7), the estimates X̄m,j obtained by Algorithm 1 satisfy the following: For any arm j and
phase m, with probability at least 1− 12

T ∆̃2
m

, either j /∈ Am or

X̄m,j − µj ≤ ∆̃m/2.
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Proof: Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm
. (21)

We show that with probability greater than 1− 12
T ∆̃2

m

, j /∈ Am or 1
nm

∑
t∈Tj(m)(Xt − µj) ≤ wm.

For any arm j, phase i and time t, define,

Ai,t = Rt,JtI{τt,Jt + t ≥ Si}, Bi,t = Rt,JtI{τt,Jt + t ≥ Si,j}, Ci,t = Rt,JtI{τt,Jt + t > Ui,j} (22)

as in (11) and

Qt =

m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1}),

Pt =

m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j},

where νi = ni − ni−1 is the number of times each active arm is played in phase i ≥ 1 (assume n0 = 0). Recall from
the proof of Theorem 2, Ii{H} := I{H ∩ {j ∈ Ai}} ≤ I{H} and for all arms j and phases i, Ii{τt,Jt + t ≥ Si,j} =
I{τt,Jt + t ≥ Si,j} and Ii{τt,Jt + t > Ui,j} = I{τt,Jt + t > Ui,j}.

Then, using the convention S0 = S0,j = 0 for all arms j, we use the decomposition,

m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj) ≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

Rt,JtI{τt,Jt + t ≥ Si}+

Si,j−1∑
t=Si−νi−1

Rt,JtI{τt,Jt + t ≥ Si,j}

+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtI{τt,Jt + t > Ui,j}
)

=

m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

Ai,t +

Si,j−1∑
t=Si−νi−1

Bi,t +

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

(23)

+

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1],︸ ︷︷ ︸
Term IV.

Recall that the filtration {Gs}∞s=0 is defined by G0 = {Ω, ∅} and

Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt).

Furthermore, we have defined Si,j = ∞ if arm j is eliminated before phase i and Si = ∞ if the algorithm stops before
reaching phase i.
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Outline of proof: We will bound each term of the above decomposition in turn. We first show in Lemma 25 how the
bounded second moment information can be incorporated using Chebychev’s inequality. In Lemma 26, we show that
Zt = Qt − E[Qt|Gt−1] is a martingale difference sequence and bound its variance in Lemma 27 before using Freedman’s
inequality. Then in Lemma 28, we provide alternative (tighter) bounds on Ai,t, Bi,t, Ci,t which are used to bound term IV..
All these results are then combined to give a high probability bound on the entire decomposition.

Lemma 25 For any a > bE[τ ]c+ 1, a ∈ N,

∞∑
l=a

P(τ ≥ l) ≤ V(τ)

a− bE[τ ]c − 1
.

Proof: For any b > a, b ∈ N, and by denoting ξ .
= bE(τ)c,

b∑
l=a

P(τ ≥ l) =

b∑
l=a

P(τ − ξ ≥ l − ξ) =

b−ξ∑
l=a−ξ

P(τ − ξ ≥ l)

≤
b−ξ∑
l=a−ξ

V(τ)

l2
(by Chebychev’s inequality since l + ξ > E[τ ] for l ≥ a− ξ)

≤ V(τ)

b−ξ−1∑
l=a−ξ−1

1

l(l + 1)

= V(τ)

b−ξ−1∑
l=a−ξ−1

(
1

l
− 1

l + 1

)

= V(τ)

(
1

a− ξ − 1
− 1

b− ξ

)
.

Hence, taking b→∞ gives
∞∑
l=a

P(τ ≥ l) ≤ V(τ)
1

a− ξ − 1
.

�

Lemma 26 Let Ys =
∑s
t=1(Qt − E[Qt|Gt−1]) for all s ≥ 1, and Y0 = 0. Then {Ys}∞s=0 is a martingale with respect to

the filtration {Gs}∞s=0 with increments Zs = Ys − Ys−1 = Qs − E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, |Zs| ≤ 1 for all
s ≥ 1.

Proof: To show {Ys}∞s=0 is a martingale we need to show that Ys is Gs-measurable for all s and E[Ys|Gs−1] = Ys−1.

Measurability: We show that Ai,sI{Si−1,j ≤ s ≤ Si− νi−1}+Bi,sI{Si− νi−1 + 1 ≤ s ≤ Si,j − 1} is Gs-measurable for
every i ≤ m. This then suffices to show that Ys is Gs-measurable since each Qt is a sum of such terms and the filtration Gs
is non-decreasing in s.

First note that by definition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s. It is sufficient to show that I{τs,Js +
s ≥ Si, Si−1,j ≤ s ≤ Si − νi} + I{τs,Js + s ≥ Si,j , Si − νi−1 + 1 ≤ s ≤ Si,j − 1} is Gs-measurable since the
product of measurable functions is measurable. The first summand is Gs measurable since {Si−1,j ≤ s} ∈ Gs and
{Si = s′, Si−1,j ≤ s} ∈ Gs for all s′ ∈ N ∪ {∞}. So the union

⋃
s′∈N∪{∞}{τs,Js + s ≥ s′, Si−1,j ≤ s ≤ s′ − νi, Si =

s′} = {τs,Js + s ≥ Si, Si−1,j ≤ s ≤ Si − νi−1} is an element of Gs. The same argument works for the second summand
since {Sij = s′, Si − νi−1 ≤ s} ∈ Gs for all s′ ∈ N ∪ {∞}

Increments: Hence, to show that {Ys}∞s=0 is a martingale with respect to the filtration {Gs}∞s=0 it just remains to show that
the increments conditional on the past are zero. For any s ≥ 1, we have that

Zs = Ys − Ys−1 =

s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].
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Then,
E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0

and so {Ys}∞s=0 is a martingale.

Lastly, since for any t and ω ∈ Ω, there is only one i where one of I{Si−1,j ≤ t ≤ Si − νi−1} or I{Si − νi−1 + 1 ≤
t ≤ Si,j − 1} is equal to one (they cannot both be one), and by definition of Rt,Jt , Ai,t, Bi,t ≤ 1, it follows that
|Zs| = |Qs − E[Qs|Gs−1]| ≤ 1 for all s. �

Lemma 27 For any t ≥ 1, let Zt = Qt − E[Qt|Gt−1], then

Sm,j−1∑
t=1

E[Z2
t |Gt−1] ≤ mE[τ ] +mV(τ).

Proof: Let us denote S′ .= Sm,j − 1. Observe that

S′∑
t=1

E[Z2
t |Gt−1] =

S′∑
t=1

V(Qt|Gt−1) ≤
S′∑
t=1

E[Q2
t |Gt−1]

=

S′∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]
.

Then all indicator terms I{Si−1,j ≤ t ≤ Si − νi−1 − 1} and I{Si − νi−1 ≤ t ≤ Si,j − 1} for all i = 1, . . . ,m are Gt−1-
measurable and only one can be non zero for any ω ∈ Ω. Hence, for any ω ∈ Ω, their product must be 0. Furthermore, for
any i, i′ ≤ m, i 6= i′,

Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1} ×Ai′,tI{Si′−1,j ≤ t ≤ Si′ − νi′−1 − 1} = 0,

Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1} ×Bi′,tI{Si′ − νi′−1 ≤ t ≤ Si′,j − 1} = 0,

Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1} ×Bi′,tI{Si′ − νi′−1 ≤ t ≤ Si′,j − 1} = 0,

Ai′,tI{Si′−1,j ≤ t ≤ Si′ − νi′−1 − 1} ×Bi,t × I{Si − νi−1 ≤ t ≤ Si,j − 1} = 0.

Using the above we see that,

S′∑
t=1

E[Z2
t |Gt−1] ≤

S′∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]

=

S′∑
t=1

E
[ m∑
i=1

(A2
i,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}2 +B2

i,tI{Si − νi−1 ≤ t ≤ Si,j − 1}2)
∣∣∣Gt−1

]

=

m∑
i=2

S′∑
t=1

E[A2
i,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}|Gt−1]

+

m∑
i=1

S′∑
t=1

E[B2
i,tI{Si − νi ≤ t ≤ Si,j − 1}|Gt−1]

(using that both indicators are Gt−1-measurable)

≤
m∑
i=2

Si−νi−1−1∑
t=Si−1,j

E[A2
i,t|Gt−1] +

m∑
i=1

Si,j−1∑
t=Si−νi−1

E[B2
i,t|Gt−1].

Then, for any i ≥ 2,

Si−νi−1−1∑
t=Si−1,j

E[A2
i,t|Gt−1] =

Si−νi−1−1∑
t=Si−1,j

E[R2
t,JtI{τt,Jt + t ≥ Si}|Gt−1]
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≤
Si−νi−1−1∑
t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

=

∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

P(τt,Jt + t ≥ s′)

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑

l=νi−1+1

P(τ > l)

≤ V[τ ],

by Lemma 25 since νi ≥ bE[τ ]c+ 2 for all i. Likewise, for any i ≥ 2,

Si,j−1∑
t=Si−νi−1

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si−νi−1

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑

t=Si−νi−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑

t=s−νi−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=νi−1+1

∞∑
s′=s

s′−1∑
t=s−νi−1

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ s′}|Gt−1]

(Since {Si,j = s′, Si = s} ∈ Gt−1 for t ≥ s− νi − 1)

=

∞∑
s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑

t=s−νi−1

P(τt,Jt + t ≥ s′)

≤
∞∑

s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
∞∑
l=0

P(τ > l)

≤ E[τ ]

and for i = 1 the derivation simplifies since we need to some over 1 to S1,j − 1 only. Combining all terms gives the result.
�

Lemma 28 For Ai,t, Bi,t and Ci,t defined as in (22), let νi = ni − ni−1 be the number of times each arm is played in
phase i and j′i be the arm played directly before arm j in phase i. Then, it holds that, for any arm j and phase i ≥ 1,

(i)
Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l).
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(ii)
Si,j−1∑

t=Si−νi−1

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l).

(iii)
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] = µj

νi−1∑
l=0

P(τ > l).

Proof: The proof is very similar to that of Lemma 27. We prove each statement individually.

Statement (i): This is similar to the proof of Lemma 27,

Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
Si−νi−1−1∑
t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=

∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

=

∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

P(τt,Jt + t ≥ s′)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑

l=νi−1+1

P(τ > l)

=

∞∑
l=νi−1+1

P(τ > l).

Statement (ii): For statement (ii), we have that for (i, j) 6= (1, 1),

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1] =

Si,j−νi−1−2∑
t=Si−νi−1

E[Bi,t|Gt−1] +

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1].

Then, since{Si,j = s′} ∩ {Si − νi−1 ≤ t} ∈ Gt−1 so we can use the same technique as for statement (i) to bound the first
term. For the second term, since we will be playing only arm j′i for Si,j − νi−1 − 1, . . . , Si,j − 1, so,

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1] =

Si,j−1∑
t=Si,j−νi−1−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

I{Si,j = s}
s−1∑

t=s−νi−1−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=

∞∑
s=0

s−1∑
t=s−νi−1−1

E[Rt,JtI{Si,j = s, τt,Jt + t ≥ Si,j}|Gt−1]

(Since {Si,j = s′, Si,j − νi−1 ≤ t} ∈ Gt−1 )

=

∞∑
s=0

s−1∑
t=s−νi−1−1

E[Rt,JtI{Si,j = s, τt,Jt + t ≥ s}|Gt−1]
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=

∞∑
s=0

I{Si,j = s}
s−1∑

t=s−νi−1−1

µj′iP(τt,Jt + t ≥ s)

(Since {Si,j = s} ∈ Gt−1 for t ≥ s− νi−1 − 1 and given Gt−1, Rt,Jt and τt,Jt are independent)

=

∞∑
s=0

I{Si,j = s}µj′i

νi−1∑
l=0

P(τ > l)

= µj′i

νi−1∑
l=0

P(τ > l).

Then, for (i, j) = (1, 1), the amount seeping in will be 0, so using ν0 = 0, µ′11
= 0, the result trivially holds. Hence,

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l).

Statement (iii): This is the same as in Lemma 16. �

We now bound each term of the decomposition in (23).

Bounding Term I.: For Term I., we can again use Lemma 17 as in the proof of Lemma 1 to get that with probability
greater than 1− 1

T ∆̃2
m

,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.

Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 10). From Lemma 26, {Ys}∞s=0 with
Ys =

∑s
t=1(Qt−E[Qt|Gt−1]) is a martingale with respect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0

and Zs ≤ 1 for all s. Further, by Lemma 27,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] +mV(τ) ≤ 4×2m

8 (E[τ ] + V(τ)) ≤ nm/8 with
probability 1. Hence we can apply Freedman’s inequality to get that with probability greater than 1− 1

T ∆̃2
m

,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) =

∞∑
s=1

I{Sm,j = s} × Ys ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m),

using that Freedman’s inequality applies simultaneously to all s ≥ 1.

Bounding Term III.: For Term III., we again use Freedman’s inequality (Theorem 10), using Lemma 14 to show that
{Y ′s}∞s=0 with Y ′s =

∑s
t=1(E[Pt|Gt−1]− Pt) is a martingale with respect to {Gs}∞s=0 with increments {Z ′s}∞s=0 satisfying

E[Z ′s|Gs−1] = 0 and Z ′s ≤ 1 for all s. Further, by Lemma 15,
∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤ nm/8 with probability 1.
Hence, with probability greater than 1− 1

T ∆̃2
m

,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) =

∞∑
s=1

I{Um,j = s} × Y ′s ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).

Bounding Term IV.: To begin with, observe that,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

=

Sm,j∑
t=1

E
[ m∑
i=1

(Ai,t × I{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,t × I{Si − νi−1 ≤ t ≤ Si,j − 1})
∣∣∣∣Gt−1

]
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−
Um,j∑
t=1

E
[ m∑
i=1

Ci,t × I{Si,j ≤ t ≤ Ui,j}
∣∣∣∣Gt−1

]

=

m∑
i=1

Sm,j∑
t=1

E[Ai,t × I{Si−1,j ≤ t ≤ Si − νi−1 − 1}|Gt−1]

+

m∑
i=1

Sm,j∑
t=1

E[Bi,t × I{Si − νi−1 ≤ t ≤ Si,j − 1}|Gt−1]

−
m∑
i=1

Um,j∑
t=1

E[Ci,t × I{Si,j ≤ t ≤ Ui,j}|Gt−1]

=

m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] +

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)
(using that the indicators are Gt−1-measurable)

≤
m∑
i=1

( ∞∑
l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l)

)
,

≤
m∑
i=1

(
2V(τ)

νi−1 − E[τ ]
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)
,

≤
m∑
i=1

(
2V(τ)

2i−1
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)
, (24)

by Lemma 28 and Lemma 25 where we have used the fact that since nm ≤ T , the maximal number of rounds of the

algorithm is 1
2 log2(T/4) and for m ≤ 1

2 log2(T/4), log(T ∆̃2
m)

∆̃2
m

≥ 2 log(T ∆̃2
m−1)

∆̃2
m−1

so nm ≥ 2nm−1 and νm ≥ nm−1.

Then for E[τ ] ≥ 1, νi−1 − E[τ ] ≥ 2/∆̃i−1E[τ ] − E[τ ] ≥ (2 × 2i−1 − 1)E[τ ] ≥ 2i−1E[τ ] ≥ 2i−1 and for E[τ ] ≤ 1,
νi−1−E[τ ] ≥ νi−1−1 ≥ 2 log(4)/∆̃i−1−1 ≥ 2i−1 so νi−1−E[τ ] ≥ 2i−1. Then, the probability that either arm j′i or j is
active in phase i when it should have been eliminated in or before phase i−1 is less than 2pi−1, where pi is the probability
that the confidence bounds for one arm holds in phase i and p0 = 0. If neither arm should have been eliminated by phase
i, this means that their mean rewards are within ∆̃i−1 of each other. Hence, with probability greater than 1− 2pi−1,

µj′i

νi∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l) ≤ ∆̃i−1

νi∑
l=0

P(τ > l) ≤ ∆̃i−1E[τ ].

Then, summing over all phases gives that with probability greater than 1− 2
∑m−1
i=0 pi,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1] ≤ 2V(τ)

m∑
i=1

1

2i−1
+ E[τ ]

m∑
i=1

∆̃i−1 = (2V(τ) + E[τ ])

m−1∑
i=0

1

2i

≤ 4V(τ) + 2E[τ ].

Combining all terms: To get the final high probability bound, we sum the bounds for each term I.-IV.. Then, with
probability greater than 1− ( 3

T ∆̃2
m

+ 2
∑m−1
i=1 pi), either j /∈ Am or arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
8

+
1√
2

)√
log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm
= wm.
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Using the fact that p0 = 0 and substituting the other pi’s using the same recursive relationship pi = 3
T ∆̃2

i

+ 2
∑i−1
l=1 pl as

in the case for bounded delays (see the proof of Lemma 5) gives, pm = 12
T ∆̃2

m

so the above bound holds with probability

greater than 1− 12
T ∆̃2

m

.

Defining nm: Setting

nm =

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 4∆̃m(E[τ ] + 2V(τ))

)2⌉
. (25)

ensures that wm ≤ ∆̃m

2 which concludes the proof. �

Remark: Note that if E[τ ] ≥ 1, then the confidence bounds can be tightened by replacing (24) with

m∑
i=1

(
2V(τ)

2i−1E[τ ]
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)
This is obtained by noting that for E[τ ] ≥ 1. νi−1 − E[τ ] ≥ 2/∆̃i−1E[τ ]− E[τ ] ≥ (2× 2i−1 − 1)E[τ ] ≥ 2i−1E[τ ]. This
leads to replacing the V(τ) term in the definition of nm by V(τ)/E[τ ].

D.2. Regret Bounds

Theorem 8 Under Assumption 1 and Assumption 3 of known (bound on) the expectation and variance of the delay, and
choice of nm from (7), the expected regret of Algorithm 1 can be upper bounded by,

E[RT ] ≤
K∑

j=1:µj 6=µ∗
O

(
log(T∆2

j )

∆j
+ E[τ ] + V(τ)

)
.

Proof: The proof is very similar to that of Theorem 2, however, for clarity, we repeat the main arguments here. For any
sub-optimal arm j, define Mj to be the random variable representing the phase arm j is eliminated in and note that if Mj is
finite, j ∈ AMj

but j 6∈ AMj+1. Then letmj be the phase arm j should be eliminated in, that ismj = min{m|∆̃m <
∆j

2 }
and note that, from the new definition of ∆̃m in our algorithm, we get the relations

2m =
1

∆̃m

, 2∆̃mj = ∆̃mj−1 ≥
∆j

2
and so,

∆j

4
≤ ∆̃mj ≤

∆j

2
. (26)

Define R
(j)
T to be the regret contribution from each arm 1 ≤ j ≤ K and let M∗ be the round where the optimal arm j∗is

eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ ∞∑
m=0

K∑
j=1

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}+

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

I.

+E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

II.

We will bound the regret in each of these cases in turn. First, however, we need the following results.

Lemma 29 For any suboptimal arm j, if j∗ ∈ Amj
, then the probability arm j is not eliminated by round mj is,

P(Mj > mj and M∗ ≥ mj) ≤
24

T ∆̃2
mj
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Proof: The proof is exactly that of Lemma 18 but using Lemma 24 to bound the probability of the confidence bounds on
either arm j or j∗ failing. �

Define the event Fj(m) = {X̄m,j∗ < X̄m,j − ∆̃m} ∩ {j, j∗ ∈ Am} to be the event that arm j∗ is eliminated by arm j in
phase m. The probability of this event is bounded in the following lemma.

Lemma 30 The probability that the optimal arm j∗ is eliminated in round m <∞ by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 24

T ∆̃2
m

Proof: Again, the proof follows from Lemma 19 but using Lemma 24 to bound the probability of the confidence bounds
failing. �

We now return to bounding the expected regret in each of the two cases.

Bounding Term I. As in the proof of Theorem 2, to bound the first term, we consider the cases where arm j is eliminated
in or before the correct round (Mj ≤ mj) and where arm j is eliminated late (Mj > mj). Then, using Lemma 22,

E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

(
2∆jnmj ,j +

384

∆j

)

Bounding Term II For the second term, we again use the results from Theorem 2, but using Lemma 29 to bound the
probability a suboptimal arm is eliminated in a later round and Lemma 30 to bound the probability j∗ is eliminated by a
suboptimal arm. Hence,

E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

1920

∆j
.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
1920

∆j
+ 2∆jnmj ,j

)
Hence, all that remains is to bound nm in terms of ∆j , T and E[τ ],V(τ). Using Lm,T = log(T ∆̃2

m), we have that,

nmj ,j =

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃m) + 4∆̃m(E[τ ] + 2V(τ))

)2⌉
≤

⌈
1

∆̃2
mj

(
8Lmj ,T +

16

3
∆̃mj

Lmj ,T + 8∆̃mj
E[τ ] + 16∆̃mj

V(τ)

)⌉

≤ 1 +
8Lmj ,T

∆̃2
mj

+
16Lmj ,T

3∆̃mj

+
8E[τ ]

∆̃mj

+
16V(τ)

∆̃mj

≤ 1 +
128Lmj ,T

∆2
j

+
32Lmj ,T

∆j
+

32E[τ ]

∆j
+

64V(τ)

∆j
.

where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0.

Hence, the total expected regret from ODAAF with bounded delays can be bounded by,

E[Rt] ≤
K∑
j=1

(
256 log(T∆2

j )

∆j
+ 64E[τ ] + 128V(τ) +

1920

∆j
+ 64 log(T ) + 2∆j

)
.

�

Note that again, these constants can be improved at a cost of increasing log(T∆2
j ) to log(T∆j). We now prove the problem

independent regret bound.
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Figure 5: The relative increase in regret at horizon T = 250000 for increasing mean delay when the delay is N+ with
variance 100.

Corollary 9 For any problem instance satisfying Assumptions 1 and 3, the expected regret of Algorithm 1 satisfies

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] +KV(τ)).

Proof: Let λ =
√

K log(K)e2

T and note that for ∆ > λ, log(T∆2)/∆ is decreasing in ∆. Then, for constants C1, C2 > 0

we can bound the regret in the previous theorem by

E[RT ] ≤
∑

j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+KC2(E[τ ] + V(τ)) + Tλ.

substituting in the above value of λ gives a worst case regret bound that scales with O(
√
KT log(K) +K(E[τ ] +V(τ))).

�

Remark: If E[τ ] ≥ 1, we can replace the V(τ) terms in the regret bounds with V(τ)/E[τ ]. This follows by using the
alternative definition of nm suggested in the remark at the end of Section D.1.

E. Additional Experimental Results
E.1. Increasing the Expected Delay

Here we investigate the effect of increasing the mean delay on both our algorithm and QPM-D (Joulani et al., 2013) and
demonstrate that the regret of both algorithms increases linearly with E[τ ], as indicated by our theoretical results. We use
the same experimental set up as described in Section 5. In Figure 5, we are interested in the impact of the mean delay
on the regret so we kept the delay distribution family the same, using a N+(µ, 100) (Normal distribution with mean µ,
variance 100, truncated at 0) as the delay distribution. We then ran the algorithms for increasing mean delays and plotted
the ratio of the regret at T to the regret of the same algorithm when the delay distribution was N+(0, 100). In this case,
the regret was averaged over 1000 replications for ODAAF and ODAAF-V, and 5000 for QPM-D (this was necessary since
the variance of the regret of QPM-D was significant). Here, it can be seen that increasing the mean delay causes the regret
of all three algorithms to increase linearly. This is in accordance with the regret bounds which all include a linear factor
of E[τ ] (since here log(T ) is kept constant). It can also be seen that ODAAF-V scales better with E[τ ] than ODAAF (for
constant variance). Particularly, at E[τ ] = 100, the relative increase in ODAAF-V is only 1.2 whereas that of ODAAF is 4
(QPM-D has the best relative increase of 1.05).

E.2. Comparison with Vernade et al. (2017)

Here we compare our algorithms, ODAAF, ODAAF-B and ODAAF-V, to the (non-censored) DUCB algorithm of Vernade
et al. (2017). We use the same experimental setup as described in Section 5. As in the comparison to QPM-D, in Figure 6
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(a) Bounded delays. Ratios of regret of ODAAF (solid
lines) and ODAAF-B (dotted lines) to that of DUCB.
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Figure 6: The ratios of regret of variants of our algorithm to that of DUCB for different delay distributions.

we plot the ratios of the cumulative regret of our algorithms to that of DUCB for different delay distributions. In Figure 6a,
we consider bounded delay distributions and in Figure 6b, we consider unbounded delay distributions. From these plots,
we observe that, as in the comparison to QPM-D in Figure 3, the regret ratios all converge to a constant. Thus we can
conclude that the order of regret of our algorithms match that of DUCB, even though the DUCB algorithm of Vernade
et al. (2017) has considerably more information about the delay distribution. In particular, along with knowledge on the
individual rewards of each play (non-anonymous observations), DUCB also uses complete knowledge of the cdf of the
delay distribution to re-weigh the average reward for each arm. Thus, our algorithms are able to match the rate of regret
of Vernade et al. (2017) and QPM-D of Joulani et al. (2013) while just receiving aggregated, anonymous observations and
using only knowledge of the expected delay rather than the entire cdf.

We ran the DUCB algorithm with parameter ε = 0. As pointed out in Vernade et al. (2017), the computational bottleneck in
the DUCB algorithm is evaluating the cdf at all past plays of the arms in every round. For bounded delay distributions, this
can be avoided using the fact that the cdf will be 1 for plays more than d steps ago. In the case of unbounded distributions,
in order to make our experiments computationally feasible, we used the approximation P(τ ≤ d) = 1 for d ≥ 200. Another
nuance of the DUCB algorithm is due to the fact that in the early stages, the upper confidence bounds are dominated by
the uncertainty terms, which themselves involve dividing by the cdf of the delay distributions. The arm that is played last
in the initialization period will have the highest cdf and so it’s confidence bound will be largest and DUCB will play this
arm at time K + 1 (and possibly in subsequent rounds unless the cdf increases quickly enough). In order to overcome this,
we randomize the order that we play the arms in during the initialization period in each replication of the experiment. Note
that we did not run DUCB with half normal delays as DUCB divides by the cdf of the delay distribution and in this case
the cdf would be 0 at some points.

F. Naive Approach for Bounded Delays
In this section we describe a naive approach to defining the confidence intervals when the delay is bounded by some d ≥ 0
and show that this leads to sub-optimal regret. Let

wm =

√
log(T ∆̃2

m)

2nm
+
md

nm
.

denote the width of the confidence intervals used in phasem for any arm j. We start by showing that the confidence bounds
hold with high probability:

Lemma 31 For any phase m and arm, j,

P(|X̄m,j − µj | > wm) ≤ 2

T ∆̃2
m

.
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Proof: First note that since the delay is bounded by d, at most d rewards from other arms can seep into phase i of playing
arm j and at most d rewards from arm j can be lost. Defining Si,j and Ui,j as the start and end points of playing arm j in
phase i, respectively, we have ∣∣∣∣∣∣

Ui,j∑
t=Si,j

Rj,t −
Ui,j∑
t=Si,j

Xt

∣∣∣∣∣∣ ≤ d , (27)

because we can pair up some of the missing and extra rewards, and in each pair the difference is at most one. Then, since
Tj(m) = ∪mi=1{Si,j , Si,j + 1, . . . , Ui,j} and using (27) we get

1

nm

∣∣∣∣∣∣
∑

t∈Tj(m)

Rj,t −
∑

t∈Tj(m)

Xt

∣∣∣∣∣∣ ≤ md

nm
.

Define R̄m,j = 1
|Tj(m)|

∑
t∈Tj(m)Rj,t and recall that X̄m,j = 1

|Tj(m)|
∑
t∈Tj(m)Xt. For any a > md

nm
,

P
(
|X̄m,j − µj | > a

)
≤ P

(
|X̄m,j − R̄m,j |+ |R̄m,j − µj | > a

)
≤ P

(
|R̄m,j − µj | > a− md

nm

)
≤ 2 exp

{
−2nm

(
a− md

nm

)2
}
,

where the first inequality is from the triangle inequality and the last from Hoeffding’s inequality since Rj,t ∈ [0, 1] are

independent samples from νj , the reward distribution of arm j. In particular, taking a =

√
log(T ∆̃2

m)
2nm

+ md
nm

guarantees that
P
(
|X̄j − µj | > a

)
≤ 2

T ∆̃2
m

, finishing the proof. �

Observe that setting

nm =

⌈
1

2∆̃2
m

(√
log(T ∆̃2

m) +

√
log(T ∆̃2

m) + 4∆̃mmd

)2 ⌉
. (28)

ensures that wm ≤ ∆̃m

2 . Using this, we can substitute this value of nm into Improved UCB and use the analysis from
(Auer & Ortner, 2010) to get the following bound on the regret.

Theorem 32 Assume there exists a bound d ≥ 0 on the delay. Then for all λ > 0, the expected regret of the Improved
UCB algorithm run with nm defined as in (28) can be upper bounded by

∑
j∈A

∆j>λ

(
∆j +

64 log(T∆2
j )

∆j
+ 64 log(2/∆j)d+

96

∆j

)
+

∑
j∈A

0<∆j<λ

64

λ
+ T max

j∈A
∆j≤λ

∆j

Proof: The result follows from the proof of Theorem 3.1 of (Auer & Ortner, 2010) using the above definition of nm. �

In particular, optimizing with respect to λ gives worst case regret of O(
√
KT logK + Kd log T ). This is a suboptimal

dependence on the delay, particularly when d >> E[τ ].
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