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Abstract

We study online convex optimisation on ¢,,-balls in R for p > 2. While always
sub-linear, the optimal regret exhibits a shift between the high-dimensional set-
ting (d > T'), when the dimension d is greater than the time horizon 7" and the
low-dimensional setting (d < T'). We show that Follow-the-Regularised-Leader
(FTRL) with time-varying regularisation which is adaptive to the dimension regime
is anytime optimal for all dimension regimes. Motivated by this, we ask whether it
is possible to obtain anytime optimality of FTRL with fixed non-adaptive regulari-
sation. Our main result establishes that for separable regularisers, adaptivity in the
regulariser is necessary, and that any fixed regulariser will be sub-optimal in one of
the two dimension regimes. Finally, we provide lower bounds which rule out sub-
linear regret bounds for the linear bandit problem in sufficiently high-dimension
for all £,-balls with p > 1.

1 Introduction

We study Online Convex Optimisation (OCO) [16, 45]], a sequential game where in each round
t =1,...,T,alearner selects a point x; in a convex set V' C R and suffers a convex loss ¢;(x;), the
full loss ¢, is then revealed to the learner before the next point x4 is selected. The learner competes
against the best fixed point in hindsight and aims to minimise its regret against this competitor:
Ry = 23:1 li(xt) — mingey ZL £¢(u). Optimal performance is known to depend on parameters
of the problem such as the geometry of the set V' and constraints on the losses ¢; (28], 23 [25]142]].

We consider the setting where the action set V = {x € R? : ||z||, < 1} is an ,,-ball in d-dimensional
space with p > 2 and losses are L-Lipschitz with respect to ||-||, (ensuring Ry < 2LT). The study
of £,,-geometries with p > 2 has been the focus of many works in optimisation [10} 28| (18], 24} [25] as
it covers sets with varying levels of curvature, offering insights for more general spaces.

In this work, we study the behaviour of the Follow-The-Regularised-Leader (FTRL) (and Online
Mirror Descent (OMD)) family of algorithms in achieving anytime optimal regret guarantees.
Anytime refers to the absence of knowledge of the time horizon 7. We focus on two regimes:
the high-dimensional setting where d > T and the low-dimensional setting where d < T'. For
£p-balls with p > 2, the optimal regret exhibits a shift from the high-dimensional setting to the
low-dimensional setting (see [Table T)). If 7' is unknown, then so is the dimension regime when
the game begins. We show that anytime optimality can be achieved with FTRL by using adaptive
regularisation that in early high-dimensional rounds uses a uniformly-convex regulariser of degree p
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(see and switches to a strongly-convex regulariser in round ¢o ~ d. Despite achieving
the anytime optimal regret through adaptive regularisation, it remains an open question whether this
can be achieved through OMD or FTRL with a single fixed regulariser. This would be desirable
since it would provide algorithmic simplicity as well as an understanding of how to appropriately
regularise £,-balls across all dimension-regimes simultaneously. Therefore, we aim to answer the
following question:

Can OMD or FTRL with a fixed regulariser be anytime optimal for OCO on £,-balls withp > 2 ?

To answer this question, it is natural to first consider the regularisers that are optimal in one of the
dimension regimes. However, we give algorithmic-dependent lower bounds that show that these
are not anytime optimal (Proposition 4.1] [Proposition 4.5). More generally, we also show that any
strongly-convex regulariser is provably sub-optimal in the high dimensional setting (Theorem 4.7)).

We then turn to our main result which provides a negative answer to the above question for

separable regularisers (that separate additively over dimension: ¢ (z) = Ele gi(x;)). The result
(Theorem 4.6) states that a separable regulariser (with OMD or FTRL) cannot be anytime optimal.
This also establishes that the adaptive regularisation used in our procedure to achieve anytime
optimality is necessary for separable regularisers. The class of separable regularisers covers a wide
range of regularisers including all of the form ||z||. for any » > 1 which are commonly used in
OMD and FTRL [10} 28, |43]]. Moreover, the result holds for any separate coordinate-wise decreasing
step-sizes, showing that the widely used diagonal versions of Adagrad-style algorithms [12] are also
anytime sub-optimal and emphasising the relevance of this result on practical methods. As far as
we are aware, results on the failure of fixed regularization are novel in online learning. However,
algorithmic specific lower bounds (like the ones we have for specific regularizers in

and [Proposition 4.5) have appeared in prior work (e.g. Theorems 3 & 4 in [37])).

For any online learning problem, the learner may not know if the game will end in low or high
dimensions, and designing optimal procedures in both cases is important. Our results show that
achieving this is not straightforward for £,-balls, highlighting that this problem should not be
overlooked in online learning more broadly and pointing out that the question on universality of
mirror descent started in prior works [39] is not completely answered (see discussion in[Section 4.3).
We note that the ¢,/¢, setting (i.e. V = B, 0¢,(x) C B,) is relevant in the literature, e.g., see the
open problem in [[17]]. Our work highlights the difficulty of this setting for p = g > 2.

Finally, we consider the linear bandit problem where only the loss evaluated at x; is observed
(Section 3). We would like to approach this problem in the same way as the full-information problem
by characterising the algorithms achieving optimal regret guarantees across all dimension regimes.
However, while sub-linear regret bounds have been established in the low-dimensional setting by [23]],
we show that the bandit setting is fundamentally different and much more difficult since sub-linear
regret bounds become unachievable when the dimension is large enough (Theorem 5.1).

Table 1: Optimal regret rates for OCO on £,,-balls (p > 2) from known results. [28]] show the regret
bound of O(LT"/2d"/?~1/P) achieved by OMD using a strongly-convex regulariser is optimal for
d = O(T). When d > T this bound is vacuous since Ry < 2LT. For d > T, OMD with a
uniformly-convex regulariser of degree p guarantees a regret of O(LT"~'/?) [40] and is optimal

[34] 118} 17, 140]. These guarantees can also be achieved with FTRL using the same regularisers
(36 4].

d < T (low-dim) d > T (high-dim)

Optimal Regret Rate LVTdr—2/p LT-1/p
Regularisation (OMD or FTRL)  Strongly-convex  Uniformly-convex

1.1 Contributions

We highlight our contributions for OCO on ¢,,-balls for p > 2 below. Note that the case p € [1, 2] is
already understood across all dimension regimes and does not present shifts in the rate of regret with



respect to the time horizon 7" unlike in the p > 2 case, see[Remark 2.1] [28]. We focus here on FTRL
but the results also hold for OMD, and we include these in|[Appendix H

* We consider anytime bounds where the time horizon 7" is not known in advance and show FTRL
with adaptive regularisation achieves anytime optimality (Theorem 3.1)).

* We establish algorithmic-specific lower bounds for instances of FTRL that show that the fixed regu-
lariser achieving optimality in low-dimensions (||z||3) is provably sub-optimal in high-dimensions
(Proposition 4.1), and the fixed regulariser achieving optimality in high-dimensions (||z[[}) is
provably sub-optimal in low-dimensions (Proposition 4.5). We also provide a more general result
on the sub-optimality of any strongly-convex regulariser in high-dimensions (Theorem 4.2)).

* Our main result: For separable regularisers, or regularisers that are within a multiplicative
constant of these, we show that adaptive regularisation for OMD or FTRL is necessary to
achieve anytime optimality (Theorem 4.6), ruling out the existence of a single anytime optimal
separable regulariser.

e In we connect results from the literature to fully characterise optimality for {,,-balls with
p > 2 across all dimension regimes . In particular, we highlight that FTRL with a strongly-convex
regulariser achieves the optimal regret in low-dimensions and FTRL with a uniformly-convex
regulariser of degree p achieves the optimal regret in high-dimensions.

* Finally, for bandit feedback where only ¢;(x;) is revealed to the learner in each round ¢ instead of
the full loss, we establish lower bounds for all convex ¢,,-balls (p > 1) showing any linear bandit

learner suffers linear regret when the dimension is large enough (Theorem 35.1)).
We also include some simulations in [Appendix A|which validate some of our theoretical findings.

1.2 Related works

High-dimensional Online Learning: The setting where d > T has been considered mostly for the
stochastic linear bandit problem [20} 30, [7, 29, 26], where the stochastic linear refers to the losses
being fixed and linear but observed with i.i.d. noise as opposed to the harder fully adversarial nature
of our setting. Beyond stochastic linear bandits, little attention has been given to the high-dimensional
setting. Although the high-dimensional setting was not explicitly studied in [28]], the results provided
for OCO on /,,-balls for p € [1, 2] fully characterise regret optimality across all dimensions (see
Remark 2.1)). Similarly, the results we present for the high-dimensional case of £,,-balls with p > 2 in
ection 2.3|follow from prior work not explicitly studying the high-dimensional setting [40l |4].

Uniform Convexity of functions see also [46] [T} B3] 24]]) is the key ingredient
to obtain dimension-independent regret bounds in high-dimensions. Uniformly-convex functions
have been considered as regularisers for offline [[10] and online optimisation [40, 4]], and also as
objectives [22]] and losses [39]. Uniform convexity of setsﬂ [I8L 19} 2] allows for interpolation of the
set curvature between strong convexity and absence of curvature. In optimisation, curvature of the
action set such as strong convexity typically leads to accelerated convergence rates [21} 33} [14}132].
Uniformly-convex sets then allow interpolation between the faster rates of strongly-convex sets and
the slower rates of sets without curvature [[11, 23] 25! 42]] (see [24] for an overview). In this work,
we consider a natural class of uniformly-convex sets, £,,-balls for p > 2. These balls also interpolate
between strongly-convexity (p = 2) and absence of curvature (p = c0), and in high dimensions we
recover a connection between curvature and faster rates (72~ 1/), which is absent in low-dimensions
if we consider the dimension as fixed where the rate is O(+/T') for all values of p > 2.

1.3 Notation

We use the following notation: r, is the dual of » > 1 satisfying 1/r + 1/r, = 1, ||z||, =

1 .
(S8 |2]7) /™ denotes the £, norm, ||z, is the dual norm of ||z, ¢, (z) = L|z||7 for r > 2, 2y
denotes the i-th entry of a vector x; with a time index ¢, e; denotes the i-th canonical basis vector,
and Jf(x) is the set of sub-gradients of a function f at . For a function f : R — R, we write

f(x) = O(g(x)) (resp. Q(g(x))) where I¢ > 0, N € R such that for all z > N, f(n) < cg(n)
(resp. f(n) > cg(n)). We use O and 2 when we ignore logarithmic factors.

"Uniform convexity for sets and uniform convexity for functions are connected through an equivalence of
uniform convexity between a set and the set-induced norm [24].



2 Preliminaries

In this section, we review results from prior works on OCO for /,-balls and connect them to
fully characterise the optimal rates across all dimension regimes. The action setis V' = B, =
{z € R : ||z, < 1}, the unit £,-ball with p > 2. We assume we have L-Lipschitz losses in £,
norm (i.e. ||g¢||p, < L for g; € 9¢,(z)), ensuring the regret incurred in a single round is bounded by
2L, and the overall regret by 2LT'.

We first present a general regret bound for FTRL using a uniformly-convex regulariser (Section 2.1)).
We focus here on FTRL because of its advantages over OMD (in unbounded domains, the regret of
OMD can be linear while FTRL maintains sub-linear regret [37]), although the results we discuss
also hold for OMD and we include these in[Appendix H| We then consider these bounds with specific
regularisers and provide matching lower bounds to establish the optimal regret in the low-dimensional
setting (Section 2.2)) and high-dimensional setting m The results from this section follow
from prior work and we include the missing proofs in

Remark 2.1. We focus on {,-balls for p > 2 because the case p € [1,2] is already understood
[28]]. [28] show that when p € [1,2], OMD with regulariser () = ||z|?/2(a — 1) and a =
max{l +1/ log(2d),p} achieves a regret of O(\/T/(a — 1)) and this is optimal for all d except if
T < 1/(a — 1) for which sub-linear regret is not possible.

2.1 FTRL and uniformly-convex regularisation

In this section, we review the analysis of Follow-the-Regularised-Leader (FTRL) using a uniformly-
convex regulariser [4] which will lead to the regret guarantees in the subsequent sections. First, we
provide the definition of a uniformly-convex function from [35]] (note there are also other standard
equivalent definitions, see e.g. [24]]).

Definition 2.2 ([35]]). A differentiable function f on a closed convex set V' is p-uniformly-convex on
V of degree p > 2 w.r.t. a norm ||-|| if there exists . > 0 such that for all z,y € V,

fly) > f@) + (Vf(@),y —a) + %ny — x|

Uniform convexity generalises strong convexity by weakening the condition of a quadratic lower
bound allowing functions that are locally much flatter. In particular, uniform convexity with p = 2
recovers strong convexity. Though FTRL is usually considered with a strongly-convex regulariser, its
analysis can be generalised to uniformly-convex regularisers [4], as seen in the following theorem
which we write in a general form to ensure results in following sections directly follow from it.

Theorem 2.3. Let V. C R? be convex and consider proper convex losses (£;)L_,. Fort > 1, let
Yy : RT — R be a proper; closed and differentiable pi;-uniformly-convex function on 'V of degree
r¢ > 2 with respect to a norm ||-||;; (we use this notation to avoid confusion with the £, norm ||-|,
we will denote the dual norm as ||-|| . ). At time-step t = 1,...,T, FTRL on linearised losses with
time-varying regularisers (1)L, outputs the following points with g; € 04, (x) for all t,

vy = argmin{ () + Z g ) . M

Then for any u € V and g, € 0ly(xy), the points played by FTRL satisfy the following regret bound:

T
> il = to(w) < ¥r(u) - mines (2 +Z{

A version of this result can be found in [4] We include the proof in[Appendix C.T|for completeness. If

we consider a fixed regulariser with a step-size (v (x) = m—l_lw(x) for a fixed ) so that the condition

of uniform convexity is fixed for all rounds, we get the following result (proof in[Appendix C.2

Corollary 2.4. Let V C R? be convex and consider proper convex losses ((;)_,. Let) : R — R>0
be a proper, closed and differentiable p-uniformly-convex function on V of degree r > 2 with respect
to anorm ||-||. Assume V' is bounded and let D be such that sup,cy, ¥(z) < D. Assume the losses are

T H tHITt w + Ye(Te41) —¢t+1(9€t+1)}~

Tt,ut



Ly.-Lipschitz with respect to ||-||. Consider using FTRL in () with regularisers ,(z) = ——1(x)
DY/ M
Ly (re =)/ mett/re

and ni—1 = Then for any u € V,
1/7" 1/7’( L L
th(.ft) —Et(u) < TLH HD /TT /7‘*.

The degree r of uniform convexity in the above regret bound offers a trade-off between the dependence
on the horizon 7" and the diameter D, while leaving the Lipschitz constant unaffected. In particular, a
larger r will shrink the dependence on the diameter at the cost of a worst rate w.r.t. 7. This can give
better regret bounds for high-dimensional problems where the dimension dependence arises through
the diameter D, as is the case for £,,-balls (see . With » = 2, we recover the standard

regret bound of FTRL using a strongly-convex regulariser, R < 2L/ DT/ .

It is also possible to obtain bounds that are Lipschitz-adaptive (do not require knowledge of L) and

adapt to the sequence of sub-gradients (scale with Zthl llg:||=* instead of T%/7+) using a gradient
clipping technique (see the blog-post by [41] and Section 4 in [9]).

2.2 Low-dimensional regime

In this section, we consider OCO on By, in the low-dimensional setting where d < T'. Using FTRL
with strongly-convex regularisation in this setting achieves the optimal regret. Specifically, we
consider the squared />-norm ¢o(x) = %||z||2 as the regulariser. This is 1-strongly-convex on V/
with respect to ||-||2 and we can apply with 7 = 2. We have that L., < L since the
losses are L-Lipschitz with respect to |-||, and p, < 2 s0 ||g¢]l2 < ||g¢llp, < L. The diameter of

B, measured by ¢ is D = sup,cp, ¢2(2) = sup,ep, 3llzll3 = 5d'~*/P. So FTRL guarantees
Ry < LV2d'~=2/PT, which is optimal up to constants for d < T as shown by the theorem below.
Theorem 2.5. Fix d < T and let A be any algorithm for OCO on V' = B,,. There exists a sequence
of L-Lipschitz losses w.r.t. ||-||, such that A suffers a regret of at least %Lv di—2/pT,

Optimality in low-dimension was established by [28]] (both upper and lower bounds). However, the
lower bound we present above contains better constants and a simpler analysis stemming from the
“probabilistic” method instead of the reductions from estimation to testing used by [28]]. The proof

can be found in

2.3 High-dimensional regime

In this section, we consider OCO on B,, in the high-dimensional setting where d > T'. We saw in

the previous section that the optimal regret in low-dimensions of O(1/d'~2/PT) is polynomial in
the dimension. As d — oo for fixed 7', this polynomial dependence on the dimension cannot remain
optimal since R < 2LT is bounded. Nevertheless, we will see that sub-linear regret bounds (in 7")
are possible for any d > T, even when d is such that vV d*~2/PT > T. However, this is not achievable
using strongly-convex regularisation (we delay discussion of this failure to[Section 4). Instead, in this
section we consider uniformly-convex regularisation of degree p > 2 that enforces less curvature,
allowing points in the corners of B, to be more appropriately regularised in high dimensions. This
allows us to obtain optimal regret bounds for the high-dimensional regime.

We consider FTRL on B, with the regulariser ¢, (z) = % > llz[|5. The following proposition ensures

that ¢,, is uniformly-convex of degree p with respect to H [[p- This is a well-known result derived
from Clarkson’s inequality. We include a proof in[Appendix C.5|to provide clarity on the constant of
uniform convexity.

Proposition 2.6. Fixp > 2. ¢,(x) = %Hxﬂg is 2'=P-uniformly-convex of degree p w.r.t. ||-||, on Bp.

We can now apply [Corollary 2.4\ with r = p. We have that L), = L since the losses are L-Lipschitz
with respect to ||-||,. The diameter of 55, measured by ¢, is D = 1/p. So FTRL guarantees

Ry < L(Zp*T) 1 P+ which is optimal up to constants for d > 7" as shown by the theorem below.



Theorem 2.7. Fix d > T and let A be any algorithm for OCO on V' = By,. There exists a sequence
of L-Lipschitz losses w.r.t. ||-||,, such that A suffers a regret of at least LT/,

This lower bound follows from an online-to-batch conversion of the lower bound for high-dimensional
(offline) Lipschitz convex optimisation [34} 18, [17] or an instantiation of the lower bound by [40]

(Lemma 15). We include the details of the latter in[Appendix C.4]

3 Anytime optimality through adaptive regularisation

In the previous section (Section 2)), we saw that the optimal regret is achieved with strongly-convex
regularisation in the low-dimensional setting (d < T') and with uniformly-convex regularisation in the
high-dimensional setting (d > T'). To be optimal, the learner with knowledge of the dimension d and
the time horizon 7" can evaluate whether d > T or d < T and select the appropriate regularisation
based on whether the problem is high or low dimensional. However, choosing the correct regulariser
relies on knowing whether the problem is high (d > T') or low (d < T') dimensional, which itself
relies on knowing the horizon 7. In this section, we consider how to achieve anytime optimal regret
bounds which hold without knowledge of 7T'.

We consider FTRL with regularisation that adapts to the dimension regime. Fix t, = 3727/(P=2)q,
Then, in early high-dimensional rounds, the uniformly-convex ¢,, is used, until the threshold ¢o when
the low-dimensional regime is reached and the regulariser switches to the strongly-convex ¢-. In both
cases, the step-size used is the one in Specifically, with ¢,.(z) = L||z|| for r > 2, we
consider FTRL with regulariser at time ¢ given by
1 1 :
() = {m1¢p($>7 Nt—1 = Tap, 7 ift <o,

v dl—2/ .
,,t171¢2(30)7 MN—1 = Z@p, if t > tp.

FTRL with this sequence of regularisers is anytime optimal as shown by the following theorem.
Theorem 3.1. Let V = B, (p > 2) and consider proper convex losses ({;)}—, that are L-Lipschitz
with respect to ||-||. Consider FTRL with regularisers given in (2). Then

L(2p. 7)Y, T <to,
Ry <
LV2Td—2/p,  if T > t,

The proof is in[Appendix D|and consists of a careful application of The time-step where
the regulariser changes is handled by the specific value of the threshold to = 3727/(P=2)d. This
value allows us to recover the same low-dimensional bound (including constants) as in
achieved using strongly-convex regularisation from the start. For the high-dimensional setting, there
is no switch in regulariser so the algorithm and regret bounds are identical to those in In
other words, being agnostic to the dimension regime comes at no cost to the regret bound. The above
procedure can be used with gradient-clipping techniques discussed by [41] to obtain a Lipschitz-
adaptive anytime optimal algorithm. OMD can also be used to achieve anytime optimality with

similar adaptive regularisation (see [Appendix H.

Our anytime-optimal procedure is like a restarting technique except the step-size in the later low-
dimensional time-steps accounts for the earlier time-steps. This makes constants not degrade. In
potentially more complicated settings requiring many switches in regularisation, not accounting for
earlier time-steps in the step-size may come at the cost of more than just constants. A doubling-trick
approach could also be used, though at the cost of worse constants (see e.g. [Appendix F).

(@)

4 Necessity of adaptive regularisation

In the previous section, we demonstrated that adaptive regularisation achieves anytime optimal regret
bounds for OCO on /,,-balls with p > 2. In this section, we show that for separable regularisers,
adaptive regularisation is necessary for anytime optimality. We first show that the regularisers we
have considered up to now are provably anytime sub-optimal: in we show that strong
convexity fails in high-dimension; in we show that the uniformly-convex regulariser
Op = %||x||§ fails in low-dimension. Then, we present the main result of this section on the failure of
using a fixed separable regulariser in[Section 4.3] All the missing proofs for this section can be found

in{Appendix E



4.1 Failure of strong convexity in high-dimensions

We saw in [Section 2.2|that the strongly-convex regulariser ¢o(z) = % |2||3 achieves the optimal
O(Vd'=2/PT) regret guarantee in the low-dimensional setting (d < T') but this bound is sub-optimal
in the high-dimensional setting (d > T') because of the polynomial dependence on the dimension.
We show that such a sub-optimal polynomial dependence on the dimension necessarily appears in
the regret bound for any strongly-convex regulariser on 3,. This occurs since these strongly-convex
regularisers can be shown to take values that scale polynomially with d for points in the corners of the
¢,-balls [10, Example 4.1]. The following two results establish that these sub-optimal regret bounds
are not loose and that strongly-convex regularisers are provably sub-optimal in high-dimensions. The
first is a lower bound specific to FTRL with regulariser ¢s.

Proposition 4.1. There exists a sequence of linear L-Lipschitz losses (in £,-norm) for which FTRL
with regulariser 1;(x) = —— ¢y () and any sequence of decreasing 1,1 suffers regret

Mt—1
Ry > L- min(%, é\/le—Q/P).

The above proposition shows the regret of FTRL with regulariser ¢4 scales polynomially with d until
it is linear in T". This demonstrates the analysis from [Section 2.2]is in fact tight and this algorithm
is sub-optimal in high-dimensions. We now state a more general result that shows that using FTRL
with any strongly-convex regulariser fails if the dimension is large enough. This also establishes that
strongly-convex regularisers cannot be anytime optimal (see[Section 4.3).

Theorem 4.2. Consider a sign invarianﬂ regulariser 1) that is p-strongly-convex with respect to

an arbitrary norm ||-|| (s.t. ||e;|| = 1 for all i) and attains its minimum value 0 at x = 0. Consider

V = B, with p > 2 and assume losses are L-Lipschitz in {,-norm. If d > (4T/u)p/(p_2),

there exists a sequence of linear L-Lipschitz losses (in {y-norm) for which FTRL with regulariser
Ye(x) = m%lw(x) and any sequence of decreasing 1,1 suffers regret Ry > £ LT.

The above theorem is a consequence of the following two lemmas (proofs in[Appendix E)).

Lemma 4.3. Consider a sign-invariant function 1 that is u-strongly-convex with respect to an
arbitrary norm ||-|| (s.t. |le;|| = 1 for all i) and attaining its minimum value 0 at x = 0. Then
P(x) > Gl

Lemma 4.4. Consider V = B, with p > 2 and assume losses are L-Lipschitz in {,-norm. Let 1) be a
convex function satisfying for some p > 0 and any © € R%, ¢(x) > &||z|3. If d > (4T/,u)p/(p_2),
there exists a sequence of linear L-Lipschitz losses (in {,-norm) for which FTRL with regulariser
Ye(x) = m—l_lz/J(x) and any sequence of decreasing n,_1 suffers regret R > %LT :

4.2 Failure of uniform convexity in low-dimension

We saw in that the uniformly-convex regulariser of degree p, ¢, (x) = %||x||§, .achieves
optimal regret guarantees in the high-dimensional setting (d > T'). The next result shows its regret
guarantees are provably sub-optimal in low-dimensions, where the optimal rate is O(vT'd}~2/P).

Proposition 4.5. There exists a sequence of linear L-Lipschitz losses (in {,-norm) for which FTRL

with regulariser 1 (x) = nil ¢p(x) and any sequence of decreasing 1n,_1 suffers regret

T TP+
Rr>1L- min(—, 7>
8’ 8

We remark that a general result for uniformly-convex function of degree p as we had for strong
convexity in[Theorem 4.2] does not hold. This is because uniform convexity is a condition on the
minimum curvature and so is not the reason for the failure of ¢, in the low-dimensional setting.
The reason for the failure is that ¢,, is only uniformly-convex of degree p and does not satisfy some
stronger curvature condition. Regularisers with stronger curvature conditions such as strong convexity

?A function f : X C R? — R is sign invariant if for any s € {—1,1}%, f(s-x) = f(x) forallz € X
where s - x denotes coordinate-wise multiplication.



that are optimal in the low-dimensional setting naturally also satisfy uniform convexity of degree
p > 2 on B,,. The combination of the failure of strong convexity in high-dimensions and the necessity
for strong curvature conditions in low-dimensions is the key insight for showing the necessity of
adaptivity for separable regularisers in the next section.

4.3 Failure of fixed separable regularisation

In this section, we study the anytime optimality of FTRL under a fixed regulariser. While the previous
two sections established that the two specific regularisers we considered in (which are
each optimal for one regime) are not able to guarantee this, it does not rule out the existence of a
regulariser that could. We consider the class of separable regularisers defined as

U={y:B, >Ry Zgacz g€ F}, (3)

where F = {g : R — R>0; convex, sign-invariant, 0 = arg min g(z), g(0) = 0,g(1) = 1}.
z€R

The function class F is a set of 1-dimensional even regularisers scaled to be in [0, 1] for z € [—1, 1]
(e.g. 2" for r > 1). The class ¥ covers a wide range of regularisers including all of the form ||x||”. for
any r > 1. We can now state our main result on the failure of fixed separable regularisation. This
result also holds for OMD with minor modification to the proof (see [Appendix H).

Theorem 4.6. FTRL with regulariser 1;(x) = nth Y(x) for ¢ € U and any sequence of decreasing

Ny—1 cannot be optimal across all dimensions. Specifically there are no constants cy, c; > 0 such
that for all T, Ry < c, LT'™V/? foralld > T and Ry < ¢;LVTd'=2/? foralld < T.

Proof. Let’s assume there are constants cp,c¢; > 0 such that for all T, Ry < ¢ LT 1-1/p for

all d > T and Ry < ¢ LVTd'=2/? for all d < T and show a contradiction. We begin with a
lemma showing the necessity of quadratic growth of a regulariser achieving optimal regret in the

1-dimensional case (proof in[Appendix E.3).

Lemma 4.7. Consider d = 1(V = B, = [-1,1]) and ) € F. FTRL with regulariser \;(x) =
1
Nt—1

. . $(1/2
¢ > 0 and all sufficiently large T if for all v € [-1,1], ¥(x) > 15)0/02)932

() and arbitrary decreasing step-size 1,1 can only guarantee Ry < cL/T for some constant

For d = 1, we have (z) = g(x) and under our assumption, Ry < ¢;L/T for all T, so for all
€[-1,1,g(z) > £ (1/2) ;2 by|Lemma 4.7| Hence in the general d-dimensional setting for x € By:

= 100c}
d
= > =
¥(o) = Y o(ei) > 100% g o : 2 a3
We can now use this lower bound with [Lemma 4.4|(from [Section 4.1) and p = %. This gives
1

. 20027\ P/ (P=2)
thatif d > (2557

for which Ry > %LT, contradicting that Ry < ¢, LT*~'/? foralld > T. O

then there exists a sequence of linear L-Lipschitz losses (in £,-norm)

The above result establishes the need for regularisation adaptive to the dimension-regime for anytime
optimality when using FTRL with separable regularisers from . In particular, having seen that
regularisers £||z||3 (strong convexity) and 1 5|l[[5 (uniform convexity of degree p) fail to achieve

optimal anytime regret in the previous sectlons we may be tempted to consider +||z||7 for r € (2, p)
that could trade-off the optimalities of strong-convexity in low-dimension and of uniform- -convexity

in high-dimension. However, rules out this possibility. See also in
Appendix

E|for a precise characterisation of the regret when using 2 ||z[2.

Remark 4.8. We can slightly relax the constraint of separable regularisers in[Theorem 4.6] Firstly,
in the definition of U (B)), a different g; € F can be used for each coordinate. The result then still

holds but the quadratic lower bound on (x) stemming from in the proof will scale



with miny<;<4 9;(1/2) and the dimension from which the regret becomes linear in T scales with
ming <;<q g;(1/2)?/ =2, Secondly, also holds more generally for regularisers 1)
which are within constants of a separable regulariser: c19)'(x) < () < cot)’(z) for ' € U and
constants c1, ¢z > 0. Finally, by[Theorem 4.2} the result holds for any strongly-convex regulariser.

Remark 4.9. In we prove a more general version of[Lemma 4.4|for coordinate-wise

step-sizes, where the FTRL update is allowed to have a different step-size 1,1 ; for each coordinate:
xp = argmin, gy {1#(1;)—1—2?:1 M—1,i T Zi;ll gs,i }- Using this version in theproofo
gives the same result for any sequence of coordinate-wise decreasing step-sizes. This extension
establishes the failure of a wider range of methods, in particular the diagonal versions of Adagrad-
style algorithms [12]].

Remark 4.10. We discuss the connection of our result to the universality of FTRL. It was shown by
[39] that for a fixed r € [2,00) and constant C > 0, for any OCO problem for which a regret upper
bound of CT'=*/" can be guaranteed for all T, then for any T > "', there exists a regulariser with
which OMD/FTRL can guarantee a regret bound of O(Tl’l/ ’” We present this result in more detail
in[Appendix Fland also provide an extension to include the setting where r may change according to T
as in our setting. However, this latter result uses a doubling trick where different regularisers are used
across separate intervals. This poses a question on the universality of FTRL with fixed regularisation
Jfor more general OCO problems where the optimal rate of regret is horizon or dimension dependent.
[Theorem 4.6|offers a negative answer to this question for separable regularisers. However, the case
of more general regularisers remains open. Note that in our setting, the non-separable regulariser
from [39] is within a constant fraction of |||} so, still applies (see To
extend our result beyond separable regularisers, one possible approach is to extend|l 4.7lon
the quadratic-growth of the regulariser beyond the 1-dimensional case.

Remark 4.11. The generality of the failure of separable regularization beyond {,,-ball structures is
likely related to the concept of quadratically convex sets [28|] for which several results are known
on the possibility of getting regret that grows as /T in the low-dimensional case, while it is likely
that the regret is better in the high dimensional case (when taking into account dependence on other
quantities like dimension). This is an interesting direction of future research. We also note that our
results hold for €,,-balls translated away from 0, provided we consider regularisers satisfying our
conditions on this translated ball (e.g. reaches its minimum in the centre of the translated {y,-ball).

4.4 Proof intuitions

Many of the results discussed in this section so far are based on the same loss construction, with the
following linear losses ¢;(z) = L - 2T g, where g, € B,, is defined as

g (Ve 1<
—v, t>%7

where v € B,, is a vector with equal entries defined as v, ; = d~1/7.

The above construction is motivated by the following intuition: The gradients of the losses in the
first half of the rounds cancel each other. The competitor is thus only dependent on the losses in the
second half of the rounds which are constant and place the competitor in the corner of the £,,-ball.
This two phase construction captures a bias-variance-like trade-off of FTRL with fixed regularisation:

* If the step-size is small, FTRL will not suffer much regret in the first half of the rounds but in the
second half it will not be able to reach the corner of the ball (the competitor) sufficiently quickly
and suffer large-regret (it has high “bias”).

* If the step-size is large then FTRL will be able quickly reach the corner of the ball (the competitor)
in the second half of the rounds but in the first it will suffer large regret because it moves too fast
through the space and every other round it will get to close to e; which will make it suffer large
loss in the next round (it has high “variance”).

This construction is designed so that the performance of FTRL is at its best when the step-size
adequately balances the trade-off between the losses from both halves of the rounds. Analysing the
resulting regret gives us many of our results.

3This result was recently improved by [I5] to omit any log-factors in 7" for the case of online linear
optimisation and r = 2



In the case of ¢ and ¢,, by computing the points played by FTRL we can explicitly compute
the regret suffered by FTRL for all step-sizes and obtain the lower bounds in [Proposition 4.T] and
Proposition 4.5|respectively. For[Cemma 4.7, we exploit that in the 1-dimensional case the losses in
the second half of the rounds are equal to the losses in the odd first half of the rounds, which enables
a direct comparison between points played in the first and second half of the rounds. This comparison

allows us to establish that in order to obtain v/7 regret, the regulariser must have quadratic growth.

The full details for all the proofs are in

5 Bandit feedback

In this section, we consider OCO on £,,-balls with bandit feedback and linear losses. In the bandit
feedback environment, the learner only observes the loss evaluated at the point played ¢;(z;) instead
of the full loss function ¢;. Similarly to the full information setting studied above, the optimal regret
with bandit feedback also depends on the dimension regime. However, our main result in this section
will show that for bandit feedback, sub-linear regret is not possible in the high dimensional regime.

The linear bandit problem has been extensively studied (see e.g. [27]). A O(d}/2T1/2) pseudo—regretﬂ
bound was established by [6] for £,-balls (p € (1, 2]) and more generally for strongly-convex action
sets by [25]]. For p = 1, the same bound can be achieved via a reduction to the multi-armed bandit

problem (see [6]]). [25] also established O(dl/ pT1-1/p ) pseudo-regret bounds for uniformly-convex
sets of degree p, which apply to £,-balls with p > 2. Howeyver, since these regret guarantees are
dimension-dependent they become vacuous in high-dimensions. The following result shows that with
bandit feedback sub-linear regret bounds on £,,-balls are unachievable in high-dimensions.

Theorem 5.1. Fix T, § > 0 and p > 1. For any dimension d sufficiently large and any OCO
algorithm with bandit feedback on V' = B,,, there exists a sequence of random linear losses ({1)¢c |1y
with sub-gradients (gt ).e[r) such that ||g¢||,, < L for all rounds t with probability at least 1 — 6 and

E [RT] > %, where the expectation is with respect to the randomness of the losses.
The proof can be found in[Appendix G|and is based on information-theoretic arguments. We note that
lower bounds in Chapter 24 of [27]] give linear regret for high-dimensional stochastic linear bandits
with p = 1, 2. However, as discussed in their Chapter 29, the noise in the stochastic case is outside
the inner-product so these bounds do not apply for adversarial linear bandits. We also remark that
dimension-dependent bandit lower bounds from prior work such as the one in [6] only hold in the
low-dimensional setting (e.g. in [6], their lower bound Theorem 4 only holds for T > d?/(1=4/2) and
does not give linear regret in high dimension).

6 Conclusion

In this work, we studied OCO on ¢,,-balls in R< for p > 2, distinguishing between high-dimensional
(d > T) and low-dimensional (d < T') regimes. In high-dimensions, FTRL achieves the optimal
regret of O(T"~'/P) with a uniformly-convex regulariser, while in low-dimensions it achieves the
optimal regret of O(T'/2d'/2=1/P) with a strongly-convex regulariser. Importantly, we proved
neither regulariser is optimal across both regimes. Therefore, when the dimension regime is unknown,
we showed that FTRL with adaptive regularisation is anytime optimal. Furthermore, we established
that this adaptivity is necessary to achieve anytime optimality for separable regularisers. This is a
first step in answering a question on the universality of FTRL with fixed regularisation for general
OCO problems. However, it remains open whether there exists a fixed regulariser providing anytime
optimality or whether adaptivity for non-separable regularisers is necessary. Our results demonstrate
that existing separable regularisers impose intrinsic limitations on FTRL and open up an interesting
avenue of research to discover more sophisticated alternatives that potentially give algorithms that are
fundamentally different. The challenge in generalising our proof technique to rule out the existence
of these alternative non-separable regularisers is in extending [Lemma 4.7|on the quadratic-growth of
the regulariser beyond the 1-dimensional case. Finally, for the linear bandit problem, we ruled out
the possibility for sub-linear regret bounds in high-dimension. These results underscore the role of
dimension and geometry in achieving optimal performance in OCO.

*Pseudo-regret is defined as Ry = E[>"]_, £¢(z¢)] — minzev E[3/_, £:(z)] where the expectation is
with respect to the randomness in the learner’s actions.
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A Experiments

In this section, we present a numerical experiment in Figure[I] to validate some of our theoretical
results on the optimality and sub-optimality of fixed and adpative regularisation for FTRL. We run
FTRL with different regularisers on the loss construction used in the proofs of our lower bounds from

section 4] which is described in[Appendix E.1]

For fixed T', we observe that the regret using FTRL with ¢,, is constant across dimension, while
the regret of FTRL with ¢, increases with dimension. In particular, ¢ outperforms ¢, in low-
dimension while ¢,, outperforms ¢, in high dimensions. This validates our results that ¢,, is optimal
in high dimensions (Section 2.3)) but not in low-dimension (Section 4.2) and that ¢ is optimal in low-
dimension (Section 2.2)) but not in high dimensions rmore, the adaptive procedure
from performs well in both low and high dimensions. However, this experiment suggests
that the theoretical threshold to = 3~2P/(P=2)4 from is perhaps overly conservative in

the transient setting between low and high dimensions (at least for this loss construction) and that a
larger threshold ¢ty = 2d performs better here.

—— FTRL - ¢,
25 - FTRL - ¢
—— FTRL - to=372P/P=2)d
402 204 — -to=2d
o
&
15 A
10 1
10° 10! 10?
dimension

Figure 1: Comparison of FTRL with different regularisation. We fix 7" = 40 (and L = 1, p = 10) and
vary the dimension. FTRL - ¢, refers to FTRL using the regulariser ¢ = 3||||3 from[Section 2.2

withni_1 = 4/ dl;:/P . FTRL - ¢, refers to FTRL using the regulariser ¢, = 1||z||% from|Section 2.3

withn_1 = W. The final two correspond to using the procedure from|Section 3| with adaptive

regularisation. The first with the threshold t, = 3~27/(?=2){ from [Theorem 3.1L while the second
uses the threshold ¢ty = 2d.

Implementation Details: The experiment was run on google colab with the default settings
(including CPU) and takes around 5 minutes run. All the details of the loss construction and algorithms
are provided or referenced above. The closed-form updates are provided in Note that
the Bregman projections onto £,-balls are not available analytically, we use the minimize function
from the scipy.optimize library to compute the projections numerically (with method="SLSQP’).
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B Closed-form update of FTRL with specific uniformly convex regulariser
and related lemmas

Consider a regulariser 1/ differentiable on R?. Define the Bregman divergence of 1) as Dy(x,y) =
U(z) = ¥(y) — (Vi(y),x —y) forall 2,y € R%.

Lemma B.1. Fixr > 2. Let (z) = L||z|7. Let V = B,. Let g, € 0l,(x;). The update rule of

FTRL using {1(x) = nil () as regularisers is

t
(%+4 ::_ntjz:gs
s=1
ZTy41 = argmin Dy, (:c, Sign(ét+1)|ét+1 |r*—1>7

z€B)

where sign, power and absolute value functions are applied component-wise to vectors.
Proof. Given g; € 9¢s(x;), the update of FTRL with regulariser 1, is (see )

t
v = argmin{n () g, 2) +6(x) |
ze s=1

By Theorem 6.15 in [36]], this update is equivalent to

Tpq1 = argmin{nt<zt: s, T) + 1/1(@},

zERC o—1

Tyy1 = argmin Dy, (z, Ty41) -
zeB,

Now by Theorem 6.13 of [36], the first minimisation (over R%) is equivalent to

Ty = VY© (—77t i gs) ;
s=1

where 1" is the Fenchel conjugate of .

For an arbitrary norm ||-||, the Fenchel conjugate of f(z) = 1|z||" is f*(z) = %Hx”i* (see
Lemma 2.2 in [24])). Therefore the Fenchel conjugate of ¢(x) is ¢*(z) = % |lz||7x and Vy*(z) =
sign(z)|z|™ ~!. Combining everything gives the result. O

We now provide two lemmas pertaining to the Bregman projections of the FTRL update in[Cemma B.T]
for specific cases that will be of use in the proofs in[Appendix E]

Lemma B.2. Consider z = ¢ - w where w is a vector with all entries equal to 1 and ¢ > d=/? so

that z ¢ B),. The Bregman projection argmin,cg Dy (x, z) with 1 (z) = Lz||m of z is d=/P -,

o
the rescaled version of w that has £,-norm equal to 1.

Proof. We make use of Lemma 5.4 in [5]]: if f is a convex and differentiable function on B, then x is
a minimiser of f(z) in B, if and only if V f(2) (y — x) > 0 for all y € B,,. Consider

f(@) = Dy(w,2) = 9(x) = ¥(2) = Vip(2)" (= 2),
Vf(x) = V() — Vij(2),
V() "

sign(z;)|;
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Consider x = d~'/ - w. From the lemma mentioned above, it is enough to show that V f ()7 (y —
x) > 0forally € B:

V@) (y — ) = (Vi(a) = Vi(2))  (y — 2)
— (d—(r—l)/p w—c"L. w)T(y —x)
— (Cr—l _ d—(r—l)/p)wT(aj _ y)

d
= ("t =g~/ (@t Zyz)

i=1
(@1 = =Dy @ )
(& = =)@ ey
0

Y

AVARAY;

where we used that "1 — d=("=U/" > 0 and ||y||; < d*~VP||y|l, < d'"VP forally € B,. O
Lemma B.3. Consider z = c - ey where ey is the first canonical basis vector and |c| > 1 so that

z ¢ By. The Bregman projection argmin,cg Dy (, z) with ¢(z) = L|z||7 of z is sign(c) - e1.

Proof. As in the proof of [Lemma B.2|, it is enough to show that V f(z)T (y — 2) > O forall y € B,),
with z = sign(c) - e1, and

)= D) =9(2) = 40) - CY (s -2,
Vi
(531)|x1|r .
) = V(2)" (y — )
sign(c) - e1) = V(e er))’ (y — o)
= sign(c) - (|e["™" = 1)ef (z — y)

= sign(c) - (|¢["7! = 1)(sign(c) — y1)
2 Oa

Vf(fﬂ)T(y x) = (
= (V¢

/\/\

where we used that |c| > 1 and y; < 1forally € B,. O
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C Proofs for Section

C.1 Proof of Theorem

We follow and extend the analysis of FTRL from [36] (Section 7) which is closely related to the
analysis in [31]]. FTRL with uniformly convex regularisation was orginally considered in [4] based
on the analysis in [31]]. Existence and unicity of the update can be handled along the same lines as
Theorem 6.8 in [36] with uniform convexity.

The analysis begins with the following expression for the regret. We refer the reader to [36] for the
proof.

Lemma C.1. Lemma 7.1 of [36] Denote Fi(x) = (z) + Zi;ll ls(x) and set x; €
argmin, ¢y, Fy(x). Consider {11 = 1. Then, for any u € V we have

T T
Z&(Cﬂt) —{y(u) < Pp(u) — gggwl(w) + ;{Ft(xt) — Fipi(zeg1) + &(xt)} 4

To bound the terms F}(z;) — Fiq1(zey1) + Ce(2:), we use the uniform convexity of the regularisers.
In particular, we require the following result on uniformly convex functions, which is an extension of
Corollary 7.7 of [36].

Lemma C.2. Let f : R? — R be closed, proper; sub-differentiable and p-uniformly convex of degree
rw.rt. anorm ||-||. Let x* = argmin, ¢y, f(z). Then for all x € dom f and g € Of(x), we have

ﬂ@—f@ﬂﬁgjmﬁﬂﬂdﬁl

Proof. By the uniform convexity of f, we have

f@") = min f(z)

z€dom f
> min {/(@) + (0.2~ 2)+ Dz —all"}
> f(a)+ min{ (g, 7~ a) + £}~ 2|}
= f(@) + min{(g.2) + =12}

= f(z) — ,umax{<_7g,2>—;||z‘|r}

z€R4
= f Tr) — —
(x) o
— fx) - H*m
=fl@)—n r*
r— r/ r—1)

Hw\l”

where we used that the fenchel conjugate of @ is Rearranging gives the result. O

Since 1. is proper, closed, differentiable and 1;-uniformly convex of degree r; with respect to ||-|||;

and the losses are proper and convex, Fi(x) + £:(x) = ¢4 (x) + 22:1 £s(z) is also proper, closed,
sub-differentiable and f1;-uniformly convex of degree r; with respect to ||-[||;. Applying[Lemma C.2]
to Fy + ¢;, we have with 2} = arg min, oy Fy(x) + 4:(x)

Fy(we) = Frp(wes1) + be(ze) = (Ft(ift) + ft(xt)) - (Ft($t+1) + ft($t+1)) +Ve(Te41) — Vi1 (Te41)

(Fula) + ta(a) = (Fulai) + 0(eD) + (i) = b (w040)

re—1 re/(re—1
— ||9t|\\t*/( D e(@es1) — P (zen),
D

thg

IN

IA
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where we used that g; € O(F; + £;)(x) since g; € 0l;(x¢) and x; = arg min, oy Fy(x). We omit
some technical details but the steps from [36] extend to our setting. Plugging the above into (@) gives

MTheorem 2.3

C.2  Proof of Corollary[2.4]

Since v is p-uniformly convex functlon on V of degree r with respect to ||-||, then the regulariser used
by FTRL in round ¢, ¢, = 1 — i is —un1formly convex function on V' of degree r with respect

to ||-||. Since n; < mp—1, wt($t+1) — /ll)t+1(:rt+1) = <"7t1—1 — E Y(x¢41) < 0. By the Lipschitz
condition on the losses, we have ||g¢[|x < L;.;. Applying|[Theorem 2.3| we have

LT* T
th () — £y () < Y(u )Jr e [

_ Tt
=1 Tf t=1

e 1)1/”T1/m L ET:( pre )”*—1
a pt/r 7“ o1 Ly (re = 1) 1/rel/rs
_ LD -t Ly D Z .
B :ul/r 7‘*(7‘* — 1)1/7"#(7‘*—1)(1—1/7‘) — tl/r
Ly DY R 1 T
= (e +<—1>/Zt/)

Now note that

1 T 1 T
< - — 1—1/r:| _ *Tl/T*
ti/r _/0 xl/de [171/7’91j o

T 1/rl/r,
Ly DY™T . 1
— th(xt) _ gt(u) S H“T((T* - 1)1/ * 4 W)
t=1

The proof is concluded by noting that (r, — 1)/
in finding the optimal step-size.

1M

+ W = 71/7p/™ [Lemma C.4|was helpful

C.3 Proof of Theorem

Wehave d < T. Letk = |T/d] > 1. Let Y; ; be i.i.d. Rademacher random variables for 1 < ¢ < d,
1<j<kiePY;; =1) =P(;; = —1) = 1/2. Let ey, ..., eq be the canonical basis of R4,
Define g, = LY; ; - e; where t = k(¢ — 1) + j (for k rounds we stick to the same coordinate and
draw i.i.d. Rademacher random variables). Denote the point played by A by x; and fix the loss to be

l(x) = gTx (for t > dk, fix £;(z) = 0). The subgradient is g;, which is bounded by L in £,,, -norm.
The point x; depends on the losses up to time ¢ — 1 but not on ¢; and is independent of Y;, so for all ¢:
T
E[ly(2,)] = E[Y,L - ef 2] = E[Y;]Le/ Elzy] = 0 = E[Y_ ()] = 0.
t=1

On the other hand, u = —d~/P Zle sign{E?zl Y, }ei € B, gives

T T
min ; ly(x) < Zﬁt(u)

= —Ld~ 1/17(2 mgﬂ{zk:}’é,j}@i)T(f:zk:njei)
i—1 j=1 i=1 j—1

= —Ld_l/pZ‘ZYi,j .
i=1 j=1

18



We now make use of a result from [[13] (proof of Lemma 7.2): fix B > 0, consider X = Zf;l tiR;

where ¢; are positive integers such that Zile t; = k and R; are i.i.d Rademacher random variables.
Then E[|X|] > k/V3B.

In our case, with B = k and t; = 1 for all 4, we have that E[|Z§:1 Yiill > \/k/3 > /T/6d (since
k= |T/d| > T/2d for T > d) which gives

T T d
~ ~ i [d Zd172/p
E — mi E > *1/102 W= = Ld7Vr 2D =y
E[t_l Li(xy) ;IEHBI; 2 ét(x)} >0+ Ld 2 6d Ld : L 5

The result follows by: sup,, ,,. Rr > E {Zle Oy(y) — mingep, Zle Zt(x)} > Ly /%*2/’).

C.4 Proof of Theorem

We have d > T. Fort € {1,...,T}, let Y; be i.i.d. Rademacher random variables, i.e. P(Y; = 1) =
P(Y; = —1) = 1/2. Letey, ..., eq be the canonical basis of R?. At time-step ¢, denote the point
played by A by x; and fix the loss to be /;(x) = Y;Lel'z. The subgradient is Y;Le;, which is

bounded by L in ¢, -norm. The point ; depends on the losses up to time ¢ — 1 but not on ¢; and is
independent of Y3, so for all ¢:

T
E[ly(2,)] = E[Y;Le] z,] = E[Y;]Lef E[z,] =0 = E[>_fy(z,)] = 0.

On the other hand,

T

T
min (x) =1L migl zT (Z Ytet)
t=1

z€B), P} xzeBp

is attained at x = —7~1/P ZtT:1 Yie: € B, giving

T T T
i li(x) = —LT /P Y, Yoeley = —LT VPN Y2 = LT VP — _[7VPs

The result follows by: sup,,  ,. Rt > E {Zthl Oe(y) — minges, Zthl Zt(x)} = LTV/P+,

C.5 Uniform Convexity of 1),

In this section, we provide the proof of Proposition on the p-uniform convexity of degree p of
P(x) = Sllz||} on B, for p > 2.

Consider z,y € B,. Following the steps in Remark 2.1 of [46]], using convexity of ¢ we have for
A€[0,1/2],

b+ (1— N)y) = ¢(2A(m ; y) (- 2/\)y)
< 20 () + (1 - 20)0()

221z +yp (1—2X))
=510,
pll 2 lp D

yllp-

From Clarkson’s inequality (equation (2.1) in [2]), we have that

N
P 2 2

Hx+y
2

p T —y
+[=

p
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Using this in the above we have

2xllzllp 22 llwlly  2xjz—yyp | (1=2))
_ < 2z =7 _ =2~ P
YO+ (1= Ny) < gt T - ST Iyl
p P 2 _
_ o Jellp +(1_A)Hy||p _ng Y|P
p p p it 2 lp
2AM(1 =X jjlx —y P
<) + (1= Nty - 228 )

This is an alternative characterisation of uniform convexity, we now show (following steps in
Definition 3.2 of [24]]) that it is equivalent to our original one (Definition @) From the convexity
and differentiability of i,

YY) + MVY(y), 2 —y) = ¥(y) + (VY (y), [y + Mz —y)] — )
<Yy + Az —y))

2AM(1 - A —
< M) + (1 Ny) - 2L T
p P
Rearrenging,
2M(1— A —
= M) — 1) < AWla) — () - 2T
2(1 =X —
— (V). 1) < () v(y) - DY)
p P
— (@) 2 vly) + (V)2 - o)+ [
b P
as A — 0. So for any =,y € B, we have the condition of uniform convexity with y = 21~P. ]

Remark C.3. It is not possible to get the parameter of uniform convexity p = 1. Consider the
1-dimensonal case, x = 1,y = —1:

B

1
w<x>+<w<x>,y—x>+§||x—y||;;=5+(y—x>+ Loy

1 2p
:7+(_1_1)+L
p p

1 —=2p+p2?
= 5 .
This is less or equal than ¥ (y) = % when
1—2p+ p2? < 1
b p
So our constant may be loose by a factor of p but 11 = 1 is not possible since p2'~P < 1 as soon as
p> 2

— 1-2p+p2P <1 = pu<p2tP.

In fact, we can slightly improve 1 from QP%I to ﬁ (we present our results with 2[,%1 because it

only changes the results by a small constant and slightly avoids clutter). Here is how: In the first step
of the proof, we used convexity of 1 to obtain the following bound,

A () + (- 20) < 2w () + (1 - 209().
However, from (B)), we have that
2 |z —y||P
YO+ (1= N)y) < X(e) + (0= Xt) ~ | =57 ©

and this provides a tighter bound than just using convexity:

w(2A<x—£y) (1 -2) < M,(#) - 2y - 2-2/\H(x+y;/2—y Z
< (o) + (1= Noly) - = [ (1 217),
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where we followed similar steps as in the original proof (Clarkson’s inequality). This provides an
even tighter bound than (6)) and applying these tighter bounds recursively gives

p 1

p 1— 21—p7

w(2A(55Y) + (- 200) £ (@) + (- D) - 22

using that y_,< (2'7P)t = 1/(1 — 2'7P). Following the same steps for the remainder of the proof

gives uniform convexity of 1 with 1 = ﬁ

C.6 Helper lemma
Lemma C4. Fixa,b > 0, n > 1. Let f(x) = % + ba""! for x > 0. Then f is minimised at
x* = (a/b(n —1))"/" and

flz*) = al‘l/"bl/”(—nﬁ 1)(n71)/nn1/".

Proof. Setting the derivative of f to 0 and solving gives

_i _ n—2 __ *x L 1/n
zz—i—(n 2" ™" =0 = = _((nfl)b) :
Plugging into f gives
o (n _ ]_)b 1/n a (n—1)/n
f@) =a ( a ) +b ((n—l)b)
— al—l/n(n _ 1)1/nb1/n + bl—l—l—l/nal—l/n(n _ 1)1/n—1

— al—l/nbl/n(n _ 1)1/n<1 + - i 1)

_ alfl/nbl/n(n_ 1)1/n n -
n—

:al—l/nbl/n( n )(n—l)/nn1/n.

n—1
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D Proofs for Section

D.1 Proof of Theorem 3.1]

If T < tg, then we have FTRL with fixed regulariser ¢,, and from we have Ry <

L(2p*T)1/p* as in IfT > to,gives

T
Ry < ¢r(u) — min¢y (z +Z{ 1/(” 1 | t||\rtt*/ " 1)+¢t(wt+1)—¢t+1(fft+1)}
Tt

zeV
_ 1
da(u) . o nfh i 11
<40 iyt S i b o (- )
it LICRDS o} + X {ontae (55 =5,
T T 1 1
+ Op(Ttni1) _ O t°+1) + Z {nt 1Hgt||2+¢2(33t+1)<7_7)}
Nto—1 t=tot1 Nt—1 un
sup,, By (rb 77
< 2 PeeB, O € P +Z{ t1 } + Z{ﬁt 1H tH}
Nto—1 t=to+1

The first two terms correspond to the regret of FTRL with fixed ¢, regularisation on ¢, rounds.
Substituting the values of 7; _; and some algebra gives (see similar steps in the proof of

SUp,ep, Op(x .
20Pects 90 | S U ) < 1ote)
Mto—1 =1 P«

The last two terms correspond to the regret of FTRL with fixed ¢ regularisation over the remaining
T — to rounds.

" Vdi—2/p Vdi—2/p
+Z{”1||t|\}—” AL Z\[

t=to+1 \/i \/> t=to+1
- LN d1=2/pT N LVd=2/pT  Ly\/d'=2/r¢,
V2 V2 V2
= L\V2d'=2/PT — L\/d'~2/Pty/2,
where we used that 37 b1 U7 ftO —=dr = {Z\f} = 2(V/T — /). Combining, we have

Ry < LV2d'2/7T + L(2p.to) /7" — Ly/d'=2/vty)2.

The proof is concluded by t, = 3~2P/(P=2)( guaranteeing (2p*t0)1/p* — \/d'=2/Ptq /2 < 0 since

3 p=1_1 p=2
(2puto) /P < ﬁté”’* =3t,"  2\/to/2 =3ty \/to/2 = \/d'~2/7ty)2.
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E Proofs for Section 4

E.1 Loss construction for proofs

Many of the proofs in this section share the same loss construction, which we describe here. Assume
that T is divisible by 4 (use T'— 1, T' — 2 or T' — 3 if not). We define the following linear losses
l(z) = L - 27 g, where g, € B,,, is defined as

gr = (—1)t'€17 t§
¢ —v, t>

UENE

where v € B,, is a vector with equal entries defined as v; ; = d~/P* (so that ||v||,, = 1). Note that
|v||, = d'/P~1/P+. The cumulative loss of the competitor:

LT WTv LT d'-r LT
T — = —
Z& o = 52”2,2& > o, = 2 a0

The cumulative sum of sub-gradients used in the FTRL update:

—61, ift < %is even,
LZQS—L 0, iftg%isodd, )
~(t-1-%)-v,  ift>1T

E.2 Proofs of Proposition .1 and Proposition 4.5|

The two propositions are special cases of the following proposition.

Proposition E.1. For r € [2,p], define ¢,(x) = L|z|7. There exists a sequence of linear L-
Lipschitz losses (in £,-norm) for which FTRL with regulariser 1y (x) = ¢r(x) and any sequence
of decreasing n:._1 suffers regret

7It1

T dre=pe)/mepel/7s )

Rr>L- mm(S?‘ 3

We now prove this proposition. The loss construction is described in[Appendix E.T} From|[Lemma B.1]

re—1
Typ1 = argmin Dy, (z 51gn( Z ) —1 Zgg )

z€EBy
Define a1 = min{l, nt,l}. Using , the points played by FTRL on are given by

e Fort <T/2o0dd: z; =0
e Fort <T/2even: x; = a{:}l ey by

e Fort >T/2:
. T re—1
xt:mln(H s {nt 1d” 1/”*(157175)} )ow
T yr—1 v
:min(l,dl_r*/p*{nt_l(t—1——)} ) .
2 [[v]lp

by where w is a vector with equal entries equal to 1.

Fixn =nrjp_1, a = min{l, 77}. Using that ;1 > 1, the loss in the first half of the rounds is
lower bounded as

T/2 T/4 T/4 T/4

LT r*flT
g b(xy) = g lo(zak) = E Qg 161 Top = g agfﬂ 1€1€1 > TR
=1 k=1
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If o > 1, we have Ry > T > i and we are done. So for the rest we assume that = 7 < 1/2.

Let k* = |d("+/Px=1)/(r— b /nJ m = min(k*, T/2 — 1). Note that vTv = d*~2/P+ = ||v||,,. The
losses in the second half is lower-bounded as

T T T/2-1 T

Z bi(xy) = — Z CL’fT Z min{ 1,d*~ T’*/P* (k)™ 1} v
k=

t=T/2+1 t=T/2+1 1 [Vl

We bound the sum with an integral as follows,

S gt g/ @+ rde= @+ < Sy
- 0 "

T
We get
T — T
Z Ue(zy) > —d' ™ re/p T (m+1)™ (g—lfm).
t=T/2+1 T
Using the cumulative loss of the competitor from (7), the regret is

T gelT ] T
Ry > — gt/ T 17*_<7_1_ )
Tty o m+) 2 m
nr* lT r*—l

=T 2 g 1)+ (1 4m).
4 T

Let’s consider two cases:
e k* > T/2 —1: m =T/2 — 1. By the definition of k*:

g /pe=1)/(r=1) | g(re/pe—1)/(ra=1) T . T
0 > | |=k=25-1= G (5 -y <!

n
n T n

_ < _ <

= ey S ey S
since 7 < 1/2 and d("+/P~=1)/(r~=1) > 1 (recall r < p). Using this in the regret, we get

et T)m T

3
2

R > dl T*/p* (i -

T ~ \2) T3
B n T\r-1T T
- (d(n/p*—n/(n—l) 5) 373

L LEyiT LT
- 2 2 2
T ry—1
0-16)7)

2 Te \2

T 1 T
Z *(1 - 7) = T

4 T 4r

where we used that r, € [1,2] and that f(z) =1 — % >1(1—1/z)forx € [1,2].
* k* < T/2 — 1: m = k*. By the definition of k*:

d(r«/pe=1)/(r=1) d(r+/p=1)/(ri=1)
2|
n

— L* # *
J*k = Sem ook =1

n

" R 7
= Jemonen K D) S e e <

N |
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since again n < 1/2 and d("+/P~=1/(r==1) > 1 We also have k* + 1 >
this in the regret, we get
T*flT re—1
Ry = n 1 7d177‘*/p*77 (k* + l)r* + (1 +k*)
Tw
T k1 ( n
4, \go/e—n/-0)
re—1 * _
n~—T 14k (3)“ 1 N
— - 1+k
4 Ty 2 +(L+E)
re—1 —
a5
= 1+k9(1——(=
4 +(L+47) e \2

T*_lT 1 *

> 1 LAtk )(1 N i)
4 2 Ty

7]T*71T d(r*/P**l)/(T**l)

= +
4 2rn
1/7r, T —Px)/TxPxTL/Tx

r A/ e el e s A+ =p<)/Tepx 1/

= 21/r+2/74 - 4

(rue/pe—1)/ (rs 1) .
%. Using

ry—1
(" +1) " 14k

v

ry—1
where again we used that 1 — % 3 > 1(1—1/r,) since r, € [1,2] and in the Istar step we

minimised over 7 using Lemma

T qr=Px)/T«Pxpl/Tx

=, i . If T is not divisible
T

Combining both cases, we have that Ry > min(

(re—px)/TxPx _ /7%
by 4 and weuse T — 1, T — 2 or T — 3, we have Ry > min(%,d ! Z(T 3 ) >

T 4T =Px)/TxPx (ng)l/r*
8r? 8

min( > for T' > 6, concluding the proof.
E.3 Proof of Lemma
Consider a € argmin,cp (21, ..., Ti—1, 2, Tiy1,...q). Since 1 is sign-invariant, —a is also in

the argmin. Consider g(z) = ¥ (z1,..., -1, 2, Tit1,...-Zq). 1t is straightforward to show that the
strong-convexity of ¢ applies g. By convexity, we have

0(0) = 950+ 5(~0)) < So(a) + 59(~a) = gla) = ming(2),

2 2 2 2€R
and by strong convexity, it is actually the unique minimiser. Hence
()

0=argminy(...,x;-1, 2, Tit1,...) =0
2€R 8.1‘1' z;=0

= Vi(2)Te; =0 foranyx € Byst.x;=0. (9)

For a set S and a vector x, denote x_ g the vector = with the coordinates in S replaced by 0. Denote
Sy = {17 e n} We prove the following claim by induction on n < d:

n
o 2
V(@) 2 lrs,) + 5 Zl 77
Base Case:, by strong convexity

(@) = (o) + (Vola ) o =g + Sl — o

2
— w(x_{l}) + <V1/J((E_{1})’xlel> + %

2
T .
=p(z_q1y) + %,u using ().
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Inductive Step: suppose true for k. Similarly to the base case: by strong convexity,

i
’(ﬁ(x,Sn) > w(x*SnJrl) + <Vw(m*5n+1)7x*3n - x*5n+1> + EHx*Sn —L—Sn41 ||2

= ¢($75n+1) + Tp1 <V¢(x78n+1)7 6n+1> + 9 anrl

=Y(T_s,,,)+ 2xn+1 using ().

The result follows by the inductive hypothesis:

Y(z) =2 P(z-s,) Zil?

> w(x—sn,Jrl) + 2$n+1 +

When n = d, we have ¢)(z) > §||z||3.

E.4 Proof of Lemma 4.4

As discussed in we prove a more general version of for coordinate-wise

step-sizes, where the FTRL update is allowed to have a different step-size 7;_1 ; for each coordinate:
. d t—1

Tt :argmlnxev{w +Zz 1Tt—1,i - T4 ZS 1gsi}

We consider a slight variation of the loss construction described in Assume that T is
divisible by 4 (use T'—1, T'— 2 or T'— 3 if not). We define the following 11near losses ¢y () = L-zTg,
where g; € B, is defined as

where v € B,, is a vector with equal entries defined as v; ; = d~1/P+ (so that ||[v||,, = 1) and
i(t) = arg max;e(q) 72| (t—1)/2],i (i.e. the coordinate of the largest step-size in the previous even

round). Note that ||v[|, = d'/P~1/P+. The cumulative loss of the competitor:

LT vTo LT d'—2/p LT

T - _ - _
th 75” v = greuriz& 2 oll, 2 di/r—ip 2 (10)

The cumulative sum of sub-gradients used in the FTRL update:

ez(t), ift < Z iseven,
LZQS—L 0, if t < T is odd, (11)
—(t—l—%)-v, ift > Z.

* First we consider 2 < ¢ < 7'/2. When t is odd, z; = argmin,cg ¢ (x) = 0. When ¢ is
even,

Ty = arg Iélin{qp(x) - nt,l’i(t)Leit)x}
zeb)y

= (@) — M1 Lot eiwy < ¥leiw) — 77t717i(t)LeZEt)€i(t) =1—Ln_1,0)

1 1
— ly(xy) = Laf ey > L — >L— ———— bydefofi(t)
t—1,i(t) M—1,i(T/2)
SL-— 1 srp,
NT/2,i(T/2)
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when 1 := 172 i(1r/2) = maXe(aq /2, > 2/L. So we have (—1 accounts for first 2
rounds not being like the rest)

Tz/é oo JLT/A=T), it =2/L
R () ifn < 2/L.

Hence if n > 2/L, we have Ry > LT/4 — 1 and the statement of the theorem holds. If
1 < 2/L, we look to the second half of the rounds.

* Let’s now consider ¢ > T'/2 and assume 7 < 2/L. Note that by definition of 7, we have
the forallt > T'/2 and for all ¢ € [d], n,; < n < 2/L. Fix f; =t —T/2 — 1. The FTRL
update is

Ty = arg min{w(x) — LB 2" (g1 © U)}
T€B),

Letu = v/||v]|, be the competitor. We can write z; = A;u+ azu’ (A; > 0) as a component
in the direction of u and a component orthogonal to u. We have

% % 1 -
lae) = Glladl3 = GOl + o [ut13) = 5A2ud .

Now from the FTRL update, (in the first implication, we use that ;1 ; < 7 and z; ; >
07 (% Z O)

1
Y(xy) — LBl (-1 ©v) <0 = 5/\311611_2/1’ <nLBixiv

1
= §>\t2ﬂd172/p < LB

2nL B,
A S

I

2nLpy 43
ludl_Q/p =z 7Lu,d1—2/P ’

= () = —L-vTay =L\ > L

since n < 2/L. If d > (4T /)P’ *=2), we have forall t < T

45 Bt L
bla) 2 _L,ud1*2/17 R )
T
LT LT LT
— Rr>—+ Z Et(l‘t)>7—T:T
t=T/2+1

If T is not divisible by 4 and we use T — 1, T — 2 or T’ — 3, we have Ry > 2230 1 > LT for
T>6+ %, concluding the proof.

E.5 Proof of Lemmal4.7]

Assume there exists a constant ¢ > 0 such that for all 7" and any sequence of losses, Ry < cILVT.

Consider T > 16¢? and a multiple of 4. We define the following linear losses ¢;(z) = x - g; where
gt € [—1,1] is defined as
-t.L, t<ZI,
gt = {( ) _ 2
L t>1

Recall that the FTRL update is 7, = argmin,¢_; j {m— (Zi;ll gs) -z +¥(x)}. Setn = nr/a_1.
With this sequence of losses, the points played by FTRL satisfy

o fort <T/2+ 1 and ¢ odd, we have 22;11 gs =0,s0x; =0.
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» fort <T/2+ 1 andt even, we have 22;11 gs = —Lsox; = arg minwe[fl’l]{—nt,lx +
z)}. Fort <t' < T/2 (both even), we have

—np_1Lxy + Y(xy) < —ny_1Lxy + (xy) using the definition of x;/
= ——1Lay + (1) + L(me—1 — N —1) 74
< —m—1Lxy +Y(xp) + L(ni—1 — ny—1)xe using the definition of z;
= (-1 —nw—nyLay < (-1 —ny—1) Ly
= Ty < Ty using that g1 < mp_1.

So for all ¢ < T'/2 even, we have x; > /2.

e fort > T/2, we have Zi:l gs=—L({t—T/2—1)sox; = arg minme[_171]{—77t_1L(t—
T/2—1)-z+¢(z)}.

The regret can then be written as follows

LT\ _ LT LT
RT—Z& (z) — (- )>2+:rT/2—Lf %ﬂxh (12)

from which we can show the series of following statements.

1. We first show max, o, 1o, /7 #1244 > 50 if not, zz 4y < L forall t < [2¢y/T] and from
(2):
T T/2+42¢VT] T
RT > 7 - L( Z Ty + Z It)
t=T/2+1 t=T/2+[2¢VT]+1
T/2+4|2¢VT] T
LT 1
SRt GD YRS LD V)
t=T/2+1 t=T/2+[2cVT|+1
LT L T
= 5 = 5 12VT) — L(T = [2evT] - 5)
L
> 3 [2¢VT]
> VT,

which contradicts our initial assumption that Ry < c¢LvT so we must have
MAaX, s 1907 LT ¢ = 5- Note that 2¢\/T < T2 is ensured by T > 16¢2.

2. Next, we show that n > ;’(Llfﬂ) let t* = arg MaX, ;< roey/7] TL 45 by the definition of

CU%H*Z
T T
02 g i L(5 41— 1= 5 )Jopan + g )
*
— n%+t*_1L(t - 1) > (1/2)

1/2 1/2
= 1N ="N1/2-1 > 77%—&-26*—1 = Lté}t(* /_ )1) > ;ZJC(L\//%

where in the first implication, we used that ¢)(z 2 | ,.) > 9(1/2) (since 1 is increasing on
(0,1 andzz . > 1/2)and zz 4. < 1.

3. From l) we also have Ry > %xT/g. To achieve Ry < cL\/T, we must have
4dc

Tr/p < VT
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4. By the definition of z7, = argmin,¢;_ j{—nLz + ¢ (x)}, forany z € [4c/VT, 1] we
have

—nLxps +(xr)2) < —nlx +(x)
= (e) 2 il —arye) 2 n(z - 2) >
5c ¥(1/2) ¢ P(1/2)
:M/](ﬁ> = o2VT VT = 2T

w(1/2)( 4(:)

2e\/T x_ﬁ

5. Now fix & € [0, 1]. There exists 7" (multiple of 4) such that = € { \/;%4, %} Using that 1)

is increasing on [0, 1] and from the previous point, we have

5¢ ¥(1/2) v(/2) T ¥(1/2)
v(z) 2 1/’(\/T7+4) Z 2T+ 4) = AT +4) 252" 2 002 ©

using that T'/(T + 4) > 1/2 for T > 8. The result is shown with u = 1(1/2)/100c.
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F Universal optimality of mirror descent for time-varying regret rates

In this section, we present an extension of the result of [39] on the universality of OMD. We first
briefly review the considered setting along with their result. We refer the reader to Part II / Chapters
5 & 7 of [39] for the complete details. We present the results with respect to OMD but they also hold
for FTRL up to slightly different constants.

We consider general OCO with linear losses (i.e. online linear optimisation (OLO)): The action set
‘H C B is a convex and centrally symmetric set that is a subset of an arbitrary real vector space 5.
The subgradients of the linear losses belong to a set X C B* that is a subset of the dual B* of B. We
focus on linear losses for simplicity but the results hold for general OCO where the subgradients of
the losses are in X’ since the regret can be bounded by the linearised regret, see e.g. Corollary 64 in
[39] or Section 2.3 in [36].

The regret is defined as

T
Rr(A, g1, 97) = Y (Algre-1),0:) = inf > (hg0),
t=1

t=1T
where g, are the subgradients defining the linear losses such that g; € X but otherwise are arbitrary /
adversarial and A is a learning algorithm. The minimax regret is
VT(%VX) = inf sup RT(Aaglv"'ng)'
A g,..greX

We re-state the main the result on the universality of mirror descent from [39].

Theorem F.1 (Theorem 71 of [39]). If for some constant V' > 0 and some q € [2,00), Vy(H,X) <
VT4 for all T, then for any T > e~ 1, there exists a regularizer function U and step-size 1, such
that the regret of the mirror descent algorithm (OMD) Ayrp using V against any ¢, ...,g7 € X
chosen by the adversary is bounded as

Rr(Aup, gy -y g7) < 6002V - log?(T) - T11/1.

The result states that any regret bound with constant rate that is achievable across all time horizons
can be matched by OMD up to logarithmic factors. The extension that we discuss next handles the
case where there may be multiple regret bounds with different constant rates that exchange ordering
at different time horizon intervals.

Theorem F.2. Let K > 0 be an integer. If for k = 1, ..., K, there exists constants Vi, > 0 (w.r.t.
T) and qx, > 2 such that Vr(H, X) < mink:h.,7K{VkT1—1/qk }for all T, then for any T > ed71,

there exists a procedure Ayrp running OMD over intervals of doubling lengths such that the
corresponding regret against any gi, ..., gr € X chosen by the adversary is bounded as

RT(AMDJM g1y -+ gT) < (2 + \/i) - 6002 - IOgQ(T) : mkin{Vle—l/CIk }
The procedure does not require knowledge of T

This matches up to a factor of 2 + /2 the regret bound we would get by using(Theorem F.1|/ Theorem
71 of [39] with advanced knowledge of 7', and otherwise matches the minimax regret up to constant
and logarithmic factors.

This procedure and result could be used to obtain a result similar to However, the
bounds are worst due to the additional logarithmic factors and much larger constants. Therefore
[Theorem 3.1l remains a valuable contribution.

We now provide the proof and procedure based on the doubling-trick.

Proof. Fix T, T; = 2°, B = min{j eEN:YY T > T}. We have:
B-1 B B
28 1=N"T<T<Y T,=Y 2 =204 1 — Te 2254 ).
i=0 i=0 i=0
Consider the following procedure Ap/p4. Fori = 0,1, ..., B:
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e set k(i) = argmink{VkTil_l/q’“}.

* Use[Theorem FI|/ Theorem 71 of [39] to get a regulariser for OMD that achieves the regret
upper-bound of 6002V} ;) logz( i) Tl_l/ 9@ over T; rounds. Use this on the T} rounds

7

{ZJ 0T +1,. ZJ 0T +T} When ¢ = B, just run it up to round 7.

Let k, = arg mink{Vle—l/ ak } The regret is bounded as follows:
& 1-1/
Ry(Appts 1, g7) < Y 6002Vi5) log?(Ty) - T,
i=0

B
< 600210g2(T) S Vigsy - T /%9 since forall i, T; < T
- T
1=0

< 600210g?(T ka* T!71/%: by definition of k(i)

B
= 6002 - Vi, - log*(T Z (21 Vaw i

21 1/Qk*)3+1 -1

= 6002 Vi, -log*(T) - =i ——

o1-1/qk,
< 21-1/aqk, — 1
91-1/qx,
P
— 91-1/qk, — 1
o V2
V2 -1
= (2+V/2) - 6002 - log?(T) - mkin{Vle_l/‘Ik I3

- 6002 - Vi, - log?(T) - (2B)1 Y/ ax.
6002 - V., -log?(T) - T~V since 28 < T

26002 - Vi, -log(T) - T =%~ since gz, > 2
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G Proofs of Section 3

Throughout this section, we will use the notation R for the pseudo-regret. In fact since a randomized
learner is equivalent to a random choice of deterministic learners, we will consider in the proofs
below deterministic learners and the regret is equal to the pseudo-regret. In addition, since our loss
constructions are oblivious to the learner’s actions, even for randomised learners, the pseudo-regret is
equal to the regret.

We split the proof into the case where p > 4/3 is “large" and the case where p € [1,4/3] is
“small" and consider separate loss constructions for each. We first highlight the intuition of the loss
constructions.

« For p > 4/3, we take inspiration from the loss construction which [6] use to prove a Q(dv/T)
lower bound for low-dimensional (d? < T) £y,-balls with p > 2. The construction consists of linear
Gaussian losses where the mean of each coordinate is the same distance from 0 but the learner
does not know the sign. When the dimension is large enough, the learner does not acquire enough
information to determine the signs of these means in the 7" rounds to get sub-linear regret. This
construction will not work when p < 4/3 because when p is close to 1, the lack of a distinct
corner in the £,,-ball allows any point on the boundary (including +e;) with correct signs to achieve
similar loss to the competitor (a corner). The learner can therefore focus on +e; simplifying the
problem to one-dimension where sub-linear regret is achievable.

* For p < 4/3, the construction consists of linear Gaussian losses where the mean vector has a
single non-zero positive entry, unknown to the learner. When the dimension is large enough, it does
not acquire enough information to determine the non-zero coordinate of the mean in the 7" rounds
to get sub-linear regret. This construction will not work when p > 4/3 because for p > 1 the
learner can exploit the £,-ball’s proximity to the hypercube by playing points with all coordinates
close to —1, bypassing the need to identify the correct non-zero mean coordinate.

We present the proofs with a Lipschitz constant of 1 but they extend straightforwardly to arbitrary
L>0.

G.1 Casep > 4/3
Theorem G.1. Fix T and § > 0. Consider p > 4/3 and

C\T 1 C\T Px/2 2
; ( log ) € }

0 " \eips 5

for some universal constants c1,Cy. For any OCO algorithm with bandit feedback on V- = B, there

exists a sequence of random linear losses ({y)¢c|r) with sub-gradients (gt )ie[r) such that || g¢|[,, <1

for all rounds t with probability at least 1 — § and

1
d > max{lGT, — log
C1

T
]EI:RT} > %7

where the expectation is with respect to the randomness of the losses.

G.1.1 Proof

The following loss construction and analysis is inspired from the proof of Theorem 4 of [6]. Their
construction is designed for the low-dimensional setting in such a way that the learner has to balance
exploration and exploitation rounds. We only consider the losses corresponding to exploration rounds
and generalize the analysis to the high-dimensional setting.

Let ¢ > 0 be such that e?* = 1/d. Let T < ad (with o« = 1/16). For a fixed £ € {—1, l}d, define
the losses as £;(z) = 27 g where g¢ ~ N(e¢, dw%Id) (i.i.d.). We show that (when ¢ is sampled
uniformly at the start and fixed throughout the rounds)

BB, [Fr] > 1o
We use [, for the expectation with respect to § and ng for the expectation with respect to gf with £
fixed. We will also use z; ; to mean the ¢-th coordinate of z;.
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For fixed &: E [(2)] = E[2Tg}] = - 27¢€. So the competitor 2* = argmin, gy ¢ - £Ta =
—d~1/P¢. Let us define 7 = + thl [x¢]. In particular one has
E[Rr] =T - " (z — o).

The following lemma expresses the expected regret in terms of the expected number of rounds and

coordinates for which the learner plays on the wrong side of . The proof is in[Appendix G.1.3]

Lemma G.2 (Generalization of Lemma 6 of [6]]).
d

N T
* t=11

—1

And now the next lemma shows that the expected number of rounds and coordinates for which the
learner plays on the wrong side of ¢ is linear in both 7" and d. The proof is in[Appendix G.1.4]

T d
Lemma G.3. With T < ad = 15, we have B¢E ¢ 37, Y0 I{z1i& > 0} > 9F.

Combining both lemmas, we have

1 T
E[Rr] > —517* . {;;H{xt &> 0}} Ep*Td— 4p*T > =,

since p > 4/3 so p, < 4. Now to ensure the L1psch1tz-cond1t10n with high-probability, we get an
extra factor of 1/5 (see the next section), concluding the proof.

G.1.2 Bound on Sub-gradients

Recall that p > 4/3 so p, < 4. Fix £ € {1, 1}d. gi ~ N(e€,d72/P1,). So gy = d~V/P+ X + &€
where X ~ N(0, I;). From [44], we have

B0t = (B[S ]) " = ([T < )i <
i=1

= E[||lgellp.] <2+ sdl/p* =2+1=3.
Fix § > 0.
* For p, < 2: By Theorem 1.1 in [38]] for some constants C7,c; > 0,
P(IXlly. < (1 +AE[IX]}p.]) > 1= Crexp(—ei ).

: 1 CiT
Assuming d > - log =%

, we have 8 = C%dlog%gland

B(IXly. < (1 +BE[IX],.]) 21~ 2.

* For 2 < p, < 4: By Theorem 1.1 in [3§]] for some constants C7,c; > 0,
P(”XHP* <1+ ,6)]E[||X\|p*]) > 1 — Cy exp(—c1Bp.d*/P).

log 4T < 1 and

qd2/p*

B(IX1,. < 1+ HEIX],.]) 2 1- 2.

In both cases, with probability at least 1 — 6 /T
1XIlp. < (1 +BE[IX1p.] < 2E[IX]lp.] < 4d*/",

— |lgellp, <d™ VP X|p, +ed"/P <4+1=5.

By a union bound over all rounds, with probability 1 — 4, ||g¢||,, < 5 for all rounds ¢. So rescaling
the losses by a factor of 5 gives sub-gradients whose £,,, -norm is bounded by 1 with high-probability
and a regret bound of:

Pe/2
N log CIT) , we have 5 =

Assuming d > <

B[R] = 5
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G.1.3 Proof of LemmalG.2]

LetWt:{iEH x“§Z<O} and S = E[Zt 127, 1]I{xt,§1>0 ] We have that

E[Rr] =eT &' (z 2"

—EZE 5[2 &x“} +5ZE s{z flx“} + eTd" /P

Z¢W1 €Wy
> e Zﬂzgf [Z fixm} + eTdY/Ps
t=1 €Wy

Therefore, it is sufficient to show that

EZEs{Zfzx“}—kerl/p*i S.

ieWy P«

Since ||z¢,w, ||, < 1 (we use x4, to mean that the coordinates of x, that are not in W, are 0), by
Holder’s inequality we know that

e Y Gme = (@ow) (€€w) = —lzew, ol —cw,llp. = Wil /Pee.
€Wy

Noting that (see (T4) below)

1
(Wil /Pee = ((d — [W|)eP) /P < (de?*)V/Pe — ;ep*IWtCI, (13)
we have
1 d
c Ewpy > —ePr WC P \L/Px — — opx [z & >0 — (deP 1/p«
Z;thp"() 5o 2 Hoeati 2 0} = ()

T d .
. 5ZE (D G 2 —ng [ 16 > 0}] — 1a=ry /e = 2 i,

i€EWy t=1 i=1 Dx
which concludes the proof.

Proof of : Since x!/P+ is concave: for all z,y € R, z'/Px < y/P« 4 p%yfl/p(x —y). In
particular, with z = P+ (d — s), y = eP*d, we have

1 P 1
e(d — s)1/P+ < ed'/Pr — R V. —ePrs, (14)

Dx ({.ﬂ’*d)l/P Dx
since eP*d = 1. Using s = |[W| gives the result.
G.1.4 Proof of LemmalG.3|
At round ¢ conditioned on &, the observed feedback is

2
T
C=al gt ~ N(e-2T¢,0?), where o2 = ‘(‘p;ﬂf

Denote p¢ for the law of the observed feedback up to time 7' conditioned on &, i.e., the law of
(s, . fqé) Consider ¢ and ¢’ differing only in coordinate 7 € d. By Pinsker’s inequality we have

1
drv (pe, per) < 3 Dy (pe, per ).
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By the chain rule for the KL divergence / operations on conditional densities:

Dxv(pe,per) =Epy,...fr)~pe [log

Il
]~

o
Il

Il
M=

1

~
I

Pg(fh oo fT) }
be (fl, ) fT)

ps(ft|ft71-~-7f1)}

Efy o fi)~ [1og
1 R R AT A Y

pE(ft'ftfl---vfl) ] }

E v ft—1)~ {]E t~ope ([ f1sefe— |:10g
(f1yeoesfe—1)~pe \ Bfe~pe (1 f1,0 fr—1) pf/(ft|ft—1-~-,f1)

Now since z; is a deterministic function of f1, ..., f—1 and given z¢, f; ~ N (ex] &, 0?) under pe,
we have that the inner expectation is a KL divergence between Gaussians:

EfinpeClf1,fior) [bg

T
e“xy; e°xy;
= Dkri(pe,pe) =2 By o )mpe {72 z} = 221%[ > z}
t=1 t=1 t

= drv(pe,per) <

Pg(ft\ft—lwfl) ] _ (5% §—ex; f) 4525”?,1' . 2525”?,1'
per (felfe—1 f1)

- 2 2
20?2 20} o;

2,2 T 2.2

0%

Now, using £_; to refer to all the coordinates of £ except the ¢-th and & (resp. &; _) to denote that
the i-th coordinate of £ is +1 (resp. —1),

T

ol 0]

e IE&[ [Zﬂ{zm&ZO}]lé }

1

2

1
-E

2

NIRRT N\’ﬂ

no|

t=1
T T

Ee_, [Epg,-+ [Zﬂ{xtai 12 0}] +El)5i, [ZH{IW (-1 = O}]]

t=1 t=1
T T

o B [0 2 0] B (1= 1> 0]

t=1

5 +3 zw oy [ 2 0}] — By [1{we; 2 0}]]

S M%

no| N

—

;Jk

T
Z Ee_, {dTV (Pesy s Pei) + drv(Pe,_ s De, +)] using Pinsker’s inequality

t=1

[ [dTV (pfpr y D¢, ) +drv (pf'i— yPéit )}

Summing over all possible coordinates 7, we get:

T

TR T

t=1

s
I
—
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Note that due to the concavity of the square-root:

So we get
T d T
X d 23
TEngf Zzﬂ{l't,ifi >0} > 5~ dZ]E&,gf o2
t=1i=1 t=1 '
_ g _ Jarem e
d
= — —\/dT
2
1
> d(5 - va)
_d
T4

since € = (1/d)"/P+ and T < ad = d/16.

G2 Casel <p<4/3

Theorem G.4. Fix T and 6 > 0. Consider p € (1,4/3] and

1 C T p*/Q
d > max{(128p*T)2, (ﬁ log %) ,62},
1P*

for some universal constants c1,Cy. For any OCO algorithm with bandit feedback on V' = B, there
exists a sequence of random linear losses ({;)¢c|r) with sub-gradients (gt ).e[r) such that ||g¢|[,, <1
for all rounds t with probability at least 1 — § and

T
E|Rr| > —
[Br] 2 16
where the expectation is with respect to the randomness of the losses.

G.2.1 Proof

Before the start of the game, draw Y ~ Unif(1, ..., d) and define the losses as /;(z) = 27 g} where

Y{N N(0302)7 lfz#}c
Ii Y A\N(1/2,02), ifi=Y,

where o = (8,/p,d"/P*)~1. We show that EyE,, . Ry > T/16.
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Fix o € [0, 1] and define A;(a) = {¢ : y;; > —a}. Then
E[RplY =i] =

17 .
+5E _;ymw:z}
L1

2

E| Z Yti + Z yt,i\Y:i]

t¢A;(a) teA;(a)

vV
N N I L I

B[S (b X Caw=i

_tg’EAi(oz) teA;(a)

E[7 — [4i(0)| + ol Ai(a)[Y =]

—aﬁEU%mmY=4
(1-a)= [ZH{ZJMZ a}|Y—Z]

The following lemma bounds the expected number of rounds where the learner suffers large regret (as
measured by o)) when Y = ¢ compared to an environment where all coordinates of g, are 0-mean for
all ¢ (i.e. there is no better direction). We denote Ej,, expectations with respect to this environment.

The proof is in

Lemma G.5. Let 07 = ||y |3 - 02, then

—~
—_

E[él{ym > —allY =i] > Ky, [il Hy, > —a}] —

From the lemma, we have

T

E[Rr|Y =i] > (1- a)%{Epo > Hyei = —a}] -

t=1

Taking an expectation with respect to Y we have:

E[Ry] = ;iE[RTW — 4]

v

s Q_da) Z{Epo [gﬂ{yt,i > —a}] -T

t=1
(1—Oé) T d
- {EPO[ZZH{y“Z —al]-T

t=1 i=1

For the first term: fix @ = (d/2)~'/? and note that if Z?:l I{y,; > —a} < d/2, then there are
more than d/2 coordinates of y; whose value is less than —a, this means

d d?2
p —aof = == =1
||yt||p> 20& 2d )

which contradicts y; € B, so we must have Z?Zl ]I{ym > ,a} >d/2.

For the second term, using Jensen’s inequality and the concavity of v/z,

d T 4 . -
> [i] = | a2 i) = 5 e (] =

i=1 t=1

Ul
IS
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Combining we have

5 (T

E[Rr] > 5 \3 ~

e Sinced >e2 > 27t 1 —a=1—(2/d)'/? >1—-277/P =1/2.
e« If d > (128p,T)? then d > 2T'/o? and:

T 1 T T T T
_ Tﬁ > =
2 2d 2 4 2
The condition on d follows from the definition of o and p, > 4:
128p, T 2T
d > (128p,T)* > (128¢T)"/ (1 72/7+) — @' =2/P > 128¢T = d > dff)p =3
* o

We hence have IE[RT] > T/16. The following section ensures that the Lipschitz-condition is
satisfied with high-probability.

G.2.2 Bound on sub-gradients

Recall that p < 4/3, so p, > 4. Given Y = i, g ~ N(3e;,0%14). So g, = 0 X + Je; where
X ~ N(0, I). From [44], we have

E[IX],.] < (E Dx |p*})”p*_( [ZQM p*j;)p ])w*-

From [3]] (Theorem 2.2), we have

_ _ (px—1)/2 _ _
F(p*;l) :F(p*Q )<\ﬁ(p* 1) p eXp(_p* 1) 2p*2 1 < 2 /mp, P 2e— P12

— (21’*/2%\;?1)/2))1/» g
— E[[|Xllp.] < 2v/ped"/*

— E[||g:]lp.] < 2¢/Brod"/P* +

Fix § > 0. By Theorem 1.1 in [38]] for some constants C7,c; > 0,

B(1X . < (Lt BE[IX],.]) > 1~ Oy exp(—eiBp.d®/P).

pe/2
Assuming d > ( log ClT) , we have g = log CzlsT < 1land

1
C1Px c1qd?/Px

P(IXly. < (14 BE[IXIp.]) > 1 2.

So with probability at least 1 — 6 /T

IXIlp. < (1 +BE[IX1p.] < 2E[IX].] < 4y/ped'/P,

1
= ||gillp, < 4y/Drod’/P* + 5 < 1,

where the final inequality follows from o < W
By a union bound over all rounds, with probability 1 — 4, ||g.||,, < 1 for all rounds ¢.
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G.2.3 Proof of Lemma|G.3|

Given Y = ¢, the observed feedback at round ¢ is exactly

fY _yt gt ~N(5 ytz7gt)7 whereat = ||ytH

Denote p; for the law of the observed feedback up to time 7" given Y = i, i.e., the law of (f%, ..., f1.).
Denote pg (use Y = 0 in notation), the law of the observed feedback up to time 7’ When all coordinates
of g; are 0-mean for all £ (i.e. there is no better direction). Under py, f ~ N(0, 0?). By the definition
of the total-variation distance (drv),

E[{y;; > —a}|Y =0] —E[Il{y;; > —a}|Y =i] < drv(po,pi)
T T

= E[Z]I{ym > —a}ly =0] - E[Z Ky > —a}tlY =i] <Tdov(po,pi).

By Pinsker’s inequality we have
1
drv(po,pi) < §DKL(p07pi)~
By the chain rule for the KL divergence / operations on conditional densities:

po(fh ) fT)}
pi(f1s s f1)

T
po(ft|ft—1~--7f1)

:E E p |log ——"—— "2~
(Frooft) po[og pi(ft|ft—1-~,f1)]

Dx1.(po,pi) = Ef1,....fr)~po {log

o~
I
=

po(felfim1-- fo
E(t1stioi)mpo {Epro(-lfl:.‘.,ftfl) {10% M} }

Il
B

1

~
I

Now since yt is a determlnlstlc function of fi,..., ft_1 and given Y, fi ~ N(0,0%) under pg
and f; ~ (Qyt iy O ) under p;, we have that the inner expectation is a KL divergence between
Gaussians:

po(ft‘ft_l...,fl) _ (0*?}1&,1/2)2 _ yt2,7,
Eftwpg(‘lfl""’f"_l)[log pi(ft|ft—1-~-7fl)} N 207 - 8o}

ZEpo[y“}

t=1

T
yt
- DKL pOapz ZE (f1yesfe—1) "’p0|: Z:|

= drv(po,pi) <

Combining gives the result.

G3 Casep — 1

Theorem G.6. Fix T and § > 0. Consider d > max{T/a, 81672, 8} and p € [1,1+1/log d].

For any OCO algorithm with bandit feedback on V' = B, there exists a sequence of random linear
losses (L¢)¢c|r) with sub-gradients (g;)ie[r) such that ||g¢||,, < 1 for all rounds t with probability at
least 1 — 6 and

T
]E[RT} Z T67

where the expectation is with respect to the randomness of the losses.
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G.3.1 Proof

We use almost the same loss construction as the proof of Before the start of the game,
draw Y ~ Unif(1,...,d) and define the losses as ¢;(z) = 2’ g; where

Y N(0502>7 le#Ya
i TAN(/2,02), ifi=Y,

where o = (4v/2 exp(1)+/logd)~'. The only difference with the proof of being the

value of . We also follow the same steps until we reach for o = (2/d)/?:

2 20\ 2d/°

1—a/T 1 T

>
BlRr] =2 = ( T )
« Fromd > 8,wehavep < 2and 2Pt! <8 <dsol—a = 1—(2/d)'/? > 1-27P/P = 1/2.
» From the definition of o = (4v/2 exp(1)y/Iogd)~!

1 /T [T logd |TVd T 1
I < Ve _ < =
5 50 ~ 2exp(1) 2exp(1) = 2exp(1) Nz

since d > 8*e*T2. This gives:

—T—]— >
2 20V 2d —

T 1 /T T T T
T - ——=—
2 4 2
We hence have IE[RT] > T/16. The following section ensures that the Lipschitz-condition is
satisfied with high-probability.

G.3.2 Bound on sub-gradients

Recall that p < 1 + @ S0 P, > @ + 1. We have

E[[[X[loo] < v/2logd.

By the Borell-TIS inequality,
P([1Xloo > E[|X]loc] +8) < exp(=52/2).
So with probability 1 — § /7', we have (using d > T'/§)
1Xle < E[IX]lo] + 12108 < /2108 + /2105 < 2/ZIogd
= lgull. < 1X . + 5 < 0d7 [ X + 5 < cexp(1)2y/2Togd + 5 =1

where the final equality follows from o = (4v/2 exp(1)y/Togd) ™" and we also used that d'/P+ < e.

By a union bound over all rounds, with probability 1 — 6, ||g.||,, < 1 for all rounds ¢.
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H Results for Online Mirror Descent (OMD)

H.1 OMD with uniformly-convex regularisation

The results in this section are from [40] (Proposition 7). We include them for completeness.

Let ¢ : R? — R be a proper, closed and differentiable y-uniformly convex functlorl on V of degree
7 > 2 w.r.t. anorm |-||. The Bregman Divergence w.r.t. ¢ is defined for all 2,y € R? as

Dy (z,y) = (x) —(y) — (Vi(y), x — y).
Given x1 € V, attime-stept = 1, ..., T, Online Mirror Descent (OMD) with step-size 1; > 0 outputs
the following update where g; € 9¢;(z;),
Tpp1 = argn‘}in{nt@t,x) + Dy (, xt)}- (15)
xE

The standard regret bound of OMD stems from the following one-step regret bound lemma (e.g. see
Lemma 6.9 in [36]).

Lemma H.1. The iterates (I3) of OMD satisfy for all u € V,

Dy (u, ) — Dy (u, 41) — Dy (@441, %)
Tt

Cy(xy) — e (u) < (g, 0 — Tq1) +

From Lemma[H.T|and the uniform convexity of ¢, we can bound the regret of OMD.

Theorem H.2. The iterates of OMD with decreasing step-size 11 < 0 (1 < t < T) satisfy
forall uw € V (recall that r is the conjugate of v, i.e. 1/r + 1/r, = 1),

T
D’ll)(u’xt re—1 T
th(l"t) —ly(u) < o —— + 'u,,* T 277 llgelli- (16)

If the step-sizes are constant: n, = n (1 <t < T), we have

a Dy (u,x
S b — i) < el m) _1Z||gt|“ (17)
t=1

n 7" lf*

Proof. By the uniform convexity of 4, Dy(41,2¢) > &lz; — 441", Using this in Lemma [H.1]
along with Holder’s inequality, we have for all u € V,

Dy (u, x¢) = Dy (u, xey1)  pl|lwe — 2 ||
Ui r un
Dy(u, ) — Dy (u, 411) o llze — 2 ||
ui r ui '

Ci(ze) — Le(u) < (ge, 2t — Tpq1) +

< gellllze — zeqall +

Consider f(z) = ;|2|". Then the Fenchel conjugate of f is f*(y) = ;-|y|™ (see Lemma 2.2 in
[24]) and from Fenchel’s inequality, we have zy < 1|z|" + % |y|™, which we use in the following,

" | ptr
G gell« ) - Tert_xt-H”

||9t||*||$t - 37t+1||

1/r 1/r
1/p N
< (mn all.)” +T(m1/r|xt—xt+l||)
re—1

o e Bl — e
- T*Mr*fl HgtH* + r e ’

5The function v can be defined on a subset X C R? but conditions on its behaviour on the boundary of X
are then required for OMD to be well defined. For simplicity, we consider v defined on R?, though the results in
this section hold more generally (see Theorem 6.7 of [36] for more detail).
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where we used that r = r, /(r, — 1). Plugging this into the above inequality,

re—1
* Dy(u,xy) — Dy (u, x
b)) — () < o gy + Deltot) = Dl tnn) (18)
Tl U
Denoting D = max;<;<7 Dy (u, x¢), the result follows by summing ¢ over all rounds,
T T
Dy(u,x¢) Dy (u, Ti41) 1
f(w) = () < Y (T SRR EET ) e
; t(x1) t(u) < ; T e r MT* 1 Zm llgell%*
T—1 T
Dy(u,z1)  Dy(u,zr41) 1 1 1 1
= - + ( — —)D U, T e i T
" e 2 Gy~ ) Do) & e 3o
T-1

I /\

th( nt) r/ﬂ“* 1277” el

1
D 11 - .
f+D(n——f) rw 1217 lgell:

Tt+1

m m —1
D 7*—1
:7]7 r Mh—l ZT} |gt|r ’

For constant step-size, the result follows similarly by summing (T8) over ¢, giving a telescoping sum,

T T
Dy(u,x1) — Dy (u, x 1 .
> thlar) — tufwy < A= Do) | S

DUJ(UMTl
< 2 WanHgtu*,

which concludes the proof. O

H.1.1 Regret bounds

When we have L-Lipschitz losses w.r.t. ||-|| and we can bound Dy, (u, z1) < D, then the regret bound
(17) for constant step-sizes becomes

TL™
71*;“’” -1

D
Rp <= +ny~7!
n
Assuming the time-horizon 7" is known, optimising the above bound w.r.t.  using Lemma[C.4] gives
ri/r 1/rl
Ry < ——LDY"TY/", (19)
pt/r

for n = (Dp/T)Y/" u*/" /L. With r = 2, we recover the standard regret bound of OMD using a
strongly-convex regulariser Ry < L+/2DT/p.

H.1.2 Anytime and adaptive bounds

When T is unknown, we can use the bound in and the time-varying step-size

DY (r = )Y 1 LD /7y
. <
L t1/7% toget Rr< l/r ’

e = (20)
where Dyyax is a bound on max; <¢<p Dy (u, 2¢). Though this can be unbounded when D is bounded,
for our purposes of £,-balls, Dy,.x will only be a constant away from D. The doubling trick can
also be used to obtam anytime bounds that depend on D instead of Dy, .« (see e.g. [27]). This uses
constant step-size OMD on time-horizons of doubling lengths until the unknown true 7" is reached.
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We can also obtain bounds that adapt to the sequence of observed subgradients of the form

Dt/ 1/ d AT
Ry = 1—/: : (ZH%H**)
K i—1

by using 1, = Dl (r — 1)Y/7 /7 /(SF_ ||gil|=* )2/~ . This follows the same lines as for OMD
with strongly convex regulariser (see Section 4.2.1 of [36]]).

H.2 OMD on /,-balls

* For the low-dimensional setting, consider OMD with regulariser ¢o(z) = 1| z[|3. We have
Dinax = sup, yep, 3ll7 — yll3 = 2d'~2/? and using that ¢ is 1-strongly-convex with respect to

[||l2, we have from withr = 2and g, = /24227,

R < 2L 2d1—2/rT.

* For the high-dimensional setting, consider OMD with regulariser ¢, (x) = %Hxﬂg We have
Dax = sup, yep, Dy, (z,y) = 2 (see below) and using that ¢,, is 2! “P-uniformly-convex of
1-1/p
degree p with respect to ||-|| ,, we have from withr =pandn = 1 (”;1) :

t
RT < 2p1/ppi_1/P*LT1—1/p.
To show Dpax = 2: Fix z,y € B, and ¢(z) = %||J:||£ The sign, power and absolute value
functions below are applied component-wise to vectors.

Dy(z,y) = ¥(z) —¥(y) — (Vib(y),z —y)

d
1 1 . —
= Ml =yl + D { signto) -yl ™ (s — 20) |

=1
1 1 d
= ~Jally = < llylls + > { l:l? - sign(y.) - |y~ |
p p =1
1 1 d
= llallp+ (1= 2 )yl = - {sien(us) - [yl ': }
p p i=1
1 I o
< o (1) = Do {stent) -l
p p i=1

We show that the last term is bounded by 1 by using Holder’s inequality,

(sign(y) - [y"~ 1, 2) < lylP~Hlollllp < 1,
where in the last inequality we used (recall that ¢ = p/(p — 1))

d 1/q d 1/q
gl o = (Dl @) = (Slwal?) ™ = gl < 1.
=1 i=1

Hence sup,, ,cp, Dy(z,y) <2 = Dax.

. . . . 1/ 1/p. 2P/ (P=2)
* We now show how to achieve anytime optimal bounds. Fix ¢, = (\/ip / Pp, *) .

Proposition H.3. Consider running OMD with the following regularizers

1)1/ P« .
W):{(z»pm):;mnz, = Coee, it <t

-2/ .
bo(w) = Llwl3, =L >t

Assume Uy convex, closed, and 04, (xy) not empty. Then, OMD guarantees

Ry < PR LTY i <,
= | 2LV2Td~2/p, ift >t

43



Proof. If T' < ¢, we have just run OMD with ¢,, as regulariser over all rounds and the regret
bound is the one for the high-dimensional setting above.

Otherwise, from the standard bounds from the OMD analysis

Dy (u,x D U, T
Rr <Z( wp 1) Dy, t+1)) " 12 p.—1

Mt DPxHp t=1
Dy, (u,x D u, T
+ Z ( wQ t 7wb2( y L1 ) Z "
t=to+1 "It 2 t=to+1
D, 2 &
1
< — n " + — + o Mt
*_1 t
Mto p*ﬂg ; 2p2 t:tzg;i-l

Dy LyD; <~ 1
2y 5
nr 2n A= VT

< 2 /Ppl/Pe Ltt/P 4 L\/TDy + L\/Dy(VT — Vo)

= 2L\ 2Td ~2/p 4 2pM/Ppl/Pe [P _ [\ fod1-2/py,
where we used Dy = sup,, e, Dy, (2, y) < 2d'=%/?, D, = SUP, yen, Dy, (2,y) <2, p2 =1
and p, = 2'7P. The proof is concluded by noting that 2p1/ppi/p*Lt(1)/p* — L+/2d'=2/Pt is

2p/(p—2)

negative for ty = (\/ipl/ppi/p*) -d O

< 2p1/pp1/17* Lt(l)/p* +

H.3 Failure of fixed separable regularisation for OMD

Proposition H.4. OMD with regulariser 1 € V and any sequence of decreasing n; cannot be
optimal across all dimensions. Specifically there are no constants cp,c; > 0 such that for all T,

Rr < e, LT'"V? foralld > T and Ry < ¢;LN'Td'=2/? foralld < T.

The proof is identical to the proof of for FTRL with the corresponding versions of
[Cemma 4.4|and [Lemma 4.7 for OMD given below.

Lemma H.5. for OMD] Consider d = 1 (V = B, = [-1,1]) and ¢p € F. OMD
with regulariser 1) and arbitrary decreasing step-size 0, can only guarantee Ry < cL\/T for some

constant ¢ > 0 and all sufficiently large T if for all x € [—-1,1], ¥(x) > ’%10/3:52.

Proof. Assume there exists a constant ¢ > 0 such that for all 7" and any sequence of losses, Ry <
cL/T. Consider T > 16¢? and a multiple of 4.

By considering the dual-version of OMD, we have that if there are no projections up to time ¢, the
update of OMD at time ¢ + 1 can be written as

t ¢
zep1 = VYy (— > nigi) = arg Igin{lﬁ(ﬂ«") + Uig;-rfﬂ}, 21
i=1 re i=1
where 1)}, is the restriction of the fenchel conjugate of ) to V = B, = [—1,1].

We now follow the same steps as FTRL with a slight modification to the loss ¢;(x) = x - g; where
g+ € [—1,1] is now defined as

_mi ot < Todd
un — 2 ’
gt =4 L, t < % even,
T
—L, >3,

Assume 1) is small enough s.t. x5 € int V = (—1, 1) (i.e. no projection is needed). If not, we can
modify the losses slightly so that z3 = 0 (if 03 is large enough, if it is not then set g; = g2 = 0 and
start the above losses from ¢ = 3) and then proceed similarly (i.e. if 73 is still so large that x4 = 1,
then again modify the losses slightly so that z5 = 0 etc). Set n = 1y /2. With this sequence of losses,
the points played by OMD satisfy
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e fort <T/2+ 1andt odd, we have Zi;ll 1sgs = 0,80 z; = 0.

« fort < T/2+1andt even, we have 3"} 1.9, = —n;-L s0 2 = arg min, ¢y {—mz+y(e)}.
For ¢t < t' < T/2 (both even), we have

—nuLay + Y(xy) < —np Lry +)(xy) using the definition of z;/
= —neLxy +Y(xe) + L(ne — e )
< —miLxy +(zy) + L(ng — ne)zy using the definition of x;
= (m — neyLay < (ne —ne) Ly
= Ty <1y using that ny < 7;.

So for all t < T/2 even, we have x; > xp/5.
o fort > T'/2, we have Zi;ll Nsgs > 22:1 NsGs SO Ty < Typiq.

The regret can be written as follows

T
LT LT LT
Ry = E le(wy) — (—72 ) > — 5 733T/2 - L E Tt (22)
t=1 t=T/2+1

Following similar steps as the proof of for FTRL, we get

1. We first show that x T ifac \/ﬂ cifnot, x ¢ +(2C\fl and from :

IT T/24|2¢VT) T
Ry >=--1L > w-L > T
t=T/2+1 t=T/2+[2cVT]
T/2+(2¢VT) T
LT
> L > 5L > 1
t=T/2+1 t=T/2+[2¢VT]+1
LT L T
:———LZC\FJ ( — [2¢VT] _*)
2
> 5(20\@

> cL\/T,

which contradicts our initial assumption that Ry < ¢L/T so we must have TL 4 roey/T) >
2
%. Note that 2¢v/T' < T/2 is ensured by 7' > 16¢2.

2. Next, we show that > ;bc(]_j/ 2%. Until the points reach 1 there are no projections so we can
use @ to write the OMD update as (note that even if 27 | ,. 7 = 1 the following still
2

holds
Z42evT]-1 T 4[2evT]-1
TT = arg min T) + Z-wa}:ar min{ T)—T Z}
L+f2eyT] = AIEI {w( ) ; nig gmin{ () ET: "
= i=5+1
Z4+[2eVT) -1
= T TT (20T > M+ (@1 roeypy) <0
i=Z+1

L 4[2¢vT]-1
=(1/2)< Y. mi<2eVTy
i=Z+1

1/2
s P02,
ZC\/T
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where in the second implication, we used that ¢ (z 12 v71) = ¥(1/2) (since ¢ is in-
creasing on [0, 1] and TL 4 roeyT) 2 1/2), L1 roeyT) < 1 and n; < ngp/p = 1 for all
i>T)2.

The remaining steps are identical to the proof of O

Lemma H.6 (Cemma 4.4|for OMD). Consider V = B, with p > 2 and assume losses are L-Lipschitz
in £,-norm. Let 1 be a convex function satisfying for some y > 0 and any x € R%, ¢(z) > £&]|z||3.

Ifd > (4T/,u)p/(p_2), there exists a sequence of linear L-Lipschitz losses (in {,-norm) for which
OMD with regulariser 1)(x) and any sequence of decreasing . suffers regret Ry > %LT.

Proof. We consider the loss construction described in[Appendix E.I| with a slight modification to the
loss 4 (z) = L - 2T g; where g; € By, is now defined as

—IL] ey, ¢t < L odd,
Ui
gt =1 L-eq, tg%even,
—L v, t>%.

By again considering the dual-version of OMD, we have that if there are no projections up to time ¢,
the update of OMD at time ¢ + 1 can be written as

t t
T = VY (—L Z nigi) = arg r‘l}in{z/}(x) +L Z mgiTx}, (23)
i=1 *€ i=1
where 1)y is the restriction of the fenchel conjugate of 1) to V' = B,,.

» First we consider ¢ < T'/2. As in the proof of [Lemma H.5| assume 7, is small enough s.t.

xy € int B, (i.e. no projection is needed). By (23), the steps are then the same as for FTRL

since when ¢ is odd, 2; = 0 and when ¢ is even, z; = argmin,cp_ {w(x) — Lnte{x}. So

we have
T/2 .
Zngt S T/4, 1f77T/2 Z Q/L
pot £ =10, if nr/o < 2/L.

Hence if npjo_1 > 2 /L, we have Rp > LT /4 and the statement of the theorem holds. If
nr/a—1 <2 /L, we look to the second half of the rounds.

* Let’s now consider ¢ > T'/2 and assume 7)7/5_1 < 2/L. Fix 8; =t —T/2 — 1. Until the
points reaches the boundary there are no projections so we can use (1)) to write the OMD

update as
t—1 t—1
Xy = arg min{w(ac) +L Z nig?x} = arg min{w(x) —L-vTz Z m}
reB, i=1 reB, =T /241

d t—1
= arg min Z{g(zz) — La;d='/1 Z m}.

i=1 i=T/2+1

Let u = v/||v||, be the competitor. Note that z; = A;u (since the update is coordinate
invariant) so only reaches the boundary once x; = w and for which the above equality
still holds (this is true because it is true for the last iterate before the projection and then
Zf;i 1;9; 1s greater than for this last iterate so the argmin will give z; = u). We have
At > 0 and

1 _
blae) = Slladl3 = 5A2ud' =27,
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Now from the OMD update,
t—1 1 t—1
() — Lot ay Z 7, <0 = iAfudl_Q/p — ML Z 7, <0
i=T/2+1 i=T/2+1
t—1

— A < 2L Z m < 2LBn < 43,

‘u,dl_Q/P =T7a1 - udl—Q/P - ludl—Q/P
4L,
= ly(1) = —Lo"my = —LX\ > T A2

since 1; < npjp < 2/Lforalli >T/2.1fd > (4T/,u)p/(p’2), we have forallt < T

4L, L
ft(l‘t) Z —m Z —5
T
T LT LT LT
= Rpr > — + Z Et(ﬂ%)>7—T=T
t=T/2+1

L(T—3)

If T is not divisible by 4 and weuse T'— 1, T'— 2 or T'— 3, we have R >
concluding the proof. O
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I Beyond separability

In this section, we extend our main result on the failure of separable regularisers (Theorem 4.6)) to
non-separable regularisers. We consider the class of regularisers defined as

U= {w : B, — R : convex, sign and coordinate invariant, 0 = arg min¢(z), ¥ (0) = 0,%(1/2e1) = 1},
z€R

where a function f : X € RY — Riis

* sign invariant if for any s € {—1,1}4, f(s-z) = f(z) for all z € X where s - z denotes
coordinate-wise multiplication.

* coordinate invariant if for any permutation s : [d] — [d], f(s(z)) = f(x) forall z € X.
We also assume that v is such that extensions of z € R? to higher dimensional spaces R?2 (dy > d)
by padding the extra coordinates with Os does not change the value of ().

This class is general since sign and coordinate invariance are mild natural assumptions for a regulariser
(and any regulariser can be scaled to satisfy the other conditions).

We can now state a general result on the failure of fixed regularisation.

Theorem I.1. FTRL (1) with fixed regulariser 1 (x) = % (z) for all t and ¢ € V cannot satisfy
both:

1. There exists ¢ > 0 such that for all T, d, T > d, there exists 1 such that Ry < cV'Td*~2/p,

2. There exists ¢’ > 0 such that for all T, d, d > T, there exists 1 such that Ry < TP,

In other words, it cannot be optimal both in the low and high dimensional settings.

Proof. Let’s assume([l] is satisfied.
Fix ¢ = ”4;2 and A < 2 (clog® 3)1/p. For n > 4, define

n

1
> T

We have w,, € B, for all n since:

d

1 o 1
P _ \P. § ’ < \P dr — \P
deHp = /3 $10g1+8$ €T [

X T+e .
— ilog i og3

oo

1

?

uw " du = NP - [—lufsro A

=<
€ log3 €log®3

where we used a u = log x substitution.

Proposition 1.2. Fix dj := exp((6402)1/(1/2_1/p)). Ifforall T,d, T > d > dy, there exists 1) such
that FTRL with fixed regulariser 1 (x) = %w(x) for all t and 1) € U satisfies Ry < cV'Td!—2/p
against any sequence of 1-Lipschitz losses (in £, norm), then for all d > dj

)\2

w(wd) - w(wd—l) > m~

Since we have assumed condition [} we have for d > d,

d—1

)\2 d )\2
Vlws) 2 Blwar) 2 Y o / e = A {loglog alf, = A% (loglog d — log log(do)).
’i:do 0

This condition allows us to use the following proposition which rules out condition 2] being satisfied
and concludes the proof.
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Proposition L.3. Ler ¢ € U satisfy for d > do and A\ < 3(elog® 3)VP ah(wg) > N (loglogd —
loglog(dy)). Fix T. If

T —
d > exp | exp | loglogdy + _ 8 , recalle = p-2
(clog® 3)%/P 4

there exists a sequence of linear 1-Lipschitz losses (in £,-norm) for which FTRL with fixed regulariser

Yy(x) = % (z) for all t and any n suffers regret Ry > £T.

L1 Proof of Proposition[L.2]
Suppose not: there exists a d > dy such that ¥(wg) — P(wg—1) < ﬁ;d.
Fix T' > d a multiple of 4 such that

dlog(d)272(1+5)/p < T < dlog(d)272(1+s)/p

1 1
32¢2 - \2 16¢2 - X2

This choice of a multiple of 4 is guaranteed by d > dj, which also guarantees 7" > d.

The statement of the proposition assumes that there exists 1 such that FTRL with fixed regulariser
Yi(z) = Lep(x) for all t and 1 € W satisfies Ry < eV T'd —2/p

)
‘We have

* Firstly, by considering g, = —e; for all ¢, we show in|Appendix I.2|that > W

* Define G = —%Vzﬁ(wd,l) and for t < T/2, {y(z) = g} x with g, = 72— - G. We have
llgellp, < 1and g, € B,, as required since ||G||,, < T/2 — 1 (see|Appendix 1.3). We

obtain

T/2—1

rrs = argmin{v(e) £ 3 (07)}

z€By

= argmin{y(2) + (G, )}

1
= wg_1 since G = fng(wd_l) <= V¢(wg—1) +n-G=0and wg_; € int Bp,.

Note that GTe4 = 0 from the sign and coordinate invariance of ).

 Fort > T/2, set the loss to be £;(z) = (—1)Tley (i.e. we alternate between +e4). This
gives forallk =0,1,...,T/4 — 1:

T7 o142k = T7/241 = Arg min{w(x) +7-(G — ey, x)}

z€B)

Tr/242k = TT/2 = Wd—1-
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We want to lower-bound eng /2+1, the loss suffered in each of these alternating rounds:

A

Vwa) 1+ (G = ea)wa = (wa) + 71 GTwas — iy
< P(wa-1) +1- GTwa—1 + ANINS n A by assumption
dlogd (d10g1+8(d))1/p
A2 A

Y(zp/) +1 T/2 dlogd n(dlogHE(d))l/p
by defof zp /2, <

A2 A

< +n-G" + -

S Y@rpn) 40 G arpn+ gy T (a10g ()77

=(z )4+ (G—ea)'x +n-eq + A :

= T/2+1 n d T/2+41 1" €aTT/2+1 dlogd n(d10g1+8(d))1/p

bydefof xr 241, <

A2 A
< . _e\T el _
> w(wd) +1n (G ed) wq +1 - €q TT/241 + legd n (d10g1+8(d))1/p

— elx > A —1 A
d¥T/2+1 Z (dlog1+€(d))1/p ndlogd
2

A —2e\/Td' =2/ . A
dlogd

> -
" (dlog"*e(a)V/p

by condition on n

¢ Recall that T satisfies

1
dlog(d)272(1+6)/p < T < m (d)272(1+6)/p

A A2 A
- —2eVTdl—2/p. >

/7 1og 7P () e/ Tdl—-2/v Jlogd = 24177 log 77 (g)

T Th
= Rr> - ejurjpn > 841/ log ' +o)/7(d)

1

>
— 256¢2 - A

dl—l/p . 10g(d)2_3(1+6)/p.

Now note that cv/T'd—2/P < L -d' 1P og(d)' ~(1+e)/P so Ry < ¢V/Td'=2P is contra-

dicted if
1 1-1/p 2-3(1+ 1 - -
- 1 e/~ — . gi-1/r .| 1-(1+e)/p
25602'>\d og(d) > d og(d)
— log(d)!720+9)/P > 42
-2
— log(d)V/?7YP > 64¢*  since e = pT

= d > exp((64c?)Y/1/271/P)) — ¢,

L2 Lower bound on eta
Consider the following linear losses /;(x) = ef x. The regret can be written as
T

T
RT =T -— th(.ﬁt) =T — Ze{.’l)t.
t=1

t=1
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* We first show ei @, 77 = 1vifnot, el z, < 3 forall t < [2¢V/T'd'=2/P] we have:

[2¢VTdl=2/P] T
Ry =T — Z elay + Z ela,
t=1 t=[2cVTd1—2/P|+1
[2cVTd1—2/7] 1 T
>T— ) 5+ > 1
t=1 t=[2cVTd1—2/P]+1

1
=T = S[2eV/Td=2/0] — (T - [2e/Tdi=2/0))
— %( 2e\/Td1=2/7]
> eV Tdl=2/p,

which contradicts our initial assumption that Ry < ¢V Td'—2/P so we must have
elTa:mC\/leT/p] > 1. Note that 2¢vV'Td*~2/? < T is ensured if T > 4¢?d'=2/P.

* Next, we show that n > %. By the definition of T (oo Ta—27m]"

V(@ gpygiamy) = 1 [2VTA 2] - e, e <0

= (1/2e1) < - [2eVTd —2/P]

P(1/2eq) S ¥(1/2e1) 1
[2eV/Td1=2/P] ~ 2eVTd'=2/  2cV/Td1=2/p
where in the first implication, we used that 1/1(9:[26 \/m]) > 1(1/2 - e1) (any coor-
dinate other than the first being non-zero increases v but does not impact the loss) and
L& ppeyrararm < 1

I3 Upper bound on ||G||p,
For clarity, set u = V{p(wg—1), ¢ = px,» To = T/2 — 1.
Claim: ||ul|, < nT)

Proof: Consider the losses /;(x) = —mxTu for all . So x4, = argmin, e {¥(x) — ﬁ :
zTu}.

» We have —— (z7,41,u) > 3/4: if not:

llullq

T, T
o= 1/4,
8

T
1
RT =T - Zét(mt) 2 T() . <1 - |u||q<l'T0+1,u>> > — =

-4
t=1

contradicting Ry < ¢VT'd'~2/P. We used that (x4, u) < (zr,1,u) for all ¢ since:
nt nt

Y(@i1) = o (@eg1,u) S P(@r41) — T (@1, u), by def of @y
llullq (o
T, To —t

< P(emen) = 2 () + TR
[Jwllq [[wllq
ik To —t

< P(wi1) — T (@i, u) + M@Toﬂa u), by defof z7, 41

llullq llullq
n(To —t) n(To —t)
—— (1, u) < ———— (T 41, )
[lullq [lully ’

= (Tr11,u) < (1041, U).
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* wii i < il le < Grgrayms < 3/4 = (@n41 — wa—1)"u > 0.

* To conclude, from the definition of z7;, 41, we have

Tt Tt
Y(way) — 7o (war,u) 2 B(amy) — 1o (e e, u)
llwllq [lwllq
T .
> P(wg—1) + uT(xTOH —wg—1) — ”ZL—HO@TOH, u) by convexity of 9
q

Tt
— (HUUO — 1) (Try41 — wg—1)Tu >0,
q

from which we have ||u||, < 1Ty since (z7,+1 — wa—1)Tu > 0.
L4  Proof of Proposition[L.3]

‘We consider two cases:

Case 1: 17 > 4: Assume that T is divisible by 4 and define the following losses ¢;(z) = (—1)* - z7e;.
When ¢ is odd, z; = argmin,cz 1 (2) = 0. When ¢ is even,

1
Ty = arg min{z/}(sc) — nelTx} = Y(xr) —nzler <(1/2e;) — ge?el =1- 51
xEBy
1 1 _1
= ft(xt)=$?e12§—521
d T
— RT = Z@t(:vt) 2 g
t=1
Case 2: 1 < 4: Similarly to [Appendix 1.3] we consider v = V¥ (wg), ¢ = p, and the losses
l(z) = —mmTu forallt. So 411 = argminwegp{z/}(a:) - ﬁ czTu}.

Case 2.1: —~—(xry1,u) < 3/4:

llellq

RTZT—XT:&(I})>T- 1—L<LL’T+1 U> >Z.
— N llullq 7 4

Case 2.2: m (xT41,u) > 3/4: Following the same steps as in|Appendix 1.3| we can show that
llull; < nT. Hence, as in the proof of [Proposition 1.2} we can instead set the losses to ¢,(z) = g =

with g, = ;—% -u € By, and obtain 711 = wy. We obtain

wy = argmin{w(x) - (u,x)} — P(wq) — (u,wq) <0

z€B,
nTA AT )
— M (loglogd — loglog dy) < (u,wy) < ||lull4llwall, < <
! ? (clog®3)"? = (elog® 3)"/7
4T

= A(loglogd — loglogdy) < ——7

(elog®3)™ /P

4T
—> loglogd < loglogdy + 7
A(elog®3)/?

which is a contradiction if

4T 8T
d > exp | exp [ loglogdy + —— =exp | exp [ loglogdy + — )
A(elog®3)/? (elog® 3)*/?

with A = 1 (clog® 3P < 3 (elog® 3)"/?_ Hence, we must have Case 2.1 and Ry > L
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