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Abstract

We study online convex optimisation on ℓp-balls in Rd for p > 2. While always
sub-linear, the optimal regret exhibits a shift between the high-dimensional set-
ting (d > T ), when the dimension d is greater than the time horizon T and the
low-dimensional setting (d ≤ T ). We show that Follow-the-Regularised-Leader
(FTRL) with time-varying regularisation which is adaptive to the dimension regime
is anytime optimal for all dimension regimes. Motivated by this, we ask whether it
is possible to obtain anytime optimality of FTRL with fixed non-adaptive regulari-
sation. Our main result establishes that for separable regularisers, adaptivity in the
regulariser is necessary, and that any fixed regulariser will be sub-optimal in one of
the two dimension regimes. Finally, we provide lower bounds which rule out sub-
linear regret bounds for the linear bandit problem in sufficiently high-dimension
for all ℓp-balls with p ≥ 1.

1 Introduction

We study Online Convex Optimisation (OCO) [16, 45], a sequential game where in each round
t = 1, . . . , T , a learner selects a point xt in a convex set V ⊂ Rd and suffers a convex loss ℓt(xt), the
full loss ℓt is then revealed to the learner before the next point xt+1 is selected. The learner competes
against the best fixed point in hindsight and aims to minimise its regret against this competitor:
RT =

∑T
t=1 ℓt(xt)−minu∈V

∑T
t=1 ℓt(u). Optimal performance is known to depend on parameters

of the problem such as the geometry of the set V and constraints on the losses ℓt [28, 23, 25, 42].

We consider the setting where the action set V =
{
x ∈ Rd : ∥x∥p ≤ 1

}
is an ℓp-ball in d-dimensional

space with p > 2 and losses are L-Lipschitz with respect to ∥·∥p (ensuring RT ≤ 2LT ). The study
of ℓp-geometries with p > 2 has been the focus of many works in optimisation [10, 28, 18, 24, 25] as
it covers sets with varying levels of curvature, offering insights for more general spaces.

In this work, we study the behaviour of the Follow-The-Regularised-Leader (FTRL) (and Online
Mirror Descent (OMD)) family of algorithms in achieving anytime optimal regret guarantees.
Anytime refers to the absence of knowledge of the time horizon T . We focus on two regimes:
the high-dimensional setting where d > T and the low-dimensional setting where d ≤ T . For
ℓp-balls with p > 2, the optimal regret exhibits a shift from the high-dimensional setting to the
low-dimensional setting (see Table 1). If T is unknown, then so is the dimension regime when
the game begins. We show that anytime optimality can be achieved with FTRL by using adaptive
regularisation that in early high-dimensional rounds uses a uniformly-convex regulariser of degree p
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(see Definition 2.2) and switches to a strongly-convex regulariser in round t0 ≈ d. Despite achieving
the anytime optimal regret through adaptive regularisation, it remains an open question whether this
can be achieved through OMD or FTRL with a single fixed regulariser. This would be desirable
since it would provide algorithmic simplicity as well as an understanding of how to appropriately
regularise ℓp-balls across all dimension-regimes simultaneously. Therefore, we aim to answer the
following question:

Can OMD or FTRL with a fixed regulariser be anytime optimal for OCO on ℓp-balls with p > 2 ?

To answer this question, it is natural to first consider the regularisers that are optimal in one of the
dimension regimes. However, we give algorithmic-dependent lower bounds that show that these
are not anytime optimal (Proposition 4.1, Proposition 4.5). More generally, we also show that any
strongly-convex regulariser is provably sub-optimal in the high dimensional setting (Theorem 4.2).

We then turn to our main result which provides a negative answer to the above question for
separable regularisers (that separate additively over dimension: ψ(x) =

∑d
i=1 gi(xi)). The result

(Theorem 4.6) states that a separable regulariser (with OMD or FTRL) cannot be anytime optimal.
This also establishes that the adaptive regularisation used in our procedure to achieve anytime
optimality is necessary for separable regularisers. The class of separable regularisers covers a wide
range of regularisers including all of the form ∥x∥rr for any r ≥ 1 which are commonly used in
OMD and FTRL [10, 28, 43]. Moreover, the result holds for any separate coordinate-wise decreasing
step-sizes, showing that the widely used diagonal versions of Adagrad-style algorithms [12] are also
anytime sub-optimal and emphasising the relevance of this result on practical methods. As far as
we are aware, results on the failure of fixed regularization are novel in online learning. However,
algorithmic specific lower bounds (like the ones we have for specific regularizers in Proposition 4.1
and Proposition 4.5) have appeared in prior work (e.g. Theorems 3 & 4 in [37]).

For any online learning problem, the learner may not know if the game will end in low or high
dimensions, and designing optimal procedures in both cases is important. Our results show that
achieving this is not straightforward for ℓp-balls, highlighting that this problem should not be
overlooked in online learning more broadly and pointing out that the question on universality of
mirror descent started in prior works [39] is not completely answered (see discussion in Section 4.3).
We note that the ℓp/ℓq setting (i.e. V = Bp, ∂ℓt(x) ⊂ Bq) is relevant in the literature, e.g., see the
open problem in [17]. Our work highlights the difficulty of this setting for p = q > 2.

Finally, we consider the linear bandit problem where only the loss evaluated at xt is observed
(Section 5). We would like to approach this problem in the same way as the full-information problem
by characterising the algorithms achieving optimal regret guarantees across all dimension regimes.
However, while sub-linear regret bounds have been established in the low-dimensional setting by [25],
we show that the bandit setting is fundamentally different and much more difficult since sub-linear
regret bounds become unachievable when the dimension is large enough (Theorem 5.1).

Table 1: Optimal regret rates for OCO on ℓp-balls (p > 2) from known results. [28] show the regret
bound of O(LT 1/2d1/2−1/p) achieved by OMD using a strongly-convex regulariser is optimal for
d = O(T ). When d ≫ T this bound is vacuous since RT ≤ 2LT . For d > T , OMD with a
uniformly-convex regulariser of degree p guarantees a regret of O(LT 1−1/p) [40] and is optimal
[34, 18, 17, 40]. These guarantees can also be achieved with FTRL using the same regularisers
[36, 4].

d ≤ T (low-dim) d > T (high-dim)

Optimal Regret Rate L
√
Td1−2/p LT 1−1/p

Regularisation (OMD or FTRL) Strongly-convex Uniformly-convex

1.1 Contributions

We highlight our contributions for OCO on ℓp-balls for p > 2 below. Note that the case p ∈ [1, 2] is
already understood across all dimension regimes and does not present shifts in the rate of regret with

2



respect to the time horizon T unlike in the p > 2 case, see Remark 2.1, [28]. We focus here on FTRL
but the results also hold for OMD, and we include these in Appendix H.

• We consider anytime bounds where the time horizon T is not known in advance and show FTRL
with adaptive regularisation achieves anytime optimality (Theorem 3.1).

• We establish algorithmic-specific lower bounds for instances of FTRL that show that the fixed regu-
lariser achieving optimality in low-dimensions (∥x∥22) is provably sub-optimal in high-dimensions
(Proposition 4.1), and the fixed regulariser achieving optimality in high-dimensions (∥x∥pp) is
provably sub-optimal in low-dimensions (Proposition 4.5). We also provide a more general result
on the sub-optimality of any strongly-convex regulariser in high-dimensions (Theorem 4.2).

• Our main result: For separable regularisers, or regularisers that are within a multiplicative
constant of these, we show that adaptive regularisation for OMD or FTRL is necessary to
achieve anytime optimality (Theorem 4.6), ruling out the existence of a single anytime optimal
separable regulariser.

• In Section 2, we connect results from the literature to fully characterise optimality for ℓp-balls with
p > 2 across all dimension regimes . In particular, we highlight that FTRL with a strongly-convex
regulariser achieves the optimal regret in low-dimensions and FTRL with a uniformly-convex
regulariser of degree p achieves the optimal regret in high-dimensions.

• Finally, for bandit feedback where only ℓt(xt) is revealed to the learner in each round t instead of
the full loss, we establish lower bounds for all convex ℓp-balls (p ≥ 1) showing any linear bandit
learner suffers linear regret when the dimension is large enough (Theorem 5.1).

We also include some simulations in Appendix A which validate some of our theoretical findings.

1.2 Related works

High-dimensional Online Learning: The setting where d > T has been considered mostly for the
stochastic linear bandit problem [20, 30, 7, 29, 26], where the stochastic linear refers to the losses
being fixed and linear but observed with i.i.d. noise as opposed to the harder fully adversarial nature
of our setting. Beyond stochastic linear bandits, little attention has been given to the high-dimensional
setting. Although the high-dimensional setting was not explicitly studied in [28], the results provided
for OCO on ℓp-balls for p ∈ [1, 2] fully characterise regret optimality across all dimensions (see
Remark 2.1). Similarly, the results we present for the high-dimensional case of ℓp-balls with p > 2 in
Section 2.3 follow from prior work not explicitly studying the high-dimensional setting [40, 4].

Uniform Convexity of functions (Definition 2.2, see also [46, 1, 35, 24]) is the key ingredient
to obtain dimension-independent regret bounds in high-dimensions. Uniformly-convex functions
have been considered as regularisers for offline [10] and online optimisation [40, 4], and also as
objectives [22] and losses [39]. Uniform convexity of sets1 [8, 19, 2] allows for interpolation of the
set curvature between strong convexity and absence of curvature. In optimisation, curvature of the
action set such as strong convexity typically leads to accelerated convergence rates [21, 33, 14, 32].
Uniformly-convex sets then allow interpolation between the faster rates of strongly-convex sets and
the slower rates of sets without curvature [11, 23, 25, 42] (see [24] for an overview). In this work,
we consider a natural class of uniformly-convex sets, ℓp-balls for p > 2. These balls also interpolate
between strongly-convexity (p = 2) and absence of curvature (p = ∞), and in high dimensions we
recover a connection between curvature and faster rates (T 1−1/p), which is absent in low-dimensions
if we consider the dimension as fixed where the rate is O(

√
T ) for all values of p ≥ 2.

1.3 Notation

We use the following notation: r⋆ is the dual of r ≥ 1 satisfying 1/r + 1/r⋆ = 1, ∥x∥r =(∑d
i=1|xi|r

)1/r
denotes the ℓr norm, ∥x∥⋆ is the dual norm of ∥x∥, ϕr(x) = 1

r∥x∥
r
r for r ≥ 2, xt,i

denotes the i-th entry of a vector xt with a time index t, ei denotes the i-th canonical basis vector,
and ∂f(x) is the set of sub-gradients of a function f at x. For a function f : R → R, we write
f(x) = O(g(x)) (resp. Ω(g(x))) where ∃c > 0, N ∈ R>0 such that for all x > N , f(n) ≤ cg(n)

(resp. f(n) ≥ cg(n)). We use Õ and Ω̃ when we ignore logarithmic factors.
1Uniform convexity for sets and uniform convexity for functions are connected through an equivalence of

uniform convexity between a set and the set-induced norm [24].
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2 Preliminaries

In this section, we review results from prior works on OCO for ℓp-balls and connect them to
fully characterise the optimal rates across all dimension regimes. The action set is V = Bp ={
x ∈ Rd : ∥x∥p ≤ 1

}
, the unit ℓp-ball with p > 2. We assume we have L-Lipschitz losses in ℓp

norm (i.e. ∥gt∥p⋆ ≤ L for gt ∈ ∂ℓt(xt)), ensuring the regret incurred in a single round is bounded by
2L, and the overall regret by 2LT .

We first present a general regret bound for FTRL using a uniformly-convex regulariser (Section 2.1).
We focus here on FTRL because of its advantages over OMD (in unbounded domains, the regret of
OMD can be linear while FTRL maintains sub-linear regret [37]), although the results we discuss
also hold for OMD and we include these in Appendix H. We then consider these bounds with specific
regularisers and provide matching lower bounds to establish the optimal regret in the low-dimensional
setting (Section 2.2) and high-dimensional setting (Section 2.3). The results from this section follow
from prior work and we include the missing proofs in Appendix C.
Remark 2.1. We focus on ℓp-balls for p > 2 because the case p ∈ [1, 2] is already understood
[28]. [28] show that when p ∈ [1, 2], OMD with regulariser ψ(x) = ∥x∥2a/2(a − 1) and a =

max
{
1 + 1/ log(2d), p

}
achieves a regret of O(

√
T/(a− 1)) and this is optimal for all d except if

T < 1/(a− 1) for which sub-linear regret is not possible.

2.1 FTRL and uniformly-convex regularisation

In this section, we review the analysis of Follow-the-Regularised-Leader (FTRL) using a uniformly-
convex regulariser [4] which will lead to the regret guarantees in the subsequent sections. First, we
provide the definition of a uniformly-convex function from [35] (note there are also other standard
equivalent definitions, see e.g. [24]).
Definition 2.2 ([35]). A differentiable function f on a closed convex set V is µ-uniformly-convex on
V of degree p > 2 w.r.t. a norm ∥·∥ if there exists µ > 0 such that for all x, y ∈ V ,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

p
∥y − x∥p.

Uniform convexity generalises strong convexity by weakening the condition of a quadratic lower
bound allowing functions that are locally much flatter. In particular, uniform convexity with p = 2
recovers strong convexity. Though FTRL is usually considered with a strongly-convex regulariser, its
analysis can be generalised to uniformly-convex regularisers [4], as seen in the following theorem
which we write in a general form to ensure results in following sections directly follow from it.
Theorem 2.3. Let V ⊂ Rd be convex and consider proper convex losses (ℓt)

T
t=1. For t ≥ 1, let

ψt : Rd → R be a proper, closed and differentiable µt-uniformly-convex function on V of degree
rt ≥ 2 with respect to a norm ∥·∥|t (we use this notation to avoid confusion with the ℓp norm ∥·∥p,
we will denote the dual norm as ∥·∥|t⋆). At time-step t = 1, ..., T , FTRL on linearised losses with
time-varying regularisers (ψt)Tt=1 outputs the following points with gt ∈ ∂ℓt(xt) for all t,

xt = argmin
x∈V

{
ψt(x) +

t−1∑
s=1

⟨gs, x⟩
}
. (1)

Then for any u ∈ V and gt ∈ ∂ℓt(xt), the points played by FTRL satisfy the following regret bound:

T∑
t=1

ℓt(xt)− ℓt(u) ≤ ψT (u)−min
x∈V

ψ1(x) +

T∑
t=1

{
(rt − 1)

rtµ
1

rt−1

t

∥gt∥
rt

rt−1

|t⋆ + ψt(xt+1)− ψt+1(xt+1)

}
.

A version of this result can be found in [4] We include the proof in Appendix C.1 for completeness. If
we consider a fixed regulariser with a step-size (ψt(x) = 1

ηt−1
ψ(x) for a fixed ψ) so that the condition

of uniform convexity is fixed for all rounds, we get the following result (proof in Appendix C.2).
Corollary 2.4. Let V ⊂ Rd be convex and consider proper convex losses (ℓt)Tt=1. Let ψ : Rd → R≥0

be a proper, closed and differentiable µ-uniformly-convex function on V of degree r ≥ 2 with respect
to a norm ∥·∥. Assume V is bounded and letD be such that supx∈V ψ(x) ≤ D. Assume the losses are
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L∥·∥-Lipschitz with respect to ∥·∥. Consider using FTRL in (1) with regularisers ψt(x) = 1
ηt−1

ψ(x)

and ηt−1 = D1/r⋆µ1/r

L∥·∥(r⋆−1)1/r⋆ t1/r⋆
. Then for any u ∈ V ,

T∑
t=1

ℓt(xt)− ℓt(u) ≤
r1/rr

1/r⋆
⋆

µ1/r
L∥·∥D

1/rT 1/r⋆ .

The degree r of uniform convexity in the above regret bound offers a trade-off between the dependence
on the horizon T and the diameter D, while leaving the Lipschitz constant unaffected. In particular, a
larger r will shrink the dependence on the diameter at the cost of a worst rate w.r.t. T . This can give
better regret bounds for high-dimensional problems where the dimension dependence arises through
the diameter D, as is the case for ℓp-balls (see Section 2.3). With r = 2, we recover the standard
regret bound of FTRL using a strongly-convex regulariser, RT ≤ 2L∥·∥

√
DT/µ.

It is also possible to obtain bounds that are Lipschitz-adaptive (do not require knowledge of L∥·∥) and
adapt to the sequence of sub-gradients (scale with

∑T
t=1∥gt∥r⋆⋆ instead of T 1/r⋆) using a gradient

clipping technique (see the blog-post by [41] and Section 4 in [9]).

2.2 Low-dimensional regime

In this section, we consider OCO on Bp in the low-dimensional setting where d ≤ T . Using FTRL
with strongly-convex regularisation in this setting achieves the optimal regret. Specifically, we
consider the squared ℓ2-norm ϕ2(x) =

1
2∥x∥

2
2 as the regulariser. This is 1-strongly-convex on V

with respect to ∥·∥2 and we can apply Corollary 2.4 with r = 2. We have that L∥·∥2
≤ L since the

losses are L-Lipschitz with respect to ∥·∥p and p⋆ ≤ 2 so ∥gt∥2 ≤ ∥gt∥p⋆ ≤ L. The diameter of
Bp measured by ϕ2 is D = supx∈Bp

ϕ2(x) = supx∈Bp

1
2∥x∥

2
2 = 1

2d
1−2/p. So FTRL guarantees

RT ≤ L
√
2d1−2/pT , which is optimal up to constants for d ≤ T as shown by the theorem below.

Theorem 2.5. Fix d ≤ T and let A be any algorithm for OCO on V = Bp. There exists a sequence
of L-Lipschitz losses w.r.t. ∥·∥p such that A suffers a regret of at least 1√

6
L
√
d1−2/pT .

Optimality in low-dimension was established by [28] (both upper and lower bounds). However, the
lower bound we present above contains better constants and a simpler analysis stemming from the
“probabilistic” method instead of the reductions from estimation to testing used by [28]. The proof
can be found in Appendix C.3.

2.3 High-dimensional regime

In this section, we consider OCO on Bp in the high-dimensional setting where d > T . We saw in
the previous section that the optimal regret in low-dimensions of O(

√
d1−2/pT ) is polynomial in

the dimension. As d→ ∞ for fixed T , this polynomial dependence on the dimension cannot remain
optimal since RT ≤ 2LT is bounded. Nevertheless, we will see that sub-linear regret bounds (in T )
are possible for any d > T , even when d is such that

√
d1−2/pT ≥ T . However, this is not achievable

using strongly-convex regularisation (we delay discussion of this failure to Section 4). Instead, in this
section we consider uniformly-convex regularisation of degree p > 2 that enforces less curvature,
allowing points in the corners of Bp to be more appropriately regularised in high dimensions. This
allows us to obtain optimal regret bounds for the high-dimensional regime.

We consider FTRL on Bp with the regulariser ϕp(x) = 1
p∥x∥

p
p. The following proposition ensures

that ϕp is uniformly-convex of degree p with respect to ∥·∥p. This is a well-known result derived
from Clarkson’s inequality. We include a proof in Appendix C.5 to provide clarity on the constant of
uniform convexity.

Proposition 2.6. Fix p > 2. ϕp(x) = 1
p∥x∥

p
p is 21−p-uniformly-convex of degree p w.r.t. ∥·∥p on Bp.

We can now apply Corollary 2.4 with r = p. We have that L∥·∥p
= L since the losses are L-Lipschitz

with respect to ∥·∥p. The diameter of Bp measured by ϕp is D = 1/p. So FTRL guarantees

RT ≤ L
(
2p⋆T

)1/p⋆ , which is optimal up to constants for d > T as shown by the theorem below.
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Theorem 2.7. Fix d > T and let A be any algorithm for OCO on V = Bp. There exists a sequence
of L-Lipschitz losses w.r.t. ∥·∥p such that A suffers a regret of at least LT 1/p⋆ .

This lower bound follows from an online-to-batch conversion of the lower bound for high-dimensional
(offline) Lipschitz convex optimisation [34, 18, 17] or an instantiation of the lower bound by [40]
(Lemma 15). We include the details of the latter in Appendix C.4.

3 Anytime optimality through adaptive regularisation

In the previous section (Section 2), we saw that the optimal regret is achieved with strongly-convex
regularisation in the low-dimensional setting (d ≤ T ) and with uniformly-convex regularisation in the
high-dimensional setting (d > T ). To be optimal, the learner with knowledge of the dimension d and
the time horizon T can evaluate whether d > T or d ≤ T and select the appropriate regularisation
based on whether the problem is high or low dimensional. However, choosing the correct regulariser
relies on knowing whether the problem is high (d > T ) or low (d ≤ T ) dimensional, which itself
relies on knowing the horizon T . In this section, we consider how to achieve anytime optimal regret
bounds which hold without knowledge of T .

We consider FTRL with regularisation that adapts to the dimension regime. Fix t0 = 3−2p/(p−2)d.
Then, in early high-dimensional rounds, the uniformly-convex ϕp is used, until the threshold t0 when
the low-dimensional regime is reached and the regulariser switches to the strongly-convex ϕ2. In both
cases, the step-size used is the one in Corollary 2.4. Specifically, with ϕr(x) = 1

r∥x∥
r
r for r ≥ 2, we

consider FTRL with regulariser at time t given by

ψt(x) =

{
1

ηt−1
ϕp(x), ηt−1 = 1

L(2p⋆t)1/p⋆
, if t ≤ t0,

1
ηt−1

ϕ2(x), ηt−1 =
√
d1−2/p

L
√
2t

, if t > t0.
(2)

FTRL with this sequence of regularisers is anytime optimal as shown by the following theorem.
Theorem 3.1. Let V = Bp (p > 2) and consider proper convex losses (ℓt)Tt=1 that are L-Lipschitz
with respect to ∥·∥. Consider FTRL with regularisers given in (2). Then

RT ≤

{
L
(
2p⋆T

)1/p⋆
, if T ≤ t0,

L
√
2Td1−2/p, if T > t0

The proof is in Appendix D and consists of a careful application of Theorem 2.3. The time-step where
the regulariser changes is handled by the specific value of the threshold t0 = 3−2p/(p−2)d. This
value allows us to recover the same low-dimensional bound (including constants) as in Section 2.2
achieved using strongly-convex regularisation from the start. For the high-dimensional setting, there
is no switch in regulariser so the algorithm and regret bounds are identical to those in Section 2.3. In
other words, being agnostic to the dimension regime comes at no cost to the regret bound. The above
procedure can be used with gradient-clipping techniques discussed by [41] to obtain a Lipschitz-
adaptive anytime optimal algorithm. OMD can also be used to achieve anytime optimality with
similar adaptive regularisation (see Appendix H).

Our anytime-optimal procedure is like a restarting technique except the step-size in the later low-
dimensional time-steps accounts for the earlier time-steps. This makes constants not degrade. In
potentially more complicated settings requiring many switches in regularisation, not accounting for
earlier time-steps in the step-size may come at the cost of more than just constants. A doubling-trick
approach could also be used, though at the cost of worse constants (see e.g. Appendix F).

4 Necessity of adaptive regularisation

In the previous section, we demonstrated that adaptive regularisation achieves anytime optimal regret
bounds for OCO on ℓp-balls with p > 2. In this section, we show that for separable regularisers,
adaptive regularisation is necessary for anytime optimality. We first show that the regularisers we
have considered up to now are provably anytime sub-optimal: in Section 4.1 we show that strong
convexity fails in high-dimension; in Section 4.2, we show that the uniformly-convex regulariser
ϕp =

1
p∥x∥

p
p fails in low-dimension. Then, we present the main result of this section on the failure of

using a fixed separable regulariser in Section 4.3. All the missing proofs for this section can be found
in Appendix E.
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4.1 Failure of strong convexity in high-dimensions

We saw in Section 2.2 that the strongly-convex regulariser ϕ2(x) = 1
2∥x∥

2
2 achieves the optimal

O(
√
d1−2/pT ) regret guarantee in the low-dimensional setting (d ≤ T ) but this bound is sub-optimal

in the high-dimensional setting (d > T ) because of the polynomial dependence on the dimension.
We show that such a sub-optimal polynomial dependence on the dimension necessarily appears in
the regret bound for any strongly-convex regulariser on Bp. This occurs since these strongly-convex
regularisers can be shown to take values that scale polynomially with d for points in the corners of the
ℓp-balls [10, Example 4.1]. The following two results establish that these sub-optimal regret bounds
are not loose and that strongly-convex regularisers are provably sub-optimal in high-dimensions. The
first is a lower bound specific to FTRL with regulariser ϕ2.
Proposition 4.1. There exists a sequence of linear L-Lipschitz losses (in ℓp-norm) for which FTRL
with regulariser ψt(x) = 1

ηt−1
ϕ2(x) and any sequence of decreasing ηt−1 suffers regret

RT ≥ L ·min
( T
16
,
1

8

√
Td1−2/p

)
.

The above proposition shows the regret of FTRL with regulariser ϕ2 scales polynomially with d until
it is linear in T . This demonstrates the analysis from Section 2.2 is in fact tight and this algorithm
is sub-optimal in high-dimensions. We now state a more general result that shows that using FTRL
with any strongly-convex regulariser fails if the dimension is large enough. This also establishes that
strongly-convex regularisers cannot be anytime optimal (see Section 4.3).
Theorem 4.2. Consider a sign invariant2 regulariser ψ that is µ-strongly-convex with respect to
an arbitrary norm ∥·∥ (s.t. ∥ei∥ = 1 for all i) and attains its minimum value 0 at x = 0. Consider
V = Bp with p > 2 and assume losses are L-Lipschitz in ℓp-norm. If d ≥

(
4T/µ

)p/(p−2)
,

there exists a sequence of linear L-Lipschitz losses (in ℓp-norm) for which FTRL with regulariser
ψt(x) =

1
ηt−1

ψ(x) and any sequence of decreasing ηt−1 suffers regret RT ≥ 1
8LT .

The above theorem is a consequence of the following two lemmas (proofs in Appendix E).
Lemma 4.3. Consider a sign-invariant function ψ that is µ-strongly-convex with respect to an
arbitrary norm ∥·∥ (s.t. ∥ei∥ = 1 for all i) and attaining its minimum value 0 at x = 0. Then
ψ(x) ≥ µ

2 ∥x∥
2
2.

Lemma 4.4. Consider V = Bp with p > 2 and assume losses are L-Lipschitz in ℓp-norm. Let ψ be a

convex function satisfying for some µ > 0 and any x ∈ Rd, ψ(x) ≥ µ
2 ∥x∥

2
2. If d ≥

(
4T/µ

)p/(p−2)
,

there exists a sequence of linear L-Lipschitz losses (in ℓp-norm) for which FTRL with regulariser
ψt(x) =

1
ηt−1

ψ(x) and any sequence of decreasing ηt−1 suffers regret RT ≥ 1
8LT .

4.2 Failure of uniform convexity in low-dimension

We saw in Section 2.3 that the uniformly-convex regulariser of degree p, ϕp(x) = 1
p∥x∥

p
p, achieves

optimal regret guarantees in the high-dimensional setting (d > T ). The next result shows its regret
guarantees are provably sub-optimal in low-dimensions, where the optimal rate is O(

√
Td1−2/p).

Proposition 4.5. There exists a sequence of linear L-Lipschitz losses (in ℓp-norm) for which FTRL
with regulariser ψt(x) = 1

ηt−1
ϕp(x) and any sequence of decreasing ηt−1 suffers regret

RT ≥ L ·min
( T
8p
,
T 1/p⋆

8

)
.

We remark that a general result for uniformly-convex function of degree p as we had for strong
convexity in Theorem 4.2 does not hold. This is because uniform convexity is a condition on the
minimum curvature and so is not the reason for the failure of ϕp in the low-dimensional setting.
The reason for the failure is that ϕp is only uniformly-convex of degree p and does not satisfy some
stronger curvature condition. Regularisers with stronger curvature conditions such as strong convexity

2A function f : X ⊂ Rd → R is sign invariant if for any s ∈ {−1, 1}d, f(s · x) = f(x) for all x ∈ X
where s · x denotes coordinate-wise multiplication.
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that are optimal in the low-dimensional setting naturally also satisfy uniform convexity of degree
p > 2 on Bp. The combination of the failure of strong convexity in high-dimensions and the necessity
for strong curvature conditions in low-dimensions is the key insight for showing the necessity of
adaptivity for separable regularisers in the next section.

4.3 Failure of fixed separable regularisation

In this section, we study the anytime optimality of FTRL under a fixed regulariser. While the previous
two sections established that the two specific regularisers we considered in Section 2 (which are
each optimal for one regime) are not able to guarantee this, it does not rule out the existence of a
regulariser that could. We consider the class of separable regularisers defined as

Ψ =
{
ψ : Bp → R : ψ(x) =

d∑
i=1

g(xi), g ∈ F
}
, (3)

where F =
{
g : R → R≥0; convex, sign-invariant, 0 = argmin

x∈R
g(x), g(0) = 0, g(1) = 1

}
.

The function class F is a set of 1-dimensional even regularisers scaled to be in [0, 1] for x ∈ [−1, 1]
(e.g. xr for r ≥ 1). The class Ψ covers a wide range of regularisers including all of the form ∥x∥rr for
any r ≥ 1. We can now state our main result on the failure of fixed separable regularisation. This
result also holds for OMD with minor modification to the proof (see Appendix H).
Theorem 4.6. FTRL with regulariser ψt(x) = 1

ηt−1
ψ(x) for ψ ∈ Ψ and any sequence of decreasing

ηt−1 cannot be optimal across all dimensions. Specifically there are no constants ch, cl > 0 such
that for all T , RT ≤ chLT

1−1/p for all d > T and RT ≤ clL
√
Td1−2/p for all d ≤ T .

Proof. Let’s assume there are constants ch, cl > 0 such that for all T , RT ≤ chLT
1−1/p for

all d > T and RT ≤ clL
√
Td1−2/p for all d ≤ T and show a contradiction. We begin with a

lemma showing the necessity of quadratic growth of a regulariser achieving optimal regret in the
1-dimensional case (proof in Appendix E.5).

Lemma 4.7. Consider d = 1 (V = Bp = [−1, 1]) and ψ ∈ F . FTRL with regulariser ψt(x) =
1

ηt−1
ψ(x) and arbitrary decreasing step-size ηt−1 can only guaranteeRT ≤ cL

√
T for some constant

c > 0 and all sufficiently large T if for all x ∈ [−1, 1], ψ(x) ≥ ψ(1/2)
100c2 x

2.

For d = 1, we have ψ(x) = g(x) and under our assumption, RT ≤ clL
√
T for all T , so for all

x ∈ [−1, 1], g(x) ≥ g(1/2)
100c2l

x2 by Lemma 4.7. Hence in the general d-dimensional setting for x ∈ Bp:

ψ(x) =

d∑
i=1

g(xi) ≥
g(1/2)

100c2l

d∑
i=1

x2i =
g(1/2)

100c2l
∥x∥22.

We can now use this lower bound with Lemma 4.4 (from Section 4.1) and µ = g(1/2)
50c2l

. This gives

that if d ≥
(

200c2l T
g(1/2)

)p/(p−2)

then there exists a sequence of linear L-Lipschitz losses (in ℓp-norm)

for which RT ≥ 1
8LT , contradicting that RT ≤ chLT

1−1/p for all d > T .

The above result establishes the need for regularisation adaptive to the dimension-regime for anytime
optimality when using FTRL with separable regularisers from Ψ. In particular, having seen that
regularisers 1

2∥x∥
2
2 (strong convexity) and 1

p∥x∥
p
p (uniform convexity of degree p) fail to achieve

optimal anytime regret in the previous sections, we may be tempted to consider 1
r∥x∥

r
r for r ∈ (2, p)

that could trade-off the optimalities of strong-convexity in low-dimension and of uniform-convexity
in high-dimension. However, Theorem 4.6 rules out this possibility. See also Proposition E.1 in
Appendix E for a precise characterisation of the regret when using 1

r∥x∥
2
r .

Remark 4.8. We can slightly relax the constraint of separable regularisers in Theorem 4.6. Firstly,
in the definition of Ψ (3), a different gi ∈ F can be used for each coordinate. The result then still
holds but the quadratic lower bound on ψ(x) stemming from Lemma 4.7 in the proof will scale
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with min1≤i≤d gi(1/2) and the dimension from which the regret becomes linear in T scales with
min1≤i≤d gi(1/2)

p/(p−2). Secondly, Theorem 4.6 also holds more generally for regularisers ψ
which are within constants of a separable regulariser: c1ψ′(x) ≤ ψ(x) ≤ c2ψ

′(x) for ψ′ ∈ Ψ and
constants c1, c2 > 0. Finally, by Theorem 4.2, the result holds for any strongly-convex regulariser.
Remark 4.9. In Appendix E, we prove a more general version of Lemma 4.4 for coordinate-wise
step-sizes, where the FTRL update is allowed to have a different step-size ηt−1,i for each coordinate:
xt = argminx∈V

{
ψ(x)+

∑d
i=1 ηt−1,i·xi

∑t−1
s=1 gs,i

}
. Using this version in the proof of Theorem 4.6

gives the same result for any sequence of coordinate-wise decreasing step-sizes. This extension
establishes the failure of a wider range of methods, in particular the diagonal versions of Adagrad-
style algorithms [12].
Remark 4.10. We discuss the connection of our result to the universality of FTRL. It was shown by
[39] that for a fixed r ∈ [2,∞) and constant C > 0, for any OCO problem for which a regret upper
bound of CT 1−1/r can be guaranteed for all T , then for any T > er−1, there exists a regulariser with
which OMD/FTRL can guarantee a regret bound of Õ(T 1−1/r)3. We present this result in more detail
in Appendix F and also provide an extension to include the setting where r may change according to T
as in our setting. However, this latter result uses a doubling trick where different regularisers are used
across separate intervals. This poses a question on the universality of FTRL with fixed regularisation
for more general OCO problems where the optimal rate of regret is horizon or dimension dependent.
Theorem 4.6 offers a negative answer to this question for separable regularisers. However, the case
of more general regularisers remains open. Note that in our setting, the non-separable regulariser
from [39] is within a constant fraction of ∥x∥pp so, Theorem 4.6 still applies (see Remark 4.8). To
extend our result beyond separable regularisers, one possible approach is to extend Lemma 4.7 on
the quadratic-growth of the regulariser beyond the 1-dimensional case.
Remark 4.11. The generality of the failure of separable regularization beyond ℓp-ball structures is
likely related to the concept of quadratically convex sets [28] for which several results are known
on the possibility of getting regret that grows as

√
T in the low-dimensional case, while it is likely

that the regret is better in the high dimensional case (when taking into account dependence on other
quantities like dimension). This is an interesting direction of future research. We also note that our
results hold for ℓp-balls translated away from 0, provided we consider regularisers satisfying our
conditions on this translated ball (e.g. reaches its minimum in the centre of the translated ℓp-ball).

4.4 Proof intuitions

Many of the results discussed in this section so far are based on the same loss construction, with the
following linear losses ℓt(x) = L · xT gt where gt ∈ Bp⋆ is defined as

gt =

{
(−1)t · e1, t ≤ T

2 ,

−v, t > T
2 ,

where v ∈ Bp⋆ is a vector with equal entries defined as vt,i = d−1/p⋆ .

The above construction is motivated by the following intuition: The gradients of the losses in the
first half of the rounds cancel each other. The competitor is thus only dependent on the losses in the
second half of the rounds which are constant and place the competitor in the corner of the ℓp-ball.
This two phase construction captures a bias-variance-like trade-off of FTRL with fixed regularisation:

• If the step-size is small, FTRL will not suffer much regret in the first half of the rounds but in the
second half it will not be able to reach the corner of the ball (the competitor) sufficiently quickly
and suffer large-regret (it has high “bias”).

• If the step-size is large then FTRL will be able quickly reach the corner of the ball (the competitor)
in the second half of the rounds but in the first it will suffer large regret because it moves too fast
through the space and every other round it will get to close to e1 which will make it suffer large
loss in the next round (it has high “variance”).

This construction is designed so that the performance of FTRL is at its best when the step-size
adequately balances the trade-off between the losses from both halves of the rounds. Analysing the
resulting regret gives us many of our results.

3This result was recently improved by [15] to omit any log-factors in T for the case of online linear
optimisation and r = 2
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In the case of ϕ2 and ϕp, by computing the points played by FTRL we can explicitly compute
the regret suffered by FTRL for all step-sizes and obtain the lower bounds in Proposition 4.1 and
Proposition 4.5 respectively. For Lemma 4.7, we exploit that in the 1-dimensional case the losses in
the second half of the rounds are equal to the losses in the odd first half of the rounds, which enables
a direct comparison between points played in the first and second half of the rounds. This comparison
allows us to establish that in order to obtain

√
T regret, the regulariser must have quadratic growth.

The full details for all the proofs are in Appendix E.

5 Bandit feedback

In this section, we consider OCO on ℓp-balls with bandit feedback and linear losses. In the bandit
feedback environment, the learner only observes the loss evaluated at the point played ℓt(xt) instead
of the full loss function ℓt. Similarly to the full information setting studied above, the optimal regret
with bandit feedback also depends on the dimension regime. However, our main result in this section
will show that for bandit feedback, sub-linear regret is not possible in the high dimensional regime.

The linear bandit problem has been extensively studied (see e.g. [27]). A Õ(d1/2T 1/2) pseudo-regret4
bound was established by [6] for ℓp-balls (p ∈ (1, 2]) and more generally for strongly-convex action
sets by [25]. For p = 1, the same bound can be achieved via a reduction to the multi-armed bandit
problem (see [6]). [25] also established Õ(d1/pT 1−1/p) pseudo-regret bounds for uniformly-convex
sets of degree p, which apply to ℓp-balls with p > 2. However, since these regret guarantees are
dimension-dependent they become vacuous in high-dimensions. The following result shows that with
bandit feedback sub-linear regret bounds on ℓp-balls are unachievable in high-dimensions.
Theorem 5.1. Fix T , δ > 0 and p ≥ 1. For any dimension d sufficiently large and any OCO
algorithm with bandit feedback on V = Bp, there exists a sequence of random linear losses (ℓt)t∈[T ]

with sub-gradients (gt)t∈[T ] such that ∥gt∥p⋆ ≤ L for all rounds t with probability at least 1− δ and
E
[
R̄T
]
≥ LT

80 , where the expectation is with respect to the randomness of the losses.

The proof can be found in Appendix G and is based on information-theoretic arguments. We note that
lower bounds in Chapter 24 of [27] give linear regret for high-dimensional stochastic linear bandits
with p = 1, 2. However, as discussed in their Chapter 29, the noise in the stochastic case is outside
the inner-product so these bounds do not apply for adversarial linear bandits. We also remark that
dimension-dependent bandit lower bounds from prior work such as the one in [6] only hold in the
low-dimensional setting (e.g. in [6], their lower bound Theorem 4 only holds for T ≥ d2/(1−q/2) and
does not give linear regret in high dimension).

6 Conclusion

In this work, we studied OCO on ℓp-balls in Rd for p > 2, distinguishing between high-dimensional
(d > T ) and low-dimensional (d ≤ T ) regimes. In high-dimensions, FTRL achieves the optimal
regret of O(T 1−1/p) with a uniformly-convex regulariser, while in low-dimensions it achieves the
optimal regret of O(T 1/2d1/2−1/p) with a strongly-convex regulariser. Importantly, we proved
neither regulariser is optimal across both regimes. Therefore, when the dimension regime is unknown,
we showed that FTRL with adaptive regularisation is anytime optimal. Furthermore, we established
that this adaptivity is necessary to achieve anytime optimality for separable regularisers. This is a
first step in answering a question on the universality of FTRL with fixed regularisation for general
OCO problems. However, it remains open whether there exists a fixed regulariser providing anytime
optimality or whether adaptivity for non-separable regularisers is necessary. Our results demonstrate
that existing separable regularisers impose intrinsic limitations on FTRL and open up an interesting
avenue of research to discover more sophisticated alternatives that potentially give algorithms that are
fundamentally different. The challenge in generalising our proof technique to rule out the existence
of these alternative non-separable regularisers is in extending Lemma 4.7 on the quadratic-growth of
the regulariser beyond the 1-dimensional case. Finally, for the linear bandit problem, we ruled out
the possibility for sub-linear regret bounds in high-dimension. These results underscore the role of
dimension and geometry in achieving optimal performance in OCO.

4Pseudo-regret is defined as R̄T = E
[∑T

t=1 ℓt(xt)
]
−minx∈V E

[∑T
t=1 ℓt(x)

]
where the expectation is

with respect to the randomness in the learner’s actions.
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A Experiments

In this section, we present a numerical experiment in Figure 1 to validate some of our theoretical
results on the optimality and sub-optimality of fixed and adpative regularisation for FTRL. We run
FTRL with different regularisers on the loss construction used in the proofs of our lower bounds from
Section 4, which is described in Appendix E.1.

For fixed T , we observe that the regret using FTRL with ϕp is constant across dimension, while
the regret of FTRL with ϕ2 increases with dimension. In particular, ϕ2 outperforms ϕp in low-
dimension while ϕp outperforms ϕ2 in high dimensions. This validates our results that ϕp is optimal
in high dimensions (Section 2.3) but not in low-dimension (Section 4.2) and that ϕ2 is optimal in low-
dimension (Section 2.2) but not in high dimensions (Section 4.1). Furthermore, the adaptive procedure
from Section 3 performs well in both low and high dimensions. However, this experiment suggests
that the theoretical threshold t0 = 3−2p/(p−2)d from Theorem 3.1 is perhaps overly conservative in
the transient setting between low and high dimensions (at least for this loss construction) and that a
larger threshold t0 = 2d performs better here.

100 101 102
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Re
gr

et

FTRL - 2
FTRL - p

FTRL - t0 = 3 2p/(p 2)d

FTRL - t0 = 2d

Figure 1: Comparison of FTRL with different regularisation. We fix T = 40 (and L = 1, p = 10) and
vary the dimension. FTRL - ϕ2 refers to FTRL using the regulariser ϕ2 = 1

2∥x∥
2
2 from Section 2.2

with ηt−1 =
√

d1−2/p

2t . FTRL - ϕp refers to FTRL using the regulariser ϕp = 1
p∥x∥

p
p from Section 2.3

with ηt−1 = 1
(2p⋆t)1/p⋆

. The final two correspond to using the procedure from Section 3 with adaptive

regularisation. The first with the threshold t0 = 3−2p/(p−2)d from Theorem 3.1, while the second
uses the threshold t0 = 2d.

Implementation Details: The experiment was run on google colab with the default settings
(including CPU) and takes around 5 minutes run. All the details of the loss construction and algorithms
are provided or referenced above. The closed-form updates are provided in Appendix B. Note that
the Bregman projections onto ℓp-balls are not available analytically, we use the minimize function
from the scipy.optimize library to compute the projections numerically (with method=’SLSQP’).
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B Closed-form update of FTRL with specific uniformly convex regulariser
and related lemmas

Consider a regulariser ψ differentiable on Rd. Define the Bregman divergence of ψ as Dψ(x, y) =
ψ(x)− ψ(y)− ⟨∇ψ(y), x− y⟩ for all x, y ∈ Rd.

Lemma B.1. Fix r ≥ 2. Let ψ(x) = 1
r∥x∥

r
r. Let V = Bp. Let gt ∈ ∂ℓt(xt). The update rule of

FTRL using ψt(x) = 1
ηt−1

ψ(x) as regularisers is

G̃t+1 = −ηt
t∑

s=1

gs

xt+1 = argmin
x∈Bp

Dψ

(
x, sign(G̃t+1)|G̃t+1|r⋆−1

)
,

where sign, power and absolute value functions are applied component-wise to vectors.

Proof. Given gt ∈ ∂ℓt(xt), the update of FTRL with regulariser ψt is (see (1))

xt+1 = argmin
x∈V

{
ηt⟨

t∑
s=1

gs, x⟩+ ψ(x)
}
.

By Theorem 6.15 in [36], this update is equivalent to

x̃t+1 = argmin
x∈Rd

{
ηt⟨

t∑
s=1

gs, x⟩+ ψ(x)
}
,

xt+1 = argmin
x∈Bp

Dψ (x, x̃t+1) .

Now by Theorem 6.13 of [36], the first minimisation (over Rd) is equivalent to

x̃t+1 = ∇ψ⋆
(
−ηt

t∑
s=1

gs

)
,

where ψ⋆ is the Fenchel conjugate of ψ.

For an arbitrary norm ∥·∥, the Fenchel conjugate of f(x) = 1
r∥x∥

r is f⋆(x) = 1
r⋆
∥x∥r⋆⋆ (see

Lemma 2.2 in [24]). Therefore the Fenchel conjugate of ψ(x) is ψ⋆(x) = 1
r⋆
∥x∥r⋆r⋆ and ∇ψ⋆(x) =

sign(x)|x|r⋆−1. Combining everything gives the result.

We now provide two lemmas pertaining to the Bregman projections of the FTRL update in Lemma B.1
for specific cases that will be of use in the proofs in Appendix E.

Lemma B.2. Consider z = c · w where w is a vector with all entries equal to 1 and c > d−1/p so
that z /∈ Bp. The Bregman projection argminx∈Bp

Dψ(x, z) with ψ(x) = 1
r∥x∥

r
r of z is d−1/p · w,

the rescaled version of w that has ℓp-norm equal to 1.

Proof. We make use of Lemma 5.4 in [5]: if f is a convex and differentiable function on Bp then x is
a minimiser of f(x) in Bp if and only if ∇f(x)T (y − x) ≥ 0 for all y ∈ Bp. Consider

f(x) = Dψ(x, z) = ψ(x)− ψ(z)−∇ψ(z)T (x− z),

∇f(x) = ∇ψ(x)−∇ψ(z),
[∇ψ(x)]i = sign(xi)|xi|r−1
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Consider x = d−1/p · w. From the lemma mentioned above, it is enough to show that ∇f(x)T (y −
x) ≥ 0 for all y ∈ Bp:

∇f(x)T (y − x) = (∇ψ(x)−∇ψ(z))T (y − x)

= (d−(r−1)/p · w − cr−1 · w)T (y − x)

= (cr−1 − d−(r−1)/p)wT (x− y)

= (cr−1 − d−(r−1)/p)(d1−1/p −
d∑
i=1

yi)

≥ (cr−1 − d−(r−1)/p)(d1−1/p − ∥y∥1)
≥ (cr−1 − d−(r−1)/p)(d1−1/p − d1−1/p∥y∥p)
≥ 0,

where we used that cr−1 − d−(r−1)/r > 0 and ∥y∥1 ≤ d1−1/p∥y∥p ≤ d1−1/p for all y ∈ Bp.

Lemma B.3. Consider z = c · e1 where e1 is the first canonical basis vector and |c| > 1 so that
z /∈ Bp. The Bregman projection argminx∈Bp

Dψ(x, z) with ψ(x) = 1
r∥x∥

r
r of z is sign(c) · e1.

Proof. As in the proof of Lemma B.2, it is enough to show that ∇f(x)T (y − x) ≥ 0 for all y ∈ Bp,
with x = sign(c) · e1, and

f(x) = Dψ(x, z) = ψ(x)− ψ(z)−∇ψ(z)T (x− z),

∇f(x) = ∇ψ(x)−∇ψ(z),
[∇ψ(x)]i = sign(xi)|xi|r−1.

∇f(x)T (y − x) = (∇ψ(x)−∇ψ(z))T (y − x)

= (∇ψ(sign(c) · e1)−∇ψ(c · e1))T (y − x)

= sign(c) · (|c|r−1 − 1)eT1 (x− y)

= sign(c) · (|c|r−1 − 1)(sign(c)− y1)

≥ 0,

where we used that |c| > 1 and y1 ≤ 1 for all y ∈ Bp.
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C Proofs for Section 2

C.1 Proof of Theorem 2.3

We follow and extend the analysis of FTRL from [36] (Section 7) which is closely related to the
analysis in [31]. FTRL with uniformly convex regularisation was orginally considered in [4] based
on the analysis in [31]. Existence and unicity of the update can be handled along the same lines as
Theorem 6.8 in [36] with uniform convexity.

The analysis begins with the following expression for the regret. We refer the reader to [36] for the
proof.

Lemma C.1. Lemma 7.1 of [36] Denote Ft(x) = ψt(x) +
∑t−1
s=1 ℓs(x) and set xt ∈

argminx∈V Ft(x). Consider ψT+1 = ψT . Then, for any u ∈ V we have
T∑
t=1

ℓt(xt)− ℓt(u) ≤ ψT (u)−min
x∈V

ψ1(x) +

T∑
t=1

{
Ft(xt)− Ft+1(xt+1) + ℓt(xt)

}
(4)

To bound the terms Ft(xt)− Ft+1(xt+1) + ℓt(xt), we use the uniform convexity of the regularisers.
In particular, we require the following result on uniformly convex functions, which is an extension of
Corollary 7.7 of [36].
Lemma C.2. Let f : Rd → R be closed, proper, sub-differentiable and µ-uniformly convex of degree
r w.r.t. a norm ∥·∥. Let x⋆ = argminx∈domf f(x). Then for all x ∈ dom f and g ∈ ∂f(x), we have

f(x)− f(x⋆) ≤ r − 1

rµ1/(r−1)
∥g∥r/(r−1)

⋆ .

Proof. By the uniform convexity of f , we have

f(x⋆) = min
z∈domf

f(z)

≥ min
z∈domf

{
f(x) + ⟨g, z − x⟩+ µ

r
∥z − x∥r

}
≥ f(x) + min

z∈Rd

{
⟨g, z − x⟩+ µ

r
∥z − x∥r

}
= f(x) + min

z∈Rd

{
⟨g, z⟩+ µ

r
∥z∥r

}
= f(x)− µmax

z∈Rd

{
⟨−g
µ
, z⟩ − 1

r
∥z∥r

}
= f(x)− µ

r⋆

∥∥∥−g
µ

∥∥∥r⋆
⋆

= f(x)− µ1−r⋆ ∥g∥
r⋆
⋆

r⋆

= f(x)− r − 1

rµ1/(r−1)
∥g∥r/(r−1)

⋆

where we used that the fenchel conjugate of ∥x∥r

r is ∥x∥r⋆
⋆

r⋆
Rearranging gives the result.

Since ψt is proper, closed, differentiable and µt-uniformly convex of degree rt with respect to ∥·∥|t
and the losses are proper and convex, Ft(x) + ℓt(x) = ψt(x) +

∑t
s=1 ℓs(x) is also proper, closed,

sub-differentiable and µt-uniformly convex of degree rt with respect to ∥·∥|t. Applying Lemma C.2
to Ft + ℓt, we have with x⋆t = argminx∈V Ft(x) + ℓt(x)

Ft(xt)− Ft+1(xt+1) + ℓt(xt) =
(
Ft(xt) + ℓt(xt)

)
−
(
Ft(xt+1) + ℓt(xt+1)

)
+ ψt(xt+1)− ψt+1(xt+1)

≤
(
Ft(xt) + ℓt(xt)

)
−
(
Ft(x

⋆
t ) + ℓt(x

⋆
t )
)
+ ψt(xt+1)− ψt+1(xt+1)

≤ rt − 1

rtµ
1/(rt−1)
t

∥gt∥rt/(rt−1)
|t⋆ + ψt(xt+1)− ψt+1(xt+1),
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where we used that gt ∈ ∂(Ft + ℓt)(xt) since gt ∈ ∂ℓt(xt) and xt = argminx∈V Ft(x). We omit
some technical details but the steps from [36] extend to our setting. Plugging the above into (4) gives
Theorem 2.3.

C.2 Proof of Corollary 2.4

Since ψ is µ-uniformly convex function on V of degree r with respect to ∥·∥, then the regulariser used
by FTRL in round t, ψt = 1

ηt−1
ψ is µ

ηt−1
-uniformly convex function on V of degree r with respect

to ∥·∥. Since ηt ≤ ηt−1, ψt(xt+1) − ψt+1(xt+1) =
(

1
ηt−1

− 1
ηt

)
ψ(xt+1) ≤ 0. By the Lipschitz

condition on the losses, we have ∥gt∥⋆ ≤ L∥·∥. Applying Theorem 2.3, we have
T∑
t=1

ℓt(xt)− ℓt(u) ≤
ψ(u)

ηT−1
+

Lr⋆∥·∥

r⋆µr⋆−1

T∑
t=1

ηr⋆−1
t−1

≤
L∥·∥D

1−1/r⋆(r⋆ − 1)1/r⋆T 1/r⋆

µ1/r
+

Lr⋆∥·∥

r⋆µr⋆−1

T∑
t=1

( D1/r⋆µ1/r

L∥·∥(r⋆ − 1)1/r⋆t1/r⋆

)r⋆−1

≤
L∥·∥D

1/r(r⋆ − 1)1/r⋆T 1/r⋆

µ1/r
+

L∥·∥D
1/r

r⋆(r⋆ − 1)1/rµ(r⋆−1)(1−1/r)

T∑
t=1

1

t1/r

=
L∥·∥D

1/r

µ1/r

(
(r⋆ − 1)1/r⋆T 1/r⋆ +

1

r⋆(r⋆ − 1)1/r

T∑
t=1

1

t1/r

)
.

Now note that
T∑
t=1

1

t1/r
≤
∫ T

0

1

x1/r
dx =

[ 1

1− 1/r
x1−1/r

]T
0
= r⋆T

1/r⋆

=⇒
T∑
t=1

ℓt(xt)− ℓt(u) ≤
L∥·∥D

1/rT 1/r⋆

µ1/r

(
(r⋆ − 1)1/r⋆ +

1

(r⋆ − 1)1/r

)
.

The proof is concluded by noting that (r⋆−1)1/r⋆ + 1
(r⋆−1)1/r

= r1/rr
1/r⋆
⋆ . Lemma C.4 was helpful

in finding the optimal step-size.

C.3 Proof of Theorem 2.5

We have d ≤ T . Let k = ⌊T/d⌋ ≥ 1. Let Yi,j be i.i.d. Rademacher random variables for 1 ≤ i ≤ d,
1 ≤ j ≤ k, i.e. P(Yi,j = 1) = P(Yi,j = −1) = 1/2. Let e1, ..., ed be the canonical basis of Rd.
Define gt = LYi,j · ei where t = k(i − 1) + j (for k rounds we stick to the same coordinate and
draw i.i.d. Rademacher random variables). Denote the point played by A by xt and fix the loss to be
ℓ̃t(x) = gTt x (for t > dk, fix ℓ̃t(x) = 0). The subgradient is gt, which is bounded by L in ℓp⋆ -norm.
The point xt depends on the losses up to time t− 1 but not on ℓ̃t and is independent of Yt, so for all t:

E[ℓ̃t(xt)] = E[YtL · eTt xt] = E[Yt]LeTt E[xt] = 0 =⇒ E[
T∑
t=1

ℓ̃t(xt)] = 0.

On the other hand, u = −d−1/p
∑d
i=1 sign

{∑k
j=1 Yi,j

}
ei ∈ Bp gives

min
x∈Bp

T∑
t=1

ℓ̃t(x) ≤
T∑
t=1

ℓ̃t(u)

= −Ld−1/p
( d∑
i=1

sign
{ k∑
j=1

Yi,j

}
ei

)T( d∑
i=1

k∑
j=1

Yi,jei

)

= −Ld−1/p
d∑
i=1

∣∣∣ k∑
j=1

Yi,j

∣∣∣.
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We now make use of a result from [13] (proof of Lemma 7.2): fix B > 0, consider X =
∑B
i=1 tiRi

where ti are positive integers such that
∑B
i=1 ti = k and Ri are i.i.d Rademacher random variables.

Then E
[
|X|
]
≥ k/

√
3B.

In our case, with B = k and ti = 1 for all i, we have that E[|
∑k
j=1 Yi,j |] ≥

√
k/3 ≥

√
T/6d (since

k = ⌊T/d⌋ ≥ T/2d for T ≥ d) which gives

E
[ T∑
t=1

ℓ̃t(xt)− min
x∈Bp

T∑
t=1

ℓ̃t(x)
]
≥ 0 + Ld−1/p

d∑
i=1

√
T

6d
= Ld−1/p

√
Td

6
= L

√
Td1−2/p

6

The result follows by: supℓ1,...,ℓT RT ≥ E
[∑T

t=1 ℓ̃t(xt)−minx∈Bp

∑T
t=1 ℓ̃t(x)

]
≥ L

√
Td1−2/p

6 .

C.4 Proof of Theorem 2.7

We have d > T . For t ∈ {1, ..., T}, let Yt be i.i.d. Rademacher random variables, i.e. P(Yt = 1) =
P(Yt = −1) = 1/2. Let e1, ..., ed be the canonical basis of Rd. At time-step t, denote the point
played by A by xt and fix the loss to be ℓ̃t(x) = YtLe

T
t x. The subgradient is YtLet, which is

bounded by L in ℓp⋆-norm. The point xt depends on the losses up to time t− 1 but not on ℓ̃t and is
independent of Yt, so for all t:

E[ℓ̃t(xt)] = E[YtLeTt xt] = E[Yt]LeTt E[xt] = 0 =⇒ E[
T∑
t=1

ℓ̃t(xt)] = 0.

On the other hand,

min
x∈Bp

T∑
t=1

ℓ̃t(x) = L min
x∈Bp

xT
( T∑
t=1

Ytet

)
is attained at x = −T−1/p

∑T
t=1 Ytet ∈ Bp, giving

min
x∈Bp

T∑
t=1

ℓ̃t(x) = −LT−1/p
T∑

t,t′=1

YtYt′e
T
t et′ = −LT−1/p

T∑
t=1

Y 2
t = −LT 1−1/p = −LT 1/p⋆ .

The result follows by: supℓ1,...,ℓT RT ≥ E
[∑T

t=1 ℓ̃t(xt)−minx∈Bp

∑T
t=1 ℓ̃t(x)

]
= LT 1/p⋆ .

C.5 Uniform Convexity of ψp

In this section, we provide the proof of Proposition 2.6 on the µ-uniform convexity of degree p of
ψ(x) = 1

p∥x∥
p
p on Bp for p > 2.

Consider x, y ∈ Bp. Following the steps in Remark 2.1 of [46], using convexity of ψ we have for
λ ∈ [0, 1/2],

ψ(λx+ (1− λ)y) = ψ
(
2λ
(x+ y

2

)
+ (1− 2λ)y

)
≤ 2λψ

(x+ y

2

)
+ (1− 2λ)ψ(y)

=
2λ

p

∥∥∥x+ y

2

∥∥∥p
p
+

(1− 2λ)

p
∥y∥pp.

From Clarkson’s inequality (equation (2.1) in [2]), we have that∥∥∥x+ y

2

∥∥∥p
p
+
∥∥∥x− y

2

∥∥∥p
p
≤

∥x∥pp
2

+
∥y∥pp
2

.
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Using this in the above we have

ψ(λx+ (1− λ)y) ≤ 2λ

p

∥x∥pp
2

+
2λ

p

∥y∥pp
2

− 2λ

p

∥∥∥x− y

2

∥∥∥p
p
+

(1− 2λ)

p
∥y∥pp

= λ
∥x∥pp
p

+ (1− λ)
∥y∥pp
p

− 2λ

p

∥∥∥x− y

2

∥∥∥p
p

≤ λψ(x) + (1− λ)ψ(y)− 2λ(1− λ)

p

∥∥∥x− y

2

∥∥∥p
p
. (5)

This is an alternative characterisation of uniform convexity, we now show (following steps in
Definition 3.2 of [24]) that it is equivalent to our original one (Definition 2.2). From the convexity
and differentiability of ψ,

ψ(y) + λ⟨∇ψ(y), x− y⟩ = ψ(y) + ⟨∇ψ(y), [y + λ(x− y)]− y⟩
≤ ψ(y + λ(x− y))

≤ λψ(x) + (1− λ)ψ(y)− 2λ(1− λ)

p

∥∥∥x− y

2

∥∥∥p
p
.

Rearrenging,

=⇒ λ⟨∇ψ(y), x− y⟩ ≤ λ(ψ(x)− ψ(y))− 2λ(1− λ)

p

∥∥∥x− y

2

∥∥∥p
p

=⇒ ⟨∇ψ(y), x− y⟩ ≤ (ψ(x)− ψ(y))− 2(1− λ)

p

∥∥∥x− y

2

∥∥∥p
p

=⇒ ψ(x) ≥ ψ(y) + ⟨∇ψ(y), x− y⟩+ 2

p

∥∥∥x− y

2

∥∥∥p
p
,

as λ→ 0. So for any x, y ∈ Bp we have the condition of uniform convexity with µ = 21−p. □

Remark C.3. It is not possible to get the parameter of uniform convexity µ = 1. Consider the
1-dimensonal case, x = 1, y = −1:

ψ(x) + ⟨∇ψ(x), y − x⟩+ µ

p
∥x− y∥pp =

1

p
+ (y − x) +

µ

p
(1 + 1)p

=
1

p
+ (−1− 1) +

µ2p

p

=
1− 2p+ µ2p

p
.

This is less or equal than ψ(y) = 1
p when

1− 2p+ µ2p

p
≤ 1

p
=⇒ 1− 2p+ µ2p ≤ 1 =⇒ µ ≤ p21−p.

So our constant may be loose by a factor of p but µ = 1 is not possible since p21−p < 1 as soon as
p > 2.

In fact, we can slightly improve µ from 1
2p−1 to 1

2p−1−1 (we present our results with 1
2p−1 because it

only changes the results by a small constant and slightly avoids clutter). Here is how: In the first step
of the proof, we used convexity of ψ to obtain the following bound,

ψ(2λ
(x+ y

2

)
+ (1− 2λ)y) ≤ 2λψ

(x+ y

2

)
+ (1− 2λ)ψ(y).

However, from (5), we have that

ψ(λx+ (1− λ)y) ≤ λψ(x) + (1− λ)ψ(y)− 2λ

p

∥∥∥x− y

2

∥∥∥p
p
, (6)

and this provides a tighter bound than just using convexity:

ψ
(
2λ
(x+ y

2

)
+ (1− 2λ)y

)
≤ 2λψ

(x+ y

2

)
+ (1− 2λ)ψ(y)− 2 · 2λ

p

∥∥∥ (x+ y)/2− y

2

∥∥∥p
p

≤ λψ(x) + (1− λ)ψ(y)− 2λ

p

∥∥∥x− y

2

∥∥∥p
p

(
1 + 21−p

)
,
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where we followed similar steps as in the original proof (Clarkson’s inequality). This provides an
even tighter bound than (6) and applying these tighter bounds recursively gives

ψ
(
2λ
(x+ y

2

)
+ (1− 2λ)y

)
≤ λψ(x) + (1− λ)ψ(y)− 2λ

p

∥∥∥x− y

2

∥∥∥p
p
· 1

1− 21−p
,

using that
∑∞
t=0(2

1−p)t = 1/(1− 21−p). Following the same steps for the remainder of the proof
gives uniform convexity of ψ with µ = 1

2p−1−1 .

C.6 Helper lemma

Lemma C.4. Fix a, b > 0, n > 1. Let f(x) = a
x + bxn−1 for x > 0. Then f is minimised at

x⋆ = (a/b(n− 1))1/n and

f(x⋆) = a1−1/nb1/n
( n

n− 1

)(n−1)/n

n1/n.

Proof. Setting the derivative of f to 0 and solving gives

− a

x2
+ (n− 1)bxn−2 = 0 =⇒ x⋆ =

( a

(n− 1)b

)1/n
.

Plugging into f gives

f(x⋆) = a ·
( (n− 1)b

a

)1/n
+ b ·

( a

(n− 1)b

)(n−1)/n

= a1−1/n(n− 1)1/nb1/n + b1−1+1/na1−1/n(n− 1)1/n−1

= a1−1/nb1/n(n− 1)1/n
(
1 +

1

n− 1

)
= a1−1/nb1/n(n− 1)1/n

n

n− 1

= a1−1/nb1/n
( n

n− 1

)(n−1)/n

n1/n.
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D Proofs for Section 3

D.1 Proof of Theorem 3.1

If T ≤ t0, then we have FTRL with fixed regulariser ϕp and from Corollary 2.4 we have RT ≤
L
(
2p∗T

)1/p∗ as in Section 2.3. If T > t0, Theorem 2.3 gives

RT ≤ ψT (u)−min
x∈V

ψ1(x) +

T∑
t=1

{ (rt − 1)

rtµ
1/(rt−1)
t

∥gt∥rt/(rt−1)
|t⋆ + ψt(xt+1)− ψt+1(xt+1)

}
≤ ϕ2(u)

ηT−1
−min
x∈V

ϕp(x) +

t0∑
t=1

{
2
ηp⋆−1
t−1

p⋆
∥gt∥p⋆p⋆

}
+

t0−1∑
t=1

{
ϕp(xt+1)

( 1

ηt−1
− 1

ηt

)}
+
ϕp(xt0+1)

ηt0−1
− ϕ2(xt0+1)

ηt0
+

T∑
t=t0+1

{ηt−1

2
∥gt∥22 + ϕ2(xt+1)

( 1

ηt−1
− 1

ηt

)}

≤
supx∈Bp

ϕp(x)

ηt0−1
+

t0∑
t=1

{
2
ηp⋆−1
t−1

p⋆
∥gt∥p⋆p⋆

}
+
ϕ2(u)

ηT−1
+

T∑
t=t0+1

{ηt−1

2
∥gt∥22

}
.

The first two terms correspond to the regret of FTRL with fixed ϕp regularisation on t0 rounds.
Substituting the values of ηt−1 and some algebra gives (see similar steps in the proof of Corollary 2.4)

supx∈Bp
ϕp(x)

ηt0−1
+

t0∑
t=1

{
2
ηp⋆−1
t−1

p⋆
∥gt∥p⋆p⋆

}
≤ L

(
2p⋆t0

)1/p⋆
.

The last two terms correspond to the regret of FTRL with fixed ϕ2 regularisation over the remaining
T − t0 rounds.

ϕ2(u)

ηT−1
+

T∑
t=t0+1

{ηt−1

2
∥gt∥22

}
=
L
√
d1−2/pT√

2
+
L
√
d1−2/p

2
√
2

T∑
t=t0+1

1√
t

≤ L
√
d1−2/pT√

2
+
L
√
d1−2/pT√

2
− L

√
d1−2/pt0√

2

= L
√
2d1−2/pT − L

√
d1−2/pt0/2,

where we used that
∑T
t=t0+1

1√
t
≤
∫ T
t0

1√
x
dx =

[
2
√
x
]T
t0

= 2(
√
T −

√
t0). Combining, we have

RT ≤ L
√
2d1−2/pT + L

(
2p⋆t0

)1/p⋆ − L
√
d1−2/pt0/2.

The proof is concluded by t0 = 3−2p/(p−2)d guaranteeing
(
2p⋆t0

)1/p⋆ −
√
d1−2/pt0/2 < 0 since

(2p⋆t0)
1/p⋆ ≤ 3√

2
t
1/p⋆
0 = 3t

p−1
p − 1

2

0

√
t0/2 = 3t

p−2
2p

0

√
t0/2 =

√
d1−2/pt0/2.
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E Proofs for Section 4

E.1 Loss construction for proofs

Many of the proofs in this section share the same loss construction, which we describe here. Assume
that T is divisible by 4 (use T − 1, T − 2 or T − 3 if not). We define the following linear losses
ℓt(x) = L · xT gt where gt ∈ Bp⋆ is defined as

gt =

{
(−1)t · e1, t ≤ T

2 ,

−v, t > T
2 ,

where v ∈ Bp⋆ is a vector with equal entries defined as vt,i = d−1/p⋆ (so that ∥v∥p⋆ = 1). Note that
∥v∥p = d1/p−1/p⋆ . The cumulative loss of the competitor:

T∑
t=1

ℓt(x) =
LT

2
xT v =⇒ min

x∈Bp

T∑
t=1

ℓt(x) = −LT
2

vT v

∥v∥p
= −LT

2

d1−2/p⋆

d1/p−1/p⋆
= −LT

2
. (7)

The cumulative sum of sub-gradients used in the FTRL update:

L

t−1∑
s=1

gs = L ·


−e1, if t ≤ T

2 is even,
0, if t ≤ T

2 is odd,

−
(
t− 1− T

2

)
· v, if t > T

2 .
(8)

E.2 Proofs of Proposition 4.1 and Proposition 4.5

The two propositions are special cases of the following proposition.
Proposition E.1. For r ∈ [2, p], define ϕr(x) = 1

r∥x∥
r
r. There exists a sequence of linear L-

Lipschitz losses (in ℓp-norm) for which FTRL with regulariser ψt(x) = 1
ηt−1

ϕr(x) and any sequence
of decreasing ηt−1 suffers regret

RT ≥ L ·min
( T
8r
,
d(r⋆−p⋆)/r⋆p⋆T 1/r⋆

8

)
.

We now prove this proposition. The loss construction is described in Appendix E.1. From Lemma B.1,

xt+1 = argmin
x∈Bp

Dϕr

(
x, sign

(
−ηt

t∑
s=1

gs

)∣∣∣−ηt t∑
s=1

gs

∣∣∣r⋆−1)
.

Define αt−1 = min
{
1, ηt−1

}
. Using (8), the points played by FTRL on are given by

• For t ≤ T/2 odd: xt = 0

• For t ≤ T/2 even: xt = αr⋆−1
t−1 · e1 by Lemma B.3.

• For t > T/2:

xt = min
( 1

∥w∥p
,
{
ηt−1d

−1/p⋆(t− 1− T

2
)
}r⋆−1)

· w

= min
(
1, d1−r⋆/p⋆

{
ηt−1(t− 1− T

2
)
}r⋆−1)

· v

∥v∥p
by Lemma B.2 where w is a vector with equal entries equal to 1.

Fix η = ηT/2−1, α = min
{
1, η
}

. Using that ηt−1 ≥ ηt, the loss in the first half of the rounds is
lower bounded as

T/2∑
t=1

ℓt(xt) =

T/4∑
k=1

ℓ2k(x2k) =

T/4∑
k=1

αr⋆−1
2k−1e

T
1 x2k =

T/4∑
k=1

αr⋆−1
2k−1e

T
1 e1 ≥ αr⋆−1T

4
.
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If α ≥ 1, we have RT ≥ T
8 ≥ T

4r and we are done. So for the rest we assume that α = η ≤ 1/2.
Let k⋆ = ⌊d(r⋆/p⋆−1)/(r⋆−1)/η⌋, m = min(k⋆, T/2 − 1). Note that vT v = d1−2/p⋆ = ∥v∥p. The
losses in the second half is lower-bounded as

T∑
t=T/2+1

ℓt(xt) = −
T∑

t=T/2+1

xTt v ≥ −
T/2−1∑
k=1

min
{
1, d1−r⋆/p⋆(ηk)r⋆−1

}
· v

T v

∥v∥p

= −
T/2−1∑
k=1

min
{
1, d1−r⋆/p⋆(ηk)r⋆−1

}
= −d1−r⋆/p⋆

m∑
k=1

(ηk)r⋆−1 −
(T
2
− 1−m

)
.

We bound the sum with an integral as follows,
m∑
k=1

kr⋆−1 ≤
∫ m

0

(x+ 1)r⋆−1 dx =
1

r⋆

[
(x+ 1)r⋆

]m
0

≤ 1

r⋆
(m+ 1)r⋆ .

We get
T∑

t=T/2+1

ℓt(xt) ≥ −d1−r⋆/p⋆ η
r⋆−1

r⋆
(m+ 1)r⋆ −

(T
2
− 1−m

)
.

Using the cumulative loss of the competitor from (7), the regret is

RT ≥ T

2
+
ηr⋆−1T

4
− d1−r⋆/p⋆

ηr⋆−1

r⋆
(m+ 1)r⋆ −

(T
2
− 1−m

)
=
ηr⋆−1T

4
− d1−r⋆/p⋆

ηr⋆−1

r⋆
(m+ 1)r⋆ + (1 +m).

Let’s consider two cases:

• k⋆ ≥ T/2 − 1: m = T/2− 1. By the definition of k⋆:

d(r⋆/p⋆−1)/(r⋆−1)

η
≥
⌊d(r⋆/p⋆−1)/(r⋆−1)

η

⌋
= k⋆ ≥ T

2
− 1 =⇒ η

d(r⋆/p⋆−1)/(r⋆−1)

(T
2
− 1
)
≤ 1

=⇒ η

d(r⋆/p⋆−1)/(r⋆−1)

T

2
≤ 1 +

η

d(r⋆/p⋆−1)/(r⋆−1)
≤ 3

2
,

since η ≤ 1/2 and d(r⋆/p⋆−1)/(r⋆−1) ≥ 1 (recall r ≤ p). Using this in the regret, we get

RT ≥ −d1−r⋆/p⋆ η
r⋆−1

r⋆

(T
2

)r⋆
+
T

2

= − 1

r⋆

( η

d(r⋆/p⋆−1)/(r⋆−1)

T

2

)r⋆−1T

2
+
T

2

≥ − 1

r⋆

(3
2

)r⋆−1T

2
+
T

2

=
T

2

(
1− 1

r⋆

(3
2

)r⋆−1)
≥ T

4

(
1− 1

r⋆

)
=

T

4r
,

where we used that r⋆ ∈ [1, 2] and that f(x) = 1− (3/2)x−1

x ≥ 1
2 (1− 1/x) for x ∈ [1, 2].

• k⋆ < T/2 − 1: m = k⋆. By the definition of k⋆:

d(r⋆/p⋆−1)/(r⋆−1)

η
≥
⌊d(r⋆/p⋆−1)/(r⋆−1)

η

⌋
= k⋆ =⇒ η

d(r⋆/p⋆−1)/(r⋆−1)
k⋆ ≤ 1

=⇒ η

d(r⋆/p⋆−1)/(r⋆−1)
(k⋆ + 1) ≤ 1 +

η

d(r⋆/p⋆−1)/(r⋆−1)
≤ 3

2
,
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since again η ≤ 1/2 and d(r⋆/p⋆−1)/(r⋆−1) ≥ 1. We also have k⋆ + 1 ≥ d(r⋆/p⋆−1)/(r⋆−1)

η . Using
this in the regret, we get

RT =
ηr⋆−1T

4
− d1−r⋆/p⋆

ηr⋆−1

r⋆
(k⋆ + 1)r⋆ + (1 + k⋆)

=
ηr⋆−1T

4
− k⋆ + 1

r⋆

( η

d(r⋆/p⋆−1)/(r⋆−1)
(k⋆ + 1)

)r⋆−1

+ (1 + k⋆)

≥ ηr⋆−1T

4
− 1 + k⋆

r⋆

(3
2

)r⋆−1

+ (1 + k⋆)

=
ηr⋆−1T

4
+ (1 + k⋆)

(
1− 1

r⋆

(3
2

)r⋆−1)
≥ ηr⋆−1T

4
+

(1 + k⋆)

2

(
1− 1

r⋆

)
=
ηr⋆−1T

4
+
d(r⋆/p⋆−1)/(r⋆−1)

2rη

≥ r⋆
1/r⋆

21/r+2/r⋆
d(r⋆/p⋆−1)/r⋆T 1/r⋆ ≥ d(r⋆−p⋆)/r⋆p⋆T 1/r⋆

4

where again we used that 1− 1
r⋆

(
3
2

)r⋆−1

≥ 1
2 (1− 1/r⋆) since r⋆ ∈ [1, 2] and in the lstar step we

minimised over η using Lemma C.4.

Combining both cases, we have that RT ≥ min
(
T
4r ,

d(r⋆−p⋆)/r⋆p⋆T 1/r⋆

4

)
. If T is not divisible

by 4 and we use T − 1, T − 2 or T − 3, we have RT ≥ min
(
T−3
4r ,

d(r⋆−p⋆)/r⋆p⋆ (T−3)1/r⋆

4

)
≥

min
(
T
8r ,

d(r⋆−p⋆)/r⋆p⋆ (T−3)1/r⋆

8

)
for T ≥ 6, concluding the proof.

E.3 Proof of Lemma 4.3

Consider a ∈ argminz∈R ψ(x1, ..., xi−1, z, xi+1, ...xd). Since ψ is sign-invariant, −a is also in
the argmin. Consider g(z) = ψ(x1, ..., xi−1, z, xi+1, ...xd). It is straightforward to show that the
strong-convexity of ψ applies g. By convexity, we have

g(0) = g
(1
2
a+

1

2
(−a)

)
≤ 1

2
g(a) +

1

2
g(−a) = g(a) = min

z∈R
g(z),

and by strong convexity, it is actually the unique minimiser. Hence

0 = argmin
z∈R

ψ(..., xi−1, z, xi+1, ...) =⇒ ∂ψ(x)

∂xi

∣∣∣
xi=0

= 0

=⇒ ∇ψ(x)T ei = 0 for any x ∈ Bp s.t. xi = 0. (9)

For a set S and a vector x, denote x−S the vector x with the coordinates in S replaced by 0. Denote
Sn =

{
1, ..., n

}
. We prove the following claim by induction on n ≤ d:

ψ(x) ≥ ψ(x−Sn
) +

µ

2

n∑
i=1

x2i .

Base Case:, by strong convexity

ψ(x) ≥ ψ(x−{1}) + ⟨∇ψ(x−{1}), x− x−{1}⟩+
µ

2
∥x− x−{1}∥2

= ψ(x−{1}) + ⟨∇ψ(x−{1}), x1e1⟩+
x21µ

2

= ψ(x−{1}) +
x21µ

2
using (9).
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Inductive Step: suppose true for k. Similarly to the base case: by strong convexity,

ψ(x−Sn
) ≥ ψ(x−Sn+1

) + ⟨∇ψ(x−Sn+1
), x−Sn

− x−Sn+1
⟩+ µ

2
∥x−Sn

− x−Sn+1
∥2

= ψ(x−Sn+1
) + xn+1⟨∇ψ(x−Sn+1

), en+1⟩+
µ

2
x2n+1

= ψ(x−Sn+1) +
µ

2
x2n+1 using (9).

The result follows by the inductive hypothesis:

ψ(x) ≥ ψ(x−Sn
) +

µ

2

n∑
i=1

x2i

≥ ψ(x−Sn+1
) +

µ

2
x2n+1 +

µ

2

n∑
i=1

x2i

≥ ψ(x−Sn+1) +
µ

2

n+1∑
i=1

x2i .

When n = d, we have ψ(x) ≥ µ
2 ∥x∥

2
2.

E.4 Proof of Lemma 4.4

As discussed in Remark 4.9, we prove a more general version of Lemma 4.4 for coordinate-wise
step-sizes, where the FTRL update is allowed to have a different step-size ηt−1,i for each coordinate:
xt = argminx∈V

{
ψ(x) +

∑d
i=1 ηt−1,i · xi

∑t−1
s=1 gs,i

}
.

We consider a slight variation of the loss construction described in Appendix E.1: Assume that T is
divisible by 4 (use T−1, T−2 or T−3 if not). We define the following linear losses ℓt(x) = L·xT gt
where gt ∈ Bp⋆ is defined as

gt =


(−1)t · v, t ≤ 2

(−1)t · ei(t), 2 < t ≤ T
2 ,

−v, t > T
2 ,

where v ∈ Bp⋆ is a vector with equal entries defined as vt,i = d−1/p⋆ (so that ∥v∥p⋆ = 1) and
i(t) = argmaxi∈[d] η2⌊(t−1)/2⌋,i (i.e. the coordinate of the largest step-size in the previous even
round). Note that ∥v∥p = d1/p−1/p⋆ . The cumulative loss of the competitor:

T∑
t=1

ℓt(x) =
LT

2
xT v =⇒ min

x∈Bp

T∑
t=1

ℓt(x) = −LT
2

vT v

∥v∥p
= −LT

2

d1−2/p⋆

d1/p−1/p⋆
= −LT

2
. (10)

The cumulative sum of sub-gradients used in the FTRL update:

L

t−1∑
s=1

gs = L ·


−ei(t), if t ≤ T

2 is even,
0, if t ≤ T

2 is odd,

−
(
t− 1− T

2

)
· v, if t > T

2 .
(11)

• First we consider 2 < t ≤ T/2. When t is odd, xt = argminx∈Bp
ψ(x) = 0. When t is

even,

xt =argmin
x∈Bp

{
ψ(x)− ηt−1,i(t)Le

T
i(t)x

}
=⇒ ψ(xt)− ηt−1,i(t)Lx

T
t ei(t) ≤ ψ(ei(t))− ηt−1,i(t)Le

T
i(t)ei(t) = 1− Lηt−1,i(t)

=⇒ ℓt(xt) = LxTt ei(t) ≥ L− 1

ηt−1,i(t)
≥ L− 1

ηt−1,i(T/2)
by def of i(t)

≥ L− 1

ηT/2,i(T/2)
≥ L/2,
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when η := ηT/2,i(T/2) = maxi∈[d] ηT/2,i ≥ 2/L. So we have (−1 accounts for first 2
rounds not being like the rest)

T/2∑
t=1

gTt xt ≥
{
L(T/4− 1), if η ≥ 2/L

0, if η < 2/L.

Hence if η ≥ 2/L, we have RT ≥ LT/4 − 1 and the statement of the theorem holds. If
η < 2/L, we look to the second half of the rounds.

• Let’s now consider t > T/2 and assume η < 2/L. Note that by definition of η, we have
the for all t ≥ T/2 and for all i ∈ [d], ηt,i ≤ η ≤ 2/L. Fix βt = t− T/2− 1. The FTRL
update is

xt = argmin
x∈Bp

{
ψ(x)− Lβt · xT (ηt−1 ⊙ v)

}
.

Let u = v/∥v∥p be the competitor. We can write xt = λtu+αtu
⊥ (λt > 0) as a component

in the direction of u and a component orthogonal to u. We have

ψ(xt) ≥
µ

2
∥xt∥22 =

µ

2
(λ2t∥u∥22 + α2

t ∥u⊥∥22) ≥
1

2
λ2tµd

1−2/p.

Now from the FTRL update, (in the first implication, we use that ηt−1,i ≤ η and xt,i ≥
0, vi ≥ 0)

ψ(xt)− Lβtx
T
t (ηt−1 ⊙ v) ≤ 0 =⇒ 1

2
λ2tµd

1−2/p ≤ ηLβtx
T
t v

=⇒ 1

2
λ2tµd

1−2/p ≤ ηLβtλt

=⇒ λt ≤
2ηLβt
µd1−2/p

=⇒ ℓt(xt) = −L · vTxt = −Lλt ≥ −L 2ηLβt
µd1−2/p

≥ −L 4βt
µd1−2/p

,

since η ≤ 2/L. If d ≥ (4T/µ)p/(p−2), we have for all t ≤ T

ℓt(xt) ≥ −L 4βt
µd1−2/p

≥ −Lβt
T

≥ −L
2

=⇒ RT ≥ LT

2
+

T∑
t=T/2+1

ℓt(xt) ≥
LT

2
− LT

4
=
LT

4
.

If T is not divisible by 4 and we use T − 1, T − 2 or T − 3, we have RT ≥ L(T−3)
4 − 1 ≥ LT

8 for
T ≥ 6 + 8

L , concluding the proof.

E.5 Proof of Lemma 4.7

Assume there exists a constant c > 0 such that for all T and any sequence of losses, RT ≤ cL
√
T .

Consider T > 16c2 and a multiple of 4. We define the following linear losses ℓt(x) = x · gt where
gt ∈ [−1, 1] is defined as

gt =

{
(−1)t · L, t ≤ T

2 ,

−L, t > T
2 ,

Recall that the FTRL update is xt = argminx∈[−1,1]

{
ηt−1

(∑t−1
s=1 gs

)
· x+ψ(x)

}
. Set η = ηT/2−1.

With this sequence of losses, the points played by FTRL satisfy

• for t ≤ T/2 + 1 and t odd, we have
∑t−1
s=1 gs = 0, so xt = 0.
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• for t ≤ T/2 + 1 and t even, we have
∑t−1
s=1 gs = −L so xt = argminx∈[−1,1]

{
−ηt−1x+

ψ(x)
}

. For t < t′ ≤ T/2 (both even), we have

−ηt′−1Lxt′ + ψ(xt′) ≤ −ηt′−1Lxt + ψ(xt) using the definition of xt′
= −ηt−1Lxt + ψ(xt) + L(ηt−1 − ηt′−1)xt
≤ −ηt−1Lxt′ + ψ(xt′) + L(ηt−1 − ηt′−1)xt using the definition of xt

=⇒ (ηt−1 − ηt′−1)Lxt′ ≤ (ηt−1 − ηt′−1)Lxt

=⇒ xt′ ≤ xt using that ηt′−1 ≤ ηt−1.

So for all t ≤ T/2 even, we have xt ≥ xT/2.

• for t > T/2, we have
∑t−1
s=1 gs = −L(t−T/2− 1) so xt = argminx∈[−1,1]

{
−ηt−1L(t−

T/2− 1) · x+ ψ(x)
}

.

The regret can then be written as follows

RT =

T∑
t=1

ℓt(xt)−
(
−LT

2

)
≥ LT

2
+
LT

4
xT/2 − L

T∑
t=T/2+1

xt, (12)

from which we can show the series of following statements.

1. We first show max2≤t≤⌈2c
√
T⌉ xT

2 +t ≥ 1
2 : if not, xT

2 +t <
1
2 for all t ≤ ⌈2c

√
T ⌉ and from

(12):

RT ≥ LT

2
− L

(T/2+⌊2c
√
T⌋∑

t=T/2+1

xt +

T∑
t=T/2+⌈2c

√
T⌉+1

xt

)

>
LT

2
− L

(T/2+⌊2c
√
T⌋∑

t=T/2+1

1

2
+

T∑
t=T/2+⌈2c

√
T⌉+1

1
)

=
LT

2
− L

2
⌊2c

√
T ⌋ − L

(
T − ⌈2c

√
T ⌉ − T

2

)
≥ L

2
⌈2c

√
T ⌉

> cL
√
T ,

which contradicts our initial assumption that RT ≤ cL
√
T so we must have

max2≤t≤⌈2c
√
T⌉ xT

2 +t ≥ 1
2 . Note that 2c

√
T < T/2 is ensured by T > 16c2.

2. Next, we show that η ≥ ψ(1/2)

2cL
√
T

: let t⋆ = argmax2≤t≤⌈2c
√
T⌉ xT

2 +t, by the definition of
xT

2 +t⋆ :

0 ≥ −ηT
2 +t⋆−1L

(T
2
+ t⋆ − 1− T

2

)
xT

2 +t⋆ + ψ(xT
2 +t⋆)

=⇒ ηT
2 +t⋆−1L

(
t⋆ − 1

)
≥ ψ(1/2)

=⇒ η = ηT/2−1 ≥ ηT
2 +t⋆−1 ≥ ψ(1/2)

L(t⋆ − 1)
≥ ψ(1/2)

2cL
√
T
.

where in the first implication, we used that ψ(xT
2 +t⋆) ≥ ψ(1/2) (since ψ is increasing on

[0, 1] and xT
2 +t⋆ ≥ 1/2) and xT

2 +t⋆ ≤ 1.

3. From (12), we also have RT ≥ LT
4 xT/2. To achieve RT ≤ cL

√
T , we must have

xT/2 ≤ 4c√
T

.
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4. By the definition of xT/2 = argminx∈[−1,1]

{
−ηLx+ ψ(x)

}
, for any x ∈ [4c/

√
T , 1] we

have

− ηLxT/2 + ψ(xT/2) ≤ −ηLx+ ψ(x)

=⇒ ψ(x) ≥ ηL(x− xT/2) ≥ ηL
(
x− 4c√

T

)
≥ ψ(1/2)

2c
√
T

(
x− 4c√

T

)
=⇒ ψ

( 5c√
T

)
≥ ψ(1/2)

2c
√
T

c√
T

=
ψ(1/2)

2T
.

5. Now fix x ∈ [0, 1]. There exists T (multiple of 4) such that x ∈
[

5c√
T+4

, 5c√
T

]
. Using that ψ

is increasing on [0, 1] and from the previous point, we have

ψ(x) ≥ ψ
( 5c√

T + 4

)
≥ ψ(1/2)

2(T + 4)
≥ ψ(1/2)

2(T + 4)

T

25c2
x2 ≥ ψ(1/2)

100c2
x2,

using that T/(T + 4) ≥ 1/2 for T ≥ 8. The result is shown with µ = ψ(1/2)/100c2.
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F Universal optimality of mirror descent for time-varying regret rates

In this section, we present an extension of the result of [39] on the universality of OMD. We first
briefly review the considered setting along with their result. We refer the reader to Part II / Chapters
5 & 7 of [39] for the complete details. We present the results with respect to OMD but they also hold
for FTRL up to slightly different constants.

We consider general OCO with linear losses (i.e. online linear optimisation (OLO)): The action set
H ⊂ B is a convex and centrally symmetric set that is a subset of an arbitrary real vector space B.
The subgradients of the linear losses belong to a set X ⊂ B⋆ that is a subset of the dual B⋆ of B. We
focus on linear losses for simplicity but the results hold for general OCO where the subgradients of
the losses are in X since the regret can be bounded by the linearised regret, see e.g. Corollary 64 in
[39] or Section 2.3 in [36].

The regret is defined as

RT (A, g1, ..., gT ) =
∑
t=1T

⟨A(g1:t−1), gt⟩ − inf
h∈H

T∑
t=1

⟨h, gt⟩,

where gt are the subgradients defining the linear losses such that gt ∈ X but otherwise are arbitrary /
adversarial and A is a learning algorithm. The minimax regret is

VT (H,X ) = inf
A

sup
g1,...,gT∈X

RT (A, g1, ..., gT ).

We re-state the main the result on the universality of mirror descent from [39].
Theorem F.1 (Theorem 71 of [39]). If for some constant V > 0 and some q ∈ [2,∞), VT (H,X ) ≤
V T 1−1/q for all T , then for any T > eq−1, there exists a regularizer function Ψ and step-size η, such
that the regret of the mirror descent algorithm (OMD) AMD using Ψ against any g1, ..., gT ∈ X
chosen by the adversary is bounded as

RT (AMD, g1, ..., gT ) ≤ 6002 · V · log2(T ) · T 1−1/q.

The result states that any regret bound with constant rate that is achievable across all time horizons
can be matched by OMD up to logarithmic factors. The extension that we discuss next handles the
case where there may be multiple regret bounds with different constant rates that exchange ordering
at different time horizon intervals.
Theorem F.2. Let K > 0 be an integer. If for k = 1, ...,K, there exists constants Vk > 0 (w.r.t.
T ) and qk ≥ 2 such that VT (H,X ) ≤ mink=1,...,K

{
VkT

1−1/qk
}

for all T , then for any T > eq−1,
there exists a procedure AMD+ running OMD over intervals of doubling lengths such that the
corresponding regret against any g1, ..., gT ∈ X chosen by the adversary is bounded as

RT (AMD+, g1, ..., gT ) ≤ (2 +
√
2) · 6002 · log2(T ) ·min

k

{
VkT

1−1/qk
}
.

The procedure does not require knowledge of T .

This matches up to a factor of 2+
√
2 the regret bound we would get by using Theorem F.1 / Theorem

71 of [39] with advanced knowledge of T , and otherwise matches the minimax regret up to constant
and logarithmic factors.

This procedure and result could be used to obtain a result similar to Theorem 3.1. However, the
bounds are worst due to the additional logarithmic factors and much larger constants. Therefore
Theorem 3.1 remains a valuable contribution.

We now provide the proof and procedure based on the doubling-trick.

Proof. Fix T , Ti = 2i, B = min
{
j ∈ N :

∑j
i=0 Ti ≥ T

}
. We have:

2B − 1 =

B−1∑
i=0

Ti < T ≤
B∑
i=0

Ti =

B∑
i=0

2i = 2B+1 − 1 =⇒ T ∈ [2B , 2B+1 − 1].

Consider the following procedure AMD+. For i = 0, 1, ..., B:
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• set k(i) = argmink

{
VkT

1−1/qk
i

}
.

• Use Theorem F.1 / Theorem 71 of [39] to get a regulariser for OMD that achieves the regret
upper-bound of 6002Vk(i) log

2(Ti) · T
1−1/qk(i)

i over Ti rounds. Use this on the Ti rounds{∑i−1
j=0 Tj + 1, ...,

∑i−1
j=0 Tj + Ti

}
. When i = B, just run it up to round T .

Let k⋆ = argmink

{
VkT

1−1/qk
}

. The regret is bounded as follows:

RT (AMD+, g1, ..., gT ) ≤
B∑
i=0

6002Vk(i) log
2(Ti) · T

1−1/qk(i)

i

≤ 6002 log2(T )

B∑
i=0

Vk(i) · T
1−1/qk(i)

i since for all i, Ti ≤ T

≤ 6002 log2(T )

B∑
i=0

Vk⋆ · T 1−1/qk⋆
i by definition of k(i)

= 6002 · Vk⋆ · log2(T ) ·
B∑
i=0

(21−1/qk⋆ )i

= 6002 · Vk⋆ · log2(T ) · (2
1−1/qk⋆ )B+1 − 1

21−1/qk⋆ − 1

≤ 21−1/qk⋆

21−1/qk⋆ − 1
· 6002 · Vk⋆ · log2(T ) · (2B)1−1/qk⋆

≤ 21−1/qk⋆

21−1/qk⋆ − 1
· 6002 · Vk⋆ · log2(T ) · T 1−1/qk⋆ since 2B ≤ T

≤
√
2√

2− 1
· 6002 · Vk⋆ · log2(T ) · T 1−1/qk⋆ since qk⋆ ≥ 2

= (2 +
√
2) · 6002 · log2(T ) ·min

k

{
VkT

1−1/qk
}
.
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G Proofs of Section 5

Throughout this section, we will use the notationRT for the pseudo-regret. In fact since a randomized
learner is equivalent to a random choice of deterministic learners, we will consider in the proofs
below deterministic learners and the regret is equal to the pseudo-regret. In addition, since our loss
constructions are oblivious to the learner’s actions, even for randomised learners, the pseudo-regret is
equal to the regret.

We split the proof into the case where p > 4/3 is “large" and the case where p ∈ [1, 4/3] is
“small" and consider separate loss constructions for each. We first highlight the intuition of the loss
constructions.

• For p > 4/3, we take inspiration from the loss construction which [6] use to prove a Ω(d
√
T )

lower bound for low-dimensional (d2 < T ) ℓp-balls with p > 2. The construction consists of linear
Gaussian losses where the mean of each coordinate is the same distance from 0 but the learner
does not know the sign. When the dimension is large enough, the learner does not acquire enough
information to determine the signs of these means in the T rounds to get sub-linear regret. This
construction will not work when p ≤ 4/3 because when p is close to 1, the lack of a distinct
corner in the ℓp-ball allows any point on the boundary (including ±e1) with correct signs to achieve
similar loss to the competitor (a corner). The learner can therefore focus on ±e1 simplifying the
problem to one-dimension where sub-linear regret is achievable.

• For p ≤ 4/3, the construction consists of linear Gaussian losses where the mean vector has a
single non-zero positive entry, unknown to the learner. When the dimension is large enough, it does
not acquire enough information to determine the non-zero coordinate of the mean in the T rounds
to get sub-linear regret. This construction will not work when p > 4/3 because for p≫ 1 the
learner can exploit the ℓp-ball’s proximity to the hypercube by playing points with all coordinates
close to −1, bypassing the need to identify the correct non-zero mean coordinate.

We present the proofs with a Lipschitz constant of 1 but they extend straightforwardly to arbitrary
L > 0.

G.1 Case p > 4/3

Theorem G.1. Fix T and δ > 0. Consider p > 4/3 and

d > max
{
16T,

1

c1
log

C1T

δ
,
( 1

c1p⋆
log

C1T

δ

)p⋆/2
, e2
}
,

for some universal constants c1, C1. For any OCO algorithm with bandit feedback on V = Bp, there
exists a sequence of random linear losses (ℓt)t∈[T ] with sub-gradients (gt)t∈[T ] such that ∥gt∥p⋆ ≤ 1
for all rounds t with probability at least 1− δ and

E
[
RT
]
≥ T

80
,

where the expectation is with respect to the randomness of the losses.

G.1.1 Proof

The following loss construction and analysis is inspired from the proof of Theorem 4 of [6]. Their
construction is designed for the low-dimensional setting in such a way that the learner has to balance
exploration and exploitation rounds. We only consider the losses corresponding to exploration rounds
and generalize the analysis to the high-dimensional setting.

Let ε > 0 be such that εp⋆ = 1/d. Let T < αd (with α = 1/16). For a fixed ξ ∈
{
−1, 1

}d
, define

the losses as ℓt(x) = xT gξt where gξt ∼ N (εξ, 1
d2/p⋆

Id) (i.i.d.). We show that (when ξ is sampled
uniformly at the start and fixed throughout the rounds)

EξEgξt
[
RT
]
≥ T

16
.

We use Eξ for the expectation with respect to ξ and Egξt for the expectation with respect to gξt with ξ
fixed. We will also use xt,i to mean the i-th coordinate of xt.
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For fixed ξ: Egξt
[
ℓt(x)

]
= E

[
xT gξt

]
= ε · xT ξ. So the competitor x⋆ = argminx∈V ε · ξTx =

−d−1/pξ. Let us define x̄ = 1
T

∑T
t=1 E[xt]. In particular one has

Egξt
[
RT
]
= εT · ξT (x̄− x⋆).

The following lemma expresses the expected regret in terms of the expected number of rounds and
coordinates for which the learner plays on the wrong side of ξ. The proof is in Appendix G.1.3.
Lemma G.2 (Generalization of Lemma 6 of [6]).

Egξt
[
RT
]
≥ εp⋆

p⋆
· Egξt

[ T∑
t=1

d∑
i=1

I
{
xt,iξi ≥ 0

}]
.

And now the next lemma shows that the expected number of rounds and coordinates for which the
learner plays on the wrong side of ξ is linear in both T and d. The proof is in Appendix G.1.4.

Lemma G.3. With T < αd = 1
16 , we have EξEgξt

∑T
t=1

∑d
i=1 I

{
xt,iξi ≥ 0

}
≥ dT

4 .

Combining both lemmas, we have

E
[
RT
]
≥ 1

p⋆
εp⋆ · E

[ T∑
t=1

d∑
i=1

I
{
xt,iξi ≥ 0

}]
≥ 1

4p⋆
εp⋆Td =

1

4p⋆
T ≥ T

16
,

since p > 4/3 so p⋆ ≤ 4. Now to ensure the Lipschitz-condition with high-probability, we get an
extra factor of 1/5 (see the next section), concluding the proof.

G.1.2 Bound on Sub-gradients

Recall that p > 4/3 so p⋆ ≤ 4. Fix ξ ∈
{
−1, 1

}d
. gt ∼ N (εξ, d−2/p⋆Id). So gt = d−1/p⋆X + εξ

where X ∼ N (0, Id). From [44], we have

E
[
∥X∥p⋆

]
≤
(
E
[ d∑
i=1

|Xi|p⋆
])1/p⋆

=
(
E
[ d∑
i=1

2p⋆/2
Γ((p⋆ + 1)/2)√

π

])1/p⋆
≤

√
2
(3
4

)1/p⋆
d1/p⋆ ≤ 2d1/p⋆ .

=⇒ E
[
∥gt∥p⋆

]
≤ 2 + εd1/p⋆ = 2 + 1 = 3.

Fix δ > 0.

• For p⋆ ≤ 2: By Theorem 1.1 in [38] for some constants C1, c1 > 0,

P
(
∥X∥p⋆ ≤ (1 + β)E

[
∥X∥p⋆

])
≥ 1− C1 exp(−c1β2d).

Assuming d ≥ 1
c1

log C1T
δ , we have β =

√
1
c1d

log C1T
δ ≤ 1 and

P
(
∥X∥p⋆ ≤ (1 + β)E

[
∥X∥p⋆

])
≥ 1− δ

T
.

• For 2 < p⋆ ≤ 4: By Theorem 1.1 in [38] for some constants C1, c1 > 0,

P
(
∥X∥p⋆ ≤ (1 + β)E

[
∥X∥p⋆

])
≥ 1− C1 exp(−c1βp⋆d2/p⋆).

Assuming d ≥
(

1
c1p⋆

log C1T
δ

)p⋆/2
, we have β = 1

c1qd2/p⋆
log C1T

δ ≤ 1 and

P
(
∥X∥p⋆ ≤ (1 + β)E

[
∥X∥p⋆

])
≥ 1− δ

T
.

In both cases, with probability at least 1− δ/T

∥X∥p⋆ ≤ (1 + β)E
[
∥X∥p⋆

]
≤ 2E

[
∥X∥p⋆

]
≤ 4d1/p⋆ ,

=⇒ ∥gt∥p⋆ ≤ d−1/p⋆∥X∥p⋆ + εd1/p⋆ ≤ 4 + 1 = 5.

By a union bound over all rounds, with probability 1− δ, ∥gt∥p⋆ ≤ 5 for all rounds t. So rescaling
the losses by a factor of 5 gives sub-gradients whose ℓp⋆ -norm is bounded by 1 with high-probability
and a regret bound of:

E
[
RT
]
≥ T

80
.
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G.1.3 Proof of Lemma G.2

Let Wt =
{
i ∈ [d] : xt,iξi < 0

}
and S = E

[∑T
t=1

∑d
i=1 I

{
xt,iξi ≥ 0

}]
. We have that

Egξt
[
RT
]
= εT · ξT (x̄− x⋆)

= ε

T∑
t=1

Egξt
[∑
i/∈Wt

ξixt,i

]
+ ε

T∑
t=1

Egξt
[∑
i∈Wt

ξixt,i

]
+ εTd1/p⋆

≥ ε

T∑
t=1

Egξt
[∑
i∈Wt

ξixt,i

]
+ εTd1/p⋆

Therefore, it is sufficient to show that

ε

T∑
t=1

Egξt
[∑
i∈Wt

ξixt,i

]
+ εTd1/p⋆ ≥ εp⋆S

p⋆
.

Since ∥xt,Wt∥p ≤ 1 (we use xt,Wt to mean that the coordinates of xt that are not in Wt are 0), by
Holder’s inequality we know that

ε
∑
i∈Wt

ξixt,i = (xt,Wt
)T (εξWt

) ≥ −∥xt,Wt
∥p∥−εξWt

∥p⋆ ≥ −|Wt|1/p⋆ε.

Noting that (see (14) below)

|Wt|1/p⋆ε = ((d− |WC
t |)εp⋆)1/p⋆ ≤ (dεp⋆)1/p⋆ − 1

p⋆
εp⋆ |WC

t |, (13)

we have

ε
∑
i∈Wt

ξixt,i ≥
1

p⋆
εp⋆ |WC

t | − (dεp⋆)1/p⋆ =
1

p⋆
εp⋆

d∑
i=1

I
{
xt,iξi ≥ 0

}
− (dεp⋆)1/p⋆

=⇒ ε

T∑
t=1

Egξt
[∑
i∈Wt

ξixt,i

]
≥ εp⋆

p⋆
Egξt
[ T∑
t=1

d∑
i=1

I
{
xt,iξi ≥ 0

}]
− T (dεp⋆)1/p⋆ =

εp⋆S

p⋆
− εTd1/p⋆ ,

which concludes the proof.

Proof of (13): Since x1/p⋆ is concave: for all x, y ∈ R, x1/p⋆ ≤ y1/p⋆ + 1
p⋆
y−1/p(x − y). In

particular, with x = εp⋆(d− s), y = εp⋆d, we have

ε(d− s)1/p⋆ ≤ εd1/p⋆ − 1

p⋆

εp⋆s

(εp⋆d)1/p
= εd1/p⋆ − 1

p⋆
εp⋆s, (14)

since εp⋆d = 1. Using s = |WC
t | gives the result.

G.1.4 Proof of Lemma G.3

At round t conditioned on ξ, the observed feedback is

fξt := xTt g
ξ
t ∼ N (ε · xTt ξ, σ2

t ), where σ2
t =

∥xt∥22
d2/p⋆

.

Denote pξ for the law of the observed feedback up to time T conditioned on ξ, i.e., the law of
(fξ1 , ..., f

ξ
T ). Consider ξ and ξ′ differing only in coordinate i ∈ d. By Pinsker’s inequality we have

dTV(pξ, pξ′) ≤
√

1

2
DKL(pξ, pξ′).
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By the chain rule for the KL divergence / operations on conditional densities:

DKL(pξ, pξ′) = E(f1,...,fT )∼pξ

[
log

pξ
(
f1, ..., fT

)
pξ′
(
f1, ..., fT

)]
=

T∑
t=1

E(f1,...,ft)∼pξ

[
log

pξ
(
ft|ft−1..., f1

)
pξ′
(
ft|ft−1..., f1

)]
=

T∑
t=1

E(f1,...,ft−1)∼pξ

{
Eft∼pξ(·|f1,...,ft−1)

[
log

pξ
(
ft|ft−1..., f1

)
pξ′
(
ft|ft−1..., f1

)]}.
Now since xt is a deterministic function of f1, ..., ft−1 and given xt, ft ∼ N (εxTt ξ, σ

2
t ) under pξ,

we have that the inner expectation is a KL divergence between Gaussians:

Eft∼pξ(·|f1,...,ft−1)

[
log

pξ
(
ft|ft−1..., f1

)
pξ′
(
ft|ft−1..., f1

)] = (
εxTt ξ − εxTt ξ

′)2
2σ2

t

=
4ε2x2t,i
2σ2

t

=
2ε2x2t,i
σ2
t

=⇒ DKL(pξ, pξ′) = 2
T∑
t=1

E(f1,...,ft−1)∼pξ

[ε2x2t,i
σ2
t

]
= 2

T∑
t=1

Epξ
[ε2x2t,i
σ2
t

]

=⇒ dTV(pξ, pξ′) ≤

√√√√ T∑
t=1

Epξ
[ε2x2t,i
σ2
t

]
.

Now, using ξ−i to refer to all the coordinates of ξ except the i-th and ξi+ (resp. ξi,−) to denote that
the i-th coordinate of ξ is +1 (resp. −1),

Eξ
[
Epξ
[ T∑
t=1

I
{
xt,iξi ≥ 0

}]]
= Eξ−i

Eξi
[
Epξ
[ T∑
t=1

I
{
xt,iξi ≥ 0

}]
|ξ−i

]
=

1

2
Eξ−i

[
Epξi+

[ T∑
t=1

I
{
xt,i · 1 ≥ 0

}]
+ Epξi−

[ T∑
t=1

I
{
xt,i · (−1) ≥ 0

}]]
=

1

2
Eξ−i

[
Epξi+

[ T∑
t=1

I
{
xt,i ≥ 0

}]
+ Epξi−

[ T∑
t=1

1− I
{
xt,i > 0

}]]
≥ T

2
+

1

2

T∑
t=1

Eξ−i

[
Epξi+

[
I
{
xt,i ≥ 0

}]
− Epξi−

[
I
{
xt,i ≥ 0

}]]
≥ T

2
− 1

4

T∑
t=1

Eξ−i

[
dTV(pξi+ , pξi−) + dTV(pξi− , pξi+)

]
using Pinsker’s inequality

=
T

2
− T

4
Eξ−i

[
dTV(pξi+ , pξi−) + dTV(pξi− , pξi+)

]
≥ T

2
− T

4
Eξ−i

[√√√√ T∑
t=1

E
g
ξi+
t

ε2x2t,i
σ2
t

+

√√√√ T∑
t=1

E
g
ξi−
t

ε2x2t,i
σ2
t

]

=
T

2
− T

2
Eξ
[√√√√ T∑

t=1

Egξt
ε2x2t,i
σ2
t

]
.

Summing over all possible coordinates i, we get:

1

T

d∑
i=1

Eξ
[
Epξ
[ T∑
t=1

I
{
xt,iξi ≥ 0

}]]
≥ d

2
− 1

2

d∑
i=1

Eξ
[√√√√ T∑

t=1

Egξt
ε2x2t,i
σ2
t

]
.
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Note that due to the concavity of the square-root:

d∑
i=1

Eξ
[√√√√ T∑

t=1

Egξt
ε2x2t,i
σ2
t

]
≤

d∑
i=1

√√√√ T∑
t=1

Eξ,gξt
ε2x2t,i
σ2
t

= d
1

d

d∑
i=1

√√√√ T∑
t=1

Eξ,gξt
ε2x2t,i
σ2
t

≤ d

√√√√1

d

d∑
i=1

T∑
t=1

Eξ,gξt
ε2x2t,i
σ2
t

=

√√√√d

T∑
t=1

Eξ,gξt
ε2∥xt∥22
σ2
t

.

So we get

1

T
EξEgξt

T∑
t=1

d∑
i=1

I
{
xt,iξi ≥ 0

}
≥ d

2
−

√√√√d

T∑
t=1

Eξ,gξt
ε2∥xt∥22
σ2
t

=
d

2
−
√
d1+2/p⋆Tε2

=
d

2
−
√
dT

≥ d
(1
2
−

√
α
)

=
d

4

since ε = (1/d)1/p⋆ and T < αd = d/16.

G.2 Case 1 < p ≤ 4/3

Theorem G.4. Fix T and δ > 0. Consider p ∈ (1, 4/3] and

d > max
{
(128p⋆T )

2,
( 1

c1p⋆
log

C1T

δ

)p⋆/2
, e2
}
,

for some universal constants c1, C1. For any OCO algorithm with bandit feedback on V = Bp, there
exists a sequence of random linear losses (ℓt)t∈[T ] with sub-gradients (gt)t∈[T ] such that ∥gt∥p⋆ ≤ 1
for all rounds t with probability at least 1− δ and

E
[
RT
]
≥ T

16
,

where the expectation is with respect to the randomness of the losses.

G.2.1 Proof

Before the start of the game, draw Y ∼ Unif(1, ..., d) and define the losses as ℓt(x) = xT gYt where

gYt,i ∼
{
N (0, σ2), if i ̸= Y,

N (1/2, σ2), if i = Y,

where σ = (8
√
p⋆d

1/p⋆)−1. We show that EY Eℓ1,...,ℓTRT ≥ T/16.
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Fix α ∈ [0, 1] and define Ai(α) =
{
t : yt,i ≥ −α

}
. Then

E
[
RT |Y = i

]
=
T

2
+

1

2
E
[ T∑
t=1

yt,i|Y = i
]

=
T

2
+

1

2
E
[ ∑
t/∈Ai(α)

yt,i +
∑

t∈Ai(α)

yt,i|Y = i
]

≥ T

2
+

1

2
E
[ ∑
t/∈Ai(α)

(−1) +
∑

t∈Ai(α)

(−α)|Y = i
]

=
T

2
− 1

2
E
[
T − |Ai(α)|+ α|Ai(α)||Y = i

]
= (1− α)

1

2
E
[
|Ai(α)||Y = i

]
= (1− α)

1

2
E
[ T∑
t=1

I
{
yt,i ≥ −α

}
|Y = i

]
.

The following lemma bounds the expected number of rounds where the learner suffers large regret (as
measured by α) when Y = i compared to an environment where all coordinates of gt are 0-mean for
all t (i.e. there is no better direction). We denote Ep0 expectations with respect to this environment.
The proof is in Appendix G.2.3.
Lemma G.5. Let σ2

t = ∥yt∥22 · σ2, then

E
[ T∑
t=1

I
{
yt,i ≥ −α

}
|Y = i

]
≥ Ep0

[ T∑
t=1

I
{
yt,i ≥ −α

}]
− T

√√√√ T∑
t=1

Ep0
[ y2t,i
8σ2

t

]

From the lemma, we have

E
[
RT |Y = i

]
≥ (1− α)

1

2

{
Ep0
[ T∑
t=1

I
{
yt,i ≥ −α

}]
− T

√√√√ T∑
t=1

Ep0
[ y2t,i
8σ2

t

]}
.

Taking an expectation with respect to Y we have:

E
[
RT
]
=

1

d

d∑
i=1

E
[
RT |Y = i

]

≥ (1− α)

2d

d∑
i=1

{
Ep0
[ T∑
t=1

I
{
yt,i ≥ −α

}]
− T

√√√√ T∑
t=1

Ep0
[ y2t,i
8σ2

t

]}

=
(1− α)

2d

{
Ep0
[ T∑
t=1

d∑
i=1

I
{
yt,i ≥ −α

}]
− T

d∑
i=1

√√√√ T∑
t=1

Ep0
[ y2t,i
8σ2

t

]}
.

For the first term: fix α = (d/2)−1/p and note that if
∑d
i=1 I

{
yt,i ≥ −α

}
< d/2, then there are

more than d/2 coordinates of yt whose value is less than −α, this means

∥yt∥pp >
d

2
αp =

d

2

2

d
= 1,

which contradicts yt ∈ Bp so we must have
∑d
i=1 I

{
yt,i ≥ −α

}
≥ d/2.

For the second term, using Jensen’s inequality and the concavity of
√
x,

1

d

d∑
i=1

√√√√ T∑
t=1

Ep0
[ y2t,i
8σ2

t

]
≤

√√√√1

d

d∑
i=1

T∑
t=1

Ep0
[ y2t,i
8σ2

t

]
=

√√√√1

d

T∑
t=1

Ep0
[∥yt∥22
8σ2

t

]
=

1

2σ

√
T

2d
.
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Combining we have

E
[
RT
]
≥ 1− α

2

(T
2
− T

1

2σ

√
T

2d

)
.

• Since d ≥ e2 ≥ 2p+1, 1− α = 1− (2/d)1/p ≥ 1− 2−p/p = 1/2.

• If d ≥ (128p⋆T )
2 then d ≥ 2T/σ2 and:

T

2
− T

1

2σ

√
T

2d
≥ T

2
− T

4
=
T

2
.

The condition on d follows from the definition of σ and p⋆ ≥ 4:

d ≥ (128p⋆T )
2 ≥ (128qT )1/(1−2/p⋆) =⇒ d1−2/p⋆ ≥ 128qT =⇒ d ≥ 128p⋆T

d2/p⋆
=

2T

σ2
.

We hence have E
[
RT
]
≥ T/16. The following section ensures that the Lipschitz-condition is

satisfied with high-probability.

G.2.2 Bound on sub-gradients

Recall that p ≤ 4/3, so p⋆ ≥ 4. Given Y = i, gYt ∼ N ( 12ei, σ
2Id). So gt = σX + 1

2ei where
X ∼ N (0, Id). From [44], we have

E
[
∥X∥p⋆

]
≤
(
E
[ d∑
i=1

|Xi|p⋆
])1/p⋆

=
(
E
[ d∑
i=1

2p⋆/2
Γ((p⋆ + 1)/2)√

π

])1/p⋆
.

From [3] (Theorem 2.2), we have

Γ
(p⋆ + 1

2

)
= Γ

(p⋆ − 1

2
+ 1
)
≤

√
2π
(p⋆ − 1

2

)(p⋆−1)/2

exp
(
−p⋆ − 1

2

)√
2
p⋆ − 1

2
≤ 2

√
πp⋆

p⋆/2e−(p⋆−1)/2

=⇒
(
2p⋆/2

Γ((p⋆ + 1)/2)√
π

)1/p⋆
≤ 2

√
p⋆

=⇒ E
[
∥X∥p⋆

]
≤ 2

√
p⋆d

1/p⋆

=⇒ E
[
∥gt∥p⋆

]
≤ 2

√
p⋆σd

1/p⋆ +
1

2
.

Fix δ > 0. By Theorem 1.1 in [38] for some constants C1, c1 > 0,

P
(
∥X∥p⋆ ≤ (1 + β)E

[
∥X∥p⋆

])
≥ 1− C1 exp(−c1βp⋆d2/p⋆).

Assuming d ≥
(

1
c1p⋆

log C1T
δ

)p⋆/2
, we have β = 1

c1qd2/p⋆
log C1T

δ ≤ 1 and

P
(
∥X∥p⋆ ≤ (1 + β)E

[
∥X∥p⋆

])
≥ 1− δ

T
.

So with probability at least 1− δ/T

∥X∥p⋆ ≤ (1 + β)E
[
∥X∥p⋆

]
≤ 2E

[
∥X∥p⋆

]
≤ 4

√
p⋆d

1/p⋆ ,

=⇒ ∥gt∥p⋆ ≤ 4
√
p⋆σd

1/p⋆ +
1

2
≤ 1,

where the final inequality follows from σ ≤ 1
8
√
p⋆d1/p⋆

By a union bound over all rounds, with probability 1− δ, ∥gt∥p⋆ ≤ 1 for all rounds t.
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G.2.3 Proof of Lemma G.5

Given Y = i, the observed feedback at round t is exactly

fYt := yTt g
Y
t ∼ N (

1

2
yt,i, σ

2
t ), where σ2

t = ∥yt∥22σ2.

Denote pi for the law of the observed feedback up to time T given Y = i, i.e., the law of (f i1, ..., f
i
T ).

Denote p0 (use Y = 0 in notation), the law of the observed feedback up to time T when all coordinates
of gt are 0-mean for all t (i.e. there is no better direction). Under p0, f0t ∼ N (0, σ2

t ). By the definition
of the total-variation distance (dTV),

E
[
I
{
yt,i ≥ −α

}
|Y = 0

]
− E

[
I
{
yt,i ≥ −α

}
|Y = i

]
≤ dTV(p0, pi)

=⇒ E
[ T∑
t=1

I
{
yt,i ≥ −α

}
|Y = 0

]
− E

[ T∑
t=1

I
{
yt,i ≥ −α

}
|Y = i

]
≤ T dTV(p0, pi).

By Pinsker’s inequality we have

dTV(p0, pi) ≤
√

1

2
DKL(p0, pi).

By the chain rule for the KL divergence / operations on conditional densities:

DKL(p0, pi) = E(f1,...,fT )∼p0

[
log

p0
(
f1, ..., fT

)
pi
(
f1, ..., fT

) ]
=

T∑
t=1

E(f1,...,ft)∼p0

[
log

p0
(
ft|ft−1..., f1

)
pi
(
ft|ft−1..., f1

) ]
=

T∑
t=1

E(f1,...,ft−1)∼p0

{
Eft∼p0(·|f1,...,ft−1)

[
log

p0
(
ft|ft−1..., f1

)
pi
(
ft|ft−1..., f1

) ]}.
Now since yt is a deterministic function of f1, ..., ft−1 and given yt, ft ∼ N (0, σ2

t ) under p0
and ft ∼ N ( 12yt,i, σ

2
t ) under pi, we have that the inner expectation is a KL divergence between

Gaussians:

Eft∼p0(·|f1,...,ft−1)

[
log

p0
(
ft|ft−1..., f1

)
pi
(
ft|ft−1..., f1

) ] = (
0− yt,i/2

)2
2σ2

t

=
y2t,i
8σ2

t

=⇒ DKL(p0, pi) =

T∑
t=1

E(f1,...,ft−1)∼p0

[ y2t,i
8σ2

t

]
=

T∑
t=1

Ep0
[ y2t,i
8σ2

t

]

=⇒ dTV(p0, pi) ≤

√√√√ T∑
t=1

Ep0
[ y2t,i
8σ2

t

]
.

Combining gives the result.

G.3 Case p → 1

Theorem G.6. Fix T and δ > 0. Consider d > max
{
T/δ, 84e4T 2, 8

}
and p ∈ [1, 1 + 1/ log d].

For any OCO algorithm with bandit feedback on V = Bp, there exists a sequence of random linear
losses (ℓt)t∈[T ] with sub-gradients (gt)t∈[T ] such that ∥gt∥p⋆ ≤ 1 for all rounds t with probability at
least 1− δ and

E
[
RT
]
≥ T

16
,

where the expectation is with respect to the randomness of the losses.
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G.3.1 Proof

We use almost the same loss construction as the proof of Theorem G.4. Before the start of the game,
draw Y ∼ Unif(1, ..., d) and define the losses as ℓt(x) = xT gYt where

gYt,i ∼
{
N (0, σ2), if i ̸= Y,

N (1/2, σ2), if i = Y,

where σ = (4
√
2 exp(1)

√
log d)−1. The only difference with the proof of Theorem G.4 being the

value of σ. We also follow the same steps until we reach for α = (2/d)1/p:

E
[
RT
]
≥ 1− α

2

(T
2
− T

1

2σ

√
T

2d

)
.

• From d ≥ 8, we have p ≤ 2 and 2p+1 ≤ 8 ≤ d so 1−α = 1−(2/d)1/p ≥ 1−2−p/p = 1/2.

• From the definition of σ = (4
√
2 exp(1)

√
log d)−1

1

2σ

√
T

2d
= 2 exp(1)

√
T log d

d
≤ 2 exp(1)

√
T
√
d

d
= 2 exp(1)

√
T√
d
≤ 1

4

since d ≥ 84e4T 2. This gives:

T

2
− T

1

2σ

√
T

2d
≥ T

2
− T

4
=
T

2
.

We hence have E
[
RT
]
≥ T/16. The following section ensures that the Lipschitz-condition is

satisfied with high-probability.

G.3.2 Bound on sub-gradients

Recall that p ≤ 1 + 1
log d so p⋆ ≥ log d

1 + 1. We have

E
[
∥X∥∞

]
≤
√

2 log d.

By the Borell-TIS inequality,

P
(
∥X∥∞ > E

[
∥X∥∞

]
+ β

)
≤ exp(−β2/2).

So with probability 1− δ/T , we have (using d > T/δ)

∥X∥∞ ≤ E
[
∥X∥∞

]
+

√
2 log

T

δ
≤
√

2 log d+

√
2 log

T

δ
≤ 2
√
2 log d

=⇒ ∥gt∥p⋆ ≤ σ∥X∥p⋆ +
1

2
≤ σd1/p⋆∥X∥∞ +

1

2
≤ σ exp(1)2

√
2 log d+

1

2
= 1

where the final equality follows from σ = (4
√
2 exp(1)

√
log d)−1 and we also used that d1/p⋆ ≤ e.

By a union bound over all rounds, with probability 1− δ, ∥gt∥p⋆ ≤ 1 for all rounds t.
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H Results for Online Mirror Descent (OMD)

H.1 OMD with uniformly-convex regularisation

The results in this section are from [40] (Proposition 7). We include them for completeness.

Let ψ : Rd → R be a proper, closed and differentiable µ-uniformly convex function5 on V of degree
r > 2 w.r.t. a norm ∥·∥. The Bregman Divergence w.r.t. ψ is defined for all x, y ∈ Rd as

Dψ(x, y) = ψ(x)− ψ(y)− ⟨∇ψ(y), x− y⟩.

Given x1 ∈ V , at time-step t = 1, ..., T , Online Mirror Descent (OMD) with step-size ηt > 0 outputs
the following update where gt ∈ ∂ℓt(xt),

xt+1 = argmin
x∈V

{
ηt⟨gt, x⟩+Dψ(x, xt)

}
. (15)

The standard regret bound of OMD stems from the following one-step regret bound lemma (e.g. see
Lemma 6.9 in [36]).

Lemma H.1. The iterates (15) of OMD satisfy for all u ∈ V ,

ℓt(xt)− ℓt(u) ≤ ⟨gt, xt − xt+1⟩+
Dψ(u, xt)−Dψ(u, xt+1)−Dψ(xt+1, xt)

ηt

From Lemma H.1 and the uniform convexity of ψ, we can bound the regret of OMD.

Theorem H.2. The iterates (15) of OMD with decreasing step-size ηt+1 ≤ ηt (1 ≤ t ≤ T ) satisfy
for all u ∈ V (recall that r⋆ is the conjugate of r, i.e. 1/r + 1/r⋆ = 1),

T∑
t=1

ℓt(xt)− ℓt(u) ≤ max
1≤t≤T

Dψ(u, xt)

ηT
+

1

r⋆µr⋆−1

T∑
t=1

ηr⋆−1
t ∥gt∥r⋆⋆ . (16)

If the step-sizes are constant: ηt = η (1 ≤ t ≤ T ), we have

T∑
t=1

ℓt(xt)− ℓt(u) ≤
Dψ(u, x1)

η
+

ηr⋆−1

r⋆µr⋆−1

T∑
t=1

∥gt∥r⋆⋆ . (17)

Proof. By the uniform convexity of ψ, Dψ(xt+1, xt) ≥ µ
r ∥xt − xt+1∥r. Using this in Lemma H.1

along with Hölder’s inequality, we have for all u ∈ V ,

ℓt(xt)− ℓt(u) ≤ ⟨gt, xt − xt+1⟩+
Dψ(u, xt)−Dψ(u, xt+1)

ηt
− µ

r

∥xt − xt+1∥r

ηt

≤ ∥gt∥⋆∥xt − xt+1∥+
Dψ(u, xt)−Dψ(u, xt+1)

ηt
− µ

r

∥xt − xt+1∥r

ηt
.

Consider f(x) = 1
r |x|

r. Then the Fenchel conjugate of f is f⋆(y) = 1
r⋆
|y|r⋆ (see Lemma 2.2 in

[24]) and from Fenchel’s inequality, we have xy ≤ 1
r |x|

r + 1
r⋆
|y|r⋆ , which we use in the following,

∥gt∥⋆∥xt − xt+1∥ =
( η1/rt

µ1/r
∥gt∥⋆

)
·
(µ1/r

η
1/r
t

∥xt − xt+1∥
)

≤ 1

r⋆

( η1/rt

µ1/r
∥gt∥⋆

)r⋆
+

1

r

(µ1/r

η
1/r
t

∥xt − xt+1∥
)r

=
ηr⋆−1
t

r⋆µr⋆−1
∥gt∥r⋆⋆ +

µ

r

∥xt − xt+1∥r

ηt
,

5The function ψ can be defined on a subset X ⊆ Rd but conditions on its behaviour on the boundary of X
are then required for OMD to be well defined. For simplicity, we consider ψ defined on Rd, though the results in
this section hold more generally (see Theorem 6.7 of [36] for more detail).
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where we used that r = r⋆/(r⋆ − 1). Plugging this into the above inequality,

ℓt(xt)− ℓt(u) ≤
ηr⋆−1
t

r⋆µr⋆−1
∥gt∥r⋆⋆ +

Dψ(u, xt)−Dψ(u, xt+1)

ηt
. (18)

Denoting D = max1≤t≤T Dψ(u, xt), the result follows by summing t over all rounds,

T∑
t=1

ℓt(xt)− ℓt(u) ≤
T∑
t=1

(Dψ(u, xt)

ηt
− Dψ(u, xt+1)

ηt

)
+

1

r⋆µr⋆−1

T∑
t=1

ηr⋆−1
t ∥gt∥r⋆⋆

=
Dψ(u, x1)

η1
− Dψ(u, xT+1)

ηT
+

T−1∑
t=1

( 1

ηt+1
− 1

ηt

)
Dψ(u, xt+1) +

1

r⋆µr⋆−1

T∑
t=1

ηr⋆−1
t ∥gt∥r⋆⋆

≤ D

η1
+D

T−1∑
t=1

( 1

ηt+1
− 1

ηt

)
+

1

r⋆µr⋆−1

T∑
t=1

ηr⋆−1
t ∥gt∥r⋆⋆

=
D

η1
+D

( 1

ηT
− 1

η1

)
+

1

r⋆µr⋆−1

T∑
t=1

ηr⋆−1
t ∥gt∥r⋆⋆

=
D

ηT
+

1

r⋆µr⋆−1

T∑
t=1

ηr⋆−1
t ∥gt∥r⋆⋆ .

For constant step-size, the result follows similarly by summing (18) over t, giving a telescoping sum,

T∑
t=1

ℓt(xt)− ℓt(u) ≤
Dψ(u, x1)−Dψ(u, xT+1)

η
+

ηr⋆−1

r⋆µr⋆−1

T∑
t=1

∥gt∥r⋆⋆

≤ Dψ(u, x1)

η
+

ηr⋆−1

r⋆µr⋆−1

T∑
t=1

∥gt∥r⋆⋆ ,

which concludes the proof.

H.1.1 Regret bounds

When we have L-Lipschitz losses w.r.t. ∥·∥ and we can bound Dψ(u, x1) < D, then the regret bound
(17) for constant step-sizes becomes

RT ≤ D

η
+ ηr⋆−1 TLr⋆

r⋆µr⋆−1
.

Assuming the time-horizon T is known, optimising the above bound w.r.t. η using Lemma C.4 gives

RT ≤ r1/r

µ1/r
LD1/rT 1/r⋆ , (19)

for η = (Dp/T )1/r⋆µ1/r/L. With r = 2, we recover the standard regret bound of OMD using a
strongly-convex regulariser RT ≤ L

√
2DT/µ.

H.1.2 Anytime and adaptive bounds

When T is unknown, we can use the bound in (16) and the time-varying step-size

ηt =
D

1/r⋆
max (r − 1)1/r⋆µ1/r

L
· 1

t1/r⋆
to get RT ≤ LD

1/r
maxr1/rr⋆

1/r⋆T 1/r⋆

µ1/r
, (20)

whereDmax is a bound on max1≤t≤T Dψ(u, xt). Though this can be unbounded whenD is bounded,
for our purposes of ℓp-balls, Dmax will only be a constant away from D. The doubling trick can
also be used to obtain anytime bounds that depend on D instead of Dmax (see e.g. [27]). This uses
constant step-size OMD on time-horizons of doubling lengths until the unknown true T is reached.
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We can also obtain bounds that adapt to the sequence of observed subgradients of the form

RT =
D

1/r
maxr1/rr⋆

1/r⋆

µ1/r
·
( T∑
i=1

∥gi∥r⋆⋆
)1/r⋆

by using ηt = D
1/r⋆
max (r − 1)1/r⋆µ1/r/(

∑T
i=1∥gi∥r⋆⋆ )1/r⋆ . This follows the same lines as for OMD

with strongly convex regulariser (see Section 4.2.1 of [36]).

H.2 OMD on ℓp-balls

• For the low-dimensional setting, consider OMD with regulariser ϕ2(x) = 1
2∥x∥

2
2. We have

Dmax = supx,y∈Bp

1
2∥x− y∥22 = 2d1−2/p and using that ϕ2 is 1-strongly-convex with respect to

∥·∥2, we have from (20) with r = 2 and ηt = 1
L

√
2d1−2/p

t :

RT ≤ 2L
√
2d1−2/pT .

• For the high-dimensional setting, consider OMD with regulariser ϕp(x) = 1
p∥x∥

p
p. We have

Dmax = supx,y∈Bp
Dϕp

(x, y) = 2 (see below) and using that ϕp is 21−p-uniformly-convex of

degree p with respect to ∥·∥p, we have from (20) with r = p and η = 1
L

(
p−1
t

)1−1/p

:

RT ≤ 2p1/pp
1−1/p⋆
⋆ LT 1−1/p.

To show Dmax = 2: Fix x, y ∈ Bp and ψ(x) = 1
p∥x∥

p
p. The sign, power and absolute value

functions below are applied component-wise to vectors.
Dψ(x, y) = ψ(x)− ψ(y)− ⟨∇ψ(y), x− y⟩

=
1

p
∥x∥pp −

1

p
∥y∥pp +

d∑
i=1

{
sign(yi) · |yi|p−1(yi − xi)

}
=

1

p
∥x∥pp −

1

p
∥y∥pp +

d∑
i=1

{
|yi|p − sign(yi) · |yi|p−1xi

}
=

1

p
∥x∥pp +

(
1− 1

p

)
∥y∥pp −

d∑
i=1

{
sign(yi) · |yi|p−1xi

}
≤ 1

p
+
(
1− 1

p

)
−

d∑
i=1

{
sign(yi) · |yi|p−1xi

}
.

We show that the last term is bounded by 1 by using Holder’s inequality,
⟨sign(y) · |y|p−1, x⟩ ≤ ∥|y|p−1∥q∥x∥p ≤ 1,

where in the last inequality we used (recall that q = p/(p− 1))

∥|y|p−1∥q =
( d∑
i=1

|yi|q·(p−1)
)1/q

=
( d∑
i=1

|yi|p
)1/q

= ∥y∥p/qp ≤ 1.

Hence supx,y∈Bp
Dψ(x, y) ≤ 2 = Dmax.

• We now show how to achieve anytime optimal bounds. Fix t0 =
(√

2p1/pp
1/p⋆
⋆

)2p/(p−2)

· d.

Proposition H.3. Consider running OMD with the following regularizers

ψt(x) =

{
ϕp(x) =

1
p∥x∥

p
p, ηt =

(p−1)1/p⋆

Lt1/p⋆
, if t ≤ t0,

ϕ2(x) =
1
2∥x∥

2
2, ηt =

√
2d1−2/p

L
√
t

, if t > t0.

Assume ℓt convex, closed, and ∂ℓt(xt) not empty. Then, OMD guarantees

RT ≤

{
2p1/pp

1/p⋆
⋆ LT 1/p⋆ , if t ≤ t0,

2L
√
2Td1−2/p, if t > t0

43



Proof. If T ≤ t0, we have just run OMD with ϕp as regulariser over all rounds and the regret
bound is the one for the high-dimensional setting above.
Otherwise, from the standard bounds from the OMD analysis

RT ≤
t0∑
t=1

(Dψp
(u, xt)

ηt
−
Dψp

(u, xt+1)

ηt

)
+

Lp⋆

p⋆µ
p⋆−1
p

T∑
t=1

ηp⋆−1
t

+

T∑
t=t0+1

(Dψ2(u, xt)

ηt
− Dψ2(u, xt+1)

ηt

)
+

L2

2µ2

T∑
t=t0+1

ηt

≤ Dp

ηt0
+

Lp⋆

p⋆µ
p⋆−1
p

T∑
t=1

ηp⋆−1
t +

D2

ηT
+

L2

2µ2

T∑
t=t0+1

ηt

≤ 2p1/pp
1/p⋆
⋆ Lt

1/p⋆
0 +

D2

ηT
+
L
√
D2

2µ

T∑
t=t0+1

1√
t

≤ 2p1/pp
1/p⋆
⋆ Lt

1/p⋆
0 + L

√
TD2 + L

√
D2(

√
T −

√
t0)

= 2L
√

2Td1−2/p + 2p1/pp
1/p⋆
⋆ Lt

1/p⋆
0 − L

√
2d1−2/pt0,

where we used D2 = supx,y∈Bp
Dψ2

(x, y) ≤ 2d1−2/p, Dp = supx,y∈Bp
Dψp

(x, y) ≤ 2, µ2 = 1

and µp = 21−p. The proof is concluded by noting that 2p1/pp1/p⋆⋆ Lt
1/p⋆
0 − L

√
2d1−2/pt0 is

negative for t0 =
(√

2p1/pp
1/p⋆
⋆

)2p/(p−2)

· d.

H.3 Failure of fixed separable regularisation for OMD

Proposition H.4. OMD with regulariser ψ ∈ Ψ and any sequence of decreasing ηt cannot be
optimal across all dimensions. Specifically there are no constants ch, cl > 0 such that for all T ,
RT ≤ chLT

1−1/p for all d > T and RT ≤ clL
√
Td1−2/p for all d ≤ T .

The proof is identical to the proof of Theorem 4.6 for FTRL with the corresponding versions of
Lemma 4.4 and Lemma 4.7 for OMD given below.
Lemma H.5. [Lemma 4.7 for OMD] Consider d = 1 (V = Bp = [−1, 1]) and ψ ∈ F . OMD
with regulariser ψ and arbitrary decreasing step-size ηt can only guarantee RT ≤ cL

√
T for some

constant c > 0 and all sufficiently large T if for all x ∈ [−1, 1], ψ(x) ≥ ψ(1/2)
100c2 x

2.

Proof. Assume there exists a constant c > 0 such that for all T and any sequence of losses, RT ≤
cL

√
T . Consider T > 16c2 and a multiple of 4.

By considering the dual-version of OMD, we have that if there are no projections up to time t, the
update of OMD at time t+ 1 can be written as

xt+1 = ∇ψ⋆V
(
−

t∑
i=1

ηigi

)
= argmin

x∈V

{
ψ(x) +

t∑
i=1

ηig
T
i x
}
, (21)

where ψ⋆V is the restriction of the fenchel conjugate of ψ to V = Bp = [−1, 1].

We now follow the same steps as FTRL with a slight modification to the loss ℓt(x) = x · gt where
gt ∈ [−1, 1] is now defined as

gt =


−ηt+1

ηt
· L, t ≤ T

2 odd,
L, t ≤ T

2 even,
−L, t > T

2 ,

Assume η2 is small enough s.t. x2 ∈ int V = (−1, 1) (i.e. no projection is needed). If not, we can
modify the losses slightly so that x3 = 0 (if η3 is large enough, if it is not then set g1 = g2 = 0 and
start the above losses from t = 3) and then proceed similarly (i.e. if η3 is still so large that x4 = 1,
then again modify the losses slightly so that x5 = 0 etc). Set η = ηT/2. With this sequence of losses,
the points played by OMD satisfy
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• for t ≤ T/2 + 1 and t odd, we have
∑t−1
s=1 ηsgs = 0, so xt = 0.

• for t ≤ T/2+1 and t even, we have
∑t−1
s=1 ηsgs = −ηt ·L so xt = argminx∈[−1,1]

{
−ηtx+ψ(x)

}
.

For t < t′ ≤ T/2 (both even), we have

−ηt′Lxt′ + ψ(xt′) ≤ −ηt′Lxt + ψ(xt) using the definition of xt′
= −ηtLxt + ψ(xt) + L(ηt − ηt′)xt
≤ −ηtLxt′ + ψ(xt′) + L(ηt − ηt′)xt using the definition of xt

=⇒ (ηt − ηt′)Lxt′ ≤ (ηt − ηt′)Lxt

=⇒ xt′ ≤ xt using that ηt′ ≤ ηt.

So for all t ≤ T/2 even, we have xt ≥ xT/2.

• for t > T/2, we have
∑t−1
s=1 ηsgs ≥

∑t
s=1 ηsgs so xt ≤ xt+1.

The regret can be written as follows

RT =

T∑
t=1

ℓt(xt)−
(
−LT

2

)
≥ LT

2
+
LT

4
xT/2 − L

T∑
t=T/2+1

xt (22)

Following similar steps as the proof of Lemma 4.7 for FTRL, we get

1. We first show that xT
2 +⌈2c

√
T⌉ ≥

1
2 : if not, xT

2 +⌈2c
√
T⌉ <

1
2 and from (22):

RT ≥ LT

2
− L

T/2+⌊2c
√
T⌋∑

t=T/2+1

xt − L

T∑
t=T/2+⌈2c

√
T⌉

xt

>
LT

2
− L

T/2+⌊2c
√
T⌋∑

t=T/2+1

1

2
− L

T∑
t=T/2+⌈2c

√
T⌉+1

1

=
LT

2
− L

2
⌊2c

√
T ⌋ − L

(
T − ⌈2c

√
T ⌉ − T

2

)
≥ L

2
⌈2c

√
T ⌉

> cL
√
T ,

which contradicts our initial assumption that RT ≤ cL
√
T so we must have xT

2 +⌈2c
√
T⌉ ≥

1
2 . Note that 2c

√
T < T/2 is ensured by T > 16c2.

2. Next, we show that η ≥ ψ(1/2)

2cL
√
T

. Until the points reach 1 there are no projections so we can
use (21) to write the OMD update as (note that even if xT

2 +⌈2c
√
T⌉ = 1 the following still

holds)

xT
2 +⌈2c

√
T⌉ = argmin

x∈V

{
ψ(x) +

T
2 +⌈2c

√
T⌉−1∑

i=1

ηigi · x
}
= argmin

x∈V

{
ψ(x)− x

T
2 +⌈2c

√
T⌉−1∑

i=T
2 +1

ηi

}

=⇒ − xT
2 +⌈2c

√
T⌉

T
2 +⌈2c

√
T⌉−1∑

i=T
2 +1

ηi + ψ(xT
2 +⌈2c

√
T⌉) ≤ 0

=⇒ ψ(1/2) ≤
T
2 +⌈2c

√
T⌉−1∑

i=T
2 +1

ηi ≤ 2c
√
Tη

=⇒ η ≥ ψ(1/2)

2c
√
T
.
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where in the second implication, we used that ψ(xT
2 +⌈2c

√
T⌉) ≥ ψ(1/2) (since ψ is in-

creasing on [0, 1] and xT
2 +⌈2c

√
T⌉ ≥ 1/2), xT

2 +⌈2c
√
T⌉ ≤ 1 and ηi ≤ ηT/2 = η for all

i ≥ T/2.

The remaining steps are identical to the proof of Lemma 4.7.

Lemma H.6 (Lemma 4.4 for OMD). Consider V = Bp with p > 2 and assume losses are L-Lipschitz
in ℓp-norm. Let ψ be a convex function satisfying for some µ > 0 and any x ∈ Rd, ψ(x) ≥ µ

2 ∥x∥
2
2.

If d ≥
(
4T/µ

)p/(p−2)
, there exists a sequence of linear L-Lipschitz losses (in ℓp-norm) for which

OMD with regulariser ψ(x) and any sequence of decreasing ηt suffers regret RT ≥ 1
8LT .

Proof. We consider the loss construction described in Appendix E.1 with a slight modification to the
loss ℓt(x) = L · xT gt where gt ∈ Bp⋆ is now defined as

gt =


−ηt+1

ηt
L · e1, t ≤ T

2 odd,
L · e1, t ≤ T

2 even,
−L · v, t > T

2 .

By again considering the dual-version of OMD, we have that if there are no projections up to time t,
the update of OMD at time t+ 1 can be written as

xt+1 = ∇ψ⋆V
(
−L

t∑
i=1

ηigi

)
= argmin

x∈V

{
ψ(x) + L

t∑
i=1

ηig
T
i x
}
, (23)

where ψ⋆V is the restriction of the fenchel conjugate of ψ to V = Bp.

• First we consider t ≤ T/2. As in the proof of Lemma H.5, assume η2 is small enough s.t.
x2 ∈ int Bp (i.e. no projection is needed). By (23), the steps are then the same as for FTRL

since when t is odd, xt = 0 and when t is even, xt = argminx∈Bp

{
ψ(x)− Lηte

T
1 x
}

. So
we have

T/2∑
t=1

xTt gt ≥
{
T/4, if ηT/2 ≥ 2/L

0, if ηT/2 < 2/L.

Hence if ηT/2−1 ≥ 2/L, we have RT ≥ LT/4 and the statement of the theorem holds. If
ηT/2−1 < 2/L, we look to the second half of the rounds.

• Let’s now consider t > T/2 and assume ηT/2−1 < 2/L. Fix βt = t− T/2− 1. Until the
points reaches the boundary there are no projections so we can use (21) to write the OMD
update as

xt = argmin
x∈Bp

{
ψ(x) + L

t−1∑
i=1

ηig
T
i x
}
= argmin

x∈Bp

{
ψ(x)− L · vTx

t−1∑
i=T/2+1

ηi

}

= argmin
x∈Bp

d∑
i=1

{
g(xi)− Lxid

−1/q
t−1∑

i=T/2+1

ηi

}
.

Let u = v/∥v∥p be the competitor. Note that xt = λtu (since the update is coordinate
invariant) so only reaches the boundary once xt = u and for which the above equality
still holds (this is true because it is true for the last iterate before the projection and then∑t−1
i=1 ηigi is greater than for this last iterate so the argmin will give xt = u). We have

λt ≥ 0 and

ψ(xt) ≥
µ

2
∥xt∥22 =

1

2
λ2tµd

1−2/p.
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Now from the OMD update,

ψ(xt)− LvTxt

t−1∑
i=T/2+1

ηi ≤ 0 =⇒ 1

2
λ2tµd

1−2/p − λtL

t−1∑
i=T/2+1

ηi ≤ 0

=⇒ λt ≤
2L

µd1−2/p

t−1∑
i=T/2+1

ηi ≤
2Lβtη

µd1−2/p
≤ 4βt
µd1−2/p

=⇒ ℓt(xt) = −LvTxt = −Lλt ≥ − 4Lβt
µd1−2/p

,

since ηi ≤ ηT/2 ≤ 2/L for all i ≥ T/2. If d ≥ (4T/µ)p/(p−2), we have for all t ≤ T

ℓt(xt) ≥ − 4Lβt
µd1−2/p

≥ −L
2

=⇒ RT ≥ LT

2
+

T∑
t=T/2+1

ℓt(xt) ≥
LT

2
− LT

4
=
LT

4
.

If T is not divisible by 4 and we use T − 1, T − 2 or T − 3, we have RT ≥ L(T−3)
4 ≥ LT

8 for T ≥ 6,
concluding the proof.
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I Beyond separability

In this section, we extend our main result on the failure of separable regularisers (Theorem 4.6) to
non-separable regularisers. We consider the class of regularisers defined as

Ψ =
{
ψ : Bp → R : convex, sign and coordinate invariant, 0 = argmin

x∈R
ψ(x), ψ(0) = 0, ψ(1/2e1) = 1

}
,

where a function f : X ⊂ Rd → R is

• sign invariant if for any s ∈ {−1, 1}d, f(s · x) = f(x) for all x ∈ X where s · x denotes
coordinate-wise multiplication.

• coordinate invariant if for any permutation s : [d] → [d], f(s(x)) = f(x) for all x ∈ X .

We also assume that ψ is such that extensions of x ∈ Rd1 to higher dimensional spaces Rd2 (d2 > d1)
by padding the extra coordinates with 0s does not change the value of ψ(x).

This class is general since sign and coordinate invariance are mild natural assumptions for a regulariser
(and any regulariser can be scaled to satisfy the other conditions).

We can now state a general result on the failure of fixed regularisation.

Theorem I.1. FTRL (1) with fixed regulariser ψt(x) = 1
ηψ(x) for all t and ψ ∈ Ψ cannot satisfy

both:

1. There exists c > 0 such that for all T, d, T > d, there exists η such that RT ≤ c
√
Td1−2/p.

2. There exists c′ > 0 such that for all T, d, d > T , there exists η such that RT ≤ c′T 1−1/p.

In other words, it cannot be optimal both in the low and high dimensional settings.

Proof. Let’s assume 1. is satisfied.

Fix ε = p−2
4 and λ < 3

4 (ε log
ε 3)

1/p. For n ≥ 4, define

wn = λ ·
n∑
i=4

1

(i log1+ε i)1/p
ei.

We have wn ∈ Bp for all n since:

∥wd∥pp = λp ·
d∑
i=4

1

i log1+ε i
≤ λp

∫ ∞

3

1

x log1+ε x
dx = λp

∫ ∞

log 3

u−1−εdu = λp ·
[
−1

ε
u−ε

]∞
log 3

=
λp

ε logε 3
< 1,

where we used a u = log x substitution.

Proposition I.2. Fix d0 := exp
(
(64c2)1/(1/2−1/p)

)
. If for all T, d, T > d > d0, there exists η such

that FTRL with fixed regulariser ψt(x) = 1
ηψ(x) for all t and ψ ∈ Ψ satisfies RT ≤ c

√
Td1−2/p

against any sequence of 1-Lipschitz losses (in ℓp norm), then for all d ≥ d0

ψ(wd)− ψ(wd−1) >
λ2

d log d
.

Since we have assumed condition 1, we have for d ≥ d0

ψ(wd) ≥ ψ(wd−1) ≥
d−1∑
i=d0

λ2

i log i
≥
∫ d

d0

λ2

x log x
dx = λ2[log log x]dd0 = λ2(log log d− log log(d0)).

This condition allows us to use the following proposition which rules out condition 2. being satisfied
and concludes the proof.
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Proposition I.3. Let ψ ∈ Ψ satisfy for d ≥ d0 and λ < 3
4 (ε log

ε 3)1/p, ψ(wd) ≥ λ2(log log d −
log log(d0)). Fix T . If

d ≥ exp

(
exp

(
log log d0 +

8T

(ε logε 3)
2/p

))
, recall ε =

p− 2

4

there exists a sequence of linear 1-Lipschitz losses (in ℓp-norm) for which FTRL with fixed regulariser
ψt(x) =

1
ηψ(x) for all t and any η suffers regret RT ≥ 1

8T .

I.1 Proof of Proposition I.2

Suppose not: there exists a d ≥ d0 such that ψ(wd)− ψ(wd−1) ≤ λ2

d log d .

Fix T > d a multiple of 4 such that

1

32c2 · λ2
d log(d)2−2(1+ε)/p ≤ T ≤ 1

16c2 · λ2
d log(d)2−2(1+ε)/p

This choice of a multiple of 4 is guaranteed by d ≥ d0, which also guarantees T > d.

The statement of the proposition assumes that there exists η such that FTRL with fixed regulariser
ψt(x) =

1
ηψ(x) for all t and ψ ∈ Ψ satisfies RT ≤ c

√
Td1−2/p

We have

• Firstly, by considering gt = −e1 for all t, we show in Appendix I.2 that η ≥ 1

2c
√
Td1−2/p

.

• Define G = − 1
η∇ψ(wd−1) and for t < T/2, ℓt(x) = gTt x with gt = 1

T/2−1 ·G. We have
∥gt∥p⋆ ≤ 1 and gt ∈ Bp⋆ as required since ∥G∥p⋆ ≤ T/2 − 1 (see Appendix I.3). We
obtain

xT/2 = argmin
x∈Bp

{
ψ(x) + η

T/2−1∑
t=1

⟨gt, x⟩
}

= argmin
x∈Bp

{
ψ(x) + η⟨G, x⟩

}
= wd−1 since G = −1

η
∇ψ(wd−1) ⇐⇒ ∇ψ(wd−1) + η ·G = 0 and wd−1 ∈ int Bp.

Note that GT ed = 0 from the sign and coordinate invariance of ψ.

• For t ≥ T/2, set the loss to be ℓt(x) = (−1)t+1ed (i.e. we alternate between ±ed). This
gives for all k = 0, 1, ..., T/4− 1:

xT/2+1+2k = xT/2+1 = argmin
x∈Bp

{
ψ(x) + η · ⟨G− ed, x⟩

}
xT/2+2k = xT/2 = wd−1.
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We want to lower-bound eTd xT/2+1, the loss suffered in each of these alternating rounds:

ψ(wd) + η · (G− ed)
Twd = ψ(wd) + η ·GTwd−1 − η

λ

(d log1+ε(d))1/p

≤ ψ(wd−1) + η ·GTwd−1 +
λ2

d log d
− η

λ

(d log1+ε(d))1/p
by assumption

= ψ(xT/2) + η ·GTxT/2︸ ︷︷ ︸
by def of xT/2, ≤

+
λ2

d log d
− η

λ

(d log1+ε(d))1/p

≤
︷ ︸︸ ︷
ψ(xT/2+1) + η ·GTxT/2+1 +

λ2

d log d
− η

λ

(d log1+ε(d))1/p

= ψ(xT/2+1) + η · (G− ed)
TxT/2+1︸ ︷︷ ︸

by def of xT/2+1, ≤

+η · eTd xT/2+1 +
λ2

d log d
− η

λ

(d log1+ε(d))1/p

≤
︷ ︸︸ ︷
ψ(wd) + η · (G− ed)

Twd+η · eTd xT/2+1 +
λ2

d log d
− η

λ

(d log1+ε(d))1/p

=⇒ eTd xT/2+1 ≥ λ

(d log1+ε(d))1/p
− 1

η

λ2

d log d

≥ λ

(d log1+ε(d))1/p
− 2c

√
Td1−2/p · λ2

d log d
by condition on η

• Recall that T satisfies

1

32c2 · λ2
d log(d)2−2(1+ε)/p ≤ T ≤ 1

16c2 · λ2
d log(d)2−2(1+ε)/p

=⇒ λ

d1/p log(1+ε)/p(d)
− 2c

√
Td1−2/p · λ2

d log d
≥ λ

2d1/p log(1+ε)/p(d)

=⇒ RT ≥ T

4
· eTd xT/2+1 ≥ Tλ

8d1/p log(1+ε)/p(d)

≥ 1

256c2 · λ
d1−1/p · log(d)2−3(1+ε)/p.

Now note that c
√
Td1−2/p ≤ 1

4λ · d1−1/p · log(d)1−(1+ε)/p so RT ≤ c
√
Td1−2p is contra-

dicted if

1

256c2 · λ
d1−1/p · log(d)2−3(1+ε)/p >

1

4λ
· d1−1/p · log(d)1−(1+ε)/p

⇐⇒ log(d)1−2(1+ε)/p > 64c2

⇐⇒ log(d)1/2−1/p > 64c2 since ε =
p− 2

4

⇐⇒ d > exp((64c2)1/(1/2−1/p)) = d0.

I.2 Lower bound on eta

Consider the following linear losses ℓt(x) = eT1 x. The regret can be written as

RT = T −
T∑
t=1

ℓt(xt) = T −
T∑
t=1

eT1 xt.
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• We first show eT1 x⌈2c
√
Td1−2/p⌉ ≥

1
2 : if not, eT1 xt <

1
2 for all t ≤ ⌈2c

√
Td1−2/p⌉ we have:

RT = T −
⌈2c

√
Td1−2/p⌉∑
t=1

eT1 xt +

T∑
t=⌈2c

√
Td1−2/p⌉+1

eT1 xt

> T −
⌈2c

√
Td1−2/p⌉∑
t=1

1

2
+

T∑
t=⌈2c

√
Td1−2/p⌉+1

1

= T − 1

2
⌈2c
√
Td1−2/p⌉ − (T − ⌈2c

√
Td1−2/p⌉)

=
1

2
⌈2c
√
Td1−2/p⌉

> c
√
Td1−2/p,

which contradicts our initial assumption that RT ≤ c
√
Td1−2/p so we must have

eT1 x⌈2c
√
Td1−2/p⌉ ≥

1
2 . Note that 2c

√
Td1−2/p < T is ensured if T > 4c2d1−2/p.

• Next, we show that η ≥ ψ(1/2)

2c
√
Td1−2/p

. By the definition of x⌈2c
√
Td1−2/p⌉:

ψ(x⌈2c
√
Td1−2/p⌉)− η · ⌈2c

√
Td1−2/p⌉ · eT1 x⌈2c√Td1−2/p⌉ ≤ 0

=⇒ ψ(1/2e1) ≤ η · ⌈2c
√
Td1−2/p⌉

=⇒ η ≥ ψ(1/2e1)

⌈2c
√
Td1−2/p⌉

≥ ψ(1/2e1)

2c
√
Td1−2/p

=
1

2c
√
Td1−2/p

.

where in the first implication, we used that ψ(x⌈2c
√
Td1−2/p⌉) ≥ ψ(1/2 · e1) (any coor-

dinate other than the first being non-zero increases ψ but does not impact the loss) and
eT1 x⌈2c

√
Td1−2/p⌉ ≤ 1.

I.3 Upper bound on ∥G∥p⋆

For clarity, set u = ∇ψ(wd−1), q = p⋆, T0 = T/2− 1.

Claim: ∥u∥q ≤ ηT0

Proof: Consider the losses ℓt(x) = − 1
∥u∥q

xTu for all t. So xt+1 = argminx∈Bp

{
ψ(x) − ηt

∥u∥q
·

xTu
}

.

• We have 1
∥u∥q

⟨xT0+1, u⟩ ≥ 3/4: if not:

RT = T −
T∑
t=1

ℓt(xt) ≥ T0 ·
(
1− 1

∥u∥q
⟨xT0+1, u⟩

)
≥ T0

4
=
T

8
− 1/4,

contradicting RT ≤ c
√
Td1−2/p. We used that ⟨xt, u⟩ ≤ ⟨xT0+1, u⟩ for all t since:

ψ(xt+1)−
ηt

∥u∥q
⟨xt+1, u⟩ ≤ ψ(xT0+1)−

ηt

∥u∥q
⟨xT0+1, u⟩, by def of xt+1

≤ ψ(xT0+1)−
ηT0
∥u∥q

⟨xT0+1, u⟩+
η(T0 − t)

∥u∥q
⟨xT0+1, u⟩

≤ ψ(xt+1)−
ηT0
∥u∥q

⟨xt+1, u⟩+
η(T0 − t)

∥u∥q
⟨xT0+1, u⟩, by def of xT0+1

=⇒ η(T0 − t)

∥u∥q
⟨xt+1, u⟩ ≤

η(T0 − t)

∥u∥q
⟨xT0+1, u⟩

=⇒ ⟨xt+1, u⟩ ≤ ⟨xT0+1, u⟩.
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• wTd−1
u

∥u∥q
≤ ∥wd−1∥p∥ u

∥u∥q
∥q ≤ λ

(ε logε(3))1/p
< 3/4 =⇒ (xT0+1 − wd−1)

Tu > 0.

• To conclude, from the definition of xT0+1, we have

ψ(wd−1)−
ηT0
∥u∥q

⟨wd−1, u⟩ ≥ ψ(xT0+1)−
ηT0
∥u∥q

⟨xT0+1, u⟩

≥ ψ(wd−1) + uT (xT0+1 − wd−1)−
ηT0
∥u∥q

⟨xT0+1, u⟩ by convexity of ψ

=⇒
(
ηT0
∥u∥q

− 1

)
(xT0+1 − wd−1)

Tu ≥ 0,

from which we have ∥u∥q ≤ ηT0 since (xT0+1 − wd−1)
Tu > 0.

I.4 Proof of Proposition I.3

We consider two cases:

Case 1: η > 4: Assume that T is divisible by 4 and define the following losses ℓt(x) = (−1)t · xT e1.
When t is odd, xt = argminx∈Bp

ψ(x) = 0. When t is even,

xt = argmin
x∈Bp

{
ψ(x)− ηeT1 x

}
=⇒ ψ(xt)− ηxTt e1 ≤ ψ(1/2e1)−

η

2
eT1 e1 = 1− 1

2
η

=⇒ ℓt(xt) = xTt e1 ≥ 1

2
− 1

η
≥ 1

4

=⇒ RT =

T∑
t=1

ℓt(xt) ≥
T

8

Case 2: η ≤ 4: Similarly to Appendix I.3, we consider u = ∇ψ(wd), q = p⋆ and the losses
ℓt(x) = − 1

∥u∥q
xTu for all t. So xt+1 = argminx∈Bp

{
ψ(x)− ηt

∥u∥q
· xTu

}
.

Case 2.1: 1
∥u∥q

⟨xT+1, u⟩ < 3/4:

RT = T −
T∑
t=1

ℓt(xt) ≥ T ·
(
1− 1

∥u∥q
⟨xT+1, u⟩

)
≥ T

4
.

Case 2.2: 1
∥u∥q

⟨xT+1, u⟩ ≥ 3/4: Following the same steps as in Appendix I.3 we can show that

∥u∥q ≤ ηT . Hence, as in the proof of Proposition I.2, we can instead set the losses to ℓt(x) = gTt x
with gt = −1

Tη · u ∈ Bp⋆ and obtain xT+1 = wd. We obtain

wd = argmin
x∈Bp

{
ψ(x)− ⟨u, x⟩

}
=⇒ ψ(wd)− ⟨u,wd⟩ ≤ 0

=⇒ λ2(log log d− log log d0) ≤ ⟨u,wd⟩ ≤ ∥u∥q∥wd∥p ≤
ηTλ

(ε logε 3)
1/p

≤ 4Tλ

(ε logε 3)
1/p

=⇒ λ(log log d− log log d0) ≤
4T

(ε logε 3)
1/p

=⇒ log log d ≤ log log d0 +
4T

λ (ε logε 3)
1/p

,

which is a contradiction if

d > exp

(
exp

(
log log d0 +

4T

λ (ε logε 3)
1/p

))
= exp

(
exp

(
log log d0 +

8T

(ε logε 3)
2/p

))
.

with λ = 1
2 (ε log

ε 3)
1/p

< 3
4 (ε log

ε 3)
1/p. Hence, we must have Case 2.1 and RT ≥ T

4 .
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