
Fixed-Budget Change Point Identification
in Piecewise Constant Bandits

Joseph Lazzaro Ciara Pike-Burke
Imperial College London Imperial College London

Abstract

We study the piecewise constant bandit prob-
lem where the expected reward is a piecewise
constant function with one change point (dis-
continuity) across the action space [0, 1] and
the learner’s aim is to locate the change point.
Under the assumption of a fixed exploration
budget, we provide the first non-asymptotic
analysis of policies designed to locate abrupt
changes in the mean reward function under
bandit feedback. We study the problem un-
der a large and small budget regime, and for
both settings establish lower bounds on the
error probability and provide algorithms with
near matching upper bounds. Interestingly,
our results show a separation in the complex-
ity of the two regimes. We then propose a
regime adaptive algorithm which is near opti-
mal for both small and large budgets simul-
taneously. We complement our theoretical
analysis with experimental results in simu-
lated environments to support our findings.

1 INTRODUCTION

In many settings, we are interested in sequentially
learning to detect a change point/discontinuity in a
piecewise constant function. For example, Park et al.
(2021, 2023) study the development of materials with
physical behaviours which abruptly change under dif-
ferent experimental conditions, such as temperature
and pressure. Learning where these changes occur can
help predict the quality of production techniques and
improve efficiency. However, experiments are expensive
and time consuming, so we would like to sequentially
choose experimental parameters to learn where the

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

abrupt changes occur as quickly as possible. The same
problem also occurs when mapping out the edge of a
cliff on the floor of the ocean (Hayashi et al., 2019).
Exploring the whole ocean naively in a grid would
be extremely expensive, so we would like to develop
strategic ways of minimising the number of times and
locations where we measure the depth of the ocean
floor. Developing methods to minimize the number
of samples needed to detect a change point could also
help us develop computationally efficient subsampling
methods in offline change point analysis, leading to yet
more applications in different fields (Lu et al., 2020).

In this paper, we study this problem, which we refer
to as the Piecewise Constant Bandit Problem. Here,
the underlying reward function is a piecewise constant
function on [0, 1] and the learner’s aim is to sequentially
select points to query in order to identify the unknown
change point x∗ as accurately as possible after a fixed
number of samples. We assume that whenever we select
a point xt ∈ [0, 1], we receive a noisy observation of
the unknown piecewise constant function at that point.
In contrast to other bandit problems on a continuous
action space, in the piecewise constant bandit problem,
our goal is to detect where the change in mean occurs
rather than identify the optimal arm. Moreover, the
abrupt change in the mean reward function violates
the smoothness conditions of existing bandit methods
for infinite action spaces (e.g. Kleinberg et al., 2008;
Srinivas et al., 2010; Bubeck et al., 2011) meaning that
new techniques need to be developed. The fixed-budget
assumption on the number of samples also necessitates
the development of new methods. When the budget
tends to infinity, some asymptotic methods have been
proposed (Hall and Molchanov, 2003; Lan et al., 2009).
However in most practical cases, we only have a finite
budget so it is essential to develop a non-asymptotic
understanding of the complexity of the problem and
develop theoretically justified policies for the fixed-
budget piecewise constant bandits problem.

We study the piecewise constant bandit problem in en-
vironments with exactly one change point across a one
dimensional action space and sub-Gaussian noise, see

Fixed-Budget Change Point Identification

A

f

x∗0 1

µ1

µ2

∆

Figure 1: Example of a piecewise constant mean reward
function, f , across action space [0, 1] with change point
x∗, change in mean of ∆ from µ1 to µ2 and 10 arbitrarily
chosen noisy observations in red.

Figure 1 for an example. While this setting may appear
restrictive, it turns out that significant innovation is re-
quired to develop optimal methods for this setting, and
we hope that these ideas will inspire solutions to more
complex problems. We focus on the non-asymptotic
fixed-budget problem where we are given a fixed num-
ber of queries and our aim is to return an estimated
change point that minimizes the error probability. Find-
ing optimal solutions to the piecewise constant bandit
problem is non-trivial. Indeed, it requires distribut-
ing a finite number of samples across an infinite action
space, comparing them to detect a change in mean, and
allocating sufficient samples near the unknown change
in order to confidently determine its location. We make
the following contributions: (i) We characterise the
difficulty of the piecewise constant bandits problem for
both large and small budgets by proving lower bounds
that show a separation in difficulty of the two regimes.
This is in contrast to most of the fixed-budget bandits
literature, where sufficiently large budgets are explic-
itly or implicitly assumed (e.g. Locatelli et al., 2016;
Carpentier and Locatelli, 2016; Cheshire et al., 2021).
Our proof techniques are novel and lead to improved
lower bounds in related problems such as Thresholding
Bandits (see Section 4.2). (ii) We adapt two elimi-
nation algorithms, based on Sequential Halving and
Binary Search (e.g. Karnin et al., 2013; Cheshire et al.,
2021) to our setting and prove that these have near
matching upper bounds for error probability in both
regimes. (iii) We propose a regime adaptive method
which is near optimal across both regimes simultane-
ously. (iv) We complement our theoretical results with
experiments in simulated environments.

2 RELATED WORK

Pure Exploration in Finite Action Spaces In
fixed-budget Best Arm Identification there is a fixed

budget of samples and the aim is to minimize the
probability of failing to identify the (approximate) arm
with the highest expected reward (Mannor et al., 2004;
Carpentier and Locatelli, 2016; Audibert et al., 2010).
This motivates the objective we consider in Section 3.
Other relevant pure exploration problems are Noisy
Binary Search (Karp and Kleinberg, 2007; Nowak,
2009; Gretta and Price, 2024), Binary Classification
with Noise (Locatelli et al., 2016; Castro and Nowak,
2008), and the (Monotonic) Thresholding Bandits
problem (Cheshire et al., 2021). In these problems
different assumptions are made on the reward function
f and noise distribution, however they all aim to
locate where f crosses a known threshold θ. This is
simpler than the piecewise constant bandit problem
since all observations can be compared with the
known threshold θ. In our case, we do not have
a known threshold θ and so we have to compare
observations with each other across an infinite action
space to determine where the change in mean occurs,
making the problem more challenging. Nonetheless,
we are able to extend ideas from Cheshire et al.
(2021) to develop nearly minimax optimal algorithms
for piecewise constant bandits. In clustering with
bandit feedback (Yang et al., 2022; Yavas et al., 2024;
Thuot et al., 2024) arms are sorted in to a known
number of clusters, each containing arms with the
same expected reward. Unlike our setting, they do
not assume any structure in the underlying reward
function. Moreover, these clustering problems have not
been considered in the fixed-budget setting we consider.

Infinite Action Spaces Bandit problems with
continuous action spaces assume the reward function
is linear (e.g. Abbasi-Yadkori et al., 2011), convex (e.g.
Agarwal et al., 2011), Lipschitz (e.g. Bubeck et al.,
2011) or smooth enough to be modelled by a Gaussian
Process (GP) (e.g. Srinivas et al., 2010). In our setting,
the mean reward function has an abrupt change, which
violates the smoothness assumptions of these works.

Change Points and Non-Stationary Bandits
Both offline and online change point detection for
time series have been well studied in statistics
(Aminikhanghahi and Cook, 2017). Online change
point analysis has been used in non-stationary bandits.
Here, the mean reward of the arms evolves over time
with some abrupt changes (e.g. Garivier and Moulines,
2011; Deng et al., 2022; Hong et al., 2023). Conversely,
in our setting, the reward changes abruptly over the
action space, but is stationary across time.

Change Points Across the Action Space The
active learning literature has studied sequential meth-

Joseph Lazzaro, Ciara Pike-Burke

ods for learning entire piecewise continuous functions
(e.g. Gramacy and Lee, 2008; Park et al., 2021, 2023).
While these papers only provide empirical results, Cas-
tro et al. (2005) develop a two-stage algorithm with
near minimax optimal expected squared ℓ2 error (in a
problem-independent sense and up to log terms). This
measures the accuracy of estimating the entire reward
function. In our work, however, we focus on methods
for estimating the locations of the discontinuities in
the reward function. Our PAC methods are minimax
optimal in a problem-dependent sense.

Hall and Molchanov (2003) and Lan et al. (2009) con-
sider fixed-budget multi-stage methods to sequentially
estimate discontinuities in piecewise smooth functions
with exactly one change point. Their first stage uses
a portion of the budget to sample evenly across the
action space to construct a confidence interval (CI)
for the change point. In the following stages this pro-
cess is repeated within the previous CI (backtracking
to an earlier CI if they no longer detect a change).
The theoretical guarantees provided only hold as the
budget tends to infinity, which clashes with the mo-
tivation of fixed-budget problems with an extremely
limited number of samples. In certain finite-budget
problems, their methods perform suboptimally. In par-
ticular, if there are not many samples one side of the
change point, the initial CI for the change point can
be unreliable and the final estimate performs poorly
(i.e. the algorithm is unstable for changes near the
boundary - see Section 7). Moreover, their results
are worst case and do not provide any insights into
how performance changes depending on the problem
instance. Thus we provide the first non-asymptotic
problem dependent bounds on the performance of algo-
rithms for piecewise constant bandits which apply for
most realistic budgets. We also provide near matching
problem-dependent lower bounds demonstrating that
our methods are near optimal, and correctly adapt to
the difficulty of the problem.

Hayashi et al. (2019) consider a class of active change
point detection problems, where the aim is to locate
changes in reward functions that are piecewise con-
stant, piecewise linear, or contain other types of change
points. They propose an anytime meta-algorithm,
ACPD, which requires a statistical model for the type
of change point and noise distribution to calculate
“change scores" for different regions of the space. They
run Bayesian Optimisation using these scores at each
iteration. No theoretical guarantees for ACPD have
been provided. Our simulations in Section 7 demon-
strate that, while ACPD can perform well on ‘easy’
problems, there are settings where our theoretically
grounded methods perform significantly better, while
also being computationally cheaper than ACPD.

3 PROBLEM SETTING

We consider the piecewise constant bandit problem with
a fixed budget T . Here, in each round t = 1, . . . , T ,
we choose an action xt ∈ A = [0, 1] and observe a
reward yt ∈ R. We consider a set of environments V
where the mean reward function f : [0, 1] 7→ R is a
piecewise constant function with exactly one change
point x∗ ∈ [0, 1). Then, the reward we observe from
playing xt in round t is

yt = f(xt) + ϵt,

where f(x) = µ1I{x ≤ x∗}+µ2I{x > x∗} is a piecewise
constant function with µ1 ̸= µ2 ∈ R. We assume the
random noise, ϵt, is i.i.d and σ2 sub-Gaussian with
mean-zero. Importantly, we assume that the values of
µ1 ̸= µ2 ∈ R, σ2 ∈ [0,∞), and x∗ ∈ [0, 1) are unknown
to the learner. We subsequently denote the change in
mean reward as ∆ = |µ1 − µ2| and V (∆, σ) as the set
of environments with change in mean reward ∆, σ2

sub-Gaussian noise, and any change point x∗ ∈ [0, 1).

Our goal is to estimate the change point, x∗, which
separates the two reward distributions across [0, 1]. In
particular, given some budget T , our objective is to
generate an estimate after T rounds, x̂T , which is close
to the true unknown change point with high probabil-
ity. Finding a change point exactly is impossible in
a continuous action space, so we define an acceptable
tolerance η > 0 and aim to return an estimate within η
of the true change point. Let Π be the set of all policies
which return an estimate for the change point x̂T after
budget T . We aim to find a policy π ∈ Π such that in
environment v ∈ V with change point x∗v,

Pπ,v(|x̂T − x∗v| < η) > 1− δ (1)

with δ as small as possible. Here Pπ,v is the measure
induced by the interactions between the policy π and
environment v (we henceforth drop the subscript when-
ever it is clear which policy and environment we are
referring to). We assume the learner is given fixed
values for T and η, and their goal is to develop a
policy that returns an estimate x̂T which satisfies (1)
with δ as small as possible. Equivalently, we want
to minimise the probability that we fail to estimate
the change point with sufficient accuracy after a given
number of observations. Defining the failure event as
FT,v,η = {|x̂T − x∗v| ≥ η}, we can state this objective
as minimizing Pπ,v(FT,v,η). Note that this objective is
similar to those seen in other pure exploration problems
such as PAC best arm identification (e.g. Mannor et al.,
2004). This objective is also practically relevant as a
practitioner will only care about a particular level of
precision across an infinite space, hence it is natural to
include a pre-specified tolerance η.

Fixed-Budget Change Point Identification

4 LARGE BUDGET

We first study the setting where the budget, T , is large
enough to efficiently explore the space and accurately
locate the change point, while still considering non-
asymptotic methods. We consider an extension of the
binary search with backtracking algorithm which was
used for Monotonic Thresholding Bandits and Noisy
Binary Search (Cheshire et al., 2021; Karp and Klein-
berg, 2007). Informally, the idea is to split our budget
up into phases and in each phase sample the leftmost,
mid, and rightmost point in the action space repeatedly.
If there is more evidence that a change in mean occurs
on the left half than the right half, then we eliminate
the right half of the space. Similarly, if there is more
evidence that the change occurs on the right half, we
eliminate the left half of the space. If, however, at any
point we think the remaining region no longer contains
the change point, we go back a step and undo our
previous elimination (i.e. backtrack).

Naively applying the binary search with backtracking
algorithm from Cheshire et al. (2021) to our setting
would not work. In Thresholding Bandits, all observa-
tion could simply be compared with a known threshold
θ. However, in our case we need to compare unknown
reward distributions across the action space with each
other in order to find a change point. In particular, if
we want to correctly identify when a change point is not
in some region B ⊂ A with high probability, then it is
crucial to have data from both sides of the change point.
Therefore, we additionally sample outside of region B,
at the boundaries of the action space 0 and 1, in each
phase. We call our algorithm Sequential Halving
with Backtracking (SHB). SHB is detailed in Algo-
rithm 1 by setting backtracking=True (a standalone
version is in Appendix A).

In more detail, in SHB, we split our budget T into J =
⌈6 log(1/2η)⌉ phases. In each phase j ∈ {1, .., J}, we de-
fine the set of sampling points as Aj = {0, aj1, aj2, aj3, 1}
and begin the phase by playing each action in Aj

tj = ⌊ T
5J ⌋ times. The set of sampling points in Aj

consist of the endpoints and midpoint of the non-
eliminated region, together with the extreme points
0,1 needed for backtracking. This is illustrated in Fig-
ure 2. In phase 1 we have not eliminated anything
yet, so we initialise with aj1 = 0, aj2 = 1/2, aj3 = 1.
In every phase j = 1, . . . , J , we compute the em-
pirical mean of the observations from playing each
of the five actions actions tj times and denote them
µ̂0,tj , µ̂aj

1,tj
, µ̂aj

2,tj
, µ̂aj

3,tj
, µ̂1,tj , respectively. These esti-

mates help identify which half of the remaining action
space [aj1, a

j
3) contains the change point.

Firstly, we determine whether there is more evidence
for x∗ being in the left or right half of this remaining

Algorithm 1 Sequential halving (with backtracking) -
SH(B)

1: Input: η ∈ (0, 1/2), budget T , and
2: Input: backtracking = True or False
3: A1 = {0, a11, a12, a13, 1} ← {0, 0, 1/2, 1, 1}
4: if backtracking then
5: J ← ⌈6 log(1/2η)⌉, tj ← ⌊ T

5J ⌋
6: else
7: J ← ⌈log2(1/2η)⌉, tj ← ⌊ T

3J ⌋
8: end if
9: for phase j in 1, ..., J do

10: Play actions aj1, a
j
2, a

j
3, each tj times

11: if backtracking then
12: Play actions 0, 1, each tj times
13: end if
14: if backtracking and EP,j from (4) holds then
15: Aj+1 ← P (Aj) ▷ Backtrack
16: else if ER,j from (2) holds then
17: Aj+1 ← R(Aj) ▷ Zoom in to the right
18: else if EL,j from (3) holds then
19: Aj+1 ← L(Aj) ▷ Zoom in to the left
20: end if
21: end for
22: Return: x̂T = aJ+1

2

space in phase j, i.e we determine whether x∗ is in
[aj1, a

j
2) or [aj2, a

j
3). In particular if the event

ER,j =
{
|µ̂aj

1,tj
− µ̂aj

2,tj
| < |µ̂aj

2,tj
− µ̂aj

3,tj
|
}
, (2)

holds then we suspect that the change point is in the
right half of the remaining action space, namely x∗ ∈
[aj2, a

j
3). This is because ER,j occurs when we observe

a bigger change in (empirical) mean reward between
actions aj2 and aj3, than between aj1 and aj2, suggesting
that the change in distribution occurred between aj2
and aj3. (It turns out that this intuition is theoretically
justified from change point analysis, see Appendix G.)
In such a case, we ‘zoom in to the right’ by eliminating
the left half of the remaining action space and define
our actions for the next phase as Aj+1 = R(Aj), for
the operator

R({0, aj1, aj2, aj3, 1}) = {0, aj2, (aj2 + aj3)/2, a
j
3, 1},

so Aj+1 = {0, aj+1
1 , aj+1

2 , aj+1
3 , 1} for aj+1

1 =

aj2, a
j+1
2 = (aj2 + aj3)/2, a

j+1
3 = aj3. See Figure 2 for

an illustration.

On the other hand, if the converse is true and event

EL,j =
{
|µ̂aj

1,tj
− µ̂aj

2,tj
| ≥ |µ̂aj

2,tj
− µ̂aj

3,tj
|
}

(3)

holds, this suggests that the change point is in the left
half of the remaining action space, x∗ ∈ [aj1, a

j
2). In

Joseph Lazzaro, Ciara Pike-Burke

A

0 aj1 aj2 aj3
1

A

0 aj+1
1 aj+1

2 aj+1
3

1

Figure 2: Example illustration of action space A = [0, 1] in (Top) phase j with sampling points Aj =
{0, aj1, aj2, aj3, 1} and (Bottom) phase j + 1 with sampling points Aj+1 = {0, aj+1

1 , aj+1
2 , aj+1

3 , 1}, where the
shaded regions have been eliminated. In this example, ER,j held and region [aj1, a

j
2) was eliminated in phase j.

this case, we ‘zoom in to the left’ by eliminating the
right half of the space, [aj2, a

j
3), and update our actions

for the next phase as Aj+1 = L(Aj) for the operator

L({0, aj1, aj2, aj3, 1}) = {0, aj1, (aj1 + aj2)/2, a
j
2, 1}.

It is, of course, possible that the change point is not
within our remaining action space [aj1, a

j
3) at all. Hence,

before we even consider checking events EL,j and ER,j ,
we consider the event EP,j ,

EP,j =

{
Q1 <

3

4
max (Q2, Q3)

}
(4)

for Q1 =

∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

2
−
µ̂aj

3,tj
+ µ̂1,tj

2

∣∣∣∣∣ ,
Q2 =

∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

+ µ̂aj
3,tj

3
− µ̂1,tj

∣∣∣∣∣ ,
Q3 =

∣∣∣∣∣µ̂0,tj −
µ̂aj

1,tj
+ µ̂aj

3,tj
+ µ̂1,tj

3

∣∣∣∣∣ .
If EP,j holds then we suspect that x∗ /∈ [aj1, a

j
3) so we

believe the change point is elsewhere. Intuitively EP,j

occurs when the change in empirical mean is smaller
across the region [aj1, a

j
3) than elsewhere, see Appendix

G for more details. If EP,j holds then we ‘zoom out’ one
step by un-doing the previous elimination and update
our actions for the next phase as Aj+1 = P (Aj). The
operator P returns the sampling points Ai from which
we previously zoomed in to get to Aj . More formally,
we define P (Aj) as an operator that outputs a set of
actions from a previous phase, Ai such that i ≤ j − 1
and we zoomed in from Ai to obtain our current set of
actions Aj . Namely P (Aj) = Ai for an i ∈ {1, . . . , J}
such that Aj = R(Ai) or Aj = L(Ai).

At the end of the J phases, we are left with the set
AJ+1 = {0, aJ+1

1 , aJ+1
2 , aJ+1

3 , 1} representing the left-
most point, midpoint, and right-most point of the re-
maining action space that has not been eliminated. We
estimate the change point, x∗, by taking the midpoint
of this remaining region, namely x̂T = aJ+1

2 .

4.1 Upper Bound

We upper bound the probability that the SHB algo-
rithm fails to estimate the true change point x∗ up to
the acceptable tolerance η. Namely, we upper bound
P(FT,v,η), with failure event FT,v,η = {|x̂T − x∗v| ≥ η}.
Theorem 1. Let η < 1/4. Consider SHB in an envi-
ronment v ∈ V (∆, σ). Then, for T > 60 log(1/2η),

P(FT,v,η) ≤ exp

(
− ∆2

600σ2
T + 13 log(1/2η)

)
.

Proof. We sketch the proof here, leaving details for
Appendix C. Note that, since SHB is an extension
of (Cheshire et al., 2021), proofs for some technical
lemmas are similar to existing work. In particular,
we first note that we don’t need to make the correct
decision in eliminating/backtracking in every phase.
As long as we make correct decisions in at least 3/4
of the phases, then our final estimate for the change
point, x̂T , will be within η of x∗. However, our elim-
ination/backtracking criteria are more involved than
(Cheshire et al., 2021) because we are not simply com-
paring the means with a known threshold, but compar-
ing multiple means with each other to identify which
region we believe the change point to be in. Hence we
must develop new techniques to show that we make the
correct decision in each phase with high probability,
regardless of the position of x∗.

Note that log(1/2η) only appears additively in the
exponent in Theorem 1. This log dependence on η has
been attained in related settings such as Thresholding
Bandits or Active Binary Classification (Cheshire et al.,
2021; Castro and Nowak, 2008). However, unlike these
previous works, we show that this log dependence on η
is unimprovable for larger budgets in Section 4.2, and
we will show in Section 5 that a different dependence
on η appears for small budgets.

Fixed-Budget Change Point Identification

4.2 Lower Bound

We provide a lower bound to show that the error
probability from our SHB algorithm is minimax opti-
mal up to constants, for large budgets T ≥ T1 :=
σ2

∆2 (1.59 log(⌊ 1
2η ⌋) − 2 log(2)). Note the upper bound

in Theorem 1 holds for any sub-Gaussian reward dis-
tributions, whereas in this section we assume that the
rewards are Gaussian.

Theorem 2. Let V̄ ⊂ V (∆, σ) be the set of environ-
ments with change in mean ∆ and Gaussian random
noise with variance σ2. Then, for T ≥ T1,

inf
π∈Π

sup
v∈V̄

Pv,π(FT,v,η) ≥

1

8
exp

(
− ∆2

2σ2
T +

1

2
log

(
1

2

(⌊
1

2η

⌋
− 1

))
.

Proof. We sketch the proof here, see Appendix D for
full proof. Suppose we have a policy π which has
reasonably good failure probability regardless of the
environment, namely ∀v ∈ V̄ , Pv,π(FT,v,η) < 1/2. We
would expect this policy to explore the action space
sufficiently well. Then, using a sequence of change-
of-measure arguments between three carefully chosen
environments, we show such a policy π will always make
a mistake with some probability (involving η) in at least
one environment. We then extend this to show that
for any policy π ∈ Π, when the budget is sufficiently
large we must incur the stated failure probability.

Comparing the upper bound in Theorem 1 and the
minimax lower bound in Theorem 2, we see that the
terms in the exponent of both the upper and lower
bounds match up to constants. Hence for large budgets,
T > T1, SHB is minimax optimal up to constants. It
is also interesting to note that in both the upper and
lower bounds, η only has an additive effect in the
exponent, and the η terms do not scale multiplicatively
with T . This means that as η becomes very small (i.e.
when we need our estimates’ accuracy to be very high),
this only has an additive effect in the exponent of the
probability of failure, and does not affect the rate at
which the failure probabilities decay with increased
T . In the simpler Monotonic Thresholding Bandits
Problem (Cheshire et al., 2021; Castro and Nowak,
2008), a similar additive dependence on η (η ≈ 1/2K
in their setting) has appeared in upper bounds on
the error probability. However, there is currently no
lower bound for Thresholding Bandits to show that
this dependence on η is unavoidable. As a consequence
of Theorem 2, we can provide tighter lower bounds
for Thresholding Bandits with large budgets which
formalises the effect of η, and may be of independent
interest.

5 SMALL BUDGET

For problems where the budget is small and gives little
time for exploration, it is natural to consider omit-
ting the exploratory backtracking actions from SHB
to provide a more exploitative algorithm. We show
that the resulting Sequential Halving (SH) algo-
rithm (Algorithm 1 with backtracking=False) is suf-
ficient to attain near-optimality for small budgets
T < T1 := σ2

∆2 (1.59 log(⌊ 1
2η ⌋)− 2 log(2)). The SH algo-

rithm is written explicitly in Appendix A.

In SH, we split our budget up into J = ⌈log2(1/2η)⌉
phases. Then in every phase, using only samples from
the leftmost, mid, and rightmost points of the remain-
ing action space, we eliminate half of this remaining
action space. In particular, when event ER,j holds
(defined the same as in (2)) we eliminate the left half
of the action space. When EL,j holds (again, same as
(3)) we eliminate the right half of the action space. By
our choice of the number of phases, the width of the
final region will be less than 2η. Hence, we estimate
the midpoint of this region to be the change point.

In this SH algorithm we are more exploitative and avoid
additionally sampling the actions 0, 1, as needed for
backtracking in SHB, which gives better performance
for smaller budgets. However, we will see this comes at
the cost of worse error probabilities for larger budget
problems. Note that SH requires T ≥ 3⌈log2(1/2η)⌉
in order for there to be at least one sample for each
action in every phase. This assumption is reasonable
since even in the noiseless setting with known µ1, µ2,
the minimum number of samples required to guarantee
|x̂T − x∗| ≤ η is T ≥ ⌈log2(1/2η)⌉ (Sikorski, 1982).

5.1 Upper Bound

The failure probability of the SH algorithm is bounded
in Theorem 3, with proofs in Appendix F.

Theorem 3. Under the SH algorithm in an envi-
ronment v ∈ V (∆, σ), for T ≥ 3⌈log2(1/2η)⌉, and
FT,v,η = {|x̂T − x∗v| ≥ η},

P(FT,v,η) < 2

⌈
log2

(
1

2η

)⌉
exp

(−T∆2

36σ2 log2(1/2η)

)
.

It is important to note that in Theorem 3 the log2(1/2η)
term is in the denominator of the exponent, multiplying
the leading term. This comes from the fact that, in
order to achieve our objective of |x̂T − x∗| ≤ η with
SH, we need to eliminate the correct half of the ac-
tion space in every phase (unlike in SHB where by
backtracking we need only make the correct decision
in some proportion of the phases - see Appendix C).
Therefore for SH, η does affect the rate at which the

Joseph Lazzaro, Ciara Pike-Burke

failure probability decreases. This is in contrast to
Theorem 1 and Theorem 2 where η’s involvement is
only additive in the exponent and does not affect the
rate. This indicates SH is suboptimal for large budgets,
which we discuss further in Appendix B. However, we
now show that SH is minimax optimal up to constants
in the small budget regime.

5.2 Lower Bound

To understand the influence of η on the difficulty of
the small budget problem, we consider covering/Fano
arguments similar to Chapter 15 of (Wainwright, 2019).
From this we obtain a minimax lower bound shown in
Theorem 4, the proof of which is in Appendix E. By
comparing the upper bound for SH in Theorem 3 with
the lower bound in Theorem 4, we see that SH is near
minimax-optimal in the small budget regime, T < T1,
up to an additive log log(1/η) term in the exponent.

Theorem 4. Let V̄ ⊂ V (∆, σ) be the set of environ-
ments with change in mean ∆ and Gaussian random
noise with variance σ2. When T < T1, we have

inf
π∈Π

sup
v∈V̄

Pπ,v(FT,v,η) ≥ exp

(
−∆2T + 2σ2 log(2)

σ2 log(⌊ 1
2η ⌋)

)
.

Theorem 4 holds for hold for small budgets, T < T1 :=
σ2

∆2 (1.59 log(⌊1/2η⌋)− 2 log(2)) while Theorem 2 holds
for large budgets T ≥ T1. These results together give a
full characterisation of the difficulty of the fixed-budget
piecewise constant bandit problem. Interestingly they
show a separation in the achievable error probability
(with respect to η) depending on the budget regime.
Similar separations in complexity have been observed in
active learning (Dasgupta, 2005), although those results
hold for fixed confidence problems with a labelling
oracle, which we do not have in our setting.

6 ADAPTIVE ALGORITHM

Dependent on what regime we are in, it may be better
to use SH or SHB. For example, our theoretical results
show that when T is smaller than a threshold of order
σ2

∆2 log(1/η) our guarantee for SH (Theorem 3) is better
than SHB (Theorem 1), suggesting SH is better suited
for such smaller budgets. The converse can hold when
we consider larger budgets. Note that while these
observations come from comparing upper bounds on
the performance of SH and SHB, we see experimentally
that these conclusions hold (Section 7). Moreover, our
lower bounds show that our guarantees are tight up to
constants or log log(1/η) terms.

In practice, we may not know whether SH or SHB is
more appropriate for our problem setting, since the

budget threshold depends on unknown problem pa-
rameters, ∆, σ. While it is reasonable to assume σ is
known1 (e.g. by restricting rewards to be bounded, see
Audibert et al. (2010)), ∆ is still unknown. To deal
with this, we propose a regime adaptive method, Adap-
tive Sequential Halving (SHA), which performs
near-optimally regardless of the setting we are in. The
main idea is to use some small portion of the budget
to identify whether SH or SHB is more appropriate to
play for the remaining budget. In particular, we first
sample the actions 0, 1 a total of L < T times and use
these samples to estimate the change in mean ∆̂. We
use ∆̂ to estimate a budget threshold τ . Then if the
budget is smaller than τ , we use SH for the remainder
of the budget and if T is larger than the threshold τ
we use SHB. SHA takes as input a parameter γ > 0
and uses the estimated threshold

τ = γ
σ2

∆̂2
log

(
1

2η

)
. (5)

SHA is written explicitly in Appendix A, Algorithm 4.

To run SHA we have to choose appropriate hyperpara-
maters γ, L. While we could pick γ to match T1 (from
Theorems 2, 4), it turns out there are better choices
both in theory and practice. In Theorem 5 we show
that there exists a universal choice for γ, L such that
the SHA algorithm is near optimal for both small and
large budgets simultaneously. Choices for γ, L which
perform well in practice are seen in Section 7.

Theorem 5. Let L = BT for some B ∈ (2/T, 1−2/T),
γ ∈

(
(
√
104/B +

√
1.59)2, 1800/(1−B)

)
, and define

ℓη = log2 (1/2η). In an environment v ∈ V (∆, σ),
using SHA and with universal constants c1, c2, c3

P(FT,v,η) ≤

4 ⌈ℓη⌉ exp
(

−c1(1−B)∆2T
σ2ℓη

)
, T < T1

5 exp
(
− c2B(1−B)∆2

σ2 T + c3ℓη

)
, T ≥ T1

The proof of Theorem 5 is given in Appendix H. The-
orem 5 shows that SHA simultaneously matches the
lower bounds in Theorems 2 and 4 for T ≥ T1 and
T < T1, up to constants and log log(1/η) terms.

7 EXPERIMENTS

Comparing SH, SHB, and SHA In Figure 3a we
demonstrate that SH or SHB can perform better than
the other depending on the problem setting. We con-
sider a synthetic environment with ∆ = 2, σ = 8, x∗ =
0.7, η = 10−8. Figure 3a shows the error as a function

1While this assumption is not needed for SH/SHB, we
assume σ2 is known here to isolate the key difficulty of the
adaptive problem.

Fixed-Budget Change Point Identification

(a) σ = 8, η = 10−8, x∗ = 0.7 (b) σ = 1, η = 0.1, x∗ = 0.7 (c) σ = 1, η = 0.1, x∗ = 0.01

Figure 3: Proportion of final estimates more than η away from x∗ against the inputted budget, T , with Gaussian
rewards, ∆ = 2 and 90% CIs. (a) compares the SH, SHB, and SHA by running each algorithm 1000 times with
different budgets. (b,c) both compare SH, SRR, and ACPD. We run SH and SRR 500 times each at different
budgets, while the anytime ACPD algorithm is run a total of 500 times for T = 60 and we plot the evolution of
ACPD’s failure probability.

of inputted budget. We see that SH has a smaller fail-
ure probability for smaller budgets. However, as the
budget gets larger, SHB performs better and reaches
near-zero probability faster. This supports our theoret-
ical observations in Section 6. Similar results hold for
other problem instances (see Appendix B). We compare
SHA to SH/SHB in the same environment. We chose
the hyperparameters L = T/20 and γ = 120 for SHA
as these worked well across a variety of environments
(see Appendix B). We see from Figure 3a that SHA
can outperform SHB for small budgets and outperform
SH for large budgets. Therefore, we observe that SHA
performs well for all the budgets simultaneously.

Comparison with existing work We compare our
proposed algorithms with existing methods. In Fig-
ures 3b and 3c we consider synthetic environments
with ∆ = 2, σ = 1, η = 0.1 only varying the location
of the change point from x∗ = 0.7 to x∗ = 0.01, re-
spectively. We compare our SH algorithm to SRR
(Hall and Molchanov, 2003) and ACPD (Hayashi et al.,
2019). Due to the significant computational expense2

of repeated GP regression in the ACPD algorithm,
we focus on smaller budget problems (where simula-
tions are tractable) and consequently compare these
algorithms to our small budget algorithm, SH. For
ACPD, we use parameters suggested by Hayashi et al.
(2019) along with knowledge that rewards are Gaus-
sian. We initialise ACPD with 10 random actions, and
use GP-UCB (Srinivas et al., 2010) with Matérn ker-
nel of smoothness 5/2 for the Bayesian Optimisation.
For the SRR algorithm we use the proposed parame-
ters in Section 4 of (Hall and Molchanov, 2003). In
particular we choose the number of actions in each
stage m = log2+β(T) and the CI radius parameter

2Computational costs are discussed further in Ap-
pendix B.

λ = log1+α(T), with α = 1, β = 0.1. We show that
tuning these parameters for particular environments
does not lead to significant performance boosts in Ap-
pendix B. There we also show that the method by Lan
et al. (2009) (which is similar to SRR) also has very
similar empirical performance to SRR.

We first compare the performances of these algorithms
when the change point is x∗ = 0.7 in Figure 3b. Here
we see that the failure probability of ACPD decreases
fastest while SRR and SH are similar to each other,
decreasing at a slower rate towards zero. However,
when the change point is closer to the boundary (x∗ =
0.01) in Figure 3c we see that the performance of SRR
and ACPD becomes significantly worse, whereas the
performance of SH is relatively unchanged.3 Intuitively
this occurs because existing methods are based on
an initial widespread exploration of the action space
before quickly focusing in on where they believe x∗ to
be. However when the change is near the boundary
or the problem is challenging this initial exploration
may have not have a sufficient number of samples from
both sides of x∗ meaning that it is hard to detect
a change in mean reward (i.e. distinguish noise vs
signal). Hence, existing methods can miss the change
point with high probability. On the other hand our
proposed methods start by sampling on the boundaries
of the space and slowly zoom in to where we believe the
change to be, ensuring that we do not miss the change
point (with high probability). This demonstrates that
existing methods’ performance is dependent on the
change point being near the centre of the action space
whereas our proposed policies perform well regardless
of the location of x∗. Our methods are also simple,

3Recall that we would not expect the curves for our
proposed algorithms to be strictly monotonic due to the
floor/ceiling functions, for example in the definition of our
SH algorithm (see Algorithm 1, line 7).

Joseph Lazzaro, Ciara Pike-Burke

computationally inexpensive, and accompanied with
tight non-asymptotic optimality guarantees.

8 DISCUSSION

In this paper, we studied the piecewise constant bandit
problem and provided the first non-asymptotic prob-
lem dependent theoretical analysis of the problem. We
developed two algorithms, SH and SHB, which achieve
nearly minimax optimal error probabilities under differ-
ent conditions on the budget. We then combined these
two algorithms into a regime adaptive method SHA
which is near optimal in both regimes simultaneously.
We complemented our theoretical results with simula-
tions and provided a comparison to existing methods.

A natural extension of the piecewise constant bandit
problem would be to allow for multiple abrupt changes
in the reward function. However, we suspect that this
would require significant innovation in order to carry
out a large amount of additional (carefully chosen)
exploration to locate and distinguish individual change
points. Furthermore, if the number of change points
were unknown, this would also need to be estimated
within the limited budget. Another extension could be
to consider an action space which is multi-dimensional
or, more broadly, any metric space. We note however,
this will be challenging as our objective will no longer be
to identify a single change point in the action space, but
instead to identify an entire boundary between disjoint
subsets of the action space. Hence, significantly more
samples would be required to ensure enough data is
near the whole boundary to get a good estimate of it
and we would likely need some additional assumptions
on the shape of the boundary to make any analysis
tractable. Finally, it would be interesting to extend our
methods to the piecewise smooth setting as in Hall and
Molchanov (2003). We expect significant innovation
to be required to extend our non-asymptotic results
to these settings, although we hope our methods will
provide a useful starting point. The findings in this
paper already represent a significant advancement in
understanding the complexity of choosing samples to
learn the location of a change point in unknown, noisy
environments.

Acknowledgments

The authors would like to thank Professor Niall Adams
for support and insightful discussions about this prob-
lem. Joseph Lazzaro was supported by a Roth Schol-
arship from the Department of Mathematics, Imperial
College London.

References

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Im-
proved algorithms for linear stochastic bandits. In
Advances in Neural Information Processing Systems,
2011.

A. Agarwal, D. P. Foster, D. J. Hsu, S. M. Kakade,
and A. Rakhlin. Stochastic convex optimization with
bandit feedback. In Advances in Neural Information
Processing Systems, 2011.

S. Aminikhanghahi and D. Cook. A survey of methods
for time series change point detection. Knowledge
and Information Systems, 2017.

J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm
identification in multi-armed bandits. In COLT 2010
- The 23rd Conference on Learning Theory, 2010.

L. D. Brown, T. T. Cai, and A. DasGupta. Interval
Estimation for a Binomial Proportion. Statistical
Science, 2001.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári.
X-armed bandits. Journal of Machine Learning Re-
search, 2011.

A. Carpentier and A. Locatelli. Tight (lower) bounds
for the fixed budget best arm identification ban-
dit problem. In Annual Conference Computational
Learning Theory, 2016.

R. M. Castro and R. D. Nowak. Minimax bounds for
active learning. IEEE Transactions on Information
Theory, 2008.

R. M. Castro, R. M. Willett, and R. D. Nowak. Faster
rates in regression via active learning. In Advances
in Neural Information Processing Systems, 2005.

J. Chen and A. K. Gupta. Parametric Statistical
Change Point Analysis: With Applications to Ge-
netics, Medicine, and Finance; 2nd ed. Springer,
2012.

J. Cheshire, P. Menard, and A. Carpentier. Problem
dependent view on structured thresholding bandit
problems. In Proceedings of the 38th International
Conference on Machine Learning, 2021.

S. Dasgupta. Coarse sample complexity bounds for
active learning. Advances in Neural Information
Processing Systems, 2005.

Y. Deng, X. Zhou, B. Kim, A. Tewari, A. Gupta, and
N. Shroff. Weighted gaussian process bandits for non-
stationary environments. In International Conference
on Artificial Intelligence and Statistics, 2022.

A. Garivier and E. Moulines. On upper-confidence
bound policies for switching bandit problems. In
Algorithmic Learning Theory, 2011.

Fixed-Budget Change Point Identification

A. Garivier, P. Ménard, and G. Stoltz. Explore first,
exploit next: The true shape of regret in bandit
problems. Mathematics of Operations Research, 2016.

R. Gramacy and H. Lee. Adaptive design and analysis
of supercomputer experiments. Technometrics, 2008.

L. Gretta and E. Price. Sharp noisy binary search with
monotonic probabilities. In 51st International Collo-
quium on Automata, Languages, and Programming
(ICALP 2024), 2024.

P. Hall and I. Molchanov. Sequential methods for
design-adaptive estimation of discontinuities in re-
gression curves and surfaces. The Annals of Statistics,
2003.

S. Hayashi, Y. Kawahara, and H. Kashima. Ac-
tive change-point detection. In Proceedings of The
Eleventh Asian Conference on Machine Learning,
2019.

K. Hong, Y. Li, and A. Tewari. An optimization-based
algorithm for non-stationary kernel bandits without
prior knowledge. In International Conference on
Artificial Intelligence and Statistics, 2023.

Z. Karnin, T. Koren, and O. Somekh. Almost optimal
exploration in multi-armed bandits. In Proceedings
of the 30th International Conference on Machine
Learning, 2013.

R. M. Karp and R. D. Kleinberg. Noisy binary search
and its applications. In ACM-SIAM Symposium on
Discrete Algorithms, 2007.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed
bandits in metric spaces. In Proceedings of the For-
tieth Annual ACM Symposium on Theory of Com-
puting, 2008.

Y. Lan, M. Banerjee, and G. Michailidis. Change-point
estimation under adaptive sampling. The Annals of
Statistics, 2009.

T. Lattimore and C. Szepesvári. Bandit Algorithms.
Cambridge University Press, 2020.

A. Locatelli, M. Gutzeit, and A. Carpentier. An optimal
algorithm for the thresholding bandit problem. In
Proceedings of The 33rd International Conference on
Machine Learning, 2016.

Z. Lu, M. Banerjee, and G. Michailidis. Intelligent
sampling for multiple change-points in exceedingly
long time series with rate guarantees. In ArXiv
Preprint ArXiv:1710.07420, 2020.

S. Mannor, J. Tsitsiklis, K. Bennett, and N. Cesa-
bianchi. The sample complexity of exploration in
the multi-armed bandit problem. 2004.

R. Nowak. Noisy generalized binary search. In Proceed-
ings of the 23rd International Conference on Neural
Information Processing Systems, 2009.

C. Park, P. Qiu, J. Carpena-Núñez, R. Rao, M. Sus-
ner, and B. Maruyama. Sequential adaptive design
for jump regression estimation. In ArXiv Preprint
ArXiv:1904.01648, 2021.

C. Park, R. Waelder, B. Kang, B. Maruyama, S. Hong,
and R. Gramacy. Active learning of piecewise
gaussian process surrogates. In ArXiv Preprint
ArXiv:2301.08789, 2023.

K. Sikorski. Bisection is optimal. Numerische Mathe-
matik, 40:111–118, 1982.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaus-
sian process optimization in the bandit setting: No
regret and experimental design. In ICML 2010 - Pro-
ceedings, 27th International Conference on Machine
Learning, 2010.

V. Thuot, A. Carpentier, C. Giraud, and N. Verzelen.
Active clustering with bandit feedback. In ArXiv
Preprint ArXiv:2406.11485, 2024.

M. J. Wainwright. High-Dimensional Statistics: A
Non-Asymptotic Viewpoint. Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge
University Press, 2019.

J. Yang, Z. Zhong, and V. Y. F. Tan. Optimal clustering
with bandit feedback. Journal of Machine Learning
Research, 2022.

R. C. Yavas, Y. Huang, V. Y. F. Tan, and J. Scarlett.
A general framework for clustering and distribution
matching with bandit feedback. In ArXiv Preprint
ArXiv:2409.05072, 2024.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] The mathematical setting was outlined
clearly in Section 3 and detailed descriptions
of the proposed algorithms are in Sections 4,
5, and 6.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] The paper focuses on analysing proper-
ties of the proposed algorithms. Theorems
1, 3, and 5 provide our main gaurantees on
failure probability.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes] We include code in
the supplementary material, with more de-
tails on how to run the code/where to see
requirements discussed in Appendix B.

Joseph Lazzaro, Ciara Pike-Burke

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes] All theoretical
results presented in the paper (namely The-
orems 1,2,3,4, and 5) are accompanied by
assumptions/settings either in the statement
of the result, in the adjacent text, or in the
problem setting Section 3.

(b) Complete proofs of all theoretical results.
[Yes] These can all be found in the supplemen-
tary material. Specific appendices are pointed
to throughout the main paper.

(c) Clear explanations of any assumptions. [Yes]
Any assumptions are either made in the state-
ment of the theoretical claims or in the sur-
rounding text.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes] This is provided in the supplementary
material, with more details in Appendix B.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
Parameters are discussed in Section 7 for the
main simulations, with further discussion in
Appendix B.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] We formally define mea-
sures in Section 3 and detail the construction
of simulated results in Section 7, with more
details on construction of confidence intervals
in Appendix B.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes] This is detailed in
Appendix B.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

Fixed-Budget Change Point Identification

APPENDIX

Contents

1 INTRODUCTION 1

2 RELATED WORK 2

3 PROBLEM SETTING 3

4 LARGE BUDGET 4

4.1 Upper Bound . 5

4.2 Lower Bound . 6

5 SMALL BUDGET 6

5.1 Upper Bound . 6

5.2 Lower Bound . 7

6 ADAPTIVE ALGORITHM 7

7 EXPERIMENTS 7

8 DISCUSSION 9

A EXPLICIT ALGORITHMS 14

B ADDITIONAL EXPERIMENTS 15

B.1 Further Empirical Comparisons of SH, SHB and SHA with Other η Values 15

B.2 Comparison of All Algorithms . 16

B.3 Computational Complexity and Runtime . 17

B.4 SH vs ACPD with Smaller η . 18

B.5 Confidence intervals . 19

B.6 Code . 19

C PROOFS FOR LARGE BUDGET UPPER BOUND 20

C.1 Proof for Theorem 1 . 20

C.2 Proof of Lemma 1 . 20

C.3 Proof of Lemma 2 . 22

C.4 Proof of Lemma 3 . 25

D PROOFS FOR LARGE BUDGET LOWER BOUND 28

D.1 Overview . 28

D.2 Lower Bound for Reasonable Policies . 28

Joseph Lazzaro, Ciara Pike-Burke

D.3 Proof of Theorem 2 . 30

E PROOFS FOR SMALL BUDGET LOWER BOUND 32

E.1 Proof of Theorem 4 . 32

F PROOFS FOR SMALL BUDGET UPPER BOUND 33

F.1 Proof for Theorem 3 . 33

G CHANGE POINTS AND INTUITION FOR ELIMINATION CRITERIA 34

G.1 Estimation in Offline Change Point Analysis . 34

G.2 Justification of Elimination Criteria . 34

H PROOFS FOR ADAPTIVE ALGORITHM 36

H.1 Proof of Theorem 5 . 36

Fixed-Budget Change Point Identification

A EXPLICIT ALGORITHMS

We explicitly write the SH, SHB and SHA algorithms below.

Algorithm 2 Sequential halving with backtracking (SHB)

1: Input: η ∈ (0, 1/2), and budget T
2: A1 = {0, a11, a12, a13, 1} ← {0, 0, 1/2, 1, 1}
3: J ← ⌈6 log(1/2η)⌉
4: tj ← ⌊ T

5J ⌋
5: for phase j in 1, ..., J do
6: Play each action in Aj = {0, aj1, aj2, aj3, 1}, tj times
7: if EP,j from (4) holds then
8: Aj+1 ← P (Aj) ▷ Backtrack
9: else if ER,j from (2) holds then

10: Aj+1 ← R(Aj) ▷ Zoom in to the right
11: else if EL,j from (3) holds then
12: Aj+1 ← L(Aj) ▷ Zoom in to the left
13: end if
14: end for
15: Return: x̂T = aJ+1

2

Algorithm 3 Sequential halving without backtracking (SH)

Input: η ∈ (0, 1/2), and budget T
{a11, a12, a13} ← {0, 1/2, 1}
J ← ⌈log2(1/2η)⌉
tj ← ⌊ T

3J ⌋
for phase j in 1, ..., J do

Play each action aj1, a
j
2, a

j
3, tj times

if ER,j from (2) holds then
{aj+1

1 , aj+1
2 , aj+1

3 } ← {aj2, (aj2 + aj3)/2, a
j
3} ▷ Zoom in to the right

else if EL,j from (3) holds then
{aj+1

1 , aj+1
2 , aj+1

3 } ← {aj1, (aj1 + aj2)/2, a
j
2} ▷ Zoom in to the left

end if
end for
Return x̂T = aJ2

Algorithm 4 Adaptive Sequential Halving (SHA)

1: Input: γ > 0, L ≥ 2 ▷ Hyperparameters
2: Input: η ∈ (0, 1/2), σ > 0 and budget T
3: Play actions 0,1 each L/2 times ▷ Initial phase to estimate threshold
4: Calculate ∆̂L = |µ̂1,L − µ̂0,L|
5: Calculate τ = γ σ2

∆̂2
L

log
(

1
2η

)
▷ Threshold τ from (5)

6: if T ≥ τ then
7: x̂SHB

T−L ← SHB(T − L, η) ▷ Play SHB for remainder of budget
8: Return: x̂SHA

T = x̂SHB
T−L

9: end if
10: if T < τ then
11: x̂SH

T−L ← SH(T − L, η) ▷ Play SH for remainder of budget
12: Return: x̂SHA

T = x̂SH
T−L

13: end if

Joseph Lazzaro, Ciara Pike-Burke

B ADDITIONAL EXPERIMENTS

B.1 Further Empirical Comparisons of SH, SHB and SHA with Other η Values

In Figure 3a from Section 7, we demonstrate that when η is very small (η = 10−8 in that case) the SH
algorithm will outperform SHB for smaller budgets, whereas the SHB algorithm will reach near zero failure
probabilities faster than SH. This matches our discussion of our theoretical results in Section 6. This
also matches our intuition. Namely, in order for SH to return a good estimate, it must eliminate the
correct half of the action space in all of the log2(1/2η) phases. This occurs with very small probability
when η is small (i.e. the number of phases is large) and therefore we can benefit from using SHB which
explores more and only requires correct decisions in some portion of the phases for a good estimate. In Figure
3a we also illustrate the desired effect of SHA, which performs well for both large and small budgets simultaneously.

In Figure 4 we now consider two other settings to compare SH, SHB, and SHA where our simulations provide
similar conclusions. In particular, in Figures 4a and 4b we consider settings with η = 10−7 and 10−6 respectively.
In both cases, we once again see that for smaller budgets SH outperforms SHB, while SHB is able to reach
near-zero failure probabilities faster than SH in larger budgets. Hence, SH is still more appropriate to use
for settings with smaller budgets whereas SHB is more appropriate to use for settings with larger budgets.
Additionally we show that SHA, with the hyperparameters L = T/20 and γ = 120 performs well in both of these
additional settings in Figures 4a and 4b. In particular, for both of these new settings, SHA outperforms SHB
for smaller budgets and outperforms SH for larger budgets. We conclude SHA performs well for all budgets
simultaneously. We note that the hyperparameters L = T/20 and γ = 120 are the same as those used for Figure
3a, suggesting that this is a good choice of hyperparameters for SHA that work well in a variey of settings. (This
will be further supported by Figure 5.)

(a) σ = 7, η = 10−7, x∗ = 0.7 (b) σ = 2.52, η = 10−6, x∗ = 0.7

Figure 4: Proportion of final estimates more than η away from x∗ against the inputted budget, T , with Gaussian
rewards, ∆ = 2 and 90% CIs. SH, SHB, and SHA were each run 1000 times with different budgets.

In Figure 5, we also compare SH, SHB, and SHA in settings with larger choices of η. In particular we consider
η = 10−4 and η = 10−2 in Figures 5a and 5b, respectively. From these figures, we firstly note that our adaptive
algorithm SHA, with the hyperparameters L = T/20 and γ = 120, still performs well regardless of the budget.
Secondly, from Figures 5a and 5b (as well as 4a and 4b), we observe the interesting phenomenon that the
advantages of using SHB over SH become less significant as η becomes larger. This matches our intuition. In
particular, for SH to return a good estimate, it must make the correct decision in all log2(1/2η) phases. This can
occur with high probability when η is large (i.e. the number of phases is small). Therefore the exploitative nature
of SH in settings with larger η can outweigh the benefits from the additional exploration in SHB (which can allow

Fixed-Budget Change Point Identification

mistakes in some phases). These observations also match our theoretical results. In particular for larger values of
η, the the T∆2

36σ2 log2(1/2η)
term from our guarantee for SH (Theorem 3) can be similar to or larger than the ∆2

600σ2T

term from our guarantee for SHB (Theorem 1). In which case our guarantee for SH would be similar to or better
than SHB.

(a) σ = 9, η = 10−4, x∗ = 0.7 (b) σ = 2.52, η = 10−2, x∗ = 0.7

Figure 5: Proportion of final estimates more than η away from x∗ against the inputted budget, T , with Gaussian
rewards, ∆ = 2 and 90% CIs. SH, SHB, and SHA were each run 1000 times with different budgets.

B.2 Comparison of All Algorithms

(a) σ = 1, η = 0.1, x∗ = 0.7 (b) σ = 1, η = 0.1, x∗ = 0.01

Figure 6: Proportion of final estimates more than η away from x∗ against the inputted budget, T , with Gaussian
rewards, ∆ = 2 and 90% CIs. SH, SHB, SHA, SRR, and SR were each run 500 times with different budgets,
while the anytime ACPD algorithm is run a total of 500 times for T = 60 and we plot the evolution of ACPD’s
failure probability.

We include the additional algorithms of SHB, SHA and SR (Lan et al., 2009) to to the setting of Figures 3b and
3c in Figures 6a and 6b here. Recall from Section 7 that, due to the very computationally expensive existing
methods (e.g. ACPD), we consider settings with very limited budgets. Our small budget algorithm SH is much
better suited to these very limited budgets and hence this was the main algorithm we compared with existing

Joseph Lazzaro, Ciara Pike-Burke

work. Furthermore, in this setting SHB (and similarly SHA) requires a budget T ≥ 50 in order for there to be at
least one action for each sampling point in each phase. We plot the performance of SHB/SHA for such budgets in
Figures 6a and 6b. More thorough simulations comparing SH, SHB, and SHA can be seen in Appendix B.1.

SRR Algorithm and Tuning In the Sequential Refinement with Reassessment Algorithm (SRR), Hall and
Molchanov (2003) propose a multi-stage method where they first spend half of the budget uniformly exploring
the space and they then spend every subsequent stage sampling m actions evenly across a confidence interval
for the change point constructed in the previous stage. The width of this confidence interval is influenced by
parameter λ. In each stage they also have a reassessment criteria in which they test for the presence of a change
point during the current stage (within the current CI for the change point) and if it is not significant with level
1− ϵ confidence, they “reassess" and return to the previous confidence interval constructed. In Section 4 of Hall
and Molchanov (2003), the authors propose setting m = log2+β(T) and λ = log1+α(T) with 0 < α < 1 + β with
β > 0. Since we would like for there to be at least two stages and to satisfy these conditions, for experiments in
Figures 3b and 3c (similarly 6a, 6b) we set β = 0.1, α = 1.

One might be concerned that the negative performance by SRR compared to SH when the change point is near
the boundary in Figure 3c, might be due to poorly chosen parameters α, β. In practice, we will not know which
parameters perform best in which environment. However, we can show that tuning these parameters does not
significantly improve the performance in these settings. To do so, we first note that β should be set to be at most
0.4 since otherwise this would mean for T ≤ 60 that there is only one stage. With budget T = 60 for 10 values of
β (between 0 and 0.4), and at each value for β we run 5 values for α (between 0 and 1 + β) 500 times. Across
these 50 different α, β pairs chosen, we select the pair with minimal failure probability. We did this tuning for
both environments studied in Figures 3b and 3c individually. For each we then plot the performance of SRR with
these tuned parameters against the SH algorithm in Figures 7a, 7b.

SR Algorithm We refer to the algorithm proposed by Lan et al. (2009) as Sequential Refinement (SR). This is
because the algorithm itself is extremely similar to SRR, except the policy never reassess once it has “zoomed in"
to a particular region of the action space. (Furthermore, they do not spend half of the budget initially exploring
the space.) In particular, the SR algorithm begins by splitting the budget into L stages. Then, in each stage SR
plays actions evenly across a confidence interval for the change point (constructed using samples in the previous
stage). For their multi-stage method Lan et al. (2009) generally recommend splitting the budget evenly into L
stages such that in each phase SR plays around 30− 50 actions. Hence, for these very limited budget settings
with T ≤ 60 seen in Figures 3b and 3c, we choose the smallest number of stages L = 2. For the construction of
the confidence intervals we use the proposed form shown in equation (10) of Lan et al. (2009), which requires
knowledge of the signal to noise ratio ∆/σ. Note that we would not have access to this in practice. We plot
the performance of SR in settings described in Figures 6a and 6b. Here we see that the the failure probability
when running SR is very similar to SRR regardless of the position of the change point (x∗ = 0.7 or x∗ = 0.01).
Furthermore, SH still significantly outperforms SR when the change is near the boundary x∗ = 0.01.

B.3 Computational Complexity and Runtime

As mentioned in Section 7, while there are some settings in which ACPD can outperform our proposed algorithms,
it comes at a significant additional computational cost due to the repeated GP regression used in ACPD.
Consequently the computational complexity of ACPD, given a budget of T , is at least O(T 3). Whereas, the
computational complexity of our proposed methods is O(T). This is reflected by the runtimes from our simulation
studies in Figures 3b and 3c, displayed in Table 1 where we see that the time taken by ACPD in both experiments
is significantly larger than SH.

Table 1: Run times for algorithms SH, SRR, and ACPD required to run the simulation studies for Figures 3b and
3c. Simulations were run on an i7 CPU with 8GB RAM.

Setting SH Algorithm SRR Algorithm ACPD Algorithm

Figure 3b 7.8s 155.9s 5004.2s
Figure 3c 8.2s 132.3s 5053.5s

Fixed-Budget Change Point Identification

(a) σ = 1, η = 0.1, x∗ = 0.7 (b) σ = 1, η = 0.1, x∗ = 0.01

Figure 7: Proportion of final estimates more than η away from x∗ against the inputted budget, T , with Gaussian
rewards, ∆ = 2 and 90% CIs. SH, and tuned SRR were each run 500 times with different budgets. In (a) the
tuned constants for SRR tuned were α ≈ 0.28, β ≈ 0.41. In (b) the tuned constants were α ≈ 1.29, β ≈ 0.29.

B.4 SH vs ACPD with Smaller η

Figure 8: Proportion of final estimates more than η = 0.009 away from x∗ = 0.01 against the inputted budget, T ,
with Gaussian rewards with σ = 1, ∆ = 2 and 90% CIs. SH, and ACPD were each run 500 times with different
budgets.

In Figure 3c, we illustrate that there are settings where the proposed SH algorithm significantly outperforms
ACPD. In particular, we considered an environment with change point x∗ = 0.01 and acceptable error η = 0.1,
meaning that estimates for the change point which were placed at the boundary of the space (x̂T = 0) are
classified as successes. However, if we restrict the region of acceptable estimates for the change point by instead
considering η = 0.009, the region of successful estimates of the change point is strictly within (0, 1) and a similar
comparison between SH and ACPD still holds through the same intuition. This is displayed in Figure 8 where we
see that SH still significantly outperforms ACPD since the failure probability decreases at a much faster rate as
the budget increases.

Joseph Lazzaro, Ciara Pike-Burke

B.5 Confidence intervals

Confidence intervals in all plots for the failure probabilities of different algorithms were calculated using a simple
Gaussian approximation, as seen in equation (1) of (Brown et al., 2001). This was done using the set of all results
at each budget for each algorithm.

B.6 Code

Code can be found at the following GitHub repository: https://github.com/JosephLazzaro/cpi_AISTATS2025.

https://github.com/JosephLazzaro/cpi_AISTATS2025

Fixed-Budget Change Point Identification

PROOFS FOR LARGE BUDGETS

C PROOFS FOR LARGE BUDGET UPPER BOUND

C.1 Proof for Theorem 1

Proof. Note that, since Algorithm 2 is an extension of Cheshire et al. (2021), proofs for some technical lemmas
(e.g. Lemmas 1, 3) are similar to existing work, up to the inclusion of an infinite action space and different
elimination/backtracking probabilities. We write the main steps here and prove lemmas below.

Firstly, for all j in {1, ..., J}, let Gj be the “good event”

Gj =
{
EP,j ∩

{
x∗ ∈ (0, 1)\[aj1, aj3)

}}
∪
{
EC

P,j ∩ ER,j ∩
{
x∗ ∈ [aj2, a

j
3)
}}

(6)

∪
{
EC

P,j ∩ EL,j ∩
{
x∗ ∈ [aj1, a

j
2)
}}

in which we make the correct decision in eliminating or backtracking in phase j. Namely, when the change point is
not within the remaining action space in phase j, x∗ ∈ (0, 1)\[aj1, aj3), we correctly backtrack. When x∗ ∈ [aj2, a

j
3)

we correctly zoom into the right and eliminate the left half of region. And when x∗ ∈ [aj1, a
j
2) we correctly zoom

into the left and eliminate the right half of the remaining action space, see Figure 2 again for illustration of the
regions.

The first thing to note is that we need not make the correct decision in every phase. In particular, we can
incorrectly eliminate a region when it contains the change point or incorrectly backtrack when the remaining
action space contains the change point a limited number of times. As long as we fail in less than 1/4 of the
phases, we will still achieve our objective |x̂T − x∗| < η. This is shown in Lemma 1.

Lemma 1. Let η < 1/4. Under Algorithm 2, if we have
∑J

j=1 1{GC
j } < J/4, then our final estimate will be

within η of the true change point, |x̂T − x∗| < η.

We then calculate a lower bound on the probability of making the correct decision in round j, given the actions
and rewards from all previous phases 1, ..., j − 1.

Lemma 2. Let Fj−1 be the sigma algebra generated by all actions and rewards in the first j − 1 phases. Under
Algorithm 2 we have

P(Gj |Fj−1) ≥ 1− 8 exp

(
− tj∆

2

30σ2

)
.

Using Lemma 2, we upper bound the probability that we make the incorrect decision in more than 1/4 of the
phases.

Lemma 3. Let η < 1/4 and set C1 = 1
600 , C2 = 34, then the following inequality holds under Algorithm 2.

P

 J∑
j=1

1{GC
j } ≥ J/4

 ≤ exp

(
−C1

∆2

σ2
T + C2 log(

1

2η
)

)
.

Putting Lemma 1 and Lemma 3 together we get the required result. We also assume T > 60 log(1/2η) so that we
can even run the algorithm (playing each action in each phase at least once).

C.2 Proof of Lemma 1

Proof. Except for the fact that we are working in a continuous action space and not a finite one, the structure of
our backtracking policy is similar to that of Cheshire et al. (2021). So the proof of this lemma is almost identical
to what is seen in Cheshire et al. (2021).

In our case, the objective that we would like to satisfy is a sufficiently accurate estimate of the change point
|x̂T − x∗| < η with high probability. As long as we make the correct decision in log2(1/2η) more phases than

Joseph Lazzaro, Ciara Pike-Burke

we make incorrect decisions, then we will have made enough correct decisions to cancel out our bad ones -
and correctly zoomed in enough to achieve |x̂T − x∗| < η. The quantity log2(1/2η) is important as we need
to correctly zoom in enough times such that the final region in the action space has sufficiently small width,
i.e., aJ+1

3 − aJ+1
1 < 2η and contains the true change point x∗ ∈ [aJ+1

1 , aJ+1
3). This ensures that estimating the

midpoint of this region guarantees |x̂T − x∗| < η.

Writing this explicitly, it is sufficient to satisfy equation (7) to achieve |x̂T − x∗| < η.

J∑
j=1

1{Gj} −
J∑

j=1

1{GC
j } > log2(1/2η) (7)

Hence to prove this lemma, we just need to demonstrate that
∑J

j=1 1{GC
j } < J/4 implies equation (7) and

therefore |x̂T − x∗| < η.

We first note that if we have
∑J

j=1 1{GC
j } < J/4, then we also have that

∑J
j=1 1{Gj} ≥ 3J/4. We can then plug

this into the following equation.

J∑
j=1

1{GC
j } −

J∑
j=1

1{GC
j } >

3J

4
− J

4
=
J

2

=
1

2

⌈
6 log

(
1

2η

)⌉
(8)

=
1

2

⌈
6
log2(

1
2η)

log2(e)

⌉

≥ 1

2

(
6
log2(

1
2η)

log2(e)
− 1

)
> log2(1/2η)

Where equation (8) comes from the definition of J =
⌈
6 log

(
1
2η

)⌉
and the final inequality comes from the

assumption that η < 1/4.

Fixed-Budget Change Point Identification

C.3 Proof of Lemma 2

Proof. For this proof, we will additionally denote Pj(·) = P(·|Fj−1).

From the definition of Gj in equation (6), we have that

Pj(Gj) ≥ min

{
Pj

(
EP,j ∩ x∗ ∈ (0, 1)\[aj1, aj3)

)
,

Pj

(
EC

P,j ∩ EC
L,j ∩ x∗ ∈ [aj2, a

j
3)
)
,

Pj

(
EC

P,j ∩ EC
R,j ∩ x∗ ∈ [aj1, a

j
2)
)}

Now, since the events {x∗ ∈ (0, 1)\[aj1, aj3)}, {x∗ ∈ [aj2, a
j
3)} and {x∗ ∈ [aj1, a

j
2)} are determined by the actions

and rewards from the first j − 1 phases in running the policy we have

Pj(Gj) ≥ min{Pj

(
EP,j

∣∣x∗ ∈ (0, 1)\[aj1, aj3)
)
1{x∗ ∈ (0, 1)\[aj1, aj3)},

Pj

(
EC

P,j ∩ EC
L,j

∣∣x∗ ∈ [aj2, a
j
3)
)
1{x∗ ∈ [aj2, a

j
3)},

Pj

(
EC

P,j ∩ EC
R,j

∣∣x∗ ∈ [aj1, a
j
2)
)
1{x∗ ∈ [aj1, a

j
2)}}

≥ min{Pj

(
EP,j

∣∣x∗ ∈ (0, 1)\[aj1, aj3)
)
,

Pj

(
EC

P,j ∩ EC
L,j

∣∣x∗ ∈ [aj2, a
j
3)
)
,

Pj

(
EC

P,j ∩ EC
R,j

∣∣x∗ ∈ [aj1, a
j
2)
)
}

We can now use the following three lemmas to complete our proof.

Lemma 4. If x∗ ∈ (0, 1)\[aj1, aj3), then

Pj (EP,j) ≥ 1− 3 exp

(
− tj∆

2

30σ2

)

Proof. Let’s first assume that x∗ ∈ [aj3, 1] and µ1 < µ2. Now, if we have events H,H1, H2, H3 such that
H1 ∩H2 ∩H3 ⊂ H, then P(HC) ≤ P({H1 ∩H2 ∩H3}C) = P(HC

1 ∪HC
2 ∪HC

3) ≤ P(HC
1) + P(HC

2) + P(HC
3). We

Joseph Lazzaro, Ciara Pike-Burke

can then apply this as follows for equation (10). But firstly, by definition of EP,j we can write the following.

Pj(E
C
P,j) =Pj

(∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

2
−
µ̂aj

3,tj
+ µ̂1,tj

2

∣∣∣∣∣ (9)

>
3

4
max

(∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

+ µ̂aj
3,tj

3
− µ̂1,tj

∣∣∣∣∣ ,
∣∣∣∣∣µ̂0,tj −

µ̂aj
1,tj

+ µ̂aj
3,tj

+ µ̂1,tj

3

∣∣∣∣∣
))

≤Pj

(∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

2
−
µ̂aj

3,tj
+ µ̂1,tj

2

∣∣∣∣∣ > 3

4

∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

+ µ̂aj
3,tj

3
− µ̂1,tj

∣∣∣∣∣
)

≤Pj

(
µ̂0,tj + µ̂aj

1,tj

2
>
µ̂aj

3,tj
+ µ̂1,tj

2

)

+ Pj

(
µ̂0,tj + µ̂aj

1,tj
+ µ̂aj

3,tj

3
> µ̂1,tj

)
(10)

+ Pj

(
−
µ̂0,tj + µ̂aj

1,tj

2
+
µ̂aj

3,tj
+ µ̂1,tj

2
>

3

4

(
−
µ̂0,tj + µ̂aj

1,tj
+ µ̂aj

3,tj

3
+ µ̂1,tj

))

≤ exp

(
− tj∆

2

8σ2

)
+ exp

(
− tj∆

2

24σ2

)
+ exp

(
− tj∆

2

30σ2

)
(11)

≤3 exp
(
− tj∆

2

30σ2

)
(12)

As required. Where the penultimate inequality (11) comes from upper bounding each of the three probabilities in
equation (10). To show these bounds hold, we will bound the first probability by rewriting it as shown below.

Pj

(
µ̂0,tj + µ̂aj

1,tj

2
>
µ̂aj

3,tj
+ µ̂1,tj

2

)
= Pj

(
µ̂0,tj + µ̂aj

1,tj
− µ̂aj

3,tj
+ µ̂1,tj < 0

)
= Pj

(
µ̂0,tj + µ̂aj

1,tj
− µ̂aj

3,tj
+ µ̂1,tj −∆ < −∆

)
(13)

≤ exp

(
− tj∆

2

8σ2

)
Where the final inequality comes from noticing that, conditioning on the action rewards from the first j− 1 phases
Fj−1, the empirical means µ̂0,tj , µ̂aj

1,tj
, µ̂aj

3,tj
, µ̂1,tj are independent, each σ2/tj-sub-Gaussian, and with respective

means µ1, µ1, µ1, µ2. Hence, the sum µ̂0,tj + µ̂aj
1,tj
− µ̂aj

3,tj
+ µ̂1,tj−∆ is mean-zero, 4σ2/tj-sub-Gaussian. Plugging

this into the Hoeffding inequality from Proposition 2.5 in Wainwright (2019), we attain the final inequality above.

For the final two probabilities in equation (10) we can similarly calculate the upper bounds as following to attain
equation (11).

Pj

(
µ̂0,tj + µ̂aj

1,tj
+ µ̂aj

3,tj

3
> µ̂1,tj

)
≤ exp

(
− tj∆

2

24σ2

)

Pj

(
−
µ̂0,tj + µ̂aj

1,tj

2
+
µ̂aj

3,tj
+ µ̂1,tj

2
>

3

4

(
−
µ̂0,tj + µ̂aj

1,tj
+ µ̂aj

3,tj

3
+ µ̂1,tj

))
≤ exp

(
− tj∆

2

30σ2

)

Hence, returning to equation (12) we can achieve the following final bound as required for the lemma.

=⇒ Pj(EP,j) > 1− 3 exp

(
− tj∆

2

30σ2

)
(14)

If we instead assume that x∗ ∈ [0, aj1) then almost identical arguments would lead us to the same final equation
(14). Furthermore if we were to assume that µ1 > µ2 then we could again use almost identical arguments in both
cases to attain (14).

Fixed-Budget Change Point Identification

Lemma 5. If x∗ ∈ [aj2, a
j
3), then

Pj

(
EC

P,j ∩ EC
L,j

)
≥ 1− 8 exp

(
− tj∆

2

30σ2

)
Proof. Note that by a union bound we have

Pj({EC
P,j ∩ EC

L,j}C) = Pj(EP,j ∪ EL,j) ≤ Pj(EP,j) + Pj(EL,j) (15)

So we will focus on bounding the two probabilities on the right of the above equation. Again, we will first assume
that µ1 < µ2.

Starting with Pj(EP,j), we can use a union bound to get the following.

Pj(EP,j) =Pj

(∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

2
−
µ̂aj

3,tj
+ µ̂1,tj

2

∣∣∣∣∣ (16)

<
3

4
max

(∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

+ µ̂aj
3,tj

3
− µ̂1,tj

∣∣∣∣∣ ,
∣∣∣∣∣µ̂0,tj −

µ̂aj
1,tj

+ µ̂aj
3,tj

+ µ̂1,tj

3

∣∣∣∣∣
))

≤Pj

(∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

2
−
µ̂aj

3,tj
+ µ̂1,tj

2

∣∣∣∣∣ < 3

4

∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

+ µ̂aj
3,tj

3
− µ̂1,tj

∣∣∣∣∣
)

+ Pj

(∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

2
−
µ̂aj

3,tj
+ µ̂1,tj

2

∣∣∣∣∣ < 3

4

∣∣∣∣∣µ̂0,tj −
µ̂aj

1,tj
+ µ̂aj

3,tj
+ µ̂1,tj

3

∣∣∣∣∣
) (17)

We can then denote the final two probabilities in equation (17) as (A′) and (B′) respectively. We can firstly bound
(A′) using a similar idea to equation (10). Namely, if we have events H,H1, H2, H3 such that H1 ∩H2 ∩H3 ⊂ H,
then P(HC) ≤ P({H1 ∩H2 ∩H3}C) = P(HC

1 ∪HC
2 ∪HC

3) ≤ P(HC
1) + P(HC

2) + P(HC
3). We use this to get the

below equation.

(A′) ≤Pj

(
µ̂0,tj + µ̂aj

1,tj

2
>
µ̂aj

3,tj
+ µ̂1,tj

2

)

+ Pj

(
µ̂0,tj + µ̂aj

1,tj
+ µ̂aj

3,tj

3
> µ̂1,tj

)
(18)

+ Pj

(
−
µ̂0,tj + µ̂aj

1,tj

2
+
µ̂aj

3,tj
+ µ̂1,tj

2
<

3

4

(
−
µ̂0,tj + µ̂aj

1,tj
+ µ̂aj

3,tj

3
+ µ̂1,tj

))

≤3 exp
(
− tj∆

2

24σ2

)
Where the final line again comes from using the Hoeffding inequality for each of the probabilities in (18), similar
to the previous lemma for equation (13).

Furthermore, we can similarly show that (B′) ≤ 3 exp
(
− tj∆

2

24σ2

)
. Hence, plugging our bounds for (A′) and (B′)

into equation (17) we have the following.

=⇒ Pj(EP,j) ≤ 6 exp

(
− tj∆

2

24σ2

)
(19)

Joseph Lazzaro, Ciara Pike-Burke

Now let’s consider Pj(EL,j). By noting that {µ̂aj
1,tj

< µ̂aj
3,tj
} ∩ {µ̂aj

2,tj
− µ̂aj

1,tj
< µ̂aj

3,tj
− µ̂aj

2,tj
} =⇒

{|µ̂aj
1,tj
− µ̂aj

2,tj
| < |µ̂aj

2,tj
− µ̂aj

3,tj
|}, we can bound the following probability.

Pj(EL,j) = P({|µ̂aj
1,tj
− µ̂aj

2,tj
| < |µ̂aj

2,tj
− µ̂aj

3,tj
|}C)

≤ P
({
{µ̂aj

1,tj
< µ̂aj

3,tj
} ∩ {µ̂aj

2,tj
− µ̂aj

1,tj
< µ̂aj

3,tj
− µ̂aj

2,tj
}
}C
)

≤ P({µ̂aj
1,tj

< µ̂aj
3,tj
}C) + P({µ̂aj

2,tj
− µ̂aj

1,tj
< µ̂aj

3,tj
− µ̂aj

2,tj
}C)

≤ exp

(
− tj∆

2

4σ2

)
+ exp

(
− tj∆

2

12σ2

)
≤ 2 exp

(
− tj∆

2

12σ2

)
(20)

Where the penultimate inequality again holds using Hoeffding inequality as in equation (13). Hence, plugging
this and equation (19) into (15) give us the following.

Pj({EC
P,j ∩ EC

L,j}C) ≤ Pj(EP,j) + Pj(EL,j)

≤ 8 exp

(
− tj∆

2

30σ2

)
As required. We note that one could use an almost identical method to attain the same bound if µ1 > µ2.

Lemma 6. If x∗ ∈ [aj1, a
j
2), then

Pj

(
EC

P,j ∩ EC
R,j

)
≥ 1− 8 exp

(
− tj∆

2

30σ2

)

Proof. Similar to Lemma 5

Hence, regardless of the position of the change point, we get the required bound for the probability of zooming
in/out towards the correct direction, given the actions and rewards in previous phases, concluding our proof of
Lemma 2.

C.4 Proof of Lemma 3

Proof. Again, the structure of this proof will be very similar to the proofs seen in Cheshire et al. (2021) since the
structure of the policies is very similar. Of course, the probability of a good event in each round will be different
as well as constants throughout.

pj := Pj(G
C
j)

p0 := 8 exp

(
− tj∆

2

30σ2

)

We can furthermore assume that

∆ ≥ 88

√
σ2 log(1/2η)

T
(21)

Otherwise, if we were to assume the contrary, then plugging this into the exponential term in Theorem 1, the
result from Theorem 1 would trivially be true. Now, using Lemma 2 and substituting this in our definition of p0

Fixed-Budget Change Point Identification

we have

pj ≤ p0 = 8 exp

(
− tj∆

2

30σ2

)
≤ 8 exp

(
−882 log(1/2η) tj

30T

)
(22)

≤ 8 exp

(
−882 log(1/2η) T

10J

1

30T

)
(23)

= 8 exp

(
−882 log(1/2η) 1

300J

)
≤ 8 exp

(
−882 log(1/2η) 1

300(6 log(1/2η) + 1)

)
(24)

≤ 1

4
(25)

Where equation (22) come from substituting assumption on ∆ in (21). Equation (23) comes from using the
definition of tj = ⌊ T

5J ⌋ ≥ T
10J (since we assume that T

5J ≥ 1 for the policy to have enough samples to run).
Equation (24) comes from the definition of J = ⌈6 log(1/2η)⌉ ≤ 6 log(1/2η) + 1. Then, the final inequality holds
true whenever η < 1/4.

Now, the quantity of interest in this lemma is the probability that we fail in more than 1/4 of the phases. We can
bound this probability from above using Markov’s inequality and any λ ≥ 0.

P

 J∑
j=1

1{GC
j } ≥ J/4

 ≤ E
[
exp

(
λ
∑J

j=1 1{GC
j }
)]

exp(λ · J4)
(26)

Now, in order to bound the expectation on the right hand side of the above equation as in Cheshire et al. (2021),
we will introduce the following function ϕp(λ) = log(1 − p + peλ) which is non-decreasing in p. Hence, since
pj ≤ p0 from Lemma 2, we have ϕpt

(λ) ≤ ϕp0
(λ). Hence we have the following, starting by using the tower rule.

E

exp
λ J∑

j=1

1{GC
j }

 = E

EJ

[
exp

(
λ1{GC

J }
)]

exp

λ J−1∑
j=1

1{GC
j }

= E

exp (ϕpJ
(λ)) exp

λ J−1∑
j=1

1{GC
j }

 (27)

≤ E

exp (ϕp0
(λ)) exp

λ J−1∑
j=1

1{GC
j }

 (28)

≤ E [exp (J · ϕp0
(λ))]

Where equation (27) comes from the definition pJ = PJ(G
C
J) and hence that EJ

[
exp

(
λ1{GC

J }
)]

= exp(λ)pJ +
1− pJ = exp (ϕpJ

(λ)). Equation (28) comes from the monotonicity of ϕ and we can get the final inequality by
simply repeating these steps.

We can then substitute this bound in expectation back into the inequality from (26), remembering that we can
choose any λ ≥ 0

Joseph Lazzaro, Ciara Pike-Burke

P

 J∑
j=1

1{GC
j }

 ≤ exp

(
−J · sup

λ≥0
(λ/4− ϕp0

(λ))

)
= exp (−J · kl(1/4, p0)) (29)

≤ exp

(
−J 1

4
log(

1

p0
) + J log(2)

)
(30)

≤ exp

(
−Jtj
120

∆2

σ2
+ J

(
log(2) +

log(8)

4

))
≤ exp

(
− T∆2

600σ2
+ 13 log(1/2η)

)
As required. Where equation (29) comes from noting that supλ≥0 λq − ϕp(λ) = kl(q, p) when q ≥ p, where we
denote kl(p, q) as the divergence between two Bernoulli distributions of parameters p and q. We can then use this
and the fact that p0 ≤ 1/4 from (25) to attain equation (29). Then we can attain equation (30) from the trick
kl(a, b) ≥ a log(1/b)− log(2).

Fixed-Budget Change Point Identification

D PROOFS FOR LARGE BUDGET LOWER BOUND

D.1 Overview

Before going into technical details, we provide a brief informal overview of the techniques we use to prove the
lower bound in Theorem 2. In particular, we also discuss how η appears through our analysis, unlike previous
works (see Section 4.2 for discussion). We first simplify the problem and assume that the two means (µ1, µ2) are
known and that the change point is at one of K = ⌊1/2η⌋ different positions, {x∗j}j indexed from smallest to
largest, each at least 2η away from each other. Thus our objective is to identify which of these K prospective
environments V ′ = {vj}j we are in. The proof then uses the following three ingredients.

(i) Conditions on the policy: The piecewise constant structure makes it difficult to isolate the effect of
the expected number of plays in each region of A with respect to the failure probability (whereas this is
possible for each arm in Best Arm Identification , see Carpentier and Locatelli (2016) equation (7), and in
unstructured Thresholding Bandits, see Locatelli et al. (2016) appendix A.1). Indeed since the two means
are known, in order to distinguish vi from all other environments in V ′, it is sufficient to sample exclusively
on either side adjacent to the change point of vi, x∗i . However, this is infeasible in practice as the learner
will not a priori know where the changepoint x∗i occurs. To enforce some exploration across the action space,
we begin by making a reasonable assumption that the failure probability of our policy is at most C ′ = 1/2
regardless of the environment (See Theorem 6 statement). Note in Appendix D.3 we show that we can omit
this condition when the budget is sufficiently large.

(ii) Flat environment v0: We consider a flat environment v0 with no change in mean. Here there will always
be a region in which π estimates the change point with probability less than 1/(K − 1) (Lemma 7). We
then choose a challenging reference environment vi ∈ V ′ to have a change point within this low probability
region.

(iii) Change of measure and transportation lemma: Using a change of measure from vK to vi, we can
relate the number of samples played to the right of the change point in environment vi, denoted T(x∗

i ,1]
, with

the failure probability (see equations (38) - (42)). For a policy to be able to identify a change in mean with
high probability, we require a sufficient number of samples to the right and left of the change (missing this
is why some existing policies can suffer when the change is near the boundary, see Section 7). Therefore,
using (i), we can upper bound T(x∗

i ,1]
. This is firstly formalised with a change of measure from vi to v0.

Then we use a transportation lemma (see Lemma 10 proof) combined with the 1/(K − 1) probability in
(ii) and C ′ from (i) (see Lemma 10 and equations (43)-(44)) to produce our lower bound. Note that the
definition of K here involves η.

D.2 Lower Bound for Reasonable Policies

In line with what is outlined above, we begin by considering a lower bound on any policy which explores sufficiently.
In Appendix D.3 we will show how this assumption can be removed to get our final lower bound.

Theorem 6. Let V̄ ⊂ V (∆, σ) be the set of environments with change in mean ∆ and Gaussian random noise
with variance σ2. Let C ′ ∈ (0, 1) and let Π̄ := {π ∈ Π : ∀v ∈ V̄ , Pv,π(|x̂T − x∗v| < η) ≥ C ′} ⊂ Π. Then, denoting
x∗v as the change point in environment v, we have

inf
π∈Π̄

sup
v∈V̄

Pv,π(|x̂T − x∗v| ≥ η) ≥
1

8
exp

(
− ∆2

2σ2
T + C ′ log

(⌊
1

2η

⌋
− 1

))
.

Proof. Fix some π ∈ Π. Let V̄ ′ := {v1, ..., vK} with K := ⌊1/2η⌋ be a finite subset of V̄ in which all environments
have mean rewards µ1, µ2 and noise variance σ2. Furthermore, let environment vj have change point x∗j := 2η(j−1).
Finally we will drop the subscript for π as we will fix this policy π for the remained or the proof, unless otherwise
stated (i.e. denote Pvj = Pvj ,π). Then we have

sup
v∈V̄

Pv,π(|x̂T − x∗v| ≥ η) ≥ sup
vj∈V̄ ′

Pvj
(|x̂T − x∗j | ≥ η) (31)

Joseph Lazzaro, Ciara Pike-Burke

Now, let v0 be an environment in which there is no change in mean across the space. Namely the mean reward
function has constant value µ2. We will now introduce several helpful lemmas before continuing with equation
(31).

Lemma 7. There exists an i ∈ {1, ...,K − 1} such that

Pv0(|x̂T − x∗i | < η) ≤ 1

K − 1

Proof. Suppose, for contradiction, that ∀i ∈ {1, ..,K − 1}

Pv0(|x̂T − x∗i | < η) >
1

K − 1
(32)

=⇒ 1 ≥
K−1∑
i=1

Pv0(|x̂T − x∗i | < η) >

K−1∑
i=1

1

K − 1
= 1 (33)

Which is a contradiction, hence the proof is complete. Note the final inequality on the left holds because the sets
{(x∗i − η, x∗i + η)}K−1

i=1 are disjoint and Pv0 is a probability measure.

Hence, we set i to be the same i as in the above Lemma for the remainder of the proof.

Lemma 8. Let TB be the number of times we play an action in the set B ⊆ [0, 1] over the whole budget T . Then,
with i chosen to satisfy Lemma 7,

KL(Pvi ,Pv0) ≤
∆2

2σ2
Evi

[
T[0,x∗

i]

]
.

Proof. Denote Pi,At
and P ′

0,At
as the reward distributions of the action played in round t in both the environment

vi and v0, respectively. Then, from Ex 15.8 (Lattimore and Szepesvári, 2020), we have the following equation.

KL(Pvi ,Pv0) = Evi

[
T∑

t=1

KL(Pi,At , P0,At)

]

= Evi

[
T∑

t=1

KL(Pi,At
, P0,At

) · (1{At ∈ [0, x∗i]}+ 1{At ∈ (x∗i , 1]})
]

= Evi

[
T∑

t=1

KL(Pi,At
, P0,At

)1{At ∈ [0, x∗i]}
]

(34)

= Evi

[
T∑

t=1

∆2

2σ2
1{At ∈ [0, x∗i]}

]
(35)

=
∆2

2σ2
Evi

[
T[0,x∗

i]

]
As required. Where equation (34) comes from noting that for At ∈ (x∗i , 1], we have Pi,At

= P0,At
, hence

KL(Pi,At
, P0,At

) = 0. Furthermore (35) comes from noting that for At ∈ [0, x∗i] we are comparing Pi,At
, P0,At

which are two Gaussian distributions with difference in mean ∆ and same variance σ2.

Lemma 9. Under the same setup as Lemma 8,

KL(Pvi ,PvK) ≤ Evi [T(x∗
i ,x

∗
K]]

∆2

2σ2
.

Proof. Similar to Lemma 8, noting instead that the reward distributions in environments vi, vK only differ in the
region in the action space (x∗i , x

∗
K].

Lemma 10.
KL(Pvi ,Pv0) ≥ C ′ log ((K − 1))− log(2)

Fixed-Budget Change Point Identification

Proof. Firstly, we have from Lemma 1 in Garivier et al. (2016), that the following holds for any measurable
function Z which maps to [0, 1].

KL(Pvi ,Pv0) ≥ kl(Evi(Z),Ev0(Z))

Now, if we choose Z = 1{E} and let the event E := {|x̂T − x∗i | < η}, then this becomes the below equation.

KL(Pvi ,Pv0) ≥ kl(Pvi(E),Pv0(E))

≥ Pvi(E) log

(
1

Pv0(E)

)
− log(2) (36)

≥ C ′ log (K − 1)− log(2) (37)

Where equation (36) comes from using a trick to bound kl(a, b) ≥ a log(1b)− log(2). The the final inequality holds
by Lemma 7 that Pv0(E) ≤ 1

K−1 and using the assumption made for π in Theorem 6 that ∀v ∈ V̄ , Pv,π(|x̂T −x∗v| <
η) ≥ C ′.

Now, we put Lemmas 7, 8, 9, and 10 together and return to equation (31).

sup
v∈V̄

Pv,π(|x̂T − x∗v| ≥ η) ≥ sup
vj∈V̄ ′

Pvj (|x̂T − x∗j | ≥ η)

≥ 1

2
Pvi(|x̂T − x∗i | ≥ η) +

1

2
PvK (|x̂T − x∗K | ≥ η) (38)

≥ 1

2
Pvi(|x̂T − x∗i | ≥ η) +

1

2
PvK (|x̂T − x∗i | < η) (39)

≥ 1

4
exp (−KL(Pvi ,PvK)) (40)

≥ 1

4
exp

(
−Evi [T(x∗

i ,x
∗
K]]

∆2

2σ2

)
(41)

≥ 1

4
exp

(
− ∆2

2σ2
T +

∆2

2σ2

(
Evi [T[0,x∗

i]
] + Evi [T(x∗

K ,1]]
))

(42)

≥ 1

4
exp

(
− ∆2

2σ2
T +

∆2

2σ2
Evi [T[0,x∗

i]
]

)
(43)

≥ 1

4
exp

(
− ∆2

2σ2
T +KL(Pvi ,Pv0)

)
≥ 1

4
exp

(
− ∆2

2σ2
T + C ′ log (K − 1)− log(2)

)
(44)

As required. Inequality (38) holds as we are simply taking the average of two point in the set over which the
supremum is acting. Inequality (40) holds since |x∗K − x∗i | ≥ 2η and therefore {|x̂T − x∗i | < η} ⊂ {|x̂T − x∗K | ≥ η}.
Inequality (40) comes from the Bretagnolle-Huber inequality (Lattimore and Szepesvári, 2020) Theorem 14.2.
Inequality (41) comes from Lemma 9. Equation (42) is true since T = T[0,x∗

i]
+ T(x∗

i ,x
∗
K] + T(x∗

K ,1]. Inequality (43)
holds since T(x∗

K ,1] ≥ 0. Then the final two inequalities hold from Lemmas 8 and 10, respectively.

D.3 Proof of Theorem 2

We can extend Theorem 6 to the set of any policies in Theorem 7 for a sufficiently large budget T ≥
σ2

∆2 log
(
1
2 (⌊1/2η⌋ − 1)

)
, which is stated below. Theorem 2 can be seen as a consequence of Theorem 7 be-

low since we have that

σ2

∆2
log

(
1

2
(⌊1/2η⌋ − 1)

)
≤ σ2

∆2
(1.59 log(⌊ 1

2η
⌋)− 2 log(2)).

Joseph Lazzaro, Ciara Pike-Burke

Therefore, since Theorem 7 holds for T ≥ σ2

∆2 log
(
1
2 (⌊1/2η⌋ − 1)

)
, it will also hold for T ≥

σ2

∆2 (1.59 log(⌊ 1
2η ⌋)− 2 log(2)), as required.

Theorem 7. Let V̄ ⊂ V (∆, σ) be the set of environments with change in mean ∆ and Gaussian random noise
with variance σ2. Then, for T ≥ σ2

∆2 log
(
1
2 (⌊1/2η⌋ − 1)

)
, we have

inf
π∈Π

sup
v∈V̄

Pv,π(|x̂T − x∗v| ≥ η) ≥

1

8
exp

(
− ∆2

2σ2
T +

1

2
log

(
1

2

(⌊
1

2η

⌋
− 1

))
.

Proof. Fix some π ∈ Π. Let’s then consider two cases.

First Case: Suppose that

∀v ∈ V, Pv,π(|x̂T − x∗v| < η) ≥ 1/2

Then, from Theorem 6, under this assumption, we have

sup
v∈V̄

Pv,π(|x̂T − x∗v| ≥ η) ≥
1

8
exp

(
− ∆2

2σ2
T +

1

2
log

(
1

2
(⌊1/2η⌋ − 1)

))
,

as required.

Second Case: Now, suppose instead that

∃v ∈ V, Pv,π(|x̂T − x∗v| < η) < 1/2.

We can equivalently write that

∃v ∈ V, Pv,π(|x̂T − x∗v| ≥ η) ≥ 1/2

And if this is the case, then we have the following

sup
v∈V̄

Pv,π(|x̂T − x∗v| ≥ η) ≥
1

2

≥ 1

8
exp

(
− ∆2

2σ2
T +

1

2
log

(
1

2
(⌊1/2η⌋ − 1)

))
As required. Where the final inequality holds since we are assuming that T ≥ σ2

∆2 log
(
1
2 (⌊1/2η⌋ − 1)

)
.

Fixed-Budget Change Point Identification

PROOFS FOR SMALL BUDGETS

E PROOFS FOR SMALL BUDGET LOWER BOUND

E.1 Proof of Theorem 4

Lemma 11. Let Π be the set of policies with fixed budget T . Let V̄ ⊂ V (∆, σ) be the set of environments with
change in mean ∆ and Gaussian random noise with variance σ2. Denote x∗v as the change point in environment
v. Then it holds that,

inf
π∈Π

sup
v∈V̄

Pπ,v(|x̂T − x∗v| > η) ≥ 1− ∆2T/2σ2 + log(2)

log(⌊ 1
2η ⌋)

.

Proof. This proof follows closely to that demonstrated in Wainwright (2019). Also, as it is oftentimes less
obvious in this section, we will include all subscripts to denote the policy in use and environment in question.
Additionally, we add superscript for the random variable of the final estimate for the change point by policy π in
environment v as x̂π,vT .

Let η ≤ 0.5 and fix some arbitrary policy π ∈ Π. We choose M environments vj ∈ V̄ such that the 2η
neighborhoods around the change point in each environment, x∗vj , are pairwise disjoint. We can choose the
covering number, M , to be at least M = ⌊1/2η⌋. Let J ∼ Uniform{1, ...,M}. We can then show the following
inequality, since we are taking a supremum on the left, which is greater than an average across any subset.

sup
v∈V

Pπ,v(|x̂π,vT − x∗v| > η) ≥ 1

M

M∑
j=1

Pπ,vj
(|x̂π,vj

T − x∗vj | > η)

= PJ,π,vJ
(|x̂π,vJT − x∗vJ | > η) (45)

Where we denote PJ,π,vJ
as the joint measure between J ∼ Uniform{1, ...,M} and Pπ,vJ . Now,given our choice

of vj ’s and by defining the test ψ(x̂π,vJT) = argmini∈{1,...,M}|x̂π,vJ

T − x∗vi
|, we can then lower bound (45) with

sup
v∈V

Pπ,v(|x̂π,vT − x∗v| > η) ≥ PJ,π,vJ
(ψ(x̂π,vJT) ̸= J)

≥ 1−
1

M2

∑M
j,k=1KL(Pπ,vj ,Pπ,vk) + log(2)

log(M)
(46)

≥ 1−

(
∆2T
2σ2

)
+ log(2)

log(M)
(47)

Where equation (46) holds from using Fano’s inequality and the loose bound for mutual information shown
in equations 15.31 and 15.34 in Wainwright (2019) respectively. Then equation (47) holds from noting that,
for any two environments in the sum in (47), the biggest difference in mean between the reward distributions
anywhere in the action space is at most ∆. Hence, using a similar idea to Lemma 8 and 9, we can use the
divergence decomposition from Lattimore and Szepesvári (2020) to show that for any pair i ̸= k we have
KL(Pπ,vj ,Pπ,vk) ≤ ∆2

2σ2Eπ,vj [T] =
∆2

2σ2T in our fixed-budget setting.

The proof is completed by noticing that for a fixed value of η, we can choose a covering of [0, 1] with covering
number at least M = ⌊1/2η⌋.

We then simply extend Lemma 11 by using the fact that e−x ≤ 1− x/2 when we have that 0 ≤ x ≤ 1.59. Doing
so gives us the required bound for Theorem 4

Joseph Lazzaro, Ciara Pike-Burke

F PROOFS FOR SMALL BUDGET UPPER BOUND

F.1 Proof for Theorem 3

We can reuse a lot of the calculations we performed when analysing the backtracking algorithm, since we have
defined the left and right elimination criteria in the same way. The different this time, is that we have to bound
the probability that a good even occurs in every phase and we eliminate the correct half of the space. We define
the good event in this case, event G′

j , as

G′
j =

{
EC

L,j ∩
{
x∗ ∈ [aj2, a

j
3)
}}
∪
{
EC

R,j ∩
{
x∗ ∈ [aj1, a

j
2)
}}

.

First, note that using the previous Appendix C, we can attain the following upper bound on related events.

Lemma 12. Given the rewards and actions from previous phases and under Algorithm 3; the probability that we
fail to eliminate the correct half of the action space when it is actually on the right, and respectively left, can be
upper bounded with

Pj

(
EL,j

∣∣∣∣x∗ ∈ [aj2, a
j
3)

)
≤ 2 exp

(
− tj∆

2

12σ2

)
,

Pj

(
ER,j

∣∣∣∣x∗ ∈ [aj2, a
j
3)

)
≤ 2 exp

(
− tj∆

2

12σ2

)
.

Proof. As mentioned before, for the first equation, we can directly use the calculation in equation (20) and use
an almost identical method for the second inequality.

Then, under Algorithm 3, we can upper bound the probability that event G′
j fails to occur, given the actions and

rewards from previous phases.

Lemma 13. Under Algorithm 3

Pj(G
′
j) ≥ 1− 2 exp

(
− tj∆

2

12σ2

)
.

Proof. We can lower bound Pj(G
′
j) with

Pj(G
′
j) = Pj

({
EC

L,j ∩
{
x∗ ∈ [aj2, a

j
3)
}}
∪
{
EC

R,j ∩
{
x∗ ∈ [aj1, a

j
2)
}})

≥ min
(
Pj

(
EC

L,j ∩
{
x∗ ∈ [aj2, a

j
3)
})

,Pj

(
EC

R,j ∩
{
x∗ ∈ [aj1, a

j
2)
}))

≥ min

(
Pj

(
EC

L,j

∣∣∣∣x∗ ∈ [aj2, a
j
3)

)
,Pj

(
EC

R,j

∣∣∣∣x∗ ∈ [aj1, a
j
2)

))
≥ 1− 2 exp

(
− tj∆

2

12σ2

)
As required. Where the final line comes from using Lemma 12.

We know that, under the event that G′
j occurs in every phase j ∈ {1, ..., J}, our objective |x̂T −x∗| < η is attained.

Hence, we can take a union bound over all the phases, combined with Lemma 13, we attain the required bound
for Theorem 3.

Fixed-Budget Change Point Identification

G CHANGE POINTS AND INTUITION FOR ELIMINATION CRITERIA

G.1 Estimation in Offline Change Point Analysis

Suppose we have a sequence of sample and observation pairs {x′i, y′i}ni=1, ordered such that we have x′1 ≤ x′2 ≤
... ≤ x′n. We also denote ȳi:j as the empirical mean of observations y′i, ..., y′j ,

ȳi:j =

j∑
k=i

y′k.

Then, suppose we want to fit a piecewise constant model with two means µ1 and µ2 which change at some index
r in the sequence of observations {y′i}ni=1, namely f(x) = µ1I{x ≤ x′r}+ µ2I{x > x′r}. To do so, we can write the
residual sum of squares from fitting the model as

RSS(r) =

r∑
i=1

(y′i − ŷ1)2 +
n∑

i=r+1

(y′i − ŷ2)2.

From this, it is quick to check that the least squares estimators for the two means ŷ1 and ŷ2 are just ȳ1:r and
ȳr+1:n and we can therefore write the least squares estimator for the true change point index, to minimise this
RSS, as

r̂ = argminr∈{1,..,n−1}

r∑
i=1

(y′i − ȳ1:r)2 +
n∑

i=r+1

(y′i − ȳr+1:n)
2 (48)

It additionally turns out that this is equal to the Maximum Likelihood Estimator for the index of the change
point in a sequence when we assume the underlying distributions of the observations are Gaussian (Chen and
Gupta, 2012). Therefore we can use equation 2.7 in Chen and Gupta (2012) to equivalently rewrite our least
squares estimator from (48) as

r̂ = argmaxr∈{1,..,n−1}
r(n− r)

n
(ȳ1:r − ȳr+1:n)

2 (49)

G.2 Justification of Elimination Criteria

In Algorithm 2, at the beginning of each phase we are given empirical means from repeatedly playing the five
actions 0 ≤ a1 < a2 < a3 ≤ 1 (we drop the j subscript for the actions in this section).

The first problem is to determine if a piecewise constant function fits better in terms of residual sum of squares
when the change is between a1 and a2 or between a2 and a3. To do so, for simplicity, we choose to look only
at the empirical means from playing actions a1, a2, a3 (Note that we do not consider rewards from actions 0, 1
in this step only for simplicity. We could have instead included these actions on the boundary, but this would
actually only affect the upper bound we attain in Theorem 1 by at most a constant factor.). Hence by using
equation (49) and when fitting a piecewise constant model to our observed rewards, having the change point
between a2 and a3 is a better fit that having the change point between a1 and a2 when we have

tj(3tj − tj)
3tj

(
µ̂a1 −

µ̂a2
+ µ̂a3

2

)2

<
2tj(3tj − 2tj)

3tj

(
µ̂a1

+ µ̂a2

2
− µ̂a3

)2

(50)

It turns out that this is equivalent to the event ER,j , namely

⇐⇒ |µ̂a1
− µ̂a2

| < |µ̂a2
− µ̂a3

|,
which is the criteria we used in Algorithm 2 to decide that the change point is in x∗ ∈ [a2, a3) and to then
eliminate the region [a1, a2). We can use a similar argument to justify the construction of the complementary
event EL,j .

Now, the second problem is to determine if having the change outside of the region [a1, a3) would actually be
a better fit. This time, again for simplicity, we consider only rewards from actions 0, a1, a3, 1 (where omitting a2

Joseph Lazzaro, Ciara Pike-Burke

helps make the backtracking condition simpler and the additional inclusion of a2 would only improve the upper
bound we attain in Theorem 1 by at most a constant factor). In this case, comparing the regions [0, a1), [a1, a3),
[a3, 1), we have that [a1, a3) is not the best fitting region for the change point when

∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

2
−
µ̂aj

3,tj
+ µ̂1,tj

2

∣∣∣∣∣ <
√

3

4
max

(∣∣∣∣∣ µ̂0,tj + µ̂aj
1,tj

+ µ̂aj
3,tj

3
− µ̂1,tj

∣∣∣∣∣ ,
∣∣∣∣∣µ̂0,tj −

µ̂aj
1,tj

+ µ̂aj
3,tj

+ µ̂1,tj

3

∣∣∣∣∣
)
,

which again comes from equation (49). We then define this as our criteria for backtracking in the definition of

event EP,j except we modify the constant
√

3
4 to be 3

4 . We make this modification for simplicity as well as the
fact that it allows us to construct a very slightly tighter upper bound in Theorem 1. This constant determines
how strict we are with the backtracking procedure and it would be interesting to study exactly how this constant
affects our upper bound for the failure probability. Perhaps in doing so we could find a way to optimise the
strictness of our backtracking rule to further improve our upper bound. However this is beyong the scope of our
work for now.

Fixed-Budget Change Point Identification

H PROOFS FOR ADAPTIVE ALGORITHM

H.1 Proof of Theorem 5

Throughout this proof, we denote C1 = 1/600, C2 = 13.

Lets consider an environment v with change in mean reward at the change point ∆ and sub-Gaussian constant
σ2. We note that the event {T ≥ τ}, with

τ = γ
σ2

∆̂2
L

log

(
1

η

)
,

is equivalent to the event {∆̂L ≥ θ∆}, where

θ∆ =

√
γ
σ2

T
log

(
1

2η

)
. (51)

Now, we can use the Law of Total Probability to rewrite the failure probability from SHA as follows.

PSHA,v(|x̂SHA
T − x∗| > η) =PSHA,v(|x̂SHA

T − x∗| > η|∆̂L ≥ θ∆)PSHA,v(∆̂L ≥ θ∆)
+ PSHA,v(|x̂SHA

T − x∗| > η|∆̂L < θ∆)PSHA,v(∆̂L < θ∆)

=PSHA,v(|x̂SHB
T−L − x∗| > η|∆̂L ≥ θ∆)PSHA,v(∆̂L ≥ θ∆) (52)

+ PSHA,v(|x̂SH
T−L − x∗| > η|∆̂L < θ∆)PSHA,v(∆̂L < θ∆)

=PSHA,v(|x̂SHB
T−L − x∗| > η)PSHA,v(∆̂L ≥ θ∆) (53)

+ PSHA,v(|x̂SH
T−L − x∗| > η)PAHS,v(∆̂L < θ∆)

Where equation (52) holds since if the event {∆̂L ≥ θ∆} holds, then the event {T ≥ τ} holds. Hence the SHA
algorithm will run SHB for the final T − L rounds and the estimate x̂SHB

T−L will be returned (See Algorithm 4 for
explicit algorithm statement). Similarly, if event {∆̂L < θ∆} holds, SHA will use SH for the final T − L rounds.
Equation (53) comes from the fact that the random variable ∆̂L from the first L rounds is independent to the
estimate from SHB using the final T − L rounds x̂SHB

T−L and so the condition can be removed. Similarly, ∆̂L is
independent to the estimate from SH x̂SH

T−L.

Hence from equation (53), the failure probability for SHA decomposes into the failure probability when using
SHB for T − L rounds multiplied by the probability that SHB is chosen, plus the failure probability from using
SH multiplied by the probability that SH is chosen.

We now want to show that the failure probability for the SHA algorithm is near optimal for all budgets both
small and large. We therefore split our analysis of the failure probability of SHA into three cases. Case 1: small
budgets, Case 2: very large budgets, and Case 3: moderate budgets, which we define later. We demonstrate
that for small budgets the probability that SHA chooses to run SH for the final T −L rounds is high enough that
the failure probability is of near optimal form. For very large budgets we show that SHA chooses to run SHB for
the final T − L rounds with high probability, and therefore our failure probability is near optimal. For moderate
budgets we show that the failure probability from using SH or SHA would be similar and therefore our failure
probability is near optimal regardless of our choice between the algorithms.

The result from Case 1 gives us the first upper bound of Theorem 5 for T < T1 and combining the results from
Case 2 and 3 gives us the second upper bound from Theorem 5 for T ≥ T1.

Case 1: Small budget setting: Suppose we are in the small budget setting where T < T1, which can be
equivalently written as

∆ <

√
σ2

T

(
1.59 log

(⌊
1

2η

⌋)
− 2 log(2)

)
. (54)

Joseph Lazzaro, Ciara Pike-Burke

We firstly note that by the assumption that the reward distributions for all of our actions are σ2 sub-Gaussian,
we know that the empirical means µ̂1,L and µ̂0,L are each 2σ2/L sub-Gaussian. Hence, µ̂1,L − µ̂0,L is 4σ2/L
sub-Gaussian. We can then use Hoeffding’s inequality (from Proposition 2.5 in Wainwright (2019)) to show that,
under the SHA algorithm our estimate for the size of the change in mean ∆̂L is concentrated as follows.

PSHA,v(∆̂L ≥ θ∆) = PSHA(|µ̂1,L − µ̂0,L| ≥ θ∆)
= PSHA(|µ̂1,L − µ̂0,L −∆+∆| ≥ θ∆)
≤ PSHA(|µ̂1,L − µ̂0,L −∆|+∆ ≥ θ∆)
= PSHA(|µ̂1,L − µ̂0,L −∆| ≥ θ∆ −∆)

≤ 2 exp

(
−L(θ∆ −∆)2

8σ2

)
(55)

Note that by assumption γ > 1.59, therefore the θ∆ − ∆ term above is positive and this allows Hoeffding’s
inequality to hold for equation (55). Hence, returning to the equation (53) we have that the failure probability of
SHA under small budgets is as follows.

PSHA,v(|x̂SHA
T − x∗| > η) ≤PSHA,v(|x̂SHB

T−L − x∗| > η)PSHA,v(∆̂L ≥ θ∆)
+ PSHA,v(|x̂SH

T−L − x∗| > η)PAHS,v(∆̂L < θ∆)

≤PSHA,v(|x̂SHB
T−L − x∗| > η)PSHA,v(∆̂L ≥ θ∆)

+ PSHA,v(|x̂SH
T−L − x∗| > η)

≤2 exp
(
−C1

∆2

σ2
(T − L) + C2 log(1/2η)−

L(θ∆ −∆)2

8σ2

)
(56)

+ 2

⌈
log2

(
1

2η

)⌉
exp

(−(T − L)∆2

36σ2 log2(1/2η)

)

≤2 exp

−C1
∆2

σ2
(T − L) + C2 log(1/2η)−B(

√
γ −
√
1.59)2

log
(

1
2η

)
8

 (57)

+ 2

⌈
log2

(
1

2η

)⌉
exp

(−(T − L)∆2

36σ2 log2(1/2η)

)
≤2 exp

(
−C1

∆2

σ2
(T − L)

)
(58)

+ 2

⌈
log2

(
1

2η

)⌉
exp

(−(T − L)∆2

36σ2 log2(1/2η)

)
≤4
⌈
log2

(
1

2η

)⌉
exp

(−(T − L)∆2

σ2
min

{
1

36 log2(1/2η)
, C1

})
≤4
⌈
log2

(
1

2η

)⌉
exp

(−(T − L)∆2

σ2 log2(1/2η)
min

{
1

36
, C1

})
≤4
⌈
log2

(
1

2η

)⌉
exp

(
−C1

(T − L)∆2

σ2 log2(1/2η)

)
(59)

Note that equation (56) comes from substituting in our upper bounds from Theorem 1, Theorem 3 and the
concentration inequality from equation (55). Also, in order to attain (57), we consider lower bounding the quantity
(θ∆ −∆)2. In Case 1 we have θ∆ > ∆ and an upper bound (54) for ∆. Hence, to upper bound equation (56) we
substitute in the largest value ∆ can take in Case 1, namely

∆ =

√
σ2

T

(
1.59 log

(⌊
1

2η

⌋)
− 2 log(2)

)
,

Fixed-Budget Change Point Identification

as well as our definition of θ∆ from (51) and the fact that L = BT in order to attain equation (57). Then
equation (58) only holds when B(

√
γ −
√
1.59)2/8 > C2, which is assumed in the statement of Theorem 5. The

upper bound in equation (59) is of the form of the small budget lower bound in Theorem 4, hence SHA is nearly
minimax optimal up to constants and loglog terms under small budgets.

Case 2: Very Large Budgets: Now assume that the budget is sufficiently large such that

∆ > 2θ∆,

where θ∆ is defined in equation (51). Note that in this case, we can make a similar concentration argument to
Case 1, using Hoeffding’s inequality to show that ∆̂L < θ∆ occurs with small probability. In particular,

PSHA,v(∆̂L < θ∆) = PSHA(|µ̂1,L − µ̂0,L| < θ∆)

= PSHA(|µ̂1,L − µ̂0,L −∆+∆| < θ∆)

≤ PSHA(|∆| − |µ̂1,L − µ̂0,L −∆| < θ∆)

= PSHA(|µ̂1,L − µ̂0,L −∆| > ∆− θ∆)

≤ 2 exp

(
−L(θ∆ −∆)2

8σ2

)
. (60)

Note that, since in Case 2 we assume that ∆ > 2θ∆, and therefore ∆ > θ∆. Hence the ∆ − θ∆ term above is
positive and this allows Hoeffding’s inequality to hold for equation (60). We can now rewrite the failure probability
for the SHA algorithm in this case as

PSHA,v(|x̂SHA
T − x∗| > η) ≤PSHA,v(|x̂SHB

T−L − x∗| > η)PSHA,v(∆̂L ≥ θ∆)
+ PSHA,v(|x̂SH

T−L − x∗| > η)PAHS,v(∆̂L < θ∆)

≤PSHA,v(|x̂SHB
T−L − x∗| > η)

+ PSHA,v(|x̂SH
T−L − x∗| > η)PAHS,v(∆̂L < θ∆)

≤ exp

(
−C1

∆2

σ2
(T − L) + C2 log(1/2η)

)
(61)

+ 4

⌈
log2

(
1

2η

)⌉
exp

(−(T − L)∆2

36σ2 log2(1/2η)
− L(θ∆ −∆)2

8σ2

)
≤ exp

(
−C1

∆2

σ2
(T − L) + C2 log(1/2η)

)
+ 4

⌈
log2

(
1

2η

)⌉
exp

(−(T − L)∆2

36σ2 log2(1/2η)
− L(∆/2)2

8σ2

)
(62)

=exp

(
−C1

∆2

σ2
(T − L) + C2 log(1/2η)

)
+ 4

⌈
log2

(
1

2η

)⌉
exp

(−(T − L)∆2

36σ2 log2(1/2η)
− L∆2

32σ2

)
≤ exp

(
−C1

∆2

σ2
(T − L) + C2 log(1/2η)

)
+ 4

⌈
log2

(
1

2η

)⌉
exp

(
−L∆

2

32σ2

)
≤5 exp

(
−∆2

σ2
min {(T − L)C1, L/32}+ C2 log(1/2η)

)
≤5 exp

(
−C1

∆2

σ2
B(1−B)T + C2 log(1/2η)

)
. (63)

Joseph Lazzaro, Ciara Pike-Burke

Here equation (61) comes from substituting our upper bounds for SH in Theorem 3 and SHB in Theorem 1, as
well as using our upper bound in equation (60). Furthermore, equation (62) comes from the fact that ∆ > 2θ∆.
Finally, equation (63) comes from recalling that L = BT . Note that equation (63) matches our lower bound from
Theorem 2 up to constants, hence SHA is near optimal up to constants for these very large budgets.

Case 3 Moderate Budgets: Let’s suppose instead that the budget is only moderately large and is bounded by

∆ ∈
[√

σ2

T

(
1.59 log

(⌊
1

2η

⌋)
− 2 log(2)

)
, 2θ∆

]
.

We can equivalently write this condition as

∆ ∈
[√

σ2

T

(
1.59 log

(⌊
1

2η

⌋)
− 2 log(2)

)
, 2

√
γ
σ2

T
log

(
1

2η

)]
. (64)

In this case, as long as we have γ < 1800/(1−B), then for all such ∆ in the moderate budget setting (64), we
have a better guarantee for SH in Theorem 3 than for SHB in Theorem 1 with budget input T − L. This is
because, combining γ < 1800/(1−B) and our condition (64) for Case 3, implies that T − L < 7200 σ2

∆2 log
(

1
η

)
.

Plugging in these values for the budget T −L into Theorems 3 and 1 shows that our gaurantee for SH outperforms
SHB in this moderate budget setting. We note that 7200 σ2

∆2 log
(

1
η

)
is different to the definition of T1 (see Section

5). The constant 7200 comes from the comparison of our two upper bounds for SH/SHB (which are loose in
constants), whereas in practice the budget at which SHB begins to outperform SH is significantly smaller than
this (see Section B).

Hence, we can upper bound our failure probability in this region as

PSHA,v(|x̂SHA
T − x∗| > η) ≤PSHA,v(|x̂SHB

T−L − x∗| > η)PSHA,v(∆̂L ≥ θ∆)
+ PSHA,v(|x̂SH

T−L − x∗| > η)PAHS,v(∆̂L < θ∆)

≤PSHA,v(|x̂SHB
T−L − x∗| > η) · 1

+ PSHA,v(|x̂SH
T−L − x∗| > η) · 1

≤2 exp
(
−C1

∆2

σ2
(T − L) + C2 log(1/2η)

)
(65)

=2 exp

(
−C1

∆2

σ2
(1−B)T + C2 log(1/2η)

)
. (66)

Here equation (65) comes from the above discussion that for moderate budgets in Case 3, our gaurantee for SH is
better than that of SHB. Equation (66) comes from recalling that L = BT . Equation (66) is of the form of our
lower bound in Theorem 2, therefore SHA algorithm is nearly optimal under moderate budgets as well.

	INTRODUCTION
	RELATED WORK
	PROBLEM SETTING
	LARGE BUDGET
	Upper Bound
	Lower Bound

	SMALL BUDGET
	Upper Bound
	Lower Bound

	ADAPTIVE ALGORITHM
	EXPERIMENTS
	DISCUSSION
	EXPLICIT ALGORITHMS
	ADDITIONAL EXPERIMENTS
	Further Empirical Comparisons of SH, SHB and SHA with Other Values
	Comparison of All Algorithms
	Computational Complexity and Runtime
	SH vs ACPD with Smaller
	Confidence intervals
	Code

	PROOFS FOR LARGE BUDGET UPPER BOUND
	Proof for Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	PROOFS FOR LARGE BUDGET LOWER BOUND
	Overview
	Lower Bound for Reasonable Policies
	Proof of Theorem 2

	PROOFS FOR SMALL BUDGET LOWER BOUND
	Proof of Theorem 4

	PROOFS FOR SMALL BUDGET UPPER BOUND
	Proof for Theorem 3

	CHANGE POINTS AND INTUITION FOR ELIMINATION CRITERIA
	Estimation in Offline Change Point Analysis
	Justification of Elimination Criteria

	PROOFS FOR ADAPTIVE ALGORITHM
	Proof of Theorem 5

