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Abstract

This thesis is concerned with the study of sequential decision problems motivated

by the challenge of selecting questions to give to students in an online educational

environment. In online education there is the potential to develop personalized and

adaptive learning environments, where students can receive individualized sequences

of questions which update as the student is observed to be struggling or �ourishing. In

order to achieve this personalization, we must learn about how good each question is,

while simultaneously giving students good questions. Multi-armed bandits are a pop-

ular technique for sequential decision making under uncertainty. Due to their online

nature and their ability to balance the trade-o� between exploitation and exploration,

multi-armed bandits lend themselves naturally to this problem of adaptively selecting

questions in education software. However, due to the complexity of the educational

problem, standard approaches to multi-armed bandits cannot be applied directly. In

this thesis variants of the multi-armed bandit problem speci�cally motivated by the

issues arising in the educational domain are considered.

The �rst contribution is to consider the problem of selecting questions to give to

a student in a homework task, where the homework task has a �xed length. Both the

time it takes the student to answer each question and the bene�t they gain from doing

so are stochastic, and so we wish to develop an algorithm which adapts to the amount

of time remaining in the homework task. This is an instance of the stochastic knapsack

problem and so we develop a new approach for this problem when a generative model
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of item sizes and rewards is available. This algorithm is an anytime algorithm based on

the optimistic planning principle. We prove that with high probability our algorithm

returns a near optimal policy and bound the number of samples necessary for this.

A further problem in education is that when a student answers a question, the

bene�t to their learning from doing so may not be evident immediately. Instead, the

bene�t may be delayed and, when we observe an improvement in their performance, it

is often unclear exactly what the contribution of each individual question was to this

improvement. Hence, in an educational domain the feedback from answering questions

may be delayed, but also aggregated and anonymous. The second contribution of this

thesis is the study of a variant of the stochastic multi-armed bandit problem with this

form of delayed, aggregated anonymous feedback. For this problem, a rarely switching

algorithm is presented which is able to learn from this kind of feedback and achieve

almost the same performance as a state of the art algorithm for the simpler delayed

feedback bandit problem, where observations are delayed but there is no anonymity.

One factor that will have a clear e�ect on the student's ability to answer a question

correctly is the length of time since they have seen similar (or the same) questions.

Consider, for example, the challenge of teaching students times tables in an app.

In this case, the student's ability to recall the solution to one question will depend

on how long it has been since they were last asked that question. We assume that

the `reward' to the student of answering a question is given by some function of the

length of time it has been since they were last asked it, and we assume that this

function is smooth enough to be modeled by a Gaussian process. We study a bandit

problem where the expected reward of each arm is given by this unknown function of

the time since the arm has been played. For this problem, we develop an algorithm

which performs well experimentally, learning to play each arm when its reward is

highest. Under the additional assumption that the noise is Gaussian, we also provide

theoretical guarantees for the performance of this algorithm.
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Chapter 1

Introduction

The world of education is changing. With the development of the internet and smart-

phones, people across the world are increasingly able to access encyclopedias worth

of knowledge from their pockets. This has dramatically changed how people learn

and develop new skills. One example of this is the development of Massive Open

Online Courses (MOOCs), e.g. EdX www.edx.org and coursera www.coursera.org,

and other large online courses which mean that anyone can sign up for courses o�ered

by top institutions and follow these courses online, using online quizzes to test their

knowledge. On a smaller scale, there are now a multitude of educational games and

apps available online where students can learn or consolidate skills while having fun.

Even in a traditional education environment, teaching is now being aided by the use

of online quizzes and tests, which allow teachers to track the performance of their

students in realtime. All this contributes to a new, more online, way of learning.

One of the most exciting aspects of online education is the potential for personal-

izing learning. This means that each student can be given individual tasks speci�cally

tailored to their strengths and weaknesses. The bene�ts of this would be enormous,

struggling students would have the time to revise key concepts and learn at their own

pace, whereas students who are excelling can be pushed further and their knowledge

1
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deepened. Moreover, these online education systems also have the potential to adapt

to how the student is getting on in a speci�c task, noticing right away if a student

is struggling and taking direct action to help them. The challenge is how to achieve

this. How do we decide which questions to give to the student when we do not know

a priori how bene�cial each one is? And how do we use the limited data we observe

about the students to improve our future decisions?

Sequential decision models are a way of mathematically formalizing the concept

of making a decision and using feedback on the outcome of that decision to inform

future decisions. Within this area, algorithms for the multi-armed bandit problem

will be particularly useful. The multi-armed bandit problem gets its name from the

classical casino analogy of choosing which one armed bandit (slot machine) to play in

order to maximize the payout, when the payout of each slot machine is stochastic with

unknown expectation. In order to maximize their total winnings, a player must decide

whether to explore their options, gathering more information about the slot machines,

or exploit their current knowledge to select one which currently looks good. In recent

years algorithms for multi-armed bandits have been developed and applied to settings

such as online advertising, website optimization and recommendation systems to great

success. One reason for this success is their ability to expertly and accurately balance

the trade-o� between wanting to explore and learn about the e�ectiveness of di�erent

actions and wanting to exploit the current knowledge and take the best action. This

is similar to the challenge faced when trying to decide which questions to give to a

student in an online education setting. However, the complexities of the educational

domain mean that standard algorithms for the multi-armed bandit problem cannot

directly be applied. The aim of this thesis is to investigate multi-armed bandit models

inspired by the problem of selecting personalized questions in online education.

The particular problem this thesis is motivated by is how to select an adaptive

sequence of questions to present to students in an online educational environment.
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The work of this thesis has been carried out in collaboration with Sparx, an educa-

tion research company. Since their foundation, Sparx have been gathering data on

student performance in a series of online exercises accessed via their app. The app

is incorporated into a traditional teaching environment and is designed to aid the

teachers as well as the students. Once a teacher introduces a topic, the students will

work through some exercises on the app, both in class and at home. As they do so,

data will be obtained tracking their progress. The data consists of logging student

interaction with the online platform and, as such, may be a lot more detailed than

that gathered in a traditional schooling environment. Sparx's long term aim is to be

able to use this extra information to improve students' experience and attainment.

The aim of this particular work is to develop sequential decision making algorithms

that are able to learn from this detailed feedback and suggest good questions to give

to the students.

In this thesis, the focus will be on the statistical and mathematical foundations

of multi-armed bandit algorithms motivated by this problem of suggesting questions

to students in an online education environment. There are many challenges in the

educational domain which make applying the standard algorithms for multi-armed

bandits di�cult. The three main challenges that have motivated the methodological

work in this thesis are the following. Firstly, when we are setting homework tasks,

there is a limit on the amount of time each homework can take, so we need to develop

approaches that can handle this short horizon and adapt to the time remaining in

the homework. Furthermore, when a student answers a question, the bene�t they

gain from doing so is not immediate, but instead is only observed as an aggregate

sometime after answering the question. Lastly, the bene�t to a student of answering

a question will not be constant over time, it will most likely depend on how long it

has been since they answered similar questions.

.
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1.1 Contributions

This thesis studies sequential decision problems which are motivated by the challenge

of selecting questions to give to students in an online education environment. In

Chapter 2 we will introduce the multi-armed bandit problem and give an overview of

some related work on algorithms and extensions to the classical problem. In Chapter 3

we will discuss existing work on using multi-armed bandits in online education do-

mains and give further details of the speci�c problems in online education which have

motivated the work in this thesis. The main contributions of this thesis are method-

ological developments in the �eld of multi-armed bandits. These will be presented

in Chapters 4�Chapter 6. The work in each of these chapters has been submitted

for publication as a standalone paper, and as such there may be some repetition of

material. We outline below the main technical contributions of each of these chapters.

Chapter 4: Optimistic Planning for the Stochastic Knapsack

Problem

The stochastic knapsack problem is a stochastic resource allocation problem that

arises frequently and yet is exceptionally hard to solve. We derive and study an opti-

mistic planning algorithm speci�cally designed for the stochastic knapsack problem.

Unlike other optimistic planning algorithms for Markov Decision Processes (MDPs),

our algorithm, OpStoK, avoids the use of discounting and is adaptive to the amount

of resources available. We achieve this behavior by means of a concentration inequal-

ity that simultaneously applies to capacity and reward estimates. Crucially, we are

able to guarantee that the aforementioned con�dence regions hold collectively over all

time steps by an application of Doob's inequality. We demonstrate that the method

returns an ε-optimal solution to the stochastic knapsack problem with high proba-

bility. To the best of our knowledge, our algorithm is the �rst which provides such
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guarantees for the stochastic knapsack problem. Furthermore, our algorithm is an

anytime algorithm and will return a good solution even if stopped prematurely. This

is particularly important given the di�culty of the problem. We also provide theo-

retical conditions to guarantee OpStoK does not expand all policies and demonstrate

favorable performance in a simple experimental setting.

The work in this chapter appeared as: Pike-Burke, C. and Grünewälder, S. (2017).

Optimistic Planning for the Stochastic Knapsack Problem. In International Confer-

ence on Arti�cial Intelligence and Statistics.

Chapter 5: Bandits with Delayed, Aggregated Anonymous Feed-

back

We study a variant of the stochastic K-armed bandit problem, which we call �bandits

with delayed, aggregated anonymous feedback�. In this problem, when the player pulls

an arm, a reward is generated, however it is not immediately observed. Instead, at the

end of each round the player observes only the sum of a number of previously generated

rewards which happen to arrive in the given round. The rewards are stochastically

delayed and due to the aggregated nature of the observations, the information of

which arm led to a particular reward is lost. The question is what is the cost of

the information loss due to this delayed, aggregated anonymous feedback? Previous

works have studied bandits with stochastic, non-anonymous delays and found that

the regret increases only by an additive factor relating to the expected delay. In

Chapter 5, we show that this additive regret increase can be maintained in the harder

delayed, aggregated anonymous feedback setting when the expected delay (or a bound

on it) is known. We provide an algorithm that matches the worst case regret of the

non-anonymous problem exactly when the delays are bounded, and up to logarithmic

factors or an additive variance term for unbounded delays.

The work in this chapter appeared as: Pike-Burke, C., Agrawal, S., Szepesvári,
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C. and Grünewälder, S. (2018). Bandits with Delayed, Aggregated Anonymous Feed-

back. In International Conference on Machine Leaning.

Chapter 6: Recovering Bandits

The recovering bandits problem is a variant of the non-stationary stochastic mutli-

armed bandit problem designed to capture the e�ect of the time between plays on

the reward of a given arm. In many scenarios such as product recommendation, the

bene�t of suggesting a product will depend on how long it has been since it was

last suggested. This is captured in recovering bandits where, the expected reward of

each arm changes depending on the time since the arm was last played according to

some unknown recovery function. Under the assumption that the recovery functions

are sampled from a Gaussian process, we present and analyze two algorithms for

the recovering bandits problem. Furthermore, we show how their performance can

be improved by allowing them to lookahead and select good sequences of actions.

Finally, we demonstrate the experimental performance of our algorithms and present

an approximation based on optimistic planning to improve computational e�ciency

at little cost to accuracy.

The work in this chapter is in submission. An early version was presented at the

European Workshop on Reinforcement Learning (2018).



Chapter 2

Multi-Armed Bandits

The multi-armed bandit problem is a classical sequential decision problem that has

been studied for many years (for example by Thompson (1933); Lai and Robbins

(1985); Auer et al. (2002a); Gittins et al. (2011); Bubeck and Cesa-Bianchi (2012);

Lattimore and Szepesvári (2018)). It gets its name from the fact that in its simplest

form it can be expressed using an analogy to slot machines (or one-armed bandits)

in a casino. Assume that a player is faced with a row of slot machines, or arms, and

that each slot machine has a di�erent probability distribution governing the payo� it

generates when it is played. We call the payo� the player receives the reward from

playing an arm. All the reward distributions are unknown to the player, whose aim

is to play the slot machines that will maximize the total reward. The player's task is

then to choose between playing arms that they already know produce a high reward,

or trying alternative arms about which they have less information, but whose reward

could be high. The player must therefore decide how to trade-o� between exploiting

good arms to maximize their immediate reward and exploring other arms to gather

information about their performance in order to potentially improve future rewards.

Formally, we de�ne the stochastic K-armed bandit as follows. We assume that

there are K arms (or actions, the two terms will be used interchangeably in this the-

7
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sis) in a set A, and associated with every arm 1 ≤ j ≤ K is an underlying reward

distribution νj. Whenever an arm j is played a stochastic reward is generated in-

dependently from the underlying distribution νj and presented to the player. The

multi-armed bandit problem proceeds in rounds and, in each round, the player selects

an arm and then receives a reward from the underlying reward distribution of that

arm. The player can then use the previously observed rewards to inform future de-

cisions about which arms to play. We de�ne the horizon, T , as the total number of

plays of the bandit game. The game can be summarized in the following sequence.

Beginning with an empty history, H0 = ∅, at each time step t = 1, . . . , T , the player,

1. Selects an arm Jt ∈ {1, . . . , K}, possibly using the history Ht−1

2. Receives an observation Xt,Jt ∼ νJt

3. Adds the pair {Jt, Xt,Jt} to the history, Ht = Ht−1 ∪ {Jt, Xt,Jt}.

The player's aim is to select the actions that will maximize their total reward over T

time steps.

It is typically necessary to make some assumptions about the reward distributions,

νj, in order to construct a tractable algorithm for the multi-armed bandit problem.

Generally, it is assumed that the rewards of all arms are independent and that all arms

j = 1, . . . , K have a �nite expectations µ1, . . . , µK (so E[X1,j] = µj for X1,j ∼ νj).

In some cases, it is assumed that the reward distribution is from a particular family

of distributions. Otherwise, it is assumed that the reward distributions are (λ-)sub-

Gaussian (see Appendix A.1) or bounded, often in [0, 1].

2.1 Regret

In the multi-armed bandit problem, the aim is usually to select arms to play such that

the cumulative reward over the T rounds is maximized. Traditionally, a discount factor
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was used and the aim was to maximize the expected discounted reward. However,

recently an alternative performance measure has been considered. In particular, the

performance of an algorithm for the multi-armed bandit problem is typically measured

in terms of its (cumulative) regret. The cumulative regret up to horizon T , RT , is the

total di�erence in the reward that could have been obtained by repeatedly playing the

optimal arm and the reward that was actually obtained by the arms played. We will

mostly be interested in the expected regret of an algorithm, where the expectation is

taken over the actions taken (note that the actions may be random variables since

they can depend on the past observations). Speci�cally, let µ∗ = max1≤j≤K µj be

the maximum expected reward of any arm. Clearly the best possible algorithm will

constantly play this arm for all T rounds. We de�ne the regret as the di�erence in

expected cumulative reward between this oracle and the arms J1, . . . , JT chosen by

the algorithm. In particular, we de�ne the expected cumulative regret up to horizon

T as,

E[RT ] =
T∑
t=1

E[µ∗ − µJt ].

The aim of a bandit algorithm is to select arms Jt in order to minimize this expected

regret. Note that this is essentially equivalent to maximizing the expected cumulative

reward of the algorithm.

It can be di�cult to calculate the regret of a bandit algorithm exactly. It can be

estimated through simulations, but it is often useful to have theoretical guarantees on

the performance of an algorithm. In some problem instances, it is possible to obtain

lower bounds on the regret that must be incurred by any bandit algorithm in that

setting. It is also commonplace to provide an upper bound on the expected regret

of a particular algorithm. If the upper regret bound of an algorithm matches the

lower bound, we say that the algorithm is optimal for this particular setting. When

considering these theoretical regret bounds, there are two main types of regret that it

is useful to look at, the problem dependent regret and the problem independent regret.
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The problem dependent regret of a bandit algorithm depends on the speci�cs of

the problem instance we are considering. For a particular set A of actions numbered

1 to K, the problem dependent regret will typically depend on the means, µj, of the

actions. For any arm j 6= j∗, let ∆j = µ∗−µj be the sub-optimality gap of arm j and

for any arm j, and let Nj(T ) be the random number of times arm j has been played

up to horizon T . Then the expected regret can be expressed as,

E[RT ] =
K∑

j=1;j 6=j∗
∆jE[Nj(T )]

Using this in their seminal paper, Lai and Robbins (1985) proved the following lower

bound on the problem dependent regret of any bandit algorithm. Speci�cally, under

some mild assumptions on the reward distributions (see (Lai and Robbins, 1985) for

details), it was shown that the regret of any algorithm for the multi-armed bandit

problem must satisfy,

lim inf
T→∞

E[RT ]

log T
≥

K∑
j=1;j 6=j∗

∆j

KL(νj, νj∗)
(2.1)

where KL(νj, νj∗) represents the Kullback-Leibler divergence between the reward dis-

tribution of arm j and that of the optimal arm (see Appendix A.1). This means that

in this problem setting, no algorithm can achieve a smaller problem dependent rate

of regret. Hence, the aim is often to construct algorithms that can achieve problem

dependent regret of this order.

Sometimes it is not desirable to bound the regret of a bandit algorithm for a

particular problem instance. In practice, the expected rewards, µj's, of each arm are

not known before we start playing the bandit game, and so we may wish to have regret

bounds which hold regardless of the speci�c problem setup and arm distributions. In

this case, it is useful to consider the problem independent or worst case regret which

holds for any problem instance. Auer et al. (2002b) provide the following lower bound
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on the problem independent regret of any bandit algorithm. Particularly, for any

algorithm, there exists a problem instance where

E[RT ] ≥ 1

20
min{

√
KT, T}. (2.2)

This is a bound on the regret of the algorithm in the worst possible case (in fact, it

is derived for the adversarial bandit problem, see Section 2.3.1) and so it is natural

that it is larger than the problem dependent regret bound.

The above de�nitions of regret have all assumed a frequentist representation of the

problem. In some cases it is desirable to take a Bayesian approach (see e.g. Gelman

et al. (2013) for an introduction to Bayesian reasoning). Here, any parameters of the

reward distribution are assumed to be random variables and a prior distribution is

placed on them. This induces a prior distribution over the µj's for all arms 1 ≤ j ≤ K.

In this case, the regret de�nition changes and we consider the Bayesian regret. In the

Bayesian regret, the expectation is taken over this prior distribution as well as the

arms selected. Hence, we de�ne the cumulative Bayesian regret up to horizon T as,

E[RB
T ] =

T∑
t=1

E[µ∗ − µJt ] =
T∑
t=1

E[E[µ∗ − µJt |µ1 . . . µK ]].

Bubeck and Liu (2013) state that the lower bound of (2.2) also holds for Bayesian

regret when the rewards are in [0, 1] . This means that in the Bayesian setting we we

can always �nd a prior distribution such that the Bayesian regret satis�es E[RB
T ] =

Ω(
√
KT ). In a slightly di�erent setting where the rewards are discounted, it is possible

to design algorithms which asymptotically match the expected cumulative discounted

reward (where the expectation is taken with respect to the prior as well) of the optimal

strategy (see Section 2.2.3 for details).

Given the above lower bounds on the regret, we have some idea of how well an

algorithm for the stochastic K-armed bandit problem can be expected to perform.
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The challenge is therefore to develop algorithms for the multi-armed bandit problem

that achieve these rates of regret. Furthermore, it is desirable to develop algorithms

which exhibit strong �nite time regret as well as asymptotically having low regret.

Finite time regret is the regret up to a �xed horizon T and is more informative about

the real life performance of the algorithm. In the following section (Section 2.2), we

detail some of the key algorithmic developments that have lead to (near) optimal

algorithms for the stochastic multi-armed bandit problem.

2.2 Popular Algorithms

The multi-armed bandit problem has been formally studied at least since the seminal

paper of Thompson (1933). Since then, research into the problem has expanded in var-

ious directions. One of the most popular lines of work is into Upper Con�dence Bound

(or UCB) style algorithms, inspired by Lai and Robbins (1985). These have received a

resurgence of interest in recent years following the work of Auer et al. (2002a) where

�nite time theoretical regret bounds and experimental results were given. During

this resurgence, interest also returned to the original algorithm of Thompson (1933),

now known as Thompson Sampling, and regret bounds and strong experimental re-

sults have also been demonstrated for this approach. A di�erent line of work follows

that by Gittins (1979) in de�ning optimal index policies for the discounted Marko-

vian problem. In this section, we will review some of the key developments in these

three lines of work. Note that in this thesis, focus has been on developing UCB and

Thompson Sampling style algorithms for variants of the multi-armed bandit problem,

so emphasis will be placed on these approaches.
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2.2.1 UCB

The use of optimistic estimates or Upper Con�dence Bounds (UCBs) for the multi-

armed bandit problem stems from the seminal work of Lai and Robbins (1985). Intu-

itively, the idea behind the upper con�dence bound approach is to use an optimistic

estimate of the expected reward of each arm given the information available. Then,

playing the arm with the largest optimistic estimate will lead to selecting arms which

either have high reward or are poorly estimated, in which case they are worth ex-

ploring more. The con�dence bounds presented in (Lai and Robbins, 1985) relied

on the entire history of rewards of all arms and as such were di�cult to compute.

A simpler algorithm was proposed by Agrawal (1995) who provided an asymptotic

analysis. This was later adapted by Auer et al. (2002a), who provided a �nite time

analysis of the regret of this algorithm, and several other related algorithms.

The UCB1 algorithm from (Auer et al., 2002a) constructs upper con�dence bounds

around the sample mean of the reward of each arm in a way that guarantees that the

true mean of the arm is less than the upper con�dence bound with high probability.

These are constructed using Hoe�ding's inequality (see Appendix A.2) and hold for

any reward distribution bounded in [0, 1]. For any arm j which has been played nj

times, let X̄j be the sample mean of these nj observations, then, with probability

greater that 1− δ,

µj ≤ X̄j +

√
log(1/δ)

2nj
.

This is used in the construction of the upper con�dence bounds of the UCB1 algo-

rithm. In particular, the UCB1 algorithm proceeds by playing each arm once to guar-

antee that the initial sample means exist, and then at each time step t = K+1, . . . , T ,

it selects arm,

Jt = arg max
1≤j≤K

{
X̄j,t +

√
log(t)

2Nj(t)

}
where Nj(t) is the number of times arm j has been played in t rounds of the bandit
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game and X̄j,t = 1
Nj(t)

∑t
s=1 Xs,JsI{Js = j} is the sample mean of these observations.

Note that the only knowledge the UCB1 algorithm has about the reward distribution

is that the arms are independent and the rewards are bounded in [0, 1].

Auer et al. (2002a) showed that the problem dependent regret of UCB1 satis�es,

E[RT ] ≤ 8
K∑
j=1

log(T )

∆j

+ (1 + π2/3)
K∑
j=1

∆j.

This has the same log(T ) dependence on the horizon T as seen in the lower bound

(2.1). Moreover, for Normal distributions with means µ∗ and µj and unit variances,

the KL divergence simpli�es to ∆2
j in which case the lower bound in (2.1) is matched

exactly by the dominant term of this regret bound. However, for alternative reward

distributions, KL(νj, ν
∗
j ) 6= ∆2

j and so this upper bound does not match the lower

bound in (2.1) exactly. The proof of this regret bound relies on bounding E[Nj(T )],

the expected number of times any sub-optimal arm is played by the algorithm. It

can be shown that if Nj(T ) > 8 log(T )

∆2
j
, then the con�dence term for arm j is smaller

than ∆j/2, and so the only way arm j can be played again is if the con�dence bounds

on arm j or the optimal arm fail. By Hoe�ding's inequality, this happens with low

probability. Hence the main contribution of arm j to the regret is from these �rst

plays when the algorithm is learning about the arm and this is bounded by ∆j8
log(T )

∆2
j
.

This gives the result. From this problem dependent regret bound, it is easy to show

that the problem independent regret of UCB1 satis�es,

E[RT ] ≤ O(
√
KT log(T )). (2.3)

This matches the order of the lower bound in (2.2) up to a
√

log(T ) term. This

problem independent regret bound was obtained from the problem dependent regret

bound via a standard worst case analysis. This consists of separating the arms into

those with ∆j < ∆ and those with ∆j ≥ ∆ for some �xed ∆ > 0 and optimizing



CHAPTER 2. MULTI-ARMED BANDITS 15

the problem dependent regret to �nd the worst case value of ∆ (see for example,

(Lattimore and Szepesvári, 2018)). This gives the problem independent regret bound.

This value of ∆ represents the sub-optimality gap that is hardest for the algorithm

to deal with.

While UCB1 is a simple and intuitive algorithm that enjoys theoretical guarantees

on the regret that almost match the lower bounds in (2.1) and (2.2), considerable

e�ort has been invested in constructing UCB approaches for the multi-armed bandit

problem which have tighter regret bounds. One of the most important of these, the

KL-UCB algorithm of Cappé et al. (2013), aims to recover the KL divergence term

in the denominator of (2.1) and thus focuses on problem dependent regret. For a one

parameter exponential family reward distribution which can be parameterized by the

mean, their approach is to to construct a pseudo upper con�dence bound for each

arm by selecting the parameter that will maximize the expected reward while still

being close to the sample mean in KL distance. Speci�cally, let d(µ, µ′) be the KL-

divergence between the particular exponential family distribution of interest when the

mean parameters are µ ∈ Θ and µ′ ∈ Θ (and Θ is the parameter set). In the KL-UCB

algorithm, each arm is played once to begin with, then at time t = K + 1, . . . , T , we

play arm

Jt = arg max
1≤j≤K

sup

{
µ ∈ Θ; d(X̄j,t, µ) ≤ log(t) + 3 log(log(t))

Nj(t)

}
.

Cappé et al. (2013) show that the regret of this algorithm satis�es,

E[RT ] ≤
K∑
j=1

∆j
log(T )

d(µj, µ∗)
(1 + o(1)).

Hence, the problem dependent regret of KL-UCB matches the lower bound in (2.1)

up to lower order terms. Note that using Pinsker's inequality to bound d(µj, µ
∗) ≥

1
2
(µj − µ∗)2 = 1

2
∆2
j and using the standard worst case analysis results in a problem
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independent regret bound of O(
√
KT log(T )) for KL-UCB, the same as UCB1. Cappé

et al. (2013) also provide a version of the algorithm for distributions which are not one

parameter exponential family. However, note that, in all cases, in order to calculate

the selection criteria, it is necessary to be able to calculate the KL-divergence and

this requires knowledge of the reward distributions, which is not required for UCB1.

The problem independent regret of UCB1 in (2.3) su�ers from an additional√
log(T ) term compared to the lower bound in (2.2). There have been several ap-

proaches designed to remove this term. The �rst, the so-called Improved-UCB algo-

rithm of Auer and Ortner (2010), is an example of a rarely switching algorithm. It

runs in phases and in each phase it plays each active arm consecutively and then, at

the end of a phase, an active arm is eliminated if it is clearly suboptimal. Specif-

ically, in every phase i, the algorithm maintains a tolerance gap ∆̃i and plays each

active arm until the total number of times it has been played is ni =

⌈
2 log(T ∆̃2

i )

∆̃2
i

⌉
.

Then an arm is eliminated if its estimated mean reward is further than ∆̃i from the

best estimated mean reward, and the tolerance gap is reduced, ∆̃i+1 = ∆̃i/2. The

regret analysis of this algorithm again uses Hoe�ding's inequality (but this time to

get con�dence bounds that hold with probability greater than 1− 1
T ∆̃2

i

in each phase

i) to bound the probability of erroneously eliminating arms. This leads to problem

dependent regret E[RT ] ≤
∑K

j=1

C log(T∆2
j )

∆j
for some constant C > 1. This corresponds

to problem independent regret of

E[RT ] ≤ O(
√
KT log(K)).

This is an improvement over the worst case regret of UCB1 by replacing
√

log(T )

with
√

log(K). However, it is still loose by
√

log(K).

Another approach that improves on the problem independent regret of UCB1, is

the MOSS algorithm of Audibert and Bubeck (2009). This algorithm is more similar

to the UCB approach since it plays each arm once then at time t = K + 1, . . . , T , it
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plays arm

Jt = arg max
1≤j≤K

{
X̄j,t +

√
max{log( T

KNj(t)
), 0}

Nj(t)

}
.

This leads to problem dependent regret of E[RT ] ≤ CK
∑K

j=1

max{log(T∆2
j/K),1}

∆j
which

corresponds to a problem independent regret bound of

E[RT ] ≤ O(
√
KT ),

matching the optimal rate indicated by (2.2).

2.2.2 Thompson Sampling

One of the earliest instances of the multi-armed bandit problem appeared in (Thomp-

son, 1933) in the context of clinical trials. The proposed algorithm, now known as

Thompson sampling, is very popular due to its intuitiveness, ease of implementation

and strong experimental performance. It is a Bayesian approach and so begins with

placing a prior distribution over the parameters of the reward distribution of each

arm. Let θj be the parameters of the reward distribution over arm j and let r(θ)

give the expected reward as a function the parameters θ (which is common across all

arms). Let π(θj) be the prior placed on the parameters of arm j. Then, under the

assumption that the family of reward distributions is known, the posterior distribu-

tion of the parameters can be obtained by using the likelihood of the observations of

arm j (see (Gelman et al., 2013) for further details). For any arm j and time t, let

πt(θj) denote the posterior distribution of θj at time t, using the Nj(t) previously ob-

served samples from the reward distribution of arm j. Then the Thompson sampling

algorithm proceeds as follows. At time t,

1. For all arms 1 ≤ j ≤ K, sample θ̃j ∼ πt(θj)

2. Play arm Jt = arg max1≤j≤K r(θ̃j).
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Note that since we have a prior distribution over each θj, we do not need an initial-

ization step as in the UCB approaches. It can be shown that at time t, the above

procedure is equivalent to playing each arm with the posterior probability that it is

optimal. If the reward distributions admit a conjugate prior (e.g. exponential fam-

ily distributions), the posterior distributions of the reward parameters can be easily

computed. If not, alternative methods such as MCMC (see e.g. (Gilks et al., 1995))

may need to be used in order to obtain samples from the posterior.

The strong empirical performance of Thompson sampling was demonstrated in

(May and Leslie, 2011; Chapelle and Li, 2011) where it was shown to outperform

the UCB approach in various experiments. May et al. (2012) proved asymptotic

results on the performance of Thompson Sampling for general reward distributions.

Theoretical regret bounds for Thompson sampling were given in (Agrawal and Goyal,

2012) and (Kaufmann et al., 2012b). These results consider the Beta-Bernoulli bandit

problem, where the prior on the expected reward of each arm is a Beta distribution

and the observations of each arm are Bernoulli, leading to a conjugate Beta posterior.

However, as discussed in (Agrawal and Goyal, 2012), this can be extended to other

reward distributions taking values in [0, 1] by �rst observing the random reward Xj,t

and then performing a Bernoulli trial with success probability Xj,t and updating the

posterior distribution of a pseudo parameter θj for these Bernoulli trials for arm j.

Kaufmann et al. (2012b) mainly considered the problem dependent regret and

proved that for any ε > 0, the expected regret of Thompson Sampling satis�es,

E[RT ] ≤ (1 + ε)
K∑
j=1

∆j(log(T ) log(log(T )))

KL(µj, µ∗)
+ C(ε,µ).

where C is a constant depending on ε and µ = (µ1, . . . , µK). This almost matches the

lower bound in (2.1). Their proof technique is similar to that of UCB1 and KL-UCB

and draws on properties of the Bernoulli distribution. Agrawal and Goyal (2013a)
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prove a slightly di�erent problem dependent regret bound and also show that the

problem independent regret of Thompson Sampling satis�es,

E[RT ] ≤ O(
√
KT log(T ))

for the Beta-Bernoulli bandit problem. This is the same problem independent regret

rate as UCB1 (Auer et al., 2002a) and has an additional
√

log(T ) term compared to

the lower bound in (2.2). These results for Beta-Bernoulli bandits were extended in

(Korda et al., 2013) to cover reward distributions in the one-parameter exponential

family and in (Agrawal and Goyal, 2013a) to consider Gaussian distributions, and

similar results were shown.

All the above theoretical results focused on the frequentist regret (where the mean

rewards are �xed and the expectation is only taken over the arms chosen). However,

since Thompson sampling is a Bayesian procedure, is also makes sense to consider the

Bayesian regret. Theoretical regret guarantees on the Bayesian regret of Thompson

Sampling were obtained by Russo and Van Roy (2014). Here, they were able to relate

the Bayesian regret of Thompson sampling to that of a UCB approach, and using

results on the performance of various UCB strategies, they obtained Bayesian regret

bounds for a wide variety of di�erent settings. For �nitely many arms, they show that

the Bayesian regret is O(
√
KT log(T )). This was improved in (Bubeck and Liu, 2013)

where it was shown that the Bayesian regret of Thompson sampling is O(
√
KT ).

There have also been variations of the Thompson Sampling algorithm considered

in the literature. The Optimistic Bayesian Sampling algorithm of May et al. (2012)

aims to combine Thompson sampling with the optimistic principle underpinning the

UCB strategies. Here, at each time step, t, after sampling θ̃j from the posterior of

each arm, if the sampled value is less that the posterior mean, then the sampled value

is replaced by the posterior mean, and this is used to select which arm to play. Instead

of considering the regret of this algorithm, they show that, asymptotically, the ratio
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of the sum of rewards from their algorithm to the sum of optimal reward will tend

to 1. Another approach aimed at combining Bayesian and optimistic strategies is

the Bayes UCB algorithm of Kaufmann et al. (2012a). This approach uses the quan-

tiles of the posterior distribution as upper con�dence bounds and then proceeds as a

standard UCB algorithm. They show that this approach achieves problem dependent

frequentist regret for Bernoulli rewards of

E[RT ] ≤
K∑
j=1

(
(1 + ε)∆j

KL(µj, µ∗j)
log(T ) + cε(log(T ))

)

for ε > 0 where cε is some constant depending on ε. They also show that, for Bernoulli

rewards, the index they use is equivalent to the index used in the KL-UCB algorithm.

2.2.3 Gittins Indicies

A di�erent Bayesian approach to the multi-armed bandit problem is the Gittins Index

approach (Gittins et al., 2011; Gittins, 1979). In this framework, the multi-armed

bandit problem is represented as a (semi) Markov decision process (see Appendix A.3)

where the state is the current posterior distribution over the reward parameters of

each arm and the actions are the set of arms in the bandit problem. It is assumed

that the state of each arm evolves according to an independent Markov chain with

transition density D. At each time t, the player observes the states of each arm j,

Sj(t), and selects an action. If the action chosen at time t is arm Jt, the player receives

a reward r(SJt(t)) and then the states are updated so that Sj(t + 1) = Sj(t) for all

j 6= Jt and SJt(t+ 1) = D(SJt(t)).

In this setting, the aim is normally to maximize the expected total discounted

reward, E
[∑T

t=1 γ
tr(SJt(t))

]
, where γ ∈ (0, 1) is the discount factor and the expecta-

tion is taken over the prior distribution of each arm as well. This is the same as in a

Markov Decision Process (MDP) (see Appendix A.3). In a MDP, it has been shown
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that dynamic programming will �nd the optimal policy (Bellman, 1956). However,

in a MDP representation of the bandit problem, the state space is very large and

so such a dynamic programming solution would not be computationally tractable.

Despite this, Gittins (1979) (see (Gittins et al., 2011) for alternative proofs) showed

that there exists an optimal index style policy that de�nes an index for each arm

independently. Playing arms with the largest such index at each time step maximizes

the total expected discounted reward of a policy. This is the so-called Gittins index

policy.

The Gittins index policy consists of playing the arm from a given state with highest

Gittins index. The Gittins index of arm j from initial state s is de�ned as,

G(j, s) = sup
τ>0

E
[∑τ−1

t=0 γ
tr(Sj(t))

∣∣∣∣Sj(0) = s

]
E
[∑τ−1

t=0 γ
t

∣∣∣∣Sj(0) = s

] ,

where Sj(t) = D(Sj(t − 1)). Note that this can be intuitively interpreted for each

arm as the largest cost the player is willing to pay to receive at least one more reward

from that process (Lattimore and Szepesvári, 2018). It is then shown that playing

arm Jt = arg max1≤j≤K G(j, Sj(t)) at time t maximizes the cumulative discounted

expected reward, E
[∑∞

t=1 γ
tr(SJt(t))

]
. Finite time regret guarantees of the Gittins

index policy were provided by Lattimore (2016).

The Gittins indicies policy is an index approach and only requires using the infor-

mation about one arm at a time to compute its index, thus reducing the computational

complexity compared to dynamic programming. However, for most reasonably sized

problems, and particularly those involving extensions of the standard multi-armed

bandit problem as will be considered in this thesis, it is still computationally infea-

sible to compute the Gittins index in reasonable time. It is also not clear how to

adapt the MDP representation and Gittins index strategy to these more complex
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problems. Furthermore, for most of the problems studied here, using Gittins indicies

would involve including an arti�cial discount factor which may not be appropriate.

2.3 Extensions

The multi-armed bandit problem as presented above is an interesting problem for

which several algorithms have been developed. However, it can be argued that in its

present form it is too simple for many applications. Consequently, there have been

numerous extensions to the standard stochastic K-armed bandit problem to make

it more appropriate in many practical applications. We detail here some of these

extensions which are most relevant to the work in this thesis.

2.3.1 Non-Stochastic Bandits

Another version of the bandit problem that has been studied in the literature is the

non-stochastic or adversarial bandit problem. This problem was �rst introduced by

Auer et al. (1995) and removes several of the assumptions underlying the stochastic

multi-armed bandit problem. Speci�cally, in the adversarial bandits problem, it is no

longer assumed that the rewards are sampled from an underlying reward distribution,

nor that they are even random variables. Instead, they are assumed to lie in [0, 1]

and to be generated by an `adversary'. At each time t, the adversary selects a vector

xt = (x1,t, . . . , xK,t)
T of rewards in [0, 1]K . Then, if the player plays arm Jt at time

t, they will receive reward xJt,t. An important point is that the adversary may have

knowledge of the players strategy and could select the reward vectors accordingly. This

means that if the player plays according to some deterministic strategy, the adversary

will be able to make them su�er a lot by adapting to their strategy. However, if the

player's strategy involves an element of randomness, there is less that the adversary

can do to harm them (Lattimore and Szepesvári, 2018).
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The performance of an algorithm for the adversarial bandits problem is again

measured in terms of its regret. However, the de�nition of regret here di�ers slightly

from in the stochastic bandit problem. Since the adversary choses a vector of rewards

at each time step, the best arm is constantly changing, however, the regret is de�ned

with respect to the best constant arm, that is arg max1≤j≤K
∑T

t=1 xj,t. Note that by

Arora et al. (2012) this is more appropriate since sub-linear regret with respect to the

best sequence of actions is not possible. We are also often interested in the worst case

regret which is taken over all possible action choices of the adversary. Hence, in the

adversarial K-armed bandit problem, the regret is de�ned as,

E[Ra
T ] = max

x1,...,xT

{
max

1≤j≤K

T∑
t=1

xj,t − E
[ T∑
t=1

xJt,t

]}
,

where the expectation is taken over the potential randomness of the choice of actions.

The worst case lower bound on the regret in (2.2) was proved for the adversarial

bandits problem, and so also holds in this case.

As mentioned previously, randomized strategies will generally outperform deter-

ministic ones in the adversarial bandits problem. Interestingly, this means that of-

ten algorithms for the stochastic bandits problem perform poorly in the adversarial

problem. Hence speci�c strategies have been developed for the adversarial bandits

problem. The �rst such algorithm to be proposed was the EXP3 algorithm of Auer

et al. (1995), which is based on the Hedge algorithm of Freund and Schapire (1997).

At each time step t, EXP3 plays arm j with probability Pj,t. These probabilities

are calculated using exponential weighting of importance sampling estimators of each

arm's reward. Speci�cally, let Ŝj,t =
∑t

n=1
I{Jn=j}xj,n

Pj,n
for all arms j, then at time t,

arm j is played with probability,

Pj,t = (1− η)
exp{ηŜj,t/K}∑K
j=1 exp{ηŜj,t/K}

+
η

K
,
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where η is a tuning parameter used to control how quickly we want to stop exploring.

When η =
√

K log(K)
(e−1)T

, the regret of EXP3 is bounded by,

E[Ra
T ] ≤ 2

√
(e− 1)KT log(K).

This matches the lower bound in (2.2) up to logarithmic factors.

There have also been numerous variants of the EXP3 algorithm and di�erent ap-

proaches proposed in the literature. These include algorithms designed to remove

the logarithmic terms (Audibert and Bubeck, 2009), algorithms with high probability

regret guarantees (Neu, 2015), or general algorithms for both stochastic and adver-

sarial bandits (Auer and Chiang, 2016; Seldin and Lugosi, 2017) among others. Of

particular relevance to us is the `bandits with expert advice' problem and the EXP4

algorithm of Auer et al. (1995). In the bandits with expert advice problem, at each

time t, the player is presented with N probability vectors over the arms, each rep-

resenting a di�erent expert's opinion of which arm to play. The player can then use

this expert advice to in�uence their choice of which action to take. Here, the regret is

de�ned with respect to the expected reward of the best expert. Formally, if the beliefs

of experts i = 1, . . . , N at time t = 1, . . . , T are represented by the probability vectors

ξ1(t), . . . , ξN(t) and xt is the vector of the rewards of each arm, then the regret is

de�ned as

E[Re
T ] = max

1≤i≤N

T∑
t=1

ξi(t)
Txt − E

[ T∑
t=1

xJt,t

]}
,

when the player plays actions J1, . . . , JT . The EXP4 algorithm of Auer et al. (1995)

is a modi�cation of EXP3 to this setting. For some tuning parameter γ ∈ (0, 1], at

each time step t = 1, . . . , T , the learner recieves the expert advice vectors and then

plays arm j with probability

Pj,t = (1− γ)

∑N
i=1wi(t)ξ

(j)
i (t)∑N

i=1wi(t)
+
γ

K
,
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where wi(t) is the weight given to expert i at time t and is de�ned iteratively by

wi(1) = 1, wi(t+ 1) = wi(t) exp(γξi(t)
Tyi(t)
K

) where y
(j)
i = I{Jt = j} xj,t

Pj,t
and superscript

(j) is used to denote the jth element of a vector. Under the assumption that the

family of experts contains the uniform expert, Auer et al. (1995) proved that the

regret of the EXP4 algorithm in the bandits with experts problem is bounded by

E[Re
T ] ≤ (e− 1)γmax1≤i≤N

∑T
t=1 ξi(t)

Txt + K log(N)
γ

.

Since the adversarial bandit problem removes many assumptions about the reward

generating process, it can often be used as a baseline in variants of the stochastic ban-

dit problem which change the assumptions on the reward generating process (although

sometimes the regret de�nition will be di�erent). For example, when the rewards are

stochastic but the distributions can change over time, adversarial bandit algorithms

can be used as a baseline for comparison. It is mainly for this purpose that adversarial

bandits will be considered in this thesis.

2.3.2 Linear Bandits

In all of the bandit models so far described, it has been assumed that there are only

�nitely many arms and the regret bounds presented scale with the number of arms.

However, often we are in settings where we have a very large, or possibly in�nite,

number of arms. In this case it is desirable to develop algorithms that scale better.

Clearly, this will be impossible if all the arms are still assumed to be independent and

there is no information shared between them. Therefore, it is necessary to make some

assumptions on the structure and correlation between the arms. The simplest such

assumption is that each action can be represented as a d dimensional feature vector,

and that the expected reward is the inner product of this feature vector with some

unknown d dimensional parameter vector, θ∗, common to all actions. This setting is

formalized in the linear bandits problem.

In the (stochastic) linear bandits problem, at each time step t, the player selects
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an action Xt ∈ Xt ⊂ Rd from a possibly changing set of d dimensional feature vectors

Xt. The player then receives reward

Yt = 〈Xt, θ
∗〉+ εt,

where εt is conditionally R-sub-Gaussian noise (see Appendix A.1) and θ∗ ∈ Θ ⊂ Rd.

Note that it is assumed that the player has knowledge of the feature vectors of all

actions X ∈ Xt and that it is the parameter θ∗ which is unknown (although Θ will

typically be known). The performance of an algorithm for the linear bandits problem

is again typically measured in terms of it's regret. In this case, the regret up to horizon

T is,

RT =
T∑
t=1

max
X∈Xt
〈X, θ∗〉 −

T∑
t=1

〈Xt, θ
∗〉.

Note that this is not the expected regret and many approaches for linear bandits will

give high probability regret bounds. As in the stochastic K-armed bandit problem,

there have been algorithms developed for linear bandits based on both the upper

con�dence bound and Thompson sampling approaches. Before discussing these, it is

worth considering lower bounds on the regret.

Multiple lower bounds on the regret in the linear bandits problem have been

presented under di�erent assumptions about Xt. Firstly, if Xt = X = {(x1, . . . , xd) :

x2
1 +x2

2 = x2
3 +x2

4 = · · · = x2
d−1 +x2

d = 1} is the Cartesian product of d/2 circles, with

θ∗ restricted so that rewards lie in {−1, 1}, then Dani et al. (2008) showed that the

regret must be Ω(d
√
T ). If the action set is a hypercube, that is Xt = X = [−1, 1]d,

and Θ = {−1/
√
T , 1/

√
T}d, the regret must also satisfy E[RT ] = Ω(d

√
T ) (Lattimore

and Szepesvári, 2018). Additionally, when d ≤ 2T and the action set is a sphere

Xt = X = {x ∈ Rd : ‖x‖2 = 1}, then there exists a θ ∈ Rd with ‖θ‖2 = d/
√
T

such that E[RT ] = Ω(d
√
T ) (Rusmevichientong and Tsitsiklis, 2010). Hence, in most

settings, the non-asymptotic lower bound for the linear bandits problem is Ω(d
√
T ).
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Asymptotic lower bounds for linear bandits with �nite action spaces were proven in

(Lattimore and Szepesvari, 2017).

In the upper con�dence bound approaches for linear bandits, the general idea is

to construct high probability bounds on θ∗. In linear bandits, these upper con�dence

bounds on θ∗ are constructed by estimating θ∗ (often by regularized least squares)

using all past observations (X1, Y1), . . . , (Xt−1, Yt−1) and then building con�dence el-

lipsoids around this estimate which contain θ∗ with high probability. Then, at each

time step t, the action Xt which maximizes the inner product with some θ in the

con�dence set Ct−1, is selected, i.e.,

select (X̃t, θ̃t) = arg max
(x,θ)∈Xt×Ct−1

〈x, θ〉 then play, Xt = X̃t.

The key issue when de�ning con�dence sets for this problem is to deal with the depen-

dencies between the covariates. The �rst optimistic approach to the linear bandits

problem was in (Auer, 2002) where the dependencies were dealt with theoretically

by using a wrapper algorithm to divide observations into sets of almost independent

observations. A similar approach was taken in (Chu et al., 2011) and (Li et al., 2010).

Dani et al. (2008) use a more sophisticated martingale argument to deal with the

dependencies, through which they are able to obtain a tighter regret bound for the

LinRel algorithm of Auer (2002) of O(d log(T )
√
T log(T/δ)) with probability 1−δ. A

di�erent approach was taken in (Rusmevichientong and Tsitsiklis, 2010) for the case

where ‖θ∗‖2 ≤ S for some constant S > 0. Here a regret bound of O(d
√
T log3/2(T ))

was shown, which matches their lower bound up to polylogarithmic factors. Abbasi-

Yadkori et al. (2011) improved on these results by estimating θ∗ using regularized

least squares and developing strong self-normalized bounds for vector martingales.
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They de�ne the con�dence sets Ct at time t as,

Ct =

{
θ ∈ Rd : ‖θ̂t − θ‖V −1

t
≤ R

√
2 log

(
det(Vt)1/2 det(λId)−1/2

δ

)
+
√
λS

}

where Vt = Idλ +
∑t

n=1XnX
T
n , for a regularization parameter of the least squares

procedure, λ, and ‖x‖2
A = xTAx for a x ∈ Rd, A ∈ Rd×d. This leads to the algorithm

OFUL whose regret is shown to be O(d log(T )
√
T +

√
dT log(T/δ)) with probability

at least 1 − δ by Abbasi-Yadkori et al. (2011). Thus the OFUL algorithm matches

the lower bound of Ω(d
√
T ) up to logarithmic factors.

As in the stochastic K-armed bandit problem, an alternative to the upper con�-

dence bound approach is to take a Bayesian approach and use a Thompson Sampling

style algorithm. When using a Thompson sampling approach for the linear bandits

problem, it is useful to observe that in linear regression when the noise is Gaussian

with known variance σ2, if a Gaussian prior is placed on θ∗ then the posterior is conju-

gate and consequently is also Gaussian. This means that Thompson sampling can be

easily applied to the linear bandits problem. This was demonstrated experimentally

by Scott (2010); Chapelle and Li (2011); May et al. (2012). The theoretical regret

guarantees, however, were more di�cult to obtain. In particular, for frequentist regret

guarantees, it has been necessary to in�ate the posterior variance. In (Agrawal and

Goyal, 2013b), regret bounds of O∗(d2/3
√
T )1 are achieved with probability 1− δ by

using a Gaussian prior with variance of σ
√

9d log(T/δ) for some δ ∈ (0, 1). This is

equivalent to in�ating the variance of the posterior at each time step by
√

9d log(T/δ).

A further regret bound of O∗(d2/3
√
T ) was provided in (Abeille and Lazaric, 2017),

where an interesting connection between optimistic approaches and Thompson sam-

pling was given. Particularly, they showed that Thompson sampling is equivalent to

playing the arm with largest upper con�dence bound when the con�dence term has

been multiplied by a random sample from an appropriate distribution. The Bayesian

1O∗ is used to suppress logarithmic factors
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regret of Thompson sampling for linear bandits was also considered in (Russo and

Van Roy, 2014, 2016) where it is shown to be O(d log(T )
√
T ).

Note that, as shown in (Lattimore and Szepesvari, 2017), neither Thompson sam-

pling nor any of the optimistic approaches described are asymptotically optimal. Lat-

timore and Szepesvari (2017) propose an `Explore-Then-Commit' style algorithm in

which the horizon is split into an exploratory phase where all arms are played, and an

exploitative phase, where only the best arm is played. This algorithm achieves asymp-

totically optimal rate but has weaker �nite time regret guarantees. The linear bandits

problem has also been studied in the adversarial setting (see Part VI of (Lattimore

and Szepesvári, 2018) and references therein for an overview of the work done in this

area). Furthermore, there have been several extensions of the stochastic linear bandits

problem to consider the case where the reward can be modeled using a generalized

linear model (Filippi et al., 2010; Li et al., 2017; Jun et al., 2017). The stochastic

contextual bandits problem generalizes this further by allowing the expected reward

to be any function of the action and context (Langford and Zhang, 2008; Rigollet and

Zeevi, 2010; Lattimore and Szepesvári, 2018).

2.3.3 Gaussian Process Bandits

Although the linear bandits problem discussed above allows us to deal with the case

where we have a large number of arms, the assumption that the reward is a linear

combination of the feature vectors and the unknown parameter is somewhat limiting.

Therefore, various settings where the linearity assumption can be relaxed have also

been studied. One such setting is the Gaussian process bandits problem. In this

problem, the actions are covariates in X = [0, 1]d and at each time step t, a covariate

is selected and a reward of the form Yt = f(Xt) + εt is received, where f is some

function and εt is i.i.d N (0, σ2) noise. The aim is to minimize the regret with respect

to the maximum of this function. In the Gaussian process bandits problem, a Bayesian
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approach is taken and it is assumed that f is a sample from a Gaussian process (GP).

A brief introduction to Gaussian processes is given in Appendix A.4 and more details

can be found in (Rasmussen and Williams, 2006).

In the Gaussian process bandits problem, at time t = 0 we assume f is sampled

from a GP with mean 0 and known kernel k(x, x′). Typically in Gaussian process

bandits, the kernel will be assumed to be known exactly, and this is almost equivalent

to an assumption on the smoothness of the functions. The aim is then to select the

sequence of covariates to maximize f(x), or equivalently to minimize the regret. For

covariates X1, . . . , XT chosen by the algorithm, the regret is de�ned as

RT =
T∑
t=1

(f ∗ − f(Xt)).

Note that this de�nition of RT is random due to both the potential randomness in

the choice of the Xt and the random function f .

One of the most popular algorithms for the Gaussian process bandits problem is

the GP-UCB algorithm of Srinivas et al. (2010). This is an intuitive algorithm which

uses the normality of the posterior at each covariate, x, to de�ne an upper con�dence

bound on f(x), and then selects the covariate with highest upper con�dence bound.

Let µt−1(x) denote the posterior mean of the GP at time t and covariate x ∈ X

and let kt−1(x, x′) denote the posterior covariance function. Then, at time t, the

GP-UCB algorithm selects Xt = arg maxx∈X{µt−1(x) +
√
βtkt−1(x, x)} where βt is a

con�dence parameter de�ned in relation to the assumptions on f and X , but which is

usually logarithmic in t. The performance of this approach will depend on how much

information can be shared between covariates. Hence, the performance of GP-UCB

will depend on the kernel of the GP. This is manifested in the regret bound by an

information theoretic term, γT , de�ned as the maximal information gain. Intuitively,

this is the maximum amount of information we can gain about f after observing

T samples. Srinivas et al. (2010) bound this for common Gaussian process kernels
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(see Appendix A.4.3 for de�nitions of some common kernels). Speci�cally, for the

squared exponential kernel with any lengthscale, γT = O((log(T )d+1), for Matérn

kernels again with any lengthscale and parameter ν, γT = O(T
d(d+1)

2v+d(d+1) ), and for linear

kernels, γT = d log(T ). The regret of GP-UCB is then shown to be O(
√
TβTγT ) with

probability 1− δ (where this probability is over f). Srinivas et al. (2010) also provide

a high probability regret bound of O(
√
T (B
√
γT + γT )) for the case where f is a

�xed function in the Reproducing Kernel Hilbert Space (RKHS) corresponding to the

kernel k(x, x′) and has RKHS norm bounded by B (so in this case, the probability is

over the noise). See Appendix A.4.2 or (Rasmussen and Williams, 2006) for details

of the RKHS associated with a Gaussian process. The GP-UCB algorithm has also

been shown to work well in practice (Srinivas et al., 2010).

There have been various extensions of the GP-UCB algorithm and other methods

proposed for the Gaussian process bandits problem. Furthermore, the Gaussian pro-

cess bandits problem is similar to the Bayesian optimization problem (Frazier, 2018)

which has also been studied extensively. However, in Bayesian optimization, the aim

is to output a good XT ∈ X after T plays rather than minimizing the regret. Here, we

will focus on methods that come with theoretical regret guarantees on the cumulative

regret, as this is more relevant to our setting.

Wang et al. (2014) considered the case where the hyperparameters of the GP ker-

nel (e.g. lengthscale) were unknown. They showed that it is possible to both tune

the hyperparameters and minimize the regret simultaneously, proposing an algorithm

that has regret O∗(γT−1

√
TγT )2 with high probability for γT de�ned as in (Srinivas

et al., 2010). Krause and Ong (2011) extend the GP-UCB algorithm to consider a

contextual version. Here, in each round t, the environment presents the player with

a m-dimensional context ct and the player must select an x ∈ X to minimize f(ct, x).

For this problem, the regret is de�ned as RT =
∑T

t=1(f(ct, X
∗
t ) − f(ct, Xt)). Using

2We use the notation O∗ to suppress logarithmic factors.
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a composite kernel, Krause and Ong (2011) develop an upper con�dence bound ap-

proach which has regret O∗(
√

(d+m)TγT ) where here γT is de�ned as in Srinivas

et al. (2010) but for the d′ = d+m dimensional case. Bogunovic et al. (2016) consider

the case where the aim is not to �nd the maximum of a single GP f , but rather a

sequence of Gaussian processes which evolve according to the dynamics ft+1(x) =
√

1− εft(x) +
√
εgt+1(x) where {gt} are a sequence of GP(0, k) random functions,

f1 = g1, and ε ∈ [0, 1]. The regret here is de�ned as RT =
∑T

t=1(ft(X
∗
t ) − ft(Xt)).

Bogunovic et al. (2016) present two modi�cations of GP-UCB to this setting which ei-

ther use a sliding window or discount factor to forget old observations. They provide a

lower bound for this problem of Ω(Tε) and then show that, with high probability, their

approaches achieve regret O∗(max{
√
T , T εα}) for squared exponential kernels and

some known α ∈ [0, 1] depending on the algorithm, and O∗(max{
√
T

d(d+1)
2v+d(d+1) , T εα})

for Matérn kernels.

Since Gaussian processes are typically interpreted using Bayesian inference, it is

natural to use a Bayesian algorithm such as Thompson sampling in this setting. Russo

and Van Roy (2014) show that it is possible to use a standard Thompson sampling

algorithm (where at each time t a function is sampled from the posterior and then the

covariate maximizing this sampled function is played) to achieve Bayesian regret of

O(
√
TγT log(T )) where γT is the maximal information gain of Srinivas et al. (2010).

This gives an almost identical regret bound as that of the GP-UCB algorithm (Srinivas

et al., 2010). There have also been various di�erent algorithms proposed which are not

based on upper con�dence bounds or Thompson sampling but that have theoretical

guarantees (see e.g., Bull (2011); Wang et al. (2016); Contal and Vayatis (2016); Wang

et al. (2014); Shekhar et al. (2018)).

The problem of �nding lower bounds for the Gaussian process bandits problem

has been studied by Grünewälder et al. (2010); Scarlett et al. (2017); Scarlett (2018).

Grünewälder et al. (2010) provide a lower bound on the maximal Bayesian regret, that
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is E[maxx∈X f(x)−max1≤t≤T f(Xt)] with expectation taken over f as well, and pro-

vide an algorithm with nearly matching upper bound. Lower bounds on the Bayesian

cumulative regret (the regret de�ned at the beginning of this section) for the one di-

mensional case where X = [0, 1] were provided in (Scarlett, 2018). Here it was shown

that the Bayesian cumulative regret must satisfy E[RT ] ≥ Ω(
√
T ) for any kernel sat-

isfying some assumptions on the smoothness (these assumptions hold for the squared

exponential kernel and for Matérn kernels with ν > 2). This means that the cele-

brated approach in Srinivas et al. (2010), and any extensions that have regret bounds

involving γT , are sub-optimal, particularly for the Matérn kernel. Scarlett (2018) then

provide an algorithm based on successively eliminating sub-optimal regions (similar to

the Improved UCB algorithm (Auer and Ortner, 2010) for K-armed bandits) which

achieves Bayesian regret O(
√
T log(T )) for the one-dimensional problem. Scarlett

et al. (2017) provide lower bounds on the frequentist cumulative regret for speci�c

kernels. In this case, there is a �xed function f0 being maximized which has bounded

RKHS norm. They show that for the squared exponential kernel, the frequentist re-

gret must be Ω(
√
T log(T )d/4), while for the Matérn kernel with parameter v, it must

be Ω(T
v+d
2v+d ). These bounds show that the frequentist version of Srinivas et al. (2010),

and consequently, any frequentist regret bounds that involve γT , are sub-optimal,

although these are not as sub-optimal as in the Bayesian case. It is interesting to

observe that for the one-dimensional Matérn kernel, there is a signi�cant di�erence

between the Bayesian regret of Scarlett (2018) and the frequentist regret of Scarlett

et al. (2017).

In Chapter 6, we will use Gaussian processes within a stochastic bandit problem

to model the dependence of the reward of an arm on the time since it was last played.

Although the recovering bandits problem we consider in Chapter 6 is di�erent to the

Gaussian process bandits problem discussed here, some of the techniques and results

we use will come from the literature on Gaussian process bandits.
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2.3.4 Delayed Feedback Bandits

One extension of the multi-armed bandit problem that arises naturally in many appli-

cations, such as advertising and clinical trials, is that of delayed feedback. Typically,

in these applications, after an arm is played (i.e. an advert is shown or a drug is given

to a patient) the reward from that play is not received immediately, but instead it

is delayed. This problem is also relevant to education since the bene�t to a student

of answering a question will be delayed. Furthermore, in education the individual

e�ects of the questions will often be confounded, so we only observe the cumulative

e�ect of a series of questions. In Chapter 5, we study an extension of the delayed

feedback bandits problem to the setting where we only receive an aggregated reward

after some delay and we do not know which arms contributed to it. However, in most

of the related work on delayed feedback bandits discussed here, it is assumed that

after some delay, the player receives an observation along with knowledge of which

arm generated it.

In the delayed feedback bandits problem, it is necessary to make some assump-

tions about the delays. In the simplest case, it can be assumed that the delay is

a �xed, known constant. Dudik et al. (2011) study the contextual bandit prob-

lem with constant delays. Here, at each time t, the learner observes a context pre-

sented by the environment and then selects an action. The reward from this context-

action pair is then observed d ≥ 0 steps later. The algorithm presented in Dudik

et al. (2011) is a policy elimination algorithm which at each time step, uses only

the received observations to eliminate sub-optimal policies. With probability greater

than 1 − δ, they show that the worst case regret of this algorithm is bounded by

O(
√
KT log(TN/δ) + d

√
K log(TN/δ)) where N is the number of policies in the ini-

tial policy class. This corresponds to an additive regret penalty of O(d
√
K log(TN/δ))

compared to the non-delayed version of the problem.

Delays have also been studied in the adversarial bandits problem. In (Neu et al.,
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2010) Markov decision processes with adversarial bandit feedback are studied in the

setting where any policy will achieve reward close to its average reward in O(ρ) steps

for some known ρ. In order to deal with this, they propose to use observations up to

time t−d where d ≈ ρ log(T ) to construct estimates of the rewards. From introducing

this `delay' into their approach, they are penalized in the regret multiplicatively. In

their follow-up work, Neu et al. (2014) consider the same setting and give an algo-

rithm whose regret is also penalized multiplicatively, but obtains the improved rate

O(
√

(d+ 1)KT ). Cesa-Bianchi et al. (2016) consider a di�erent adversarial delayed

setting where agents interact and only receive information about the other agents

after some τ ∈ {0, . . . , d} steps. They provide an algorithm which consists of running

the EXP3 algorithm (Auer et al., 2002b) using only the received observations. This

leads to regret O(
√

(d+ 1 +K)T log(K).

An alternative, more realistic assumption about the delay is to assume that it is

stochastic. In this case, when an arm is played at time t, a delay τt is sampled from

the delay distribution of that arm and the observation from that play is received at

the (random) time t + τt. In many cases, it is assumed that the delay distribution

is the same across all arms and that the delays are sampled independently of the

rewards. Joulani et al. (2013) considered the general partial monitoring setting under

this assumption about the delay, and, as an example, also considered the stochas-

tic and adversarial K-armed bandit problem. In the stochastic multi-armed bandit

setting, they showed that compared to the standard (non-delayed) stochastic bandit

problem, the regret increases by an additive factor relating to the number of missing

observations. For delay distributions with a �nite expected delay, E[τ ], this additive

regret penalty is the expected delay itself.

Joulani et al. (2013) provide two algorithms for the stochastic delayed multi-

armed bandit problem, both of which achieve worst case regret that scales with

O(
√
KT log T +KE[τ ]). In the �rst algorithm, they directly modify the UCB1 algo-
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rithm of Auer et al. (2002a) by constructing modi�ed con�dence bounds based only

on the observations received by each time point. The second approach, QPM-D, is a

black box algorithm which allows for any algorithm for the multi-armed bandit prob-

lem to be used in the presence of delays. It works by creating queues of rewards for

each arm. Every time the algorithm receives an observation from a given arm, it is

placed in the queue. At each time step, the base bandit algorithm will suggest an

arm to play (using only the received observations). If there are rewards in the queue

for that arm, the �rst one will be taken, otherwise the suggested arm will be played

until a reward arrives. This black box approach can also be used in the adversarial

setting where the base algorithm is one for non-stochastic bandits. In this case, the

regret scales with O((1 + E[τ ])
√
KT ).

The queue based idea also underpins the approach of Mandel et al. (2015). Here

they consider stochastic bandits with stochastic delays that are bounded by some con-

stant d ≥ 0. They take a Bayesian approach and prove the same regret bound as the

QPM-D algorithm of Joulani et al. (2013) and show improved empirical performance.

Note that neither Joulani et al. (2013) nor Mandel et al. (2015) assume any knowl-

edge of the delay distribution. Vernade et al. (2017) also consider stochastic delays

in a stochastic bandit problem but take a di�erent approach, which assumes that the

entire delay distribution is known. Motivated by the problem of selecting adverts in

online advertising, they only consider Bernoulli reward distributions but also consider

the case where the observations may be `censored', that is, no observation for a play

may ever be received if the delay exceeds some threshold. In the censored setting, with

thresholdm, they show a lower bound on the regret of Ω(
∑

j 6=j∗
P(τ≤m)(µ∗−µj)

KLB(P(τ≤m)µj ,P(τ≤m)µ∗)
)

where KLB(θ, θ′) is the KL-divergence between two Bernoulli random variables with

success probabilities θ and θ′. In this censored settings, they provide modi�cations

of the UCB and KL-UCB algorithms which nearly match this lower bound. For the

non-censored case, they show that the Lai-Robbins lower bound of (2.1) also holds,
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and for delay distributions with light tails, they obtain similar upper bounds to the

censored case.

Another setting where delays are encountered in sequential decision problems is

when parallelizing or performing batch updates. Perchet et al. (2016) considered the

batched problem in the stochastic K-armed bandit setting. They propose Explore-

Then-Commit policies which play each arm an equal number of times in a batch and

then, at the end of the batch, they test if one arm is signi�cantly better than the

others. If there is found to be a statistically signi�cant better arm, this arm is played

until the horizon is reached. In this setting, we can only make decisions at the end of

a batch, which is equivalent to having delays on the observations (although here all

observations from arms played in the batch are received at the end of the batch). In

the two-armed case, if there are a relatively small number of batches (approximately

less than log(T )), Perchet et al. (2016) show that the problem dependent regret of

their algorithm will be almost minimax optimal.

Desautels et al. (2014) consider both the delayed and batch version of the Gaussian

process bandits problem. Their approach consists of modifying the exploration term of

the GP-UCB algorithm of Srinivas et al. (2010) by a multiplicative factor of exp(2C),

where C is such that σ̃t−1(x)
σt−1(x)

≤ exp(C) for σt−1(x), the posterior standard deviation

using knowledge of all played arms up to time t (for a �xed, known delay, this can

be calculated exactly without needing the observations), and σ̃t−1(x), the equivalent

using only the observations received up to time t. They show that the regret of

their approach increases by a multiplicative term of O(exp(C)) compared to the non-

delayed case. Chapelle and Li (2011) consider the practical performance of several

K-armed bandit algorithms under the presence of delay, and speci�cally in the batch

setting. They show that empirically Thompson sampling style algorithms are more

robust to the e�ects of delay.

Since an initial version of our work on delayed, aggregated anonymous feedback
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(Chapter 5) was made available online, there have been several new works looking at

delayed feedback in a bandit setting. Cesa-Bianchi et al. (2018) consider the adversar-

ial version of the problem we consider in Chapter 5 with the additional di�culty that

the rewards can be divided between future time steps. Here, when an arm is played,

an adversary will decide how to split the reward up over the next d time steps, and at

each time step, the player only observes the sum of the portions of the past d rewards

that are received in that round. They do not learn which arms contributed to each

observation, nor do they ever learn the complete (or partial) reward of a play. They

consider rarely switching strategies and play each arm consecutively, using geometri-

cally distributed phase lengths. Their algorithm achieves regret O(
√
KTd) and they

also provide a lower bound of the same order, demonstrating that their algorithm is

rate optimal in the adversarial setting.

Vernade et al. (2018) extend their previous work on delayed (non-anonymous)

feedback to the contextual linear bandit setting. They provide a lower bound of

Ω(
√

TD
P(τ≤m)

) where m is the censoring threshold and D the dimension of the feature

vector and also provide an algorithm whose regret almost matches this.

2.3.5 Non-Stationary Bandits

The non-stationary bandit problem is an extension of the multi-armed bandit problem

to allow the reward distributions of each arm to change over time. In Chapter 6, we

consider a particular non-stationary bandit problem where the reward of an arm

changes depending on how long it has been since the arm was played. There are

typically two types of non-stationary bandit problems which have been studied in

the literature, namely the restless bandit problem, where the reward distribution of

each arm can change at any time, and the rested bandits problem, where the reward

distribution of an arm only changes when the arm has been played. Here we will

discuss some of the key works in both these domains, since the recovering bandits
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problem studied in Chapter 6 is related to both problems. Note that in the non-

stationary problem, and particularly the rested bandits problem, the regret can be

di�cult to de�ne, and as such, many authors consider their own de�nition of regret

unique to the problem studied.

The restless bandits problem was �rst introduced by Whittle (1988). In this initial

work, the bandit problem was represented as a Markov decision process (as in the work

on Gittins indicies, see Section 2.2.3), but Whittle (1988) also assumed that the states

of the unplayed arms can change, and speci�cally, that the rewards of the unplayed

arms also evolve according to a Markov chain, which is not necessarily the same as

the one governing the evolution of the arms when they are played. This problem has

been shown to be PSPACE-hard (Papadimitriou and Tsitsiklis, 1999), and so �nding

optimal solutions to this problem is not feasible. Instead, Whittle (1988) presented

a heuristic index policy, now known as `Whittle index', which works well for many

of the problems motivating his work. However, it has been shown in (Ortner et al.,

2012) that such index policies can be sub-optimal in terms of regret in the restless

bandits problem.

Slivkins and Upfal (2008) consider the restless bandit problem where the `expected'

reward (or state) of each arm j, µj(t), evolves according to a Brownian motion with

volatility σj ≤ σ taking values on a bounded interval. At time t when arm Jt is

played, a stochastic reward in [0, 1] with expected value µJt(t) is observed. They

consider the `steady-state' regret, E[Rss] = lim supt supt0 E[1
t

∑t0+t
s=t0+1(µ∗(t)− µJt(t))]

where µ∗(t) is the optimal expected reward available at time t. They consider two

variants of the problem, the `state-informed' case where the player knows the current

state (expected rewards) before selecting an arm (as in Whittle (1988)) and the `state-

oblivious' case where after playing an arm, the player only receives knowledge of the

reward generated, and not the state. In the state-informed case, Slivkins and Upfal

(2008) provide a lower bound on the steady-state regret of Ω(Kσ2) and an intuitive
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algorithm which plays the arm with the largest expected reward unless the uncertainty

of another arm is su�ciently large. This algorithm matches the lower bound up to

logarithmic factors. An alternative algorithm is provided for the state-oblivious case

which achieves steady state regret O∗
(√

K
∑K

i=1 σ
2
i

)
up to logarithmic factors.

A more general restless bandit problem was studied in (Ortner et al., 2012). Here,

the only assumption on the Markov chain governing the evolution of the reward of

each arm is that it is irreducible, meaning that it is possible to get from any state

to any other state. In their de�nition of regret, the performance of their algorithm

is compared to an oracle policy which knows the rewards and transition probabilities

and selects the best sequence of T actions using this information. Note that since in

the restless bandits problem, the state evolves independently of the actions chosen,

this is equivalent to selecting the best action at each time step. They present an

algorithm for this problem based on a modi�cation of the popular UCRL2 algorithm

(Jaksch et al., 2010) for reinforcement learning, and bound its regret in terms of the

mixing times of the Markov chains and the maximal length of time it takes to get

from one state to another.

Another variant of the restless bandit problem is the setting where the reward

distribution changes abruptly at certain points. Finding the points where a time

series changes abruptly has been studied as the changepoint problem in statistics (see

e.g. Page (1955); Hinkley and Hinkley (1970)) and many works studying bandits in

an abruptly changing environment employ these methods to detect the changes in

an arm's reward distribution. Hartland et al. (2006) present two algorithms for the

problem which, after detecting a change using a statistical procedure, either discounts

the data from the time before the change, or employs a second bandit algorithm to

determine whether to restart the bandit problem. Both of these algorithms use a

modi�cation of UCB, and are shown to perform well experimentally, although no

theoretical guarantees are given. Mellor and Shapiro (2013) present an empirical study
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of an algorithm that incorporates Bayesian changepoint detection into Thompson

sampling.

Garivier and Moulines (2011) also consider restless bandits in an abruptly changing

environment but take a di�erent approach. Instead of using changepoint techniques,

they consider two modi�ed UCB approaches. The �rst, Discounted UCB, uses a

discount factor γ ∈ (0, 1) to downweigh past observations and correspondingly adjust

the con�dence bounds. The second, Sliding-Window UCB, only considers the past

τ > 0 timesteps. Garivier and Moulines (2011) provide a surprising lower bound on

the worst case regret of any algorithm used in the abruptly changing bandit problem

in terms of its regret in the standard stochastic bandit problem. They de�ne the

non-stationary regret as E[RNS
T ] = E[

∑T
t=1(µ∗(t)−µJt(t))] where µj(t) is the expected

reward of arm j at time t, and µ∗(t) is the expected reward of the optimal arm at time t.

Then Garivier and Moulines (2011) show that for the problem with two changepoints,

E[RNS
T ] ≥ cT

E[RT ]
for some universal constant c > 0 where the same policy is used to

de�ne the standard regret, E[RT ], and the non-stationary regret. This motivates the

need to develop strategies speci�cally tailored to the non-stationary bandit problem.

If the number of changepoints in T steps, CT is known, the non-stationary regret of

Discounted UCB and Sliding-Window UCB are both O∗(
√
KTCT ). Raj and Kalyani

(2017) consider a discounted version of Thompson sampling and optimistic Bayesian

sampling and show empirically that these perform better than several of the UCB

approaches in many rested and restless bandit environments, although they present

no theoretical guaranties on the performance of the Bayesian approaches.

Besbes et al. (2014) consider a restless bandit problem where there is a known `vari-

ation budget', VT , quantifying the total possible change in the reward distributions of

the arms in T plays. Speci�cally, VT is de�ned such that
∑T−1

t=1 sup1≤j≤K |µj(t)−µj(t+

1)| ≤ VT . They consider the same de�nition of non-stationary regret as Garivier and

Moulines (2011) and prove a lower bound of Ω((KVT )1/3T 2/3). They then propose an
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algorithm related to the EXP3 algorithm of Auer et al. (2002b) which uses prior knowl-

edge of VT , and show that this algorithm achieves regret O((K log(K)VT )1/3T 2/3), thus

almost matching the lower bound.

In the rested bandits problem, the expected reward of each arm only changes when

the arm is played. This type of problem has received interest in recent years due to

its applicability in the online retail setting where many bandit algorithms have been

applied. However, in rested bandits, it is often di�cult to decide how to de�ne the

regret since the expected reward of each arm at a given time step will depend on

the past actions taken, and this will be di�erent for the algorithm of interest and the

oracle. Hence, the per step non-stationary regret, as used in the restless case, may

not be appropriate here. Conversely, considering the policy regret, which compares

the total expected reward of a sequence of plays to that of an oracle, may not be

appropriate since computing the oracle may be too di�cult. Furthermore, this may

penalize an algorithm that makes a mistake early on in the learning process, which

is similar to the notion of Arora et al. (2012), that sub-linear policy regret is not

achievable in an adversarial bandits problem. Due to this di�culty, several simpli�ed

rested bandits problems, with alternative regret de�nitions, have been studied in the

literature.

Boune�ouf and Feraud (2016) assume that the reward of each arm varies according

to some known trend function of the times that each arm has been played. For this

problem, they consider the policy regret and show that an adaptation of the UCB

algorithm achieves policy regret similar to the regret of UCB in the standard bandit

setting. In the rotting bandits problem of Levine et al. (2017), the expected reward

of each arm decays according to some unknown monotonically decreasing function of

the number of times it has previously been played. They consider the policy regret,

however, they are able to show that in this setting the optimal policy (when the

rewards are known) is to greedily choose the arm with highest expected reward at
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any time step. In the case where the decay of the reward is not governed by any

function with known functional form, Levine et al. (2017) present a sliding window

algorithm that achieves policy regret O((K log(T ))1/3T 2/3). However, if the decay is

known to have some speci�c functional form with unknown parameters, these can be

estimated, and an alternative algorithm is presented that achieves problem dependent

regret O(
∑K

j=1
log(T )

∆j
), as in the standard K-armed bandit problem.

In (Boune�ouf and Feraud, 2016) and (Levine et al., 2017), they were able to

consider the policy regret since the problem speci�cation was such that the ex-

pected reward depended on the sequence of past plays only through the number

of times each arm had previously been played. This meant that their analysis could

be done by bounding the number of times an arm was played when it was sub-

optimal, as is commonly the case in standard multi-armed bandits. Cortes et al.

(2017) consider a setting where this is not possible. In this setting, it is assumed

that the reward process is selected by an adversary and the performance of an al-

gorithm is measured in terms of its per step regret. Cortes et al. (2017) propose

a UCB algorithm, DISC-UCB, that incorporates a notion of `weighted discrepancy'

into the con�dence bounds. For arm j at time t, the weighted discrepancy mea-

sures how di�erent the future observations are likely to be from the past ones, and

is de�ned as Dj,t(w) = E[Xj,t+1|Xj
t ] −

∑t
s=1 wsE[Xj,s|Xs−1

j ]. If the discrepancy is

known or bounded for all arms, the problem dependent regret can be bounded by

O(
∑K

j=1 max1≤t≤T ∆j,t log(T )/min1≤t≤T ∆2
j,t) where ∆j,t is the per step sub-optimality

gap of arm j, ∆j,t = E[Xj∗t ,t
|Xt−1

j∗t
]− E[Xj,t|Xt−1

j ]. Note that if the reward of an arm

gets arbitrarily close to the optimal at any time point, this regret bound will increase

to in�nity. Hence it may make more sense to consider the problem independent regret

in this setting. The corresponding problem independent regret bound of this approach

would be O∗(T 2/3K1/3) (up to logarithmic factors).

In (Mintz et al., 2017), a problem somewhere between the restless and rested
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bandits problem was studied. In this problem, which they refer to as the rogue bandits

problem, the expected reward of arm j at time t depends on some underlying state xj,t

via a parametric function with unknown parameters. Here, the states evolve according

to known non-linear dynamics depending on the previous state and whether or not

the arm was played at the previous time step. Thus, the evolution can be di�erent

when the arm is played or when it is not played. This is similar to the recovering

bandits problem studied in Chapter 6. Using knowledge of the parametric form of

the reward function and the complete noise model, they estimate the parameters of

the reward function for each arm using maximum likelihood. They then use these

maximum likelihood estimates to develop a KL-UCB style algorithm. However, since

the state dynamics evolve depending on the previous plays, it is possible to select

a sequence of plays such that the maximum likelihood estimates do not converge to

the true parameter values (i.e. if the observed states do not span the state space

su�ciently, the maximum likelihood estimates will be biased).

Even though the choice of actions by the algorithm will a�ect the next state,

Mintz et al. (2017) only consider the per-step regret, that is the cumulative di�erence

in reward from the optimal action and the action taken when the state is generated by

the algorithm of interest. They show that their algorithm achieves problem dependent

per step regret of O(
∑

j
log(T )/δ2

j ) where δj depends on the (random) number of plays

of each arm and the minimum distance between the rewards of any arms at any

time. As in (Cortes et al., 2017), δj can be arbitrarily small leading to almost in�nite

regret. The problem independent regret bound of this approach is O∗(T 2/3K1/3) (up

to logarithmic factors). Furthermore, the constants in this regret bound are quite

large and in practice, the authors found that an algorithm based on asymptotics

performs far better, although this algorithm comes with no theoretical guarantees.
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2.3.6 Bandits with Knapsacks

In the (non-stochastic) knapsack problem, a player must decide which of a set of K

items to place into a knapsack of �xed capacity where each item has a �xed size

and reward, and the aim is to maximize the total reward of the items placed in the

knapsack. In the stochastic knapsack problem, the knapsack still has a �xed size but

the item sizes and rewards are stochastic. In Chapter 4, we consider using bandit

techniques within the stochastic knapsack problem. The bandits with knapsacks

problem, introduced by Badanidiyuru et al. (2013), is an alternative bandit problem

related to the stochastic knapsack problem. In this problem, as in the standard

multi-armed bandit problem, playing an arm generates a stochastic reward, but here

playing each arm also generates a sample from some cost distribution. Badanidiyuru

et al. (2013) assume that there is some �xed budget and the aim is to select items

sequentially that maximize the total reward while ensuring that the total cost is

less than the budget. They propose two algorithms for the problem, one which is a

phase-based elimination algorithm and the other which uses optimistic estimates of

the reward-cost ratio, and present theoretical regret bounds for both.

The bandits with knapsacks problem was extended by Agrawal and Devanur (2014)

to consider the case where the knapsack constraints were no longer a linear function

of the costs, but some arbitrary convex function, and the reward is also some con-

cave function of the reward of each play. Agrawal and Devanur (2016) considered

the linear contextual version of the bandits with knapsack problem, where at each

time step the player receives a set of contexts xt(1), . . . xt(K) and then selects an

action Jt. The expected reward of taking action j at time t is given by θ∗Txt(j) and

the expected size of the item is λ∗Txt(j) for unknown parameters θ∗, λ∗ ∈ Rd, and

the aim is to maximize the cumulative reward subject to the knapsack constraint,∑T
t=1 λ

∗Txt(j) ≤ B. Agrawal et al. (2016) also considered a more general version of

the problem, and provided a computationally e�cient algorithm with strong regret
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guarantees. It is important to observe that all these approaches work with knapsack

sizes that e�ectively tend to in�nity. Hence they are not directly applicable to the

knapsack problem we study in Chapter 4 where the knapsack size is relatively small.

Burnetas et al. (2015) considered bandits with knapsack problems with deterministic

item sizes and capacities that are regularly renewed, and developed asymptotically

optimal strategies for this problem. This problem is again di�erent to the one studied

in Chapter 4.

2.3.7 Optimistic Planning

In Chapter 4, we use optimistic planning techniques to �nd near-optimal solutions to

the stochastic knapsack problem. Optimistic planning refers to a planning problem

which has been tackled using optimistic (UCB) approaches from the multi-armed

bandit literature. In planning problems, the aim is to return the optimal next action to

take, starting from any given state in a Markov Decision Process (MDP). A complete

de�nition of a MDP is given in Appendix A.3. A policy Π for a MDP is a mapping

from state to actions dictating which action to take from any given state. We de�ne

the discounted value of a policy Π up to horizon T as V (Π) = E[
∑T

t=0 rtγ
t|At = Π(St)],

where rt is the reward recieved at time t by taking action At = Π(St) from state St,

and γ ∈ (0, 1) is a discount factor. The aim is often to �nd an optimal �rst action to

take starting from a given state (Sutton and Barto, 1998). Optimistic planning has

been shown to be able to do achieve this is various settings, while only needing to

evaluate a small number of policies.

When the transition distribution is discrete, MDPs can often be represented as a

tree (Szörényi et al., 2014). Here the root node is some initial state s0 and from there,

the branches represent taking each possible action to arrive at an `action node', and

then the next set of branches are the transitions to the next states leading to `state

nodes'. This repeats so that the nodes on odd levels are state nodes with branches



CHAPTER 2. MULTI-ARMED BANDITS 47

for each action, and the nodes on even levels are action nodes with branches for each

state transition. Each policy is a subtree of this tree. Clearly for most problems, this

complete tree will be huge and so performing a search of the entire tree to �nd the

optimal policy or �rst action is computationally infeasible. Optimistic planning aims

to use bandit techniques together with a synthetic model of the environment, which

knows the reward and transition probabilities, or has access to a generative model of

them, to facilitate this tree search by only searching policies (or subtrees) that have

the potential to be optimal.

The aim of optimistic planning is to to �nd the best action to take from the

initial state s0. In some cases it is possible to bound the di�erence between the best

possible reward that can be achieved after starting from the optimal initial action

and the initial action the algorithm outputs. To this end, we de�ne the simple regret

as the di�erence between the maximal discounted value of a policy starting with the

optimal action, and that of a policy starting with the action chosen by the algorithm.

Bounds on the simple regret often involve properties of the tree and the MDP, such as

similarity between leaf nodes, and as such may be di�cult to interpret. In practice,

when optimistic planning algorithms are deployed in real systems, the algorithm will

be run using the synthetic model from the initial state s0 to return a (near) optimal

initial action a0. This action will be taken in the real environment and the algorithm

will be re-run from the resulting state.

Hren and Munos (2008) developed an optimistic planning algorithm for the case

where the rewards and transitions were deterministic and the agent had a �xed budget

of computational time in order to return a (near) optimal initial action. In this case the

decision tree just consists of the action nodes since the transitions are deterministic.

Their approach starts with an initial tree, consisting of just a root node s0, and

selects nodes to expand. A node is expanded when some computational time is used

to consider all the next states from this node (i.e. all the states reachable by taking
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one action from the current state) and add these to the tree. If St represents the nodes

in the tree that have not been expanded (i.e. that do not have branches coming from

them), the node it to be expanded is chosen such that ∀j ∈ St, uit + γ
dit

1−γ ≥ uj + γdj

1−γ

where ui is the sum of discounted rewards along the path to node i from root s0,

and di is the depth of node i. For each node i, ui + γdi

1−γ is an upper bound on the

discounted reward of any policy passing through i. At horizon T , the action leading

to the node in ST with the highest ui is selected and returned by the algorithm.

Hren and Munos (2008) show that this initial action chosen by their algorithm after

using T units of computational resource will have near optimal value. In particular,

if β ∈ [0, log(K)
log(1/γ)

] is such that the proportion of ε-optimal nodes (nodes whose value is

within ε of the optimal value) at depth d is less than εβ, the simple regret is bounded

by O(T
− log(1/γ)

log(Kγβ) ).

Optimistic planning with stochastic rewards and transitions was �rst considered

in (Bubeck and Munos, 2010) where the reward and transition probabilities were

assumed to be known. Here, they considered open-loop planning, where the action

taken only depends on its position in a sequence of actions and not the state the MDP

arrives in after taking the previous actions in the sequence. For this problem, Bubeck

and Munos (2010) provided lower bounds on the simple regret and an optimistic

planning algorithm that almost matches this lower bound.

Busoniu and Munos (2012) also considered the stochastic setting with known tran-

sition probabilities and deterministic rewards in [0, 1] but developed an optimistic

planning algorithm for the closed-loop problem. This approach also starts with an

initial tree of root node s0 and optimistically selects nodes to expand. In this case

expanding a node involves adding branches for each possible action from that state

and from each of these actions adding branches to the possible next states (note that

in this case the leaves of the subtree constructed by the algorithm at any stage will

always be states). The decision of which nodes to expand at any time t is made using



CHAPTER 2. MULTI-ARMED BANDITS 49

optimistic estimates of the expected discounted reward of a continuation of a node.

These optimistic estimates involve the known transition density and a bound on the

discounted future reward. Busoniu and Munos (2012) provide a bound on the simple

regret of this algorithm in terms of some characteristics of the tree.

Szörényi et al. (2014) presented an algorithm for optimistic planning in the gen-

eral MDP framework, where the rewards and transitions are both stochastic but the

rewards are bounded in [0, 1]. Furthermore, they only assumed access to a generative

model of both the rewards and transitions, rather than knowledge of the distributions.

In this case, since the reward and transition densities are unknown, the upper bounds

on value of a policy need to take into account uncertainty of any estimates. Hence,

they will usually consist of a term relating to this uncertainty along with bounds on

the future rewards like those seen in (Busoniu and Munos, 2012). The StOP algorithm

of Szörényi et al. (2014) works by maintaining a set of active policies and computing

upper con�dence bounds on the value of a continuation of each active policy, in order

to select which one to expand. For a policy Π of depth d, these upper con�dence

bounds are obtained by playing according to the policy in a virtual environment m

times, that is using the generative models to obtain samples of the rewards and tran-

sitions which can be combined to get m samples of the value of the policy. From

these samples, they get an estimate, V (Π), of the value of the policy up to depth d,

and then construct the upper con�dence bounds on the value of a continuation of a

policy, as UCB(Π) = V (Π) + γd

1−γ + 1−γd
1−γ

√
log(1/δ)

2m
. At time t, the active policies with

the two best upper con�dence bounds are selected and the one with smallest depth

is expanded. This arm selection criteria relies on the pure exploration multi-armed

bandits algorithm of Gabillon et al. (2012)3. In (Szörényi et al., 2014), expanding a

policy is equivalent to expanding the leaf nodes of the corresponding tree and then

3In the pure exploration or best arm identi�cation version of the multi-armed bandit problem,
rather than minimizing the regret over the whole horizon, the aim is to return a single best arm
either (i) after a certain number of plays or (ii) with �xed con�dence. See e.g. (Audibert and Bubeck,
2010; Even-Dar et al., 2006)
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sampling the value of all policies generated from it a given number of times. The

original policy is then replaced by its newly expanded descendants in the active set.

A termination criteria is used to ensure that the algorithm outputs an initial action

and that the expected maximal value of a policy starting with this action is within ε

of the optimal. Szörényi et al. (2014) bound the number of samples necessary to do

this.

Another approach using bandits to facilitate tree search has been developed in

(Kocsis and Szepesvári, 2006). Here an upper con�dence bound is constructed on each

node of the tree (rather than on a policy) and samples are obtained by sequentially

selecting nodes according the optimistic principle and observing transitions in the

virtual environment. This algorithm, UCT, is very popular and has been shown

to work in practice (see Browne et al. (2012) for examples). However, it may be

too optimistic (Coquelin and Munos, 2007). In this thesis, we will mainly consider

optimistic planning approaches rather than UCT.



Chapter 3

Motivating Problems from Education

In this chapter, we start to consider how multi-armed bandits can be used to select

questions in education software. We begin by discussing some of the other progress

made in applying multi-armed bandits to online education, before considering the

fundamental issue of how to de�ne the reward in such an educational environment.

Finally, we detail the speci�c challenges arising from the task of selecting questions in

education software that have motivated the multi-armed bandit problems studied in

this thesis. These are, having a �xed limit of homework time, the delay in the e�ect

of answering a question, and the importance of allowing enough time before repeating

a question. In our work, we focus on the teaching of mathematics to UK secondary

school students (aged 11-16), where students can answer each question correctly or

incorrectly. We assume that a student will receive some bene�t from answering the

question regardless of whether they got it correct. We will generally also focus on the

task of selecting questions for one student individually as this not only reduces the

complexity of the problem, but can also be shown to improve student performance

(Lee and Brunskill, 2012).

51



CHAPTER 3. MOTIVATING PROBLEMS FROM EDUCATION 52

3.1 Previous Work on Using Multi-Armed Bandits

in Education

One of the most notable works on using multi-armed bandit techniques in education

software appears in (Clement et al., 2014, 2015). Here, two algorithms (based on

di�erent pedagogical assumptions) are presented and evaluated in a real life environ-

ment where students interacted with an online education platform that was selecting

tasks based on their algorithms. Both these algorithms are adaptations of the EXP4

algorithm (Auer et al., 2002b) and, as such, consider bandits with expert advice. In

this setting, the arms are the di�erent questions and the experts are used at each

time step to present the algorithm with a subset of potential arms (questions) which

are appropriate at the given time. This set is determined using the so called zone of

proximal development (Luckin, 2001). Intuitively, questions in the zone of proximal

development are questions that will slightly challenge the student, but that are not

too challenging.

In the �rst algorithm of Clement et al. (2015), minimal assumptions about a

learning model are made, and the reward is de�ned for some parameter d > 0, as

the di�erence in the proportion of the most recent d/2 questions that were answered

correctly, and the proportion of the d/2 questions before that that were correct. The

expert then gives a set of feasible next questions according to the theory of the zone

of proximal development and the algorithm selects questions from this set to give to

the student using EXP4. In the second algorithm, Clement et al. (2015) assume that

each student has an estimated competency level in a skill and each activity has a

corresponding di�culty level. The expert then provides minimal competency levels

for each question. This can then be translated to give a set of questions in the zone of

proximal development. The reward in this case is the di�erence in the di�culty level

of the question and the student's competency level. They evaluate their approaches
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in both a simulated and real life environment where the aim is to teach children to

decompose numbers by considering money, and each question can be de�ned by a

�nite set of parameters. Their experimental results show that both these approaches

perform well in practice, and can lead to improved student learning.

Mu et al. (2017) extend the work of Clement et al. (2015) to consider the case

where the zone of proximal development needs to be estimated. They show that

in the �rst algorithm of Clement et al. (2015), a model of student knowledge can

be used to give an estimated zone of proximal development. Mu et al. (2018) then

extend this model to capture how students forget material and incorporate a trace-

based procedure for modeling student progression through tasks (see (Andersen et al.,

2013) for details). Segal et al. (2018) also use an EXP4 style algorithm and borrow

ideas from the theory of zone of proximal development. Instead of updating the

weights of the EXP4 algorithm using the standard procedure, they instead update

them di�erently depending on whether or not the student got the question correct.

Their initial weights are based on o�ine estimates of the di�culty of each question for

a particular student. Then when the student is given a question, if they get it correct,

the weights of any harder questions (based on these initial estimates) are increased,

whereas if they get it wrong, the weights of the harder questions are decreased. This

approach shows good performance on data simulated from a model and also on a large

experiment with real students.

Xu et al. (2016) take a contextual bandit approach to recommending entire se-

quences of courses (in this work they are thinking of courses at university level, so

consider sequences of modules taken across the whole degree), taking into account

any prerequisites of the courses and other external features. To do this, they �rst

�nd all feasible sequences of courses and use these as arms in a contextual bandit

problem. The contexts are features of the student, such as educational background,

and the reward they aim to maximize is the student's Grade Point Average (GPA)
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when graduating after having taken this sequence of courses. Their algorithm clusters

students into groups based on their contexts and explores the course sequences for

each cluster until there are enough students in the cluster, at which point the cluster

is uniformly split into two. They provide theoretical regret bounds for their approach

and experiments using historical data.

Lan and Baraniuk (2016) also take a contextual bandit approach, but their aim

is to suggest activities for students (these activities could be a series of questions

or videos) in between assessments. Here, the reward is the score in the assessment

following the suggestion. They assume that estimates of the student's latent compe-

tencies in a range of di�erent skills are available to the algorithm and use these to

de�ne contexts along with other features of the student. To reduce the dimensionality

of their context space they use sparse factor analysis. They provide three algorithms

for this problem; the �rst is a UCB logistic regression approach which has theoretical

guarantees, the second is an alternative UCB approach based on asymptotics with

good experimental performance (on historical data) but no theoretical guarantees,

and the �nal one is a Thompson sampling logistic regression algorithm which again

has good empirical performance but no regret guarantees.

Liu et al. (2014); Erraqabi et al. (2017) take an alternative approach. Here they

are motivated by working directly with educational app and games designers. This

means that as well as suggesting questions which help learning, they also want to be

able to provide the designers with feedback on the e�ectiveness of each activity. Con-

sequently, the trade-o� between suggesting good questions and reducing uncertainty

about the reward of the questions is made more explicit here. They develop algo-

rithms which aim to play arms which maximize a weighted combination of the reward

and uncertainty where the weights are determined by the user. Liu et al. (2014) show

that this approach works well on data simulated from a model of student learning,

when the student's reward is de�ned as whether they get the next random question
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they are given correct. Erraqabi et al. (2017) consider an alternative de�nition of

reward, the number of additional questions the student answers after answering the

question of interest (they are considering an educational game environment where the

student can give up and leave at any time), and again demonstrate good performance

on simulated data along with theoretical regret bounds.

Lindsey et al. (2013) consider the problem of selecting an optimal instructional

policy from a set of policies where each is represented by a set of parameters. This

setting includes problems such as teaching people to distinguish between cancerous

and clear xrays. A policy for teaching in this case is the sequence of positive and

negative examples the student is shown. In particular, this sort of policy can be

represented by a parameter, p, which gives the probability of showing a positive or

negative sample given the last example was from the same category. For learning this

sort of educational policy, Lindsey et al. (2013) propose to use a Gaussian process

bandits algorithm, and speci�cally the GP-UCB algorithm of Srinivas et al. (2010). In

a real life experiment, the tth participant is given a sequence of images to learn from

according to the tth parameter value chosen by GP-UCB and then all participants

are given the same test. The authors observe that later participants perform better

on the test and that the algorithm �nds a near optimal instructional policy.

Matiisen et al. (2017) present an interesting approach to teaching machine learning

algorithms tasks which could also be applicable to teaching students in the educational

context. They assume that each task they are trying to teach has a learning curve

which governs how well the `student' will learn the task at a given time point. They

aim to give the student tasks at times when the learning curve of that task is steepest

(so when the gradient is largest). For this, they apply a bandit approach where the

reward is the gradient of the learning curve. This is not known explicitly and so the

algorithm must estimate it. They use a Boltzmann exploration strategy (Sutton and

Barto, 1998) and estimate the gradient of the learning curves using linear regression
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on the last K plays. The empirical performance of this approach is demonstrated by

training machine learning algorithms.

There have also been other approaches looking at applying bandits to di�erent

challenges in education systems. For example, Lomas et al. (2016) use bandits to select

between di�erent layouts of an educational app and Williams et al. (2016) present

students with explanations for incorrect answers by crowdsourcing the explanations

and using a bandit algorithm to pick between them. An additional line of work comes

from modeling the problem of selecting questions in education software as a partially

observable MDP (POMDP). Here the states are often the student's `knowledge state'

given by a procedure such as Bayesian knowledge tracing (Corbett and Anderson,

1994) and the student transitions between states by answering questions. Examples

of such POMDP approaches can be found in (Ra�erty et al., 2011; Theocharous et al.,

2009; Antonova et al., 2016).

3.2 De�ning the Reward

One of the most fundamental challenges when applying multi-armed bandit techniques

to the problem of selecting questions in education software is how to de�ne the `reward'

of a question. Intuitively, this reward should measure the amount of learning the

question provided, or how much the student bene�ted from answering the question.

A bandit algorithm will learn to suggest questions with high reward so it is important

to make sure that this is appropriately de�ned in order to ensure that the algorithm

is behaving in the desired way. Consider, for example, de�ning the reward as whether

the student got a question correct. We may believe that it is desirable for students

to get questions correct, however, using the correctness as the reward in a bandit

problem will lead to the algorithm suggesting questions which are too easy for the

student, as these will have the highest chance of being correctly answered. Instead,
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there are several di�erent approaches that can be taken. We discuss here some of

these.

In most online education systems, the type of data that will be collected when a

student answers a question will include whether they got it correct, and how long it

took them to answer it. Hence, one option is to de�ne the reward in terms of this

data. For example, if the student took a long time to answer a question and then

eventually got it correct, this would suggest that they thought about it a lot and then

managed to �gure it out. This is potentially the sort of question we want to be giving

to the student. Hence, one could de�ne the reward as rt = I{correct}st where st is the

time it took them to answer the tth question. This would stop the system suggesting

really easy questions that can be answered very fast. One possible drawback of this

approach is that it treats all incorrect answers the same. There are di�erent degrees

of incorrect answers which could be used to inform rewards (e.g. in a multiple choice

scenario one wrong answer may be closer to the correct answer than another). There

have also been several similar data-based de�nitions of reward in the literature. For

example, Clement et al. (2015) de�ne the reward as the di�erence in the proportion

of the last d questions answered correctly, and Ra�erty et al. (2011) use the negative

of the time taken to answer the question as the reward.

An alternative approach is to use an educational model and de�ne the reward in

terms of this. For example if the model consists of various parameters representing

the student's understanding in di�erent topics, where large values indicate a high un-

derstanding of the topic, one approach could be to de�ne the reward as the di�erence

in the parameters after and before the question has been answered and the model

has been updated with the new data. One drawback of this approach is that you will

only ever be as good as your model, so if the model is wrong, the questions chosen

may not be optimal. Model based approaches have been considered in the literature,

for example, Clement et al. (2015) measure the reward as the di�erence in the knowl-
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edge required to answer a question and the current knowledge of the student (both

calculated by a model).

In some cases, there may be something observable that we directly want to maxi-

mize. For example, if we know that student progress is monitored through a sequence

of questions at the end of every homework (a mini-test or equivalent), then it is clear

that we wish to give them questions which will maximize the score in these tests.

Alternatively, if participation is optional, we could de�ne the reward as the number of

future questions answered. This de�nition of reward is very much dependent on the

speci�cs of the online educational system, as not all of them will have the capacity (or

desire) to test students regularly or measure engagement. Using alternative observ-

able features to de�ne the reward has been considered by Liu et al. (2014); Erraqabi

et al. (2017); Lindsey et al. (2013); Lan and Baraniuk (2016). In particular, Liu et al.

(2014) use whether the next (randomly generated) question is answered correctly as

a proxy for reward, whereas Erraqabi et al. (2017) use the number of additional ques-

tions the student answers. Lindsey et al. (2013) look at the score on a test after

giving the student a sequence of questions, and Lan and Baraniuk (2016) consider an

environment where a test is given after every activity selected by the algorithm.

From the above discussion, it is clear that de�ning the reward for a bandit al-

gorithm used in education software is not straightforward. There have been many

approaches proposed, each of which has advantages and disadvantages. Furthermore,

not all of these de�nitions will be appropriate in all online education systems. Inter-

estingly, in the studies that involve using multi-armed bandits in a live educational

environment with real students, there has been no consensus made about which de�ni-

tion of reward to use. However, it is pleasing that in most cases the bandit algorithm

still performed well in practice. Hence, the challenge of de�ning the reward when

using a multi-armed bandit algorithm largely comes down to the setup of the system

and which particular features the educator/designer wants to optimize. In what fol-
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lows, and for the remainder of the thesis, we will always assume that the reward has

been de�ned and that it is an appropriate measure of the learning process. We now

discuss the speci�c problems in education that have motivated the work in this thesis.

3.3 Fixed Limit on Homework Time

It has long been acknowledged that, at the secondary school level, setting students

homework can lead to improved academic performance (Cooper et al., 2006). As such,

it has become an integral part of the learning experience. However, recently, it has

been shown that setting students too much homework can lead to increased stress and

anxiety (Galloway et al., 2013) and may even cause students to burn out, hindering

academic performance. Therefore, it is desirable to set only a limited amount of

homework. It is also bene�cial to quantify the amount of homework in terms of the

time that students spend on it, rather than the number of questions they are set,

since there can be high variability in the amount of time it takes students to answer

questions (Jaru²ek et al., 2013). We are therefore interested in selecting questions for

students to answer in a �xed time limit. Given this limited time frame, we want to

give the students questions that will most improve their learning early on, to make

sure that they have enough time to complete them, before moving on to additional

extension questions. For simplicity of the mathematical model, we do not assume

that the order that students are given questions in the homework has an e�ect on the

bene�t from answering each individual question, although this is an interesting area

for future work.

Online education software has the potential for adaptive learning strategies to be

easily incorporated (Alshammari et al., 2014). These adaptive strategies are partic-

ularly useful when dealing with the problem of setting homework tasks with a �xed

time limit, since we can develop strategies which are adaptive to the amount of time
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remaining in the homework. This means that if the system suggests a question to a

student that ends up taking a long time, the rest of the homework can be modi�ed

so that the student still achieves the optimal amount of learning given the time they

have remaining to complete the homework.

When designing such a strategy, we must take into account the fact that both the

amount of time it takes students to answer questions and the bene�t they gain from

answering each question are stochastic and will only be observed once we have asked

the questions (although we can assume we have access to a generative model). Hence,

we wish to select a sequence of questions that maximize the expected cumulative

bene�t to the student while satisfying the time constraint. This is mathematically

equivalent to an instance of the stochastic knapsack problem. Here, the items are

questions, with sizes corresponding to the amount of time it takes a student to answer

the questions, and the rewards of each item is the bene�t to the student of answering

the question. The knapsack constraint is then the time limit of the homework task.

In Chapter 4, we present an algorithm for the stochastic knapsack problem built

on the optimistic planning principle (see Section 2.3.7 for background of optimistic

planning). This algorithm could be used to provide an adaptive sequence of questions

for the student. We assume that this algorithm has access to a generative model of

item sizes and rewards. In the educational setting this is a reasonable assumption

since there has been much work in the literature on developing models of student per-

formance (Corbett and Anderson, 1994; Hambleton and Swaminathan, 2013; Shahiri

et al., 2015) and the time taken for students to answer questions (Jaru²ek and Pelánek,

2012; Jaru²ek et al., 2013; Ma et al., 2016). For our algorithm, a further assumption

that is necessary to make is that the item size distributions are discrete, and that

there are only a �nite number of possible item sizes. In the educational setting, this is

equivalent to having discrete response times and so an additional discretization step

may be necessary in order to apply our algorithm. Our algorithm models the prob-
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lem as a decision tree and returns a near-optimal policy which tells us which item

to play (question to give) based on how long the past questions have taken. This

policy is constructed o�ine so the idea is that once we have run the algorithm to get

a near-optimal policy, this can be incorporated into education software to determine

the adaptive sequence of homework questions to give to a student. Here we consider

one student individually, however, many of the modeling approaches used to obtain

the generative models combine information from di�erent students.

3.4 Delay in the E�ect of Answering Questions

Typically in an online education environment, students will answer many questions

consecutively in a short period of time. The bene�t to a student of answering each

question is not normally immediate. Instead, it takes time for the information in a

question to be consolidated into knowledge (Dudai et al., 2015; Cowan, 2008), and for

us to observe that the student has learnt something. This means that when we observe

an improvement (or decline) in their performance, it is often di�cult to determine

when the learning took place and exactly which of the past questions caused this e�ect.

Particularly, this makes it di�cult to assign credit to each question and determine the

e�ectiveness of each question individually. However, it is reasonable to assume that

when we see a change in the student's performance, that this is the aggregated e�ect

of several past questions, the individual e�ects of which are delayed and only visible

in this aggregate.

We consider a variant of the multi-armed bandit problem where the individual

rewards are delayed and only visible as an aggregate in Chapter 5. This can then be

related back to the education problem described above by setting each question as an

arm and assuming that at time t we observe the summed reward of some number of

questions asked previously. However, we do not learn which questions contributed to
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this aggregated reward, nor the individual reward of each question. This setting lends

itself naturally to a de�nition of reward that is directly observable. Particularly, it is

common for students to see various questions on a topic and then be assessed on their

knowledge of it through an end-of-module test or equivalent. In this case, it would

be possible to de�ne the aggregated reward from all the questions the student has

seen as their score on this end-of-module test. We can assume that the reward from

each individual question is delayed and only observed in this aggregate end-of-module

test reward. With this de�nition of reward, the aim is to give the students questions

that maximize their score in the end-of-module test, and this is also a reasonable aim

pedagogically.

3.5 Allowing Time between Repetitions of a Ques-

tion

Consider now the task of teaching students times tables via an app or other online

environment. In this case, the ability of the student to recall the solution to a partic-

ular question (e.g. 6×3) will often depend on how long it has been since they last saw

that question. Intuitively, if a student has just answered a question and are asked it

again immediately, they will not learn as much as if we wait some time before asking

it again. This phenomenon has been studied extensively in educational research (e.g.

(Bahrick and Phelphs, 1987; Dempster, 1989)). A common approach is to assume

that the rate at which the student forgets information is a function of how long it has

been since they last saw the information, and this function is known as the forgetting

curve (Ebbinghaus, 2013; Averell and Heathcote, 2011). An example of a forgetting

curve is given in Figure 3.1. In the times tables context, each question may have an

individual forgetting curve. There have been various theories developed about where

on the forgetting curve it is best to revise each question (see (Cepeda et al., 2006)
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Figure 3.1: An example of a forgetting curve. Image taken from (Edge et al., 2012).

for a review of some of these). However, it is generally agreed that allowing time

between repetitions of the same question leads to improved long-term retention of

the information (Dempster, 1989). Hence, we wish to develop regimes that consider

this forgetting curve and ask students questions at appropriately spaced intervals,

corresponding to the points where they are likely to learn the most.

This problem has been studied in the educational literature and various approaches

proposed. The most well known of these is spaced repetition (Wozniak and Gorze-

lanczyk, 1994; Cepeda et al., 2006; Edge et al., 2012; Reddy et al., 2016). Spaced

repetition is a very general framework for devising a schedule which considers the

spacing between repetitions of the same question. One particularly popular form of

spaced repetition is the Leitner system (Leitner, 1995; Reddy et al., 2016). Here,

there are several `boxes' into which questions can be placed depending on how well

they are assumed to be known. All questions start in the �rst box. When a question

is selected, if it is answered correctly, it is moved into the next box along, while if

it is answered incorrectly it is returned to the �rst box. Boxes are chosen accord-

ing to some schedule which prioritizes the initial boxes, since these are the unknown

questions. This technique, while simple, has proved immensely popular with many

e-learning sites employing it (see references in (Reddy et al., 2016)). There have been

many regimes proposed to learn the optimal frequency at which to take a question
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from each box. For example, Pavlik and Anderson (2008) use a predictive model of

performance, Reddy et al. (2016) use results from queuing theory, and several algo-

rithms based on the SuperMemo algorithms (e.g. Biedka et al. (1998)) use neural

networks.

In the literature, it is often assumed that the forgetting curve takes the form of

an exponential or power law curve (Averell and Heathcote, 2011) and most spaced

repetition, and alternative approaches, are built under this assumption. However,

we will take a more general approach and directly model the expected reward of the

question as an unknown function of the time since the question was last asked. We

only assume that this function is smooth enough to be modeled by a Gaussian process.

Note that this allows for the expected reward to increase with the time since it was last

asked, but also to decrease if it has been too long since the question was asked. When

we select a question, we assume that the reward we observe is given by this reward

curve with additive Gaussian noise. In Chapter 6, we consider a stochastic K-armed

bandit problem where the expected reward of each arm is modeled as a function of

the time since each arm was last played, called the recovery function. We assume that

these functions are sampled from a Gaussian process and present Thompson sampling

and UCB algorithms for this problem. Our algorithms learn to play each arm when

its expected reward is high, without needing knowledge of the functional form of the

recovery curve. This corresponds to waiting an appropriate amount of time between

plays of the same arm. We can apply this approach to the education problem by

assuming that each question is an arm. This would ensure that questions are asked

when their reward is high, corresponding to asking questions at appropriately spaced

intervals.



Chapter 4

Optimistic Planning for the

Stochastic Knapsack Problem

4.1 Introduction

The stochastic knapsack problem (Dantzig, 1957), is a classic resource allocation

problem that consists of selecting a subset of items to place into a knapsack of given

capacity. Placing each item in the knapsack consumes a random amount of the ca-

pacity and provides a stochastic reward. Many real world scheduling, investment,

portfolio selection, and planning problems can be formulated as the stochastic knap-

sack problem. Consider, for instance, a �tness app that suggests a one hour workout

to a user. Each exercise (item) will take a random amount of time (size) and burn a

random amount of calories (reward). To make optimal use of the available time the

app needs to track the progress of the user and adjust accordingly. Once an item is

placed in the knapsack, we assume we observe its realized size and can use this to

make future decisions. This enables us to consider adaptive or closed loop strategies,

which will generally perform better (Dean et al., 2008) than open loop strategies in

which the items chosen are invariant of the remaining budget. We assume that we do

65
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not know the reward and size distributions of the items but are able to sample these

from a generative model.

Finding exact solutions to the simpler deterministic knapsack problem, in which

item weights and rewards are deterministic, is known to be NP-hard and it has been

stated that the stochastic knapsack problem is PSPACE-hard (Dean et al., 2008). Due

to the di�culty of the problem, there are currently no algorithms that are guaranteed

to �nd satisfactory approximations in acceptable computation time. While ultimately

one aims to have algorithms that can approach large scale problems, the current state-

of-the-art makes it apparent that the small scale stochastic knapsack problem must be

tackled �rst. The emphasis in this chapter is therefore on this small scale stochastic

knapsack setting.

The current state-of-the-art approaches to the stochastic knapsack problem where

the reward and size distributions are known, were introduced in (Dean et al., 2008).

Their algorithm splits the items into small and large items and �lls the knapsack

exclusively with items of one of the two groups, ignoring potentially good items in

the other group. This returns a solution that comes within a factor of 1/(3+κ) of the

optimal, where κ > 0 is used to set a threshold for the small items. The strategy for

small items is non-adaptive and places items in the knapsack according to their reward

- consumption ratio. For the large items, a decision tree is built to some prede�ned

depth and an exhaustive search for the best solution in that decision tree is performed.

For most non-trivial problems, this tree can be exceptionally large. The notion of

small items is also underlying recent work in machine learning where the reward

and consumption distributions are assumed to be unknown (Badanidiyuru et al.,

2013). The approach in (Badanidiyuru et al., 2013) works with a knapsack size that

converges (in a suitable way) to in�nity, rendering all items small. In (Burnetas et al.,

2015) adaptive strategies are considered for deterministic item sizes and renewable

capacities. The stochastic knapsack problem is also a generalization of the pure
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exploration combinatorial bandit problem (Chen et al., 2014; Gabillon et al., 2016).

It is desirable to have methods for the stochastic knapsack problem that can make

use of all available resources and adapt to the remaining capacity. For this, the tree

structure from (Dean et al., 2008) can be useful. We propose using ideas from op-

timistic planning (Busoniu and Munos, 2012; Szörényi et al., 2014) to signi�cantly

accelerate the tree search approach and �nd adaptive strategies. Most optimistic

planning algorithms were developed for discounted MDPs and as such rely on dis-

count factors to limit future rewards, e�ectively reducing the search tree to a tree

with small depth. However, these discount factors are not present in the stochastic

knapsack problem. Furthermore, in our problem, the random variables representing

state transitions (item sizes) also provide us with information on the remaining ca-

pacity which relates to possible future rewards. To avoid the use of discount factors

and use this transition information, we work with con�dence bounds that incorporate

estimates of the remaining capacity. We also use these estimates to determine how

many samples we need from the generative model of the reward/size of an item.

For this, we need techniques that can deal with weak dependencies and give con-

�dence regions that hold simultaneously for multiple sample sizes. We therefore

combine Doob's martingale inequality (Doob, 1953) with Azuma-Hoe�ding bounds

(Azuma, 1967) to create our high probability bounds. Following the optimistic plan-

ning approach, we use these bounds to develop an algorithm that adapts to the

complexity of the problem instance. In contrast to the current state-of-the-art, it

is guaranteed to �nd an ε-good approximation for all problem instances and, if the

problem instance is easy to solve, it expands only a moderate sized tree. Our algo-

rithm, OpStoK, is also an `anytime' algorithm in the sense that it improves rapidly to

begin with and, even if stopped prematurely, it will still return a good solution. For

OpStoK, we only require access to a generative model of item sizes and rewards, and

no further knowledge of the distributions.
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A solution to the stochastic knapsack problem will take the form of a policy. A

policy can be thought of as a sub-tree or a set of rules telling us which item to play

next depending on previous item sizes (see Section 4.A.1 for examples). We de�ne the

value of policy to be its expected cumulative reward and seek to �nd policies whose

value is within ε of the optimal value. The performance of our algorithm is measured

in terms of the number of policies it expands in order to �nd such an ε-optimal policy,

since this quantity relates to the run-time and complexity. In practice, the number of

policies explored by our algorithm OpStoK is small and compares favorably to that of

Dean et al. (2008).

4.1.1 Related Work

Due to the di�culty of the stochastic knapsack problem, the main approximation

algorithms focus on the variant of the problem with deterministic sizes and stochastic

rewards (eg. Steinberg and Parks (1979); Morton and Wood (1998)), or stochastic

sizes and deterministic rewards (eg. Dean et al. (2008); Bhalgat et al. (2011)), where

the relevant distributions are known. Of these, the most relevant works to our are

(Dean et al., 2008) and (Bhalgat et al., 2011) where decision trees are used to obtain

approximate adaptive solutions. To limit the size of the decision tree, Dean et al.

(2008) use a greedy strategy for `small' items while Bhalgat et al. (2011) group items

together. Morton and Wood (1998) use a Monte-Carlo sampling strategy to generate

a non-adaptive solution in the case with stochastic rewards and deterministic sizes.

The UCT style of bandit based tree search algorithms (Kocsis and Szepesvári,

2006) uses upper con�dence bounds at each node of the tree to select the best action.

UCT has been shown to work in practice, however, it may be too optimistic (Coquelin

and Munos, 2007).

Optimistic planning was developed for tree search in large deterministic (Hren

and Munos, 2008) and stochastic systems, both open (Bubeck and Munos, 2010)
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and closed loop (Busoniu and Munos, 2012). The general idea is to use the upper

con�dence principle of the UCB algorithm for multi-armed bandits (see Chapter 2 for

an introduction to the multi-armed bandit problem) to expand a tree. This is achieved

by expanding nodes that have the potential to lead to good solutions, using bounds

that take into account both the reward received in getting to a node and the reward

that could be obtained after moving on from that node. An overview of optimistic

planning and a more detailed discussion of the related work is given in Section 2.3.7.

The closest work to ours is that of Szörényi et al. (2014) who use optimistic

planning in discounted MDPs, requiring only a generative model of the rewards and

transitions. Instead of the UCB algorithm, like ours, their work relies on the best

arm identi�cation algorithm of Gabillon et al. (2012). However, there are several

key di�erences between our problem and the MDPs optimistic planning algorithms

are typically designed for. Generally, in optimistic planning it is assumed that the

state transitions do not provide any information about future reward. However, in

the stochastic knapsack problem this information is relevant and should be taken into

account when de�ning the high con�dence bounds. Furthermore, optimistic planning

algorithms are typically used to approximate complex systems at just one point and

so only return a near optimal �rst action. In our case, the decision tree is a good ap-

proximation to the entire problem, so we output a near-optimal policy. Furthermore,

to the best of our knowledge, our algorithm is the �rst optimistic planning algorithm

to iteratively build con�dence bounds which are used to determine whether it is nec-

essary to sample more. One would imagine that the StOP algorithm from (Szörényi

et al., 2014) could be easily adapted to the stochastic knapsack problem. However, as

discussed in Section 4.4.1, the assumptions required for this algorithm to terminate

are too strong for it to be considered feasible for this problem.
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4.1.2 Our Contribution

Our main contributions are the anytime algorithm OpStoK (Algorithm 4.1) and sub-

routine BoundValueShare (Algorithm 4.2). These are supported by the con�dence

bounds in Proposition 4.2 that allow us to simultaneously estimate remaining capacity

and value with guarantees that hold uniformly over multiple sample sizes. Proposi-

tion 4.4 shows how we can avoid discount based arguments and use adaptive capacity

estimates in our algorithm, and still return an adaptive policy whose value comes

within ε of the optimal policy with high probability. Theorem 4.5 and Corollary 4.6

provide bounds on the number of samples our algorithm uses in terms of how many

policies are ε-close to the best policy. The empirical performance of OpStoK is con-

sidered in Section 4.7.

4.2 Problem Formulation

We consider the problem of selecting a subset of items from a set, I, of K items, to

place into a knapsack of capacity (or budget) B where each item can be played at most

once. For each item i ∈ I, let Ci and Ri be non-negative, bounded random variables

de�ned on a joint probability space (Ω,A, P ) which represent its size and reward. It

is assumed that we can simulate from the generative model of (Ri, Ci) for all i ∈ I and

we will use lower case ci and ri, to denote realizations of these random variables. We

assume that the random variables (Ri, Ci) are independent of (Rj, Cj) for all i, j ∈ I,

i 6= j. Further, it is believed that item sizes and rewards do not change depending

on the other items in the knapsack. We assume the problem is non-trivial, in the

sense that it is not possible to �t all items in the knapsack at once. If we place an

item i in the knapsack and the consumption ci is strictly greater than the remaining

capacity then we gain no reward for that item. Our �nal important assumption is

that there exists a known, non-decreasing function Ψ(·), satisfying limb→0 Ψ(b) = 0
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and Ψ(B) < ∞, such that the total reward that can be achieved with budget b is

upper bounded by Ψ(b). It will always be possible to de�ne such a Ψ, however, the

choice of Ψ will impact the performance of the algorithm, so we will choose it to be

as tight as possible.

Representing the stochastic knapsack problem as a tree requires that all item sizes

take discrete values. While in this work, it will generally be assumed that this is

the case, in some problem instances, continuous item sizes need to be discretized. In

this case, let ξ∗ be the discretization error of the optimal policy. Then Ψ(ξ∗) is an

upper bound on the extra reward that could be gained from the space lost due to

discretization. For discrete sizes, we assume there are s possible values the random

variable Ci can take and that there exists θ > 0 such that Ci ≥ θ for all i ∈ I.

4.2.1 Planning Trees and Policies

The stochastic knapsack problem can be thought of as a planning tree with the initial

empty state as the root at level 0. The branches from the root represent playing

an item. Similarly, each node on an even level is an action node and its branches

represent placing an item in the knapsack. The nodes on odd levels are transition

nodes with branches representing item sizes. We de�ne a policy Π as a �nite subtree

where each action node has at most one branch from it and each transition node has

s branches (see Section 4.A.1 for examples). The depth of a policy Π, d(Π), is the

number of transition nodes in any realization of the policy (where each transition

node links to one branch), or equivalently, the number of items. Let d∗ = bB/θc be

the maximal depth of any policy. For any 1 ≤ d ≤ d∗, the number of policies of depth

d is,

Nd =
d−1∏
i=0

(K − i)si (4.1)
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where K = |I| is the number of items, and s the number of discrete sizes.

We de�ne a child policy, Π′, of a policy Π as a policy that follows Π up to depth

d(Π) then plays additional items and has depth d(Π′) = d(Π) + 1. We say Π is the

parent policy of Π′. A policy Π′ is a descendant policy of Π if Π′ follows Π up to

depth d(Π) but is then continued to depth d(Π′) ≥ d(Π)+1. Correspondingly, we say

Π is an ancestor of Π′. A policy is said to be incomplete if the remaining capacity

allows for another item to be inserted into the knapsack (see Section 4.4.2 for a formal

de�nition). Note that the policy an algorithm outputs may be incomplete, as it could

be that any continuation of it is optimal.

The (expected) value of a policy Π is de�ned as the cumulative expected reward

obtained by playing items according to Π, VΠ =
∑d(Π)

d=1 E[Ri(d)] where i(d) is the d-th

item chosen by Π. Let P be the set of all policies, then de�ne the optimal policy

as Π∗ = arg maxΠ∈P VΠ, and corresponding optimal value as v∗ = maxΠ∈P VΠ. Our

algorithm returns an ε-optimal policy with value v∗ − ε. For any policy Π, we de�ne

a sample of Π as follows. The �rst item of any policy is �xed so we take a sample of

the reward and size from the generative model of that item. We then use Π and the

observed size of the previous item to tell us which item to sample next and sample the

reward and size of that item. This continues until the policy �nishes or the cumulative

sampled sizes of the selected items exceeds B.

4.3 High Con�dence Bounds

In order to select policies to expand, we require con�dence bounds for the value of

a continuation of a policy. A policy Π may not consume all available budget, and

our algorithm will work by constructing iteratively longer policies, starting from the

shortest policies of playing a single item. Consequently, we are interested in R+
Π,

the expected maximal extra reward that can be obtained after playing according to
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policy Π until all the budget is consumed. Let BΠ be a random variable representing

the remaining budget after playing policy Π. Our assumptions guarantee that there

exists a function Ψ such that R+
Π ≤ EΨ(BΠ). We then de�ne V +

Π to be the maximal

expected value of any continuation of policy Π, so V +
Π = VΠ +R+

Π ≤ VΠ + EΨ(BΠ).

From m1 samples of the value of policy Π, we estimate the true value of Π as

VΠm1
= 1

m1

∑m1

j=1

∑d(Π)
d=1 r

(j)
i(d), where r

(j)
i(d) is the reward of item i(d) chosen at depth

d of sample j. However, we wish to identify the policy with greatest value when

continued until the budget is exhausted, so our real interest is in the value of V +
Π .

From Hoe�ding's inequality, P

(
|VΠm1

− V +
Π | > EΨ(BΠ) +

√
Ψ(B)2 log(2/δ)

2m1

)
≤ δ. This

bound depends on the quantity EΨ(BΠ) which is typically not known. Lemma 4.1

shows how this bound can be signi�cantly improved by independently sampling BΠ m2

times to get samples ψ1, · · · , ψm2 of Ψ(BΠ) and estimating Ψ(BΠ)m2
= 1

m2

∑m2

j=1 ψj.

Lemma 4.1. Let (Ω,A, P ) be the probability space from Section 4.2, then for m1 +m2

independent samples of policy Π and δ1, δ2 > 0, with probability 1− δ1 − δ2,

VΠm1
− k1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ k1 + k2.

Where, k1 :=
√

Ψ(B)2 log(2/δ1)
2m1

, k2 :=
√

Ψ(B)2 log(1/δ2)
2m2

.

We will not use the bound in this form since our algorithm will sample Ψ(BΠ)

until we are su�ciently con�dent that it is small or large. This introduces weak

dependencies into the sampling process so we need guarantees to hold simultaneously

for multiple sample sizes, m2. For this, we work with martingales and use Azuma-

Hoe�ding like bounds (Azuma, 1967), similar to the technique used in (Perchet et al.,

2016). Speci�cally, in Lemma 4.8 (Section 4.B), we use Doob's maximal inequality

(Doob, 1953) and a peeling argument to get bounds on the maximal deviation of

Ψ(BΠ)m2
from its expectation. Assuming we sample the value of a policy m1 times

and the remaining budget m2 times, the following key result holds.
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Proposition 4.2. The Algorithm BoundValueShare (Algorithm 4.2) returns con�-

dence bounds,

L(V +
Π ) = VΠm1

− c1

U(V +
Π ) = VΠm1

+ Ψ(BΠ)m2
+ c1 + c2

with c1 =
√

Ψ(B)2 log(2/δ1)
2m1

, c2 = 2Ψ(B)

√
1
m2

log
(

8n
δ2m2

)
which hold with probability 1−

δ1 − δ2.

This upper bound depends on n, the maximum number of samples of Ψ(BΠ). For

any policy Π, the minimum width a con�dence interval of Ψ(BΠ) will ever need to be

is ε/4. Hence, taking

n =

⌈
162Ψ(B)2 log(8/δ)

ε2

⌉
, (4.2)

ensures that for all policies, 2c2 ≤ ε/4 when m2 = n. This is a necessary condition for

the termination of our algorithm, OpStoK, as will be discussed in Section 4.4.2

4.4 Algorithms

Before presenting our algorithm for optimistic planning for the stochastic knapsack

problem, we �rst discuss a simple adaptation of the algorithm StOP from Szörényi

et al. (2014).

4.4.1 Stochastic Optimistic Planning for Knapsacks

One naive approach to optimistic planning in the stochastic knapsack problem is to

adapt the algorithm StOP from (Szörényi et al., 2014). We call this adaptation StOP-K

and replace the γd

1−γ discounting term used to control future rewards with Ψ(B− dθ).
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This is the best upper bound on the future reward that can be achieved without using

samples of item sizes. The upper bound on V +
Π is then VΠm + Ψ(B − dθ) + c, for m

samples and con�dence bound c. With this, most of the results from (Szörényi et al.,

2014) follow fairly naturally. Although StOP-K appears to be an intuitive extension

of StOP to the stochastic knapsack setting, it can be shown that for a �nite number

of samples, unless Ψ(B − θd∗) ≤ ε
2
, the algorithm will not terminate. As such, unless

this restrictive assumption is satis�ed StOP-K will not converge.

4.4.2 Optimistic Stochastic Knapsacks

In OpStoK we aim to be more e�cient by only exploring promising policies and making

better use of all information. In the stochastic knapsack problem, in order to sample

the value of a policy, we must sample item sizes to decide which item to play next. We

propose to also use the item size samples to calculate U(Ψ(BΠ)), and then incorporate

this into U(V +
Π ). We also pool samples of the reward and size of items across policies,

thus reducing the number of calls to the generative model. OpStoK bene�ts from

an adaptive sampling scheme that reduces sample complexity and ensures that an

entire ε-optimal policy is returned when the algorithm stops. The performance of this

sampling strategy is guaranteed by Proposition 4.2.

In the main algorithm, OpStoK (Algorithm 4.1) is very similar to StOP-K (Szörényi

et al., 2014) with the key di�erences appearing in the sampling and construction

of con�dence bounds which are de�ned in BoundValueShare (Algorithm 4.2). The

general intuition is that only promising policies are explored. OpStoK maintains a

set of `active' policies. As in (Szörényi et al., 2014) and (Gabillon et al., 2012), at

each time step t, a policy, Πt to expand is chosen by comparing the upper con�dence

bounds of the two best active policies. We select the policy with most uncertainty

in the bounds since we want our estimates of the near-optimal policies to be such

that we can con�dently conclude that the policy we output is better (see Figure 4.5,
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Section 4.A.2). Once we have selected a policy, Πt, if the stopping criteria in Line 10

is not met, we replace Πt in the set of active policies with all its children. We refer

to this as expanding a policy. For each child policy, Π′, we bound its value using

BoundValueShare with parameters

δd(Π′),1 =
δ0,1

d∗
N−1
d(Π′) and, δd(Π′),2 =

δ0,2

d∗
N−1
d(Π′) (4.3)

where Nd is the number of policies of depth d as given in (4.1). This ensures that all

our bounds hold simultaneously with probability greater than 1− δ0,1− δ0,2 (as shown

in Lemma 4.12, Section 4.B). The algorithm stops in Line 10 and returns a policy

Π∗ if L(V +
Π∗) + ε ≥ maxΠ∈Active\{Π∗} U(V +

Π ) and we can be con�dent Π∗ is within

ε of optimal. OpStoK relies on BoundValueShare (Algorithm 4.2) and subroutines,

EstimateValue and SampleBudget (Algorithms 4.4 and 4.3, Section 4.A.3), which

sample the value and budget of policies.

In BoundValueShare, we use samples of both item size and reward to bound the

value of a policy. We de�ne upper and lower bounds on the value of any extension of

a policy Π as,

U(V +
Π ) = VΠm1

+ Ψ(BΠ)m2
+ c1 + c2,

L(V +
Π ) = VΠm1

− c1,

with c1 and c2 as in Proposition 4.2. It is also possible to de�ne upper and lower

bounds on Ψ(BΠ) with m2 samples and con�dence δ2. From this, we can formally

de�ne a complete policy as a policy Π with U(Ψ(BΠ)) = Ψ(BΠ)m2
+ c2 ≤ ε

2
. For

complete policies, since there is very little capacity left, it is more important to get

tight con�dence bounds on the value of the policy. Hence, in BoundValueShare, we

sample the remaining budget of a policy as much as is necessary to conclude whether

the policy is complete or not. As soon as we realize we have a complete policy



CHAPTER 4. OPTIMISTIC PLANNING FOR STOCHASTIC KNAPSACKS 77

(U(Ψ(BΠ)) ≤ ε/2), we sample the value of that policy su�ciently to get a con�dence

interval on V +
Π of width less than ε. Then, when it comes to choosing an optimal policy

to return, the con�dence intervals of all complete policies will be narrow enough for

this to happen. This is appropriate since pre-specifying the number of samples may

not lead to con�dence bounds tight enough to select an ε-optimal policy. Furthermore,

we focus sampling e�orts only on promising policies that are near completion.

If a complete policy is chosen as Π
(1)
t in OpStoK, for some t, the algorithm will stop

and this policy will be returned. For this to happen, we check the stopping criterion

before selecting a policy to expand. Note that in BoundValueShare, the value and

remaining budget of a policy must be sampled separately as we are considering closed-

loop planning so the item chosen may depend on the size of the previous item, and

hence the value will depend on the instantiated item sizes. For an incomplete policy,

the number of samples of the value, m1, is de�ned to ensure that the uncertainty in

the estimate of VΠ is less than u(Ψ(BΠ)) = min{U(Ψ(BΠ)),Ψ(B)}, since a maximal

upper bound for the value of Π is Ψ(B).

Since at each time step OpStoK expands the policy with best or second best upper

con�dence bound, the policy it expands will always have the potential to be optimal.

Therefore, if the algorithm is stopped before the termination criteria is met and the

active policy with best estimated value is selected, this policy will be the best of those

with the potential to be optimal that have already been explored. Hence, it will be

a good policy (or beginning of policy). OpStoK considerably reduces the number of

calls to the generative model by creating sets S∗i of samples of the reward and size

of each item i ∈ I. When it is necessary to sample the reward and size of an item,

i, for the evaluation of a policy, we sample without replacement from S∗i until |S∗i |

samples have been taken. At this point new calls to the generative model are made

and the new samples added to the sets for use by future policies. This is illustrated

in EstimateValue and SampleBudget (Algorithms 4.4 and 4.3, Section 4.A.3). We
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Algorithm 4.1: OpStoK (I, δ0,1, δ0,2, ε)

Initialization: Active = ∅.
1 for all i ∈ I do
2 Πi = policy consisting of just playing item i;

3 d(Πi) = 1, δ1,1 = δ0,1
d∗
N−1

1 , δ1,2 = δ0,2
d∗
N−1

1 ;
4 (L(V +

Πi
), U(V +

Πi
)) = BoundValueShare(Πi, δ1,1, δ1,2,S∗, ε);

5 Active = Active ∪ {Πi};
6 end
7 for t = 1, 2, . . . do

8 Π
(1)
t = arg maxΠ∈Active U(V +

Π ), Π
(2)
t = arg max

Π∈Active\{Π(1)
t }

U(V +
Π );

9 if L(V +

Π
(1)
t

) + ε ≥ U(V +

Π
(2)
t

) then

10 Stop: Π∗ = Π
(1)
t ;

11 a∗ = arg maxa∈{1,2} U(Ψ(B
Π

(a)
t

));

12 Πt = Π
(a∗)
t ;

13 Active = Active \ {Πt}
14 for all children Π′ of Πt do
15 d(Π′) = d(Πt) + 1;

16 δd(Π′),1 = δ0,1
d∗
N−1
d(Π′), δd(Π′),2 = δ0,2

d∗
N−1
d(Π′)

17 (L(V +
Π′), U(V +

Π′)) = BoundValueShare(Π′, δd(Π′),1, δd(Π′),2,S∗, ε);
18 Active = Active ∪ {Π′};
19 end

20 end

denote by S∗ the collection of all sets S∗i .

4.5 ε-Critical Policies

The set of ε-critical policies associated with an algorithm is the set of all policies the

algorithm may potentially expand in order to obtain an ε-optimal solution. Hence, the

number of ε-critical policies represents a bound on the number of policies an algorithm

may explore in order to obtain this ε-optimal solution.
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Algorithm 4.2: BoundValueShare(Π, δ1, δ2, S
∗, ε)

Initialization: For all i ∈ I, Si = S∗i .
1 Set m2 = 1 and (ψ1,S) = SampleBudget(Π,S);
/* sample the remaining budget */

2 Ψ(BΠ)m2
= 1

m2

∑m2

j=1 ψj;

3 U(Ψ(BΠ)) = Ψ(BΠ)m2
+ 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
,

L(Ψ(BΠ)) = Ψ(BΠ)m2
− 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
;

/* calculate bounds on Ψ(BΠ) */

4 if U(Ψ(BΠ)) ≤ ε
2
then m1 =

⌈
8Ψ(B)2 log(2/δ1)

ε2

⌉
;

5 else if L(Ψ(BΠ)) ≥ ε
4
then

6 m1 =
⌈

1
2

Ψ(B)2 log(2/δ1)
u(Ψ(BΠ))2

⌉
;

7 else
8 Set m2 = m2 + 1;
9 (ψm2 ,S) = SampleBudget(Π,S) and go to 2

10 VΠm1
= EstimateValue(Π,m1);

11 L(V +
Π ) = VΠm1

−
√

Ψ(B)2 log(2/δ1)
2m1

;

12 U(V +
Π ) = VΠm1

+ Ψ(BΠ)m2
+
√

Ψ(B)2 log(2/δ1)
2m1

+ 2Ψ(B)

√
1
m2

log
(

8n
δm2

)
;

13 return (L(V +
Π ), U(V +

Π ))

To de�ne the set of ε-critical policies associated with OpStoK, let

QεIC = {Π;VΠ + 9EΨ(BΠ)− 3ε/4 ≥ v∗ − 9EΨ(BΠ) + 3ε/4 + ε}

and QεC = {Π;VΠ + ε ≥ v∗} ,

represent the set of potentially optimal incomplete and complete policies. The set

of all ε-critical policies is then Qε = QεIC
⋃
QεC . The following lemma shows that all

policies expanded by OpStoK are in Qε.

Lemma 4.3. Assume that L(V +
Π ) ≤ VΠ ≤ U(V +

Π ) holds simultaneously for all policies

Π ∈ Active with U(V +
Π ) and L(V +

Π ) as de�ned in Proposition 4.2. Then, Πt ∈ Qε

for every policy, Πt, selected by OpStoK at every time point t, except for possibly the

last one.



CHAPTER 4. OPTIMISTIC PLANNING FOR STOCHASTIC KNAPSACKS 80

We now turn to demonstrating that under certain conditions, OpStoK will not

expand all policies (although in practice this claim should hold even when some of

the assumptions are violated). From considering the de�nition of QεIC above, it can

be shown that if there exists a subset I ′ of items and λ > 0 satisfying,

∑
i∈I′

E[Ri] < v∗ − ε, and,

E

[
Ψ

(
B −

∑
i∈I′

Ci

)]
<

5ε

36
− λ

18

(4.4)

then QεIC is a proper subset of all incomplete policies and as such, not all incomplete

policies will need to be evaluated by OpStoK. Furthermore, since any policy of depth

d > 1 will only be evaluated by OpStoK if a descendant of it has previously been

evaluated, it follows that a complete policy inQεC must have an incomplete descendant

in QεIC . Therefore, since QεIC is not equal to the set of all incomplete policies, QεC

will also be a proper subset of all complete policies and so Qε ( P . Note that the

bounds used to obtain these conditions are worst case as they involve assuming the

true value of Ψ(BΠ) lies at one extreme of the con�dence interval. Hence, even if

the conditions in (4.4) are not satis�ed, it is unlikely that OpStoK will evaluate all

policies. However, the conditions in (4.4) are easily satis�ed. Consider, for example,

the problem instance where ε = 0.25,Ψ(b) = b ∀0 ≤ b ≤ B, v∗ = 1 and B = 1.

Assume there are 3 items i1, i2, i3 ∈ I with E[Ri] < 1/4 and E[Ci] = 12/37. Then if

I ′ = {i1, i2, i3} and λ = 1/8, the conditions of (4.4) are satis�ed and OpStoK will not

evaluate all policies.

4.6 Analysis

In this section we give theoretical guarantees on the performance of OpStoK, with the

proofs of all results in Section 4.B. We begin with the consistency result:
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Proposition 4.4. For ε > 0, with probability at least (1 − δ0,1 − δ0,2), the algorithm

OpStoK returns a policy with value at least v∗ − ε.

To obtain a bound on the sample complexity of OpStoK, we return to the de�ni-

tion of ε-critical policies from Section 4.5. The set of ε-critical policies, Qε, can be

represented as the union of three disjoint sets, Qε = Aε ∪ Bε ∪ Cε, as illustrated in

Figure 4.1 where Aε = {Π ∈ Qε|EΨ(BΠ) ≤ ε/4},Bε = {Π ∈ Qε|EΨ(BΠ) ≥ ε/2} and

Cε = {Π ∈ Qε|ε/4 < EΨ(BΠ) < ε/2}. Using this, in Theorem 4.5 the total number of

samples of item size or reward required by OpStoK can be bounded as follows.

Theorem 4.5. With probability greater than 1 − δ0,2, the total number of samples

required by OpStoK is bounded from above by,

∑
Π∈Qε

(m1(Π) +m2(Π)) d(Π).

Where, for Π ∈ Aε,m1(Π) =
⌈

8Ψ(B)2 log( 2
δd(Π),1

)/ε2
⌉
,

for Π ∈ Bε,m1(Π) ≤
⌈

Ψ(B)2 log( 2
δd(Π),1

)/2EΨ(BΠ)2
⌉
,

and for Π ∈ Cε,m1(Π) ≤ max
{⌈

8Ψ(B)2 log( 2
δd(Π),1

)/ε2
⌉
,
⌈

2Ψ(B)2 log( 2
δd,1

)/EΨ(BΠ)2
⌉}
.

And m2(Π) = m∗, where m∗ is the smallest integer satisfying,

32Ψ(B)2/(EΨ(BΠ)−ε/2)2 ≤ m/log(4n/mδ2) for Π ∈ Aε,

32Ψ(B)2/(EΨ(BΠ)−ε/4)2 ≤ m/log(4n/mδ2) for Π ∈ Bε,

32Ψ(B)2/(ε/4)2 ≤ m/log(4n/mδ2) for Π ∈ Cε.

We now bound the number of calls to the generative model required by OpStoK.

We consider the expected number of times item i needs to be sampled by a policy Π.

Let i1, . . . , iq denote the q nodes in policy Π where item i is played. Then for each
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ε
2

ε
4

Case 1 Case 2 Case 3

Ψ(BΠ)

Figure 4.1: The three possible cases of EΨ(BΠ). In the �rst case, EΨ(BΠ) ≤ ε
4
so Π ∈

Aε, in the second case EΨ(BΠ) ≥ ε
2
so Π ∈ Bε, and in the �nal case ε

4
< EΨ(BΠ) <

ε
2
so Π ∈ Cε.

node ik (1 ≤ k ≤ q), denote by ζik the unique route to node ik. De�ne d(ζik) to be the

depth of node ik, or the number of items played along route ζik . Then the probability

of reaching node ik (or taking route ζik) is P (ζik) =
∏d(ζik )

`=1 p`,Π(ik,`), where ik,` denotes

the `th item on the route to node ik and pl,Π(i) is the probability of playing item i

at depth l of policy Π for given size distributions. Denote the probability of playing

item i in policy Π by PΠ(i), then PΠ(i) =
∑q

k=1 P (ζik). Using this, the expected

number of samples of the reward and size of item i required by policy Π are less than

m1(Π)PΠ(i) and m2(Π)PΠ(i), respectively. Since samples are shared between policies,

the expected number of calls to the generative model of item i is as given below and

used in Corollary 4.6,

M(i) ≤ max
Π∈Qε

{
max{m1(Π)PΠ(i),m2(Π)PΠ(i)}

}
.

Corollary 4.6. The expected total number of calls to the generative model by OpStoK

for a stochastic knapsack problem of K items is less than or equal to
∑K

i=1M(i).
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Figure 4.2: Item sizes and rewards. Each color is an item with horizontal lines between
the two sizes and vertical lines between minimum and maximum reward. The lines
cross at the point (mean size, mean reward).

4.7 Experimental Results

We demonstrate the performance of OpStoK on a simple experimental setup with 6

items. Each item i can take two sizes and is larger with probability xi. The rewards

come from scaled and shifted Beta distributions. The budget is 7 meaning that a

maximum of 3 items can be placed in the knapsack. We take Ψ(b) = b and set the

parameters of the algorithm to δ0,1 = δ0,2 = 0.1 and ε = 0.5. Figure 4.2 illustrates the

problem.

We compare the performance of OpStoK in this setting to the algorithm in (Dean

et al., 2008) run with various values of κ, the parameter used to de�ne the small

items threshold. We chose κ to ensure that we consider all cases from 0 small items

to 6 small items. Note that the algorithm in (Dean et al., 2008) is designed for

deterministic rewards so we sampled the rewards for each item at the start to get

estimates of the true rewards. When sampling item sizes for (Dean et al., 2008), we

used the OpStoK sampling strategy. For both algorithms, when evaluating the value of

a policy, we re-sampled the value of the chosen policies as discussed in Section 4.2.1.

The results of this experiment are shown in Figure 4.3. From this, the anytime
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Figure 4.3: Number of policies vs value. The blue line is the estimated value of
the best policy so far found by OpStoK which terminates at the square. The green
diamonds are the best value for (Dean et al., 2008) when small items are chosen, and
red circles when it chooses large items. The estimated value of the best solution from
(Dean et al., 2008) is given by the red dashed line.

property of our algorithm can be seen; it is able to �nd a good policy early on (after

less than 100 policies) so if it was stopped early, it would still return a policy with a

high expected value. Furthermore, at termination, the algorithm has almost reached

the best solution from Dean et al. (2008) which required more than twice as many

policies to be evaluated. Thus this experiment has shown that our algorithm not only

returns a policy with near optimal value, but it does this after evaluating signi�cantly

fewer policies and, even if stopped prematurely, it will return a good policy.

These experimental results were obtained using the OpStoK algorithm as stated

in Algorithm 4.1. This algorithm incorporates the sharing of samples between poli-

cies and preferential sampling of complete policies to improve performance. For large

problems, the computational performance of OpStoK can be further improved by par-

allelization. In particular, the expansion of a policy can be done in parallel with each

leaf of the policy being expanded on a di�erent core and then recombined. It is also

possible to sample the value and remaining budget of a policy in parallel.



CHAPTER 4. OPTIMISTIC PLANNING FOR STOCHASTIC KNAPSACKS 85

4.8 Conclusion

In this chapter we have presented OpStoK, an anytime optimistic planning algorithm

speci�cally tailored to the stochastic knapsack problem. For this algorithm, we have

provided con�dence intervals, consistency results, bounds on the sample size and

shown that it needn't evaluate all policies to �nd an ε-optimal solution; making it

the �rst such algorithm for the stochastic knapsack problem. By using estimates of

the remaining budget and value, OpStoK is adaptive and also bene�ts from a unique

streamlined sampling scheme. While OpStoK was developed for the stochastic knap-

sack problem, it is hoped that it is just the �rst step towards using optimistic planning

to tackle many frequently occurring resource allocation problems.

4.A Supplementary Material

4.A.1 Illustration of Policies

(a) A policy of just playing item 3. This

policy has depth 1.

(b) A policy that plays item 2 �rst. If it is

small, it plays item 1 whereas if it is large

it plays item 3. After this, the �nal item is

determined due to the fact that there are

only 3 items in the problem. This policy

has depth 2.

Figure 4.4: Examples of policies in the simple 3 item, 2 sizes stochastic knapsack
problem. Each blue line represents choosing an item and the red lines represent the
sizes of the previous items.
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4.A.2 Illustration of Bounds

U(VΠ)

VΠ

L(VΠ)

U(V ∗Π)

v∗

L(V ∗Π)

Figure 4.5: Example of where just looking at the optimistic policy might fail: If we
always play the optimistic policy then, since U(V +

Π∗) ≥ U(V +
Π ), we will always play Π∗

and so the con�dence bounds on Π will not shrink. This means that L(V +
Π∗) will never

be (epsilon) greater than the best alternative upper bound so it will not be possible
to conclude we have found the best policy with high con�dence.

4.A.3 Algorithms

In these algorithms Generate(i) samples a reward and item size pair from the gener-

ative model of item i, whereas sample(A, k) samples from a set A with replacement

to get k samples. The notation i(d) = Π(d, b) indicates that item i(d) was chosen by

policy Π at depth d when the remaining capacity was b.

Algorithm 4.3: SampleBudget(Π,S)

Initialization: B0 = B and for all i ∈ I, Si = S∗i

1 for d = 1, . . . , d(Π) do

2 i(d) = Π(d,Bd−1);

3 if |Si(d)| ≤ 0 then (ri(d), ci(d)) = Generate(i(d)), S∗i = S∗i ∪ {ri(d), ci(d))};

4 else (ri(d), ci(d)) = sample(Si, 1), and Si = Si \ {(ri(d), ci(d))};

5 Bd = Bd−1 − ci(d);

6 end

7 Ψ(BΠ)
(j)

= Ψ(max{B −
∑d(Π)

d=1 ci(d), 0});

8 return
(

Ψ(BΠ)
(j)
,S∗
)
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Algorithm 4.4: EstimateValue(Π,m)

Initialization: For all i ∈ I, Si = S∗i
1 for j = 1, . . . ,m do
2 B0 = B;
3 for d = 1, . . . , d(Π) do
4 i(d) = Π(d,Bd−1);
5 if |Si(d)| ≤ 0 then (ri(d), ci(d)) = Generate(i(d)), S∗i = S∗i ∪ {ri(d), ci(d))};
6 else (ri(d), ci(d)) = sample(Si, 1), and Si = Si \ {(ri(d), ci(d))};
7 Bd = Bd−1 − ci(d);
8 if Bd < 0 then ri(d) = 0;

9 end

10 VΠ
(j)

=
∑d(Π)

d=1 ri(d);

11 end

12 return (VΠm = 1
m

∑m
j=1 VΠ

(j)
,S∗)

4.B Proofs of Theoretical Results

For convenience we restate any results before proving them.

4.B.1 Bounding the Value of a Policy

Lemma 4.7. (Lemma 4.1 in main text) Let (Ω,A, P ) be the probability space from

Section 4.2, then for m1 + m2 independent samples of policy Π, and δ1, δ2 > 0, with

probability 1− δ1 − δ2,

VΠm1
− c1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ c1 + c2.

Where c1 :=
√

Ψ(B)2 log(2/δ1)
2m1

and c2 :=
√

Ψ(B)2 log(1/δ2)
2m2

.

Proof. Consider the average value of policy Π over m1 many trials. By Hoe�ding's

Inequality, P
(
|VΠm1

− VΠ| > c1

)
≤ δ1 and, P

(
|Ψ(BΠ)m2

− E[Ψ(BΠ)]| > c2

)
≤ δ2.
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We are interested in the probability,

P (|VΠm1
− V +

Π | > t) ≤ P (|VΠm1
− VΠ|+ |VΠ − V +

Π | > t)

≤ P (|VΠm1
− VΠ|+ E[Ψ(BΠ)] > t).

where the �rst line follows from the triangle inequality and the second from the

de�nition of Ψ(BΠ). From the Hoe�ding bounds and de�ning t = Ψ(BΠ)m2
+ c1 + c2,

we consider P
(
|VΠm1

− VΠ|+ E[Ψ(BΠ)] > Ψ(BΠ)m2
+ c1 + c2

)
. De�ne the events

A1 = {|VΠm1
−VΠ|+E[Ψ(BΠ)] ≤ E[Ψ(BΠ)]+c1}, A2 =

{
|Ψ(BΠ)m2

− E[Ψ(BΠ)]| ≤ c2

}
.

Then,

P
(
|VΠm1

− VΠ|+ E[Ψ(BΠ)] > Ψ(BΠ)m2
+ c1 + c2

)
≤ P (Ω\(A1 ∩ A2))

≤ P (Ω\A1) + P (Ω\A2)

≤ δ1 + δ2.

Hence,

P
(
VΠm1

− V +
Π > c1

)
≤ P

(
VΠm1

− VΠ > c1

)
≤ δ1 < δ1 + δ2

which gives the left hand side of the result. For the right hand side,

P
(
VΠm1

− V +
Π < −Ψ(BΠ)m2

− c1 − c2

)
≤ P

(
VΠm1

− VΠ − E[Ψ(BΠ)] < −Ψ(BΠ)m2
− c1 − c2

)
≤ δ1 + δ2.

Lemma 4.8. Let {Zm}∞m=1 be a martingale with Zm de�ned on the �ltration Fm,
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E[Zm] = 0 and |Zm − Zm−1| ≤ d for all m where Z0 = 0. Then,

P

(
∃m ≤ n;

Zm
m
≥ 2d2

√
2

m
log

(
n

m

4

δ

))
≤ δ

Proof. The proof is similar to that of Lemma B.1 in (Perchet et al., 2016) and will

make use of the following standard results:

Theorem 4.9. Doob's maximal inequality: Let Z be a non-negative submartingale.

Then for c > 0,

P

(
sup
k≤n

Zk ≥ c

)
≤ E[Zn]

c
.

Proof. See, for example, (Williams, 1991), Theorem 14.6, page 137.

Lemma 4.10. Let Zn be a martingale such that |Zi −Zi−1| ≤ di for all i with proba-

bility 1. Then, for λ > 0,

E[eλZn ] ≤ e
λ2D2

2 ,

where D2 =
∑n

i=1 d
2
i .

Proof. See the proof of the Azuma-Hoe�ding inequality in (Azuma, 1967).

Then, for the proof of Lemma 4.8, we �rst notice that since {Zm}∞m=1 is a mar-

tingale, by Jensen's inequality for conditional expectations, it follows that for any

λ > 0,

E[eλZm|Fm−1] ≥ eλE[Zm|Fm−1] = eλZm−1 .

Hence, for any λ > 0, {eλZm}∞m=1 is a positive sub-martingale so we can apply Doob's

maximal inequality (Theorem 4.9) to get

P

(
sup
m≤n

Zm ≥ c

)
= P

(
sup
m≤n

eλZm ≥ eλc
)
≤ E[eλZn ]

eλc
.



CHAPTER 4. OPTIMISTIC PLANNING FOR STOCHASTIC KNAPSACKS 90

Then, by Lemma 4.10, since |Zi − Zi−1| ≤ d for all i, it follows that

P

(
sup
m≤n

Zm ≥ c

)
≤ E[eλZn ]

eλc
≤ eλ

2D2/2

eλc
= exp

{
λ2D2

2
− λc

}
. (4.5)

Minimizing the right hand side with respect to λ gives λ̂ = c
D2 and substituting this

back into (4.5) gives,

P

(
sup
m≤n

Zm ≥ c

)
≤ exp

{
− c2

2D2

}
.

Then, since we are considering the case where di = d for all i, D2 = nd2 and so,

P

(
sup
m≤n

Zm ≥ c

)
≤ exp

{
− c2

2nd2

}
.

Further, if we are interested in P (supk≤m≤n Zm ≥ c), we can rede�ne the indices to

get

P

(
sup

k≤m≤n
Zm ≥ c

)
= P

(
sup

m′≤n−k+1
Zm ≥ c

)
≤ exp

{
− c2

2(n− k + 1)d2

}
. (4.6)

We then de�ne εm = 2d
√

1
m

log
(
n
m

8
δ

)
and use a peeling argument similar to that in
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Lemma B.1 of (Perchet et al., 2016) to get

P

(
∃m ≤ n;

Zm
m
≥ εm

)
≤
blog2(n)c+1∑

t=0

P

(
2t+1−1⋃
m=2t

{
Zm
m
≥ εm

})
(by union bound)

≤
blog2(n)c+1∑

t=0

P

(
2t+1−1⋃
m=2t

{
Zm
m
≥ ε2t+1

})
(since εm decreasing in m)

≤
blog2(n)c+1∑

t=0

P

(
2t+1−1⋃
m=2t

{Zm ≥ 2tε2t+1}

)
(as m ≥ 2t)

≤
blog2(n)c+1∑

t=0

exp

{
−(2tε2t+1)2

2t+1d2

}
(from (4.6))

≤
blog2(n)c+1∑

t=0

2t+1δ

8n
(substituting ε2t+1)

≤ 2log2(n)+3δ

8n
= δ. (since

k∑
i=1

2i = 2k+1 − 1)

Proposition 4.11. (Proposition 4.2 in main text) The Algorithm BoundValueShare

(Algorithm 4.2) returns con�dence bounds,

L(V +
Π ) = VΠm1

−

√
Ψ(B)2 log(2/δ1)

2m1

U(V +
Π ) = VΠm1

+ Ψ(BΠ)m2
+

√
Ψ(B)2 log(2/δ1)

2m1

+ 2Ψ(B)

√
1

m2

log

(
8n

δ2m2

)

which hold with probability 1− δ1 − δ2.

Proof. We begin by noting that our samples of item size are dependent since in each

iteration we construct a bound based on past samples and we use this bound to decide

if we need to continue sampling or if we can stop. To model this dependence let us

introduce a stopping time τ such that τ(ω) = n if our algorithm exits the loop at
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time n. Consider the sequence

Ψ(BΠ)1∧τ ,Ψ(BΠ)2∧τ , . . .

and de�ne for m ≥ 1

Mm = (m ∧ τ)(Ψ(BΠ)m∧τ − E[Ψ(BΠ)]) with M0 = 0.

Furthermore, de�ne the �ltration Fm = σ(BΠ,1, . . . , BΠ,m) then for m ≥ 1

E[Mm|Fm−1] = E[Mm|Fm−1, τ ≤ m− 1] + E[Mm|Fm−1, τ > m− 1].

Now

E[Mm|Fm−1, τ ≤ m− 1] = E[Mm−1|τ ≤ m− 1].

and due to independence of the samples BΠ,1, . . . , BΠ,m

E[Mm|Fm−1, τ > m− 1]

= E[m(Ψ(BΠ)m − E[Ψ(BΠ)])|Fm−1, τ > m− 1]

= E

[
m−1∑
j=1

Ψ(BΠ,j) + Ψ(BΠ,m)−mE[Ψ(BΠ)]

∣∣∣∣Fm−1, τ > m− 1

]

= (m− 1)E[Ψ(BΠ)m−1 − E[Ψ(BΠ)]|Fm−1, τ > m− 1]

+ E[Ψ(BΠ,m)− E[Ψ(BΠ)]|Fm−1, τ > m− 1]

= E[Mm−1|τ > m− 1] + E[Ψ(BΠ,m)]− E[Ψ(BΠ)] = E[Mm−1|τ > m− 1].

Hence, E[Mm|Fm−1] = Mm−1 andMm is a martingale with increments |Mm−Mm−1| ≤

|Ψ(BΠ,m) − E[Ψ(BΠ)]| ≤ Ψ(B). We could apply the Azuma-Hoe�ding inequality to
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gain guarantees for individual m-values. Alternatively, we can use Lemma 4.8 to get,

P

(
sup
m≤n

Mm

m
≥ 2Ψ(B)

√
1

m
log

(
8n

δm

))
≤ δ2.

Combining this with the argument in Lemma 4.1 gives

VΠm1
− c1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ c1 + c2,

where c1 :=
√

Ψ(B)2 log(2/δ1)
2m1

and c2 := 2Ψ(B)

√
1
m2

log
(

8n
δ2m2

)
and these bounds hold

with probability 1− δ1 − δ2.

Lemma 4.12. With probability 1−δ0,1−δ0,2, the bounds generated by BoundValueShare

with parameters δ1,d = δ0,1
d∗
N−1
d and δ2,d = δ0,2

d∗
N−1
d hold for all policies Π of depth

d = d(Π) ≤ d∗ simultaneously.

Proof. The probability that all bounds hold simultaneously is P (
⋂

Π∈P{L(V +
Π ) ≤

VΠ ≤ U(V +
Π )}) where P is the set of all policies. From Proposition 4.2, for any policy

Π of depth d = d(Π), P (L(V +
Π ) ≤ VΠ ≤ U(V +

Π )) ≥ 1− δd,1 − δd,2. Then,

P

(⋂
Π∈P

{L(V +
Π ) ≤ VΠ ≤ U(V +

Π )}

)
= 1− P

(⋃
Π∈P

{L(V +
Π ) ≤ VΠ ≤ U(V +

Π )}c
)

≥ 1−
∑
Π∈P

P ({L(V +
Π ) ≤ VΠ ≤ U(V +

Π )}c)

≥ 1−
∑
Π∈P

(δd(Π),1 + δd(Π),2)

= 1−
d∗∑
d=1

Nd(δd,1 + δd,2)

≥ 1−
d∗∑
d=1

Nd

(
δ0,1

d∗
N−1
d +

δ0,2

d∗
N−1
d(Πt)

)

= 1−
d∗∑
d=1

1

d∗
(δ0,1 + δ0,2) = 1− δ0,1 − δ0,2
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4.B.2 Theoretical Results for Optimistic Stochastic Knapsacks

(OpStoK)

Proposition 4.13. (Proposition 4.4 in main text) With probability at least (1−δ0,1−

δ0,2), the algorithm OpStoK returns a policy with value at least v∗ − ε.

Proof. The proof follows from the following lemma.

Lemma 4.14. For every round of the algorithm and incomplete policy Π, let D(Π) be

the set of all descendants of Π. De�ne the event A =
⋂

Π′∈D(Π){VΠ′ ∈ [L(V +
Π ), U(V +

Π )]}.

Then P (A) ≥ 1− δ0,1 − δ0,2.

Proof. When BoundValueShare is called for a policy Π with d(Π) = d, it is done

so with parameters δd,1 = δ0,1
d∗
N−1
d and δd,2 = δ0,2

d∗
N−1
d , where δd,1 and δd,2 are used

to control the accuracy of the estimated value of VΠ and EΨ(BΠ) respectively. It

follows from Proposition 4.2, that for any active policy Π, the probability that the

interval
[
VΠm1

− c1, VΠm1
+ Ψ(BΠ)m2

+ c1 + c2

]
generated by BoundValueShare does

not contain V +
Π is less than δd,1 + δd,2. Furthermore, from standard Hoe�ding bounds,

the probability that VΠ is outside the interval [VΠ− c1, VΠ + c1] is less than δd,1. Since

any descendant policy Π′ of Π consists of adding at least one item to the knapsack

and item rewards are all ≥ 0, it follows that VΠ ≤ VΠ′ ≤ V +
Π . Hence, the probability

of the value of a descendant policy being outside the interval [L(V +
Π ), U(V +

Π )] is less

than δd,1 + δd,2. By the same argument as in Lemma 4.12, it can be shown that

P (A) > 1−
∑d∗

d=1(δd,1 + δd,2)Nd = 1− δ0,1 − δ0,2.

The result of the proposition follows by noting that the true optimal policy ΠOPT

will be a descendant of Πi for some i ∈ I. Let Π∗ be the policy outputted by

the algorithm. By the stopping criterion, L(V +
Π∗) + ε ≥ maxΠ∈Active\{Π∗} ≥ U(V +

Π )

for any Π ∈ Active. From the expansion rule of OpStoK, it follows that either

ΠOPT ∈ Active or there exists some ancestor policy Π′ of ΠOPT in Active. In the
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�rst case, VΠOPT = v∗ ≤ U(V +
ΠOPT

) whereas in the latter VΠOPT = v∗ ≤ U(V +
Π′) with

high probability from Lemma 4.14. In either case, it follows that L(V +
Π∗) + ε ≥ v∗ and

so VΠ∗ + ε ≥ v∗.

Lemma 4.15. When the con�dence bounds hold, if Π is a complete policy then,

U(V +
Π )− L(V +

Π ) ≤ ε, otherwise U(V +
Π )− L(V +

Π ) ≤ 9EΨ(BΠ)− 3
4
ε.

Proof. By the bounds in Proposition 4.2, U(V +
Π ) − L(V +

Π ) ≤ Ψ(BΠ)m2
+ c2 + 2c1 =

U(Ψ(BΠ))+2c1. For a complete policy, U(Ψ(BΠ)) ≤ ε
2
and according to BoundValueShare,

m1 is chosen such that 2c1 ≤ ε
2
which implies U(V +

Π )− L(V +
Π ) ≤ ε.

If Π is not complete, by the sampling strategy in BoundValueShare, we continue sam-

pling the remaining budget until L(Ψ(BΠ)) ≥ ε
4
. In this setting, the maximal width

of the con�dence interval of EΨ(BΠ) will satisfy

c2 ≤ EΨ(BΠ)− ε

4
. (4.7)

since, if c2 > EΨ(BΠ) − ε
4
, then for EΨ(BΠ) > Ψ(BΠ)m2

, ε
4
> EΨ(BΠ) − c2 >

Ψ(BΠ)m2
− 2c2 = L(Ψ(BΠ)), and for EΨ(BΠ) ≤ Ψ(BΠ)m2

, Ψ(BΠ)m2
− EΨ(BΠ) ≤ c2

so ε
4
> EΨ(BΠ) − c2 > Ψ(BΠ)m2

− 2c2 = L(Ψ(BΠ)). In both cases this contradicts

the assumption that L(Ψ(BΠ)) > ε
4
by de�nition of the algorithm. Hence,

U(V +
Π )− L(V +

Π ) ≤ U(Ψ(BΠ)) + 2c1

≤ 3U(Ψ(BΠ)) (4.8)

≤ 3(EΨ(BΠ) + 2c2)

≤ 3
(
EΨ(BΠ) + 2EΨ(BΠ)− 2

ε

4

)
(4.9)

≤ 9EΨ(BΠ)− 3

4
ε.

Where (4.8) follows since, when L(Ψ(BΠ)) ≥ ε
4
, we sample the value of policy Π until

c1 ≤ U(Ψ(BΠ)), and (4.9) by substituting in (4.7).
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Lemma 4.16. (Lemma 4.3 in main text) Assume that L(V +
Π ) ≤ VΠ ≤ U(V +

Π ) holds

simultaneously for all policies Π ∈ Active with U(V +
Π ) and L(V +

Π ) as de�ned in

Proposition 4.2. Then, Πt ∈ Qε for every policy selected by OpStoK at every time

point t, except for possibly the last one.

Proof. Since, when we expand a policy, we replace it inActive by all its child policies,

at any time point t ≥ 1 there will be one ancestor of Π∗ in the active set, denote this

policy by Π∗t . If Πt = Π∗t , then by Lemma 4.14, VΠ∗ ∈ [L(V +
Πt

), U(V +
Πt

)]. Hence,

VΠ + 9EΨ(BΠ)− 3

4
ε ≥ U(V +

Π ) ≥ v∗ ≥ v∗ − 9EΨ(BΠ) +
3

4
ε+ ε.

Where the last inequality will hold for any incomplete policy (since for an incomplete

policy L(Ψ(BΠ)) ≥ ε
4
) and so, Πt ∈ Qε. For Πt = Π∗, VΠ + ε ≥ v∗ so Πt ∈ Qε.

Assume Πt 6= Π∗t . If Πt is a complete policy, U(V +
Πt

)−L(V +
Πt

) ≤ ε. For a complete

policy Π to be selected, it must have the largest U(V +
Π ), since most alternative policies

will have larger U(Ψ(BΠ)). Hence Π
(1)
t = Πt and

L(V +

Π
(1)
t

) + ε ≥ U(V +

Π
(1)
t

) ≥ max
Π∈Active\{Π(1)

t }
U(V +

Π ),

so the algorithm stops.

Assume Πt = Π
(1)
t 6= Π∗t is an incomplete policy. By Lemma 4.15, for an incomplete

policy,

U(V +
Π )− L(V +

Π ) ≤ 3U(Ψ(BΠ)) ≤ 9EΨ(BΠ)− 3

4
ε. (4.10)
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Then, if the termination criteria is not met,

VΠt ≥ L(V +
Πt

) =⇒ VΠt + 9EΨ(BΠ)− 3

4
ε− ε ≥ L(V +

Πt
) + 9EΨ(BΠ)− 3

4
ε− ε

≥ U(V +
Πt

)− ε

≥ max
Π∈Active\{Πt}

U(V +
Π )− ε

≥ L(V +
Πt

)

≥ U(V +
Πt

)− 9EΨ(BΠ) +
3

4
ε

≥ U(V +
Π∗t

)− 9EΨ(BΠ) +
3

4
ε

≥ v∗ − 9EΨ(BΠ) +
3

4
ε

which follows since Π
(1)
t is the policy with largest upper bound. Therefore, Πt ∈ Qε.

By the stopping criteria of OpStoK, if the algorithm does not stop and select Π
(1)
t

as the optimal policy, then Πt = Π
(2)
t and

L(V +

Π
(1)
t

) + ε < max
Π∈Active\{Π(1)

t }
U(V +

Π ) = U(V +

Π
(2)
t

).

By equation (4.10),

L(V +

Π
(1)
t

) + 9EΨ(BΠ)− 3

4
ε ≥ U(V +

Π
(1)
t

).
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and by the selection criterion U(Ψ(B
Π

(2)
t

)) ≥ U(Ψ(B
Π

(1)
t

)). Hence, for Πt = Π
(2)
t 6= Π∗t ,

VΠt + 18EΨ(BΠ)− 6

4
ε− ε ≥ L(V +

Πt
) + 9EΨ(BΠt)−

3

4
ε+ 9EΨ(BΠt)−

3

4
ε− ε

≥ U(V +
Πt

) + 9EΨ(BΠt)−
3

4
ε− ε (by (4.7))

≥ U(V +
Πt

) + 3U(Ψ(BΠt))− ε

≥ U(V +
Πt

) + 3U(Ψ(B
Π

(1)
t

))− ε

≥ L(V +

Π
(1)
t

) + 3U(Ψ(B
Π

(1)
t

))

≥ U(V +

Π
(1)
t

)

≥ U(V +
Π∗t

)

≥ v∗.

Therefore, Πt ∈ Qε.

Theorem 4.17. (Theorem 4.5 in main text) The total number of samples required by

OpStoK is bounded from above by,

∑
Π∈Qε

(m1(Π) +m2(Π)) d(Π),

with probability 1− δ0,2.

Proof. The result follows from the following three lemmas.

Lemma 4.18. For Π ∈ Aε of depth d = d(Π), then, with probability 1 − δd,2, the

minimum number of samples of the value and remaining budget of the policy Π are

bounded by

m1(Π) =

⌈
8Ψ(B)2 log( 2

δd,1
)

ε2

⌉
and m2(Π) = m∗,

where m∗ is the smallest integer satisfying 16Ψ(B)2

(EΨ(BΠ)−ε/2)2 ≤ m
log(8n/mδ2)

with n de�ned as

in (4.2).
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Proof. When EΨ(BΠ) ≤ ε
4
, the event {U(Ψ(BΠ)) ≤ ε

2
} will eventually occur with

enough samples of the remaining budget of the policy. With probability greater than

1− δd,2, this will happen when 2c2 ≤ ε
2
−EΨ(BΠ), since by Proposition 4.2 we know

Ψ(BΠ)m2
∈ [EΨ(BΠ) − c2, EΨ(BΠ) + c2] where c2 is as de�ned in Proposition 4.2.

From this, it follows that U(Ψ(BΠ)) ∈ [EΨ(BΠ), EΨ(BΠ) + 2c2]. We want to make

sure that U(Ψ(BΠ)) ≤ ε
2
will eventually happen so we need to construct a con�dence

interval such that c2 satis�es EΨ(BΠ) + 2c2 ≤ ε
2
. Therefore we select m2 such that,

2c2 ≤
ε

2
− EΨ(BΠ)

=⇒ 4Ψ(B)

√
2 log( 8n

m2δd,2
)

m2

≤ ε

2
− EΨ(BΠ)

=⇒ 16Ψ(B)2

(EΨ(BΠ)− ε/2)2
≤ m2

log(4n/m2δ2)
.

De�ning, m2(Π) = m∗, where m∗ is the smallest integer satisfying the above, is

therefore an upper bound on the minimum number of samples necessary to ensure

that U(Ψ(BΠ)) ≤ ε
2
with probability greater than 1 − δd,2. When U(Ψ(BΠ)) ≤ ε

2
,

BoundValueShare requiresm1(Π) =

⌈
2Ψ(B)2 log( 2

δd,1
)

ε2

⌉
samples of the value of the policy

to ensure 2c1 ≤ ε
2
.

Lemma 4.19. For Π ∈ Bε of depth d = d(Π), then, with probability 1 − δd,2, the

minimum number of samples of the value and remaining budget of the policy Π are

bounded by

m1(Π) ≤

⌈
Ψ(B)2 log( 2

δd,1
)

2EΨ(BΠ)2

⌉
and m2(Π) = m∗,

where m∗ is the smallest integer satisfying 16Ψ(B)2

(EΨ(BΠ)−ε/4)2 ≤ m
log(8n/mδ2)

with n de�ned as

in (4.2).

Proof. When EΨ(BΠ) ≥ ε
2
, by noting that the event {L(Ψ(BΠ)) ≥ ε

4
} will eventually

happen and using a very similar argument to Lemma 4.18, it follows that m2(Π) is
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the smallest integer solution to

16Ψ(B)2

(EΨ(BΠ)− ε/4)2
≤ m

log(8n/mδ2)
,

with probability greater than 1 − δd,2. Whenever L(Ψ(BΠ)) ≥ ε
4
, BoundValueShare

requiresm1(Π) =

⌈
2Ψ(B)2 log( 2

δd,1
)

(U(Ψ(BΠ))2

⌉
samples of the value of policy Π. Since U(Ψ(BΠ)) ∈

[EΨ(BΠ), EΨ(BΠ) + 2c2] with probability 1− δ0,2, U(Ψ(BΠ)) ≥ EΨ(BΠ), and so,

m1(Π) =

⌈
2Ψ(B)2 log( 2

δd,1
)

(U(Ψ(BΠ))2

⌉
≤

⌈
2Ψ(B)2 log( 2

δd,1
)

EΨ(BΠ)2

⌉

and the result holds.

Lemma 4.20. For Π ∈ Cε of depth d = d(Π), then, with probability 1 − δd,2, the

minimum number of samples of the value and remaining budget of the policy Π are

bounded by

m1(Π) ≤ max

{⌈
8Ψ(B)2 log( 2

δd,1
)

ε2

⌉
,

⌈
Ψ(B)2 log( 2

δd,1
)

2EΨ(BΠ)2

⌉}

and m2(Π) = m∗,where m∗ is the smallest integer satisfying 16Ψ(B)2

(ε/4)2 ≤ m
log(8n/mδ2)

with

n de�ned as in (4.2).

Proof. When ε
4
< EΨ(BΠ) < ε

2
, then the minimum width we will need a con�dence

interval to be is ε/4. By an argument similar to Lemma 4.18, we can deduce that

m2(Π) will be the smallest integer satisfying 16Ψ(B)2

(ε/4)2 ≤ m
log(8n/mδ2)

.

To determine the number of samples of the value required by BoundValueShare, we

need to know which of {U(Ψ(BΠ)) ≤ ε
2
} or {L(Ψ(BΠ)) ≥ ε

4
} occurs �rst. However,

when Π ∈ Cε, we do not know this so the best we can do is bound m1(Π) by the
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maximum of the two alternatives,

m1(Π) ≤ max

{⌈
2Ψ(B)2 log( 2

δd,1
)

ε2

⌉
,

⌈
2Ψ(B)2 log( 2

δd,1
)

EΨ(BΠ)2

⌉}
.

The result of the theorem then follows by noting that for any policy Π of depth

d(Π), it will be necessary to have m1(Π) samples of the value of the policy and m2(Π)

samples of the value of the policy. This requires m1(Π)d(Π) samples of item rewards,

m1(Π)d(Π) samples of item sizes (to calculate the rewards) andm2(Π)d(Π) samples of

item sizes (to calculate remaining budget), thus a total of (m1(Π) +m2(Π))d(Π) calls

to the generative model. From Lemma 4.3, any policy expanded by OpStoK will be in

Qε so it su�ces to sum over all policies in Qε. This result assumes that all con�dence

bounds hold, whereas we know that for any policy Π of depth d(Π), the probability

of the con�dence bound holding is greater than 1 − δd,2. By an argument similar to

Lemma 4.12, the probability that all bounds hold is greater than 1− δ0,2. Note that,

since |Qε| ≤ |P|, the probability should be considerably greater than 1− δ0,2.



Chapter 5

Bandits with Delayed, Aggregated

Anonymous Feedback

5.1 Introduction

The stochastic multi-armed bandit (MAB) problem is a prominent framework for cap-

turing the exploration-exploitation tradeo� in online decision making and experiment

design. An introduction to the MAB problem is given in Chapter 2. In the classic

stochastic MAB setting, when the player pulls an arm, they immediately observes

feedback in the form of a stochastic reward which can be used to improve the deci-

sions in subsequent rounds. One of the main application areas of MABs is in online

advertising. Here, the arms correspond to adverts, and the feedback would corre-

spond to conversions, that is users buying a product after seeing an advert. However,

in practice, these conversions may not necessarily happen immediately after the ad-

vert is shown, and it may not always be possible to assign the credit of a sale to a

particular showing of an advert. A similar challenge is encountered in many other

applications, e.g., in personalized treatment planning, where the e�ect of a treatment

on a patient's health may be delayed, and it may be di�cult to determine which out

102
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Multi-Armed Bandits
(eg. Auer et al. (2002a))

O(
√
KT log T )

Delayed Feed-
back Bandits (eg.

Joulani et al. (2013))
O(
√
KT log T + KE[τ ])

Bandits with De-
layed, Aggregated

Anonymous Feedback
O(
√
KT logK + KE[τ ])

Di�culty

Figure 5.1: The relative di�culties and problem independent regret bounds of the
di�erent problems. For MABDAAF, our algorithm uses knowledge of E[τ ] and a mild
assumption of a delay bound, which is not required by Joulani et al. (2013).

of several past treatments caused the change in the patient's health; or, in content

design applications, where the e�ects of multiple changes in the website design on

website tra�c and footfall may be delayed and di�cult to distinguish.

In this chapter, we propose a new bandit model to handle online problems with

such `delayed, aggregated and anonymous' feedback. In our model, a player interacts

with an environment of K actions (or arms) in a sequential fashion. At each time

step the player selects an action which leads to a reward generated at random from

the underlying reward distribution. At the same time, a nonnegative random integer-

valued delay is also generated i.i.d. from an underlying delay distribution. Denoting

this delay by τ ≥ 0 and the index of the current round by t, the reward generated in

round t will arrive at the end of the (t + τ)th round. At the end of each round, the

player observes only the sum of all the rewards that arrive in that round. Crucially,

the player does not know which of the past plays have contributed to this aggregated

reward. We call this problem multi-armed bandits with delayed, aggregated anonymous

feedback (MABDAAF). As in the standard MAB problem, in MABDAAF, the goal

is to maximize the cumulative reward from T plays of the bandit, or equivalently to

minimize the regret.

If the delays are all zero, the MABDAAF problem reduces to the standard (stochas-

tic) MAB problem, which has been studied considerably (see Chapter 2 for details).

Compared to the MAB problem, the job of the player in our problem appears to be

signi�cantly more di�cult since the player has to deal with (i) that some feedback
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from the previous pulls may be missing due to the delays, and (ii) that the feedback

takes the form of the sum of an unknown number of rewards of unknown origin.

An easier problem is when the observations are delayed, but they are non-aggregated

and non-anonymous : that is, the player has to only deal with challenge (i) and not

(ii). Here, the player receives delayed feedback in the shape of action-reward pairs

that inform the player of both the individual reward and which action generated it.

This problem, which we shall call the (non-anonymous) delayed feedback bandit prob-

lem, has been studied by Joulani et al. (2013), and later followed up by Mandel et al.

(2015) for bounded delays. Remarkably, they show that compared to the standard

(non-delayed) stochastic MAB setting, the regret will only increase additively by a

factor that scales with the expected delay. For delay distributions with a �nite ex-

pected delay, E[τ ], the worst case regret scales with O(
√
KT log T + KE[τ ]). Hence,

the price to pay for the delay in receiving the observations is negligible. The QPM-D

algorithm from (Joulani et al., 2013) and the SBD algorithm from (Mandel et al.,

2015) place received rewards into queues for each arm, taking one whenever a base

bandit algorithm suggests playing the arm. Throughout, we take UCB1 (Auer et al.,

2002a) as the base algorithm in QPM-D. Joulani et al. (2013) also present a direct

modi�cation of the UCB1 algorithm. All of these algorithms achieve the stated re-

gret. None of them require any knowledge of the delay distributions, but they all rely

heavily upon the non-anonymous nature of the observations.

While these results are encouraging, the assumption that the rewards are observed

individually in a non-anonymous fashion is limiting for most practical applications

with delays (e.g., recall the applications discussed earlier). How big is the price to

be paid for receiving only aggregated anonymous feedback? Our main result is to

prove that essentially there is no extra price to be paid provided that the value of

the expected delay (or a bound on it) is available. In particular, this means that

detailed knowledge of which action led to a particular delayed reward can be replaced
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by the much weaker requirement that the expected delay, or a bound on it, is known.

Figure 5.1 summarizes the relationship between the non-delayed, the delayed and the

new problem by showing the leading terms of the regret. In all cases, the dominant

term is
√
KT . Hence, asymptotically, the delayed, aggregated anonymous feedback

problem is no more di�cult than the standard multi-armed bandit problem.

5.1.1 Our Techniques and Results

We now consider what sort of algorithm will be able to achieve the aforementioned

results for the MABDAAF problem. Since the player only observes delayed, aggregated

anonymous rewards, the �rst problem we face is how to even estimate the mean reward

of individual actions. Due to the delays and anonymity, it appears that to be able to

estimate the mean reward of an action, the player wants to have played it consecutively

for long stretches. Indeed, if the stretches are su�ciently long compared to the mean

delay, the observations received during the stretch will mostly consist of rewards of

the action played in that stretch. This naturally leads to considering algorithms that

switch actions rarely and this is indeed the basis of our approach.

Several popular MAB algorithms are based on choosing the action with the largest

upper con�dence bound (UCB) in each round (see Section 2.2.1). UCB-style algo-

rithms tend to switch arms frequently and will only play the optimal arm for long

stretches if a unique optimal arm exists. Therefore, for MABDAAF, we will consider

alternative algorithms where arm switching is more tightly controlled. The design of

such algorithms goes back at least to the work of Agrawal et al. (1988) where the

problem of bandits with switching costs was studied. The general idea of these rarely

switching algorithms is to gradually eliminate suboptimal arms by playing arms in

phases and comparing each arm's upper con�dence bound to the lower con�dence

bound of a leading arm at the end of each phase. Generally, this sort of rarely switch-

ing algorithm switches arms only O(log T ) times. We base our approach on one such
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algorithm, the so-called Improved UCB1 algorithm of Auer and Ortner (2010).

Using a rarely switching algorithm alone will not be su�cient for MABDAAF.

The remaining problem, and where the bulk of our contribution lies, is to construct

appropriate con�dence bounds and adjust the length of the periods of playing each

arm to account for the delayed, aggregated anonymous feedback. In particular, in

the con�dence bounds attention must be paid to �ne details: it turns out that unless

the variance of the observations is dealt with, there is a blow-up by a multiplicative

factor of K. We avoid this by an improved analysis involving Freedman's inequality

(Freedman, 1975). Further, to handle the dependencies between the number of plays

of each arm and the past rewards, we combine Doob's optimal skipping theorem

(Doob, 1953) and Azuma-Hoe�ding inequalities. Using a rarely switching algorithm

for MABDAAF means we must also consider the dependencies between the elimination

of arms in one phase and the corruption of observations in the next phase (i.e. past

plays can in�uence both whether an arm is still active and the corruption of the next

plays). We deal with this through careful algorithmic design.

Using the above, we provide an algorithm that achieves worst case regret of

O(
√
KT logK + KE[τ ] log T ) using only knowledge of the expected delay, E[τ ]. We

then show that this regret can be improved by using a more careful martingale ar-

gument that exploits the fact that our algorithm is designed to remove most of the

dependence between the corruption of future observations and the elimination of arms.

Particularly, if the delays are bounded with known bound, 0 ≤ d ≤
√
T/K, we can

recover worst case regret of O(
√
KT logK+KE[τ ]), matching that in (Joulani et al.,

2013). If the delays are unbounded but have known variance V(τ), we show that the

problem independent regret can be reduced to O(
√
KT logK +KE[τ ] +KV(τ)).

1The adjective �Improved� indicates that the algorithm improves upon the regret bounds achieved
by UCB1. The improvement replaces log(T )/∆j by log(T∆2

j )/∆j in the regret bound.
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5.1.2 Related Work

We have already discussed several of the most relevant works to our own. However,

there has also been other work looking at di�erent �avors of the bandit problem

with delayed (non-anonymous) feedback. A detailed review of this work is given in

Section 2.3.4. Neu et al. (2010) and Cesa-Bianchi et al. (2016) consider non-stochastic

bandits with �xed constant delays; Dudik et al. (2011) look at stochastic contextual

bandits with a constant delay and Desautels et al. (2014) consider Gaussian Process

bandits with a bounded stochastic delay. The general observation that delay causes an

additive regret penalty in stochastic bandits and a multiplicative one in adversarial

bandits is made in (Joulani et al., 2013). The empirical performance of K-armed

stochastic bandit algorithms in delayed settings was investigated in (Chapelle and

Li, 2011). A further related problem is the `batched bandit' problem studied by

Perchet et al. (2016). Here the player must �x a set of time points at which to collect

feedback on all plays leading up to that point. Vernade et al. (2017) consider delayed

Bernoulli bandits where some observations could also be censored (e.g., no conversion

is ever actually observed if the delay exceeds some threshold) but require complete

knowledge of the delay distribution. Crucially, here and in all the aforementioned

works, the feedback is always assumed to take the form of arm-reward pairs and

knowledge of the assignment of rewards to arms underpins the suggested algorithms,

rendering them unsuitable for MABDAAF. To the best of our knowledge, ours is the

�rst work to develop algorithms to deal with delayed, aggregated anonymous feedback

in the bandit setting.

5.1.3 Organization

The reminder of this chapter is organized as follows: In the next section (Section 5.2)

we give the formal problem de�nition. We present our algorithm in Section 5.3. In

Section 5.4, we discuss the performance of our algorithm under various delay assump-
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tions; known expectation, bounded support with known bound and expectation, and

known variance and expectation. This is followed by a numerical illustration of our

results in Section 5.5. We conclude in Section 5.6.

5.2 Problem De�nition

There are K > 1 actions or arms in the set A. Each action j ∈ A is associated

with a reward distribution, ζj, and a delay distribution, δj. The reward distribution

is supported in [0, 1] and the delay distribution is supported on N .
= {0, 1, . . . }. We

denote by µj the mean of ζj, µ
∗ = µj∗ = maxj µj and de�ne ∆j = µ∗ − µj to be the

reward gap, that is the expected loss of reward each time action j is chosen instead

of an optimal action. Let (Rl,j, τl,j)l∈N,j∈A be an in�nite array of random variables

de�ned on the probability space (Ω,Σ, P ) which are mutually independent. Further,

Rl,j follows the distribution ζj and τl,j follows the distribution δj. The meaning of

these random variables is that if the player plays action j at time l, a payo� of Rl,j

will be added to the aggregated feedback that the player receives at the end of the

(l + τl,j)th play. Formally, if Jl ∈ A denotes the action chosen by the player at time

l = 1, 2, . . . , then the observation received at the end of the tth play is

Xt =
t∑
l=1

K∑
j=1

Rl,j × I{l + τl,j = t, Jl = j}.

For the remainder, we will consider i.i.d. delays across arms. We also assume discrete

delay distributions, although most results hold for continuous delays by rede�ning the

event {τl,j = t− l} as {t− l− 1 < τl,j ≤ t− l} in Xt. In our analysis, we will sum over

stochastic index sets. For a stochastic index set I and random variables {Zn}n∈N we

denote such sums as
∑

t∈I Zt
.
=
∑

t∈N I{t ∈ I} × Zt.
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Regret de�nition In most bandit problems, the regret is the cumulative loss due

to not playing an optimal action. In the case of delayed feedback, there are several

possible ways to de�ne the regret. One option is to consider only the loss of the

rewards received before horizon T (as in (Vernade et al., 2017)). However, we will

not use this de�nition. Instead, as in (Joulani et al., 2013), we consider the loss of all

generated rewards and de�ne the (pseudo-)regret by

RT =
T∑
t=1

(µ∗ − µJt) = Tµ∗ −
T∑
t=1

µJt .

This includes the rewards received after the horizon T and does not penalize large

delays as long as an optimal action is taken. This de�nition is natural since, in

practice, the player should eventually receive all outstanding reward.

Lai and Robbins (1985) showed that the regret of any algorithm for the standard

MAB problem must satisfy,

lim inf
T→∞

E[RT ]

log(T )
≥
∑
j:∆j>0

∆j

KL(ζj, ζ∗)
, (5.1)

where KL(ζj, ζ
∗) is the KL-divergence between the reward distributions of arm j and

an optimal arm. Theorem 4 of Vernade et al. (2017) shows that the lower bound in

(5.1) also holds for delayed feedback bandits with no censoring and their alternative

de�nition of regret. We therefore suspect (5.1) should hold for MABDAAF. However,

due to the speci�c problem structure, �nding a lower bound for MABDAAF is non-

trivial and remains an open problem.

Assumptions on delay distribution For our algorithm for MABDAAF, we need

some assumptions on the delay distribution. We assume that the expected delay, E[τ ],

is bounded and known. This quantity is used in the algorithm.

Assumption 1. The expected delay, E[τ ], is bounded and known to the algorithm.
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We then show that under some further mild assumptions on the delay, we can

obtain better algorithms with even more e�cient regret guarantees. We consider two

settings: delay distributions with bounded support, and bounded variance.

Assumption 2 (Bounded support). There exists some constant d > 0 known to the

algorithm such that the support of the delay distribution is bounded by d.

Assumption 3 (Bounded variance). The variance, V(τ), of the delay is bounded and

known to the algorithm.

In fact the known expected value and known variance assumption can be replaced

by a `known upper bound' on the expected value and variance respectively. However,

for simplicity, in the remaining we use E[τ ] and V(τ) directly. The next sections

provide algorithms and regret analyses for di�erent combinations of the above as-

sumptions.

5.3 Our Algorithm

Our algorithm is a phase-based elimination algorithm based on the Improved UCB

algorithm by Auer and Ortner (2010). The general structure is as follows. In each

phase, each arm is played multiple times consecutively. At the end of the phase,

the observations received are used to update mean estimates, and any arm with an

estimated mean below the best estimated mean by a gap larger than a `separation

gap tolerance' is eliminated. This separation tolerance is decreased exponentially over

phases, so that it is very small in later phases, eliminating all but the best arm(s)

with high probability. An alternative formulation of the algorithm is that at the

end of a phase, any arm with an upper con�dence bound lower than the best lower

con�dence bound is eliminated. These con�dence bounds are computed so that with

high probability they are more (less) than the true mean, but within the separation gap

tolerance. The phase lengths are then carefully chosen to ensure that the con�dence
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Algorithm 5.1 Optimism for Delayed, Aggregated Anonymous Feedback (ODAAF)

Require: A set of arms, A; a horizon, T ; choice of nm for each phase m = 1, 2, . . ..
Initialization: Set ∆̃1 = 1/2 (tolerance), the set of active arms A1 = A. Let Ti(1) =
∅, i ∈ A, m = 1 (phase index), t = 1 (round index)
while t ≤ T do
Step 1: Play arms.
for j ∈ Am do
Let Tj(m) = Tj(m− 1)
while |Tj(m)| ≤ nm and t ≤ T do
Play arm j, receive Xt. Add t to Tj(m). Increment t by 1.

end while
end for
Step 2: Eliminate sub-optimal arms.

For every arm in j ∈ Am, compute X̄m,j as the average of observations at time
steps t ∈ Tj(m). That is,

X̄m,j =
1

|Tj(m)|
∑

t∈Tj(m)

Xt .

Construct Am+1 by eliminating actions j ∈ Am with

X̄m,j + ∆̃m < max
j′∈Am

X̄m,j′ .

Step 3: Decrease Tolerance.

Set ∆̃m+1 = ∆̃m

2
.

Step 4: Bridge period.
Pick an arm j ∈ Am+1 and play it νm = nm − nm−1 times while incrementing
t ≤ T . Discard all observations from this period. Do not add t to Tj(m).
Increment phase index m.

end while

bounds hold. Here we assume that the horizon T is known, but we expect that this

can be relaxed as in (Auer and Ortner, 2010).

Algorithm overview Our algorithm, ODAAF, is given in Algorithm 5.1. It oper-

ates in phases m = 1, 2, . . .. De�ne Am to be the set of active arms in phase m. The

algorithm takes parameter nm which de�nes the number of samples of each active arm

required by the end of phase m.

In Step 1 of phase m of the algorithm, each active arm j is played repeatedly for
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nm − nm−1 steps. We record all timesteps where arm j was played in the �rst m

phases (excluding bridge periods) in the set Tj(m). The active arms are played in any

arbitrary but �xed order. In Step 2, the nm observations from timesteps in Tj(m) are

averaged to obtain a new estimate X̄m,j of µj. Arm j is eliminated if X̄m,j is further

than ∆̃m from maxj′∈Am X̄m,j′ .

A further nuance in the algorithm structure is the `bridge period' (see Figure 5.2).

The algorithm picks an active arm j ∈ Am+1 to play in this bridge period for nm−nm−1

steps. The observations received during the bridge period are discarded, and not used

for computing con�dence intervals. The signi�cance of the bridge period is that it

breaks the dependence between con�dence intervals calculated in phase m and the

delayed payo�s seeping into phase m+ 1. Without the bridge period this dependence

would impair the validity of our con�dence intervals. However, we suspect that, in

practice, it may be possible to remove it.

Choice of nm A key element of our algorithm design is the careful choice of nm.

Since nm determines the number of times each active (possibly suboptimal) arm is

played, it clearly has an impact on the regret. Furthermore, nm needs to be chosen

so that the con�dence bounds on the estimation error hold with given probability.

The main challenge is developing these con�dence bounds from delayed, aggregated

anonymous feedback. Handling this form of feedback involves a credit assignment

problem of deciding which samples can be used for a given arm's mean estimation,

since each sample is an aggregate of rewards from multiple previously played arms.

This credit assignment problem would be hopeless in a passive learning setting without

further information on how the samples were generated. Our algorithm utilizes the

power of active learning to design the phases in such a way that the feedback can be

e�ectively `decensored' without losing too many samples.

A naive approach to de�ning the con�dence bounds for delays bounded by a
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Phase i

Tj(i) \ Tj(i− 1) Bridge

Figure 5.2: An example of phase i of our algorithm.

constant d ≥ 0 would be to observe that,

∣∣∣∣ ∑
t∈Tj(m)\Tj(m−1)

Xt −
∑

t∈Tj(m)\Tj(m−1)

Rt,j

∣∣∣∣ ≤ d,

since all rewards are in [0, 1]. Then we could use Hoe�ding's inequality to bound Rt,Jt

(see Section 5.F) and select

nm =
C1 log(T ∆̃2

m)

∆̃2
m

+
C2md

∆̃m

for some constants C1, C2. This corresponds to worst case regret of O(
√
KT logK +

K log(T )d). For d� E[τ ] and large T , this is signi�cantly worse than that of Joulani

et al. (2013). In Section 5.4, we show that, surprisingly, it is possible to recover the

same rate of regret as Joulani et al. (2013), but this requires a signi�cantly more

nuanced argument to get tighter con�dence bounds and smaller nm. In the next

section, we describe this improved choice of nm for every phase m ∈ N and its impli-

cations on the regret, for each of the three cases mentioned previously: (i) Known and

bounded expected delay (Assumption 1), (ii) Bounded delay with known bound and

expected value (Assumptions 1 and 2), (iii) Delay with known and bounded variance

and expectation (Assumptions 1 and 3).
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5.4 Regret Analysis

In this section, we specify the choice of parameters nm and provide regret guarantees

for Algorithm 5.1 for each of the three previously mentioned cases.

5.4.1 Known and Bounded Expected Delay

First, we consider the setting with the weakest assumption on the delay distribution:

we only assume that the expected delay, E[τ ], is bounded and known. No assumption

on the support or variance of the delay distribution is made. The regret analysis for

this setting will not use the bridge period, so Step 4 of the algorithm could be omitted

in this case.

Choice of nm Here, we use Algorithm 5.1 with

nm =
C1 log(T ∆̃2

m)

∆̃2
m

+
C2mE[τ ]

∆̃m

(5.2)

for some large enough constants C1, C2. The exact value of nm is given in Equa-

tion (5.14) in Section 5.B.

Estimation of error bounds We bound the error between X̄m,j and µj by ∆̃m/2.

In order to do this we �rst bound the corruption of the observations received during

timesteps Tj(m) due to delays.

Fix a phase m and arm j ∈ Am. Then the observations Xt in the period

t ∈ Tj(m) \ Tj(m− 1) are composed of two types of rewards: a subset of rewards from

plays of arm j in this period, and delayed rewards from some of the plays before this

period. The expected value of observations from this period would be (nm− nm−1)µj

but for the rewards entering and leaving this period due to the delays. Since the re-

ward is bounded by 1, a simple observation is that the expected discrepancy between
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the sum of observations in this period and the quantity (nm−nm−1)µj is bounded by

the expected delay E[τ ],

E

 ∑
t∈Tj(m)\Tj(m−1)

(Xt − µj)

 ≤ E[τ ]. (5.3)

Summing this over phases ` = 1, . . .m gives a bound

|E[X̄m,j]− µj| ≤
mE[τ ]

|Tj(m)|
=
mE[τ ]

nm
. (5.4)

Note that given the choice of nm in (5.2), the above is smaller than ∆̃m/2, when

large enough constants are used. Using this, along with concentration inequalities

and the choice of nm from (5.2), we can obtain the following high probability bound.

A detailed proof is provided in Section 5.B.1.

Lemma 5.1. Under Assumption 1 and the choice of nm given by (5.2), the estimates

X̄m,j constructed by Algorithm 5.1 satisfy the following: For every �xed arm j and

phase m, with probability 1− 3
T ∆̃2

m
, either j /∈ Am, or:

X̄m,j − µj ≤ ∆̃m/2 .

Regret bounds Using Lemma 5.1, we derive the following regret bounds in the

current setting.

Theorem 5.2. Under Assumption 1, the expected regret of Algorithm 5.1 is upper

bounded as

E[RT ] ≤
K∑
j=1
j 6=j∗

O

(
log(T∆2

j)

∆j

+ log(1/∆j)E[τ ]

)
. (5.5)

Proof. Given Lemma 5.1, the proof of Theorem 5.2 closely follows the analysis of the
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Improved UCB algorithm of Auer and Ortner (2010). Lemma 5.1 and the elimination

condition in Algorithm 5.1 ensure that, with high probability, any suboptimal arm

j will be eliminated by phase mj = log(1/∆j), thus incurring regret at most nmj∆j

We then substitute in nmj from (5.2), and sum over all suboptimal arms. A detailed

proof is in Section 5.B.2. As in (Auer and Ortner, 2010), we avoid a union bound

over all arms (which would result in an extra logK) by (i) reasoning about the regret

of each arm individually, and (ii) bounding the regret resulting from erroneously

eliminating the optimal arm by carefully controlling the probability it is eliminated

in each phase.

Considering the worst-case values of ∆j (roughly
√
K/T ), we obtain the following

problem independent bound.

Corollary 5.3. For any problem instance satisfying Assumption 1, the expected regret

of Algorithm 5.1 satis�es

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] log(T )).

5.4.2 Delay with Bounded Support

If the delay is bounded by some constant d ≥ 0 and a single arm is played repeatedly

for long enough, we can restrict the number of arms corrupting the observation Xt at

a given time t. In fact, if each arm j is played consecutively for more than d rounds,

then at any time t ∈ Tj(m), the observation Xt will be composed of the rewards from

at most two arms: the current arm j, and the previous arm j′. Further, from the

elimination condition, with high probability, arm j′ will have been eliminated if it is

clearly suboptimal. We can then recursively use the con�dence bounds for arms j and

j′ from the previous phase to bound |µj − µj′ |. Below, we formalize this intuition to

obtain a tighter bound on |X̄m,j −µj| for every arm j and phase m, when each active

arm is played a speci�ed number of times per phase.
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Choice of nm Here, we de�ne,

nm =
C1 log(T ∆̃2

m)

∆̃2
m

+
C2E[τ ]

∆̃m

+ min

{
md,

C3 log(T ∆̃2
m)

∆̃2
m

+
C4mE[τ ]

∆̃m

}
(5.6)

for some large enough constants C1, C2, C3, C4 (see Section 5.C, Equation (5.18) for

the exact values). This choice of nm means that for large d, we essentially revert back

to the choice of nm from (5.2) for the unbounded case, and we gain nothing by using

the bound on the delay. However, if d is not large, the choice of nm in (5.6) is smaller

than (5.2) since the second term now scales with E[τ ] rather than mE[τ ].

Estimation of error bounds In this setting, by the elimination condition and

bounded delays, the expectation of each reward entering Tj(m) will be within ∆̃m−1

of µj, with high probability. Then, using knowledge of the upper bound of the support

of τ , we can obtain a tighter bound and get an error bound similar to Lemma 5.1

with the smaller value of nm in (5.6). We prove the following proposition. Since

∆̃m = 2−m, this is considerably tighter than (5.3).

Proposition 5.4. Assume ni−ni−1 ≥ d for phases i = 1, . . . ,m. De�ne Em−1 as the

event that all arms j ∈ Am satisfy error bounds |X̄m−1,j − µj| ≤ ∆̃m−1/2. Then, for

every arm j ∈ Am,

E

 ∑
t∈Tj(m)\Tj(m−1)

(Xt − µj)
∣∣∣∣Em−1

 ≤ ∆̃m−1E[τ ].

Proof. (Sketch). Consider a �xed arm j ∈ Am. The expected value of the sum of

observations Xt for t ∈ Tj(m) \ Tj(m − 1) would be (nm − nm−1)µj were it not for

some rewards entering and leaving this period due to the delays. Because of the i.i.d.

assumption on the delay, in expectation, the number of rewards leaving the period is

roughly the same as the number of rewards entering this period, i.e., E[τ ] (conditioning

on Em−1 does not e�ect this due to the bridge period). Since nm − nm−1 ≥ d, the
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reward coming into the period Tj(m) \ Tj(m− 1) can only be from the previous arm

j′. All rewards leaving the period are from arm j. Therefore the expected di�erence

between rewards entering and leaving the period is (µj −µj′)E[τ ]. Then, if µj is close

to µj′ , the total reward leaving the period is compensated by total reward entering.

Due to the bridge period, even when j is the �rst arm played in phase m, j′ ∈ Am,

so it was not eliminated in phase m − 1. By the elimination condition in Algorithm

5.1, if the error bounds |X̄m−1,j −µj| ≤ ∆̃m−1/2 are satis�ed for all arms in Am, then

|µj − µj′ | ≤ ∆̃m−1. This gives the result.

Repeatedly using Proposition 5.4 we get,

m∑
i=1

E

 ∑
t∈Tj(i)\Tj(i−1)

(Xt − µj)
∣∣∣∣Ei−1

 ≤ 2E[τ ]

since
∑m

i=1 ∆̃i−1 =
∑m−1

i=0 2−i ≤ 2. Then, observe that P(ECi ) is small. This bound

is an improvement of a factor of m compared to (5.4). For the regret analysis, we

derive a high probability version of the above result. Using this, and the choice

of nm ≥ Ω
(

log(T ∆̃2
m)

∆̃2
m

+ E[τ ]

∆̃m

)
from (5.6), for large enough constants, we derive the

following lemma. A detailed proof is given in Section 5.C.1.

Lemma 5.5. Under Assumptions 1 of known expected delay and 2 of bounded delays,

and choice of nm given in (5.6), the estimates X̄m,j obtained by Algorithm 5.1 satisfy

the following: For any arm j and phase m, with probability at least 1 − 12
T ∆̃2

m
, either

j /∈ Am or

X̄m,j − µj ≤ ∆̃m/2.

Regret bounds We now give regret bounds for this case.

Theorem 5.6. Under Assumption 1 and bounded delay Assumption 2, the expected
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regret of Algorithm 5.1 satis�es

E[RT ] ≤
K∑

j=1;j 6=j∗
O

(
log(T∆2

j)

∆j

+ E[τ ] + min

{
d,

log(T∆2
j)

∆j

+ log(
1

∆j

)E[τ ]

})
.

Proof. (Sketch). Given Lemma 5.5, the proof is similar to that of Theorem 5.2. The

full proof is in Section 5.C.2.

Then, if d ≤
√

T logK
K

+ E[τ ], we get the following problem independent regret

bound which matches that of Joulani et al. (2013).

Corollary 5.7. For any problem instance satisfying Assumptions 1 and 2 with d ≤√
T logK
K

+ E[τ ], the expected regret of Algorithm 5.1 satis�es

E[RT ] ≤ O(
√
KT log(K) +KE[τ ]).

5.4.3 Delay with Bounded Variance

If the delay is unbounded but well behaved in the sense that we know (a bound

on) the variance, then we can obtain similar regret bounds to the bounded delay

case. Intuitively, delays from the previous phase will only corrupt observations in the

current phase if their delays exceed the length of the bridge period. We control this

by using the bound on the variance in Chebychev's inequality to bound the tails of

the delay distributions.

Choice of nm Let V(τ) be the known variance (or bound on the variance) of the

delay, as in Assumption 3. Then, we use Algorithm 5.1 with the following value of

nm,

nm = C1
log(T ∆̃2

m)

∆̃2
m

+ C2
E[τ ] + V(τ)

∆̃m

(5.7)

for some large enough constants C1, C2. The exact value of nm is given in Section 5.D,

Equation (5.25).
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Regret bounds We get the following instance speci�c and problem independent

regret bound in this case.

Theorem 5.8. Under Assumption 1 and Assumption 3 of known (bound on) the

expectation and variance of the delay, and choice of nm from (5.7), the expected regret

of Algorithm 5.1 can be upper bounded by,

E[RT ] ≤
K∑

j=1:µj 6=µ∗
O

(
log(T∆2

j)

∆j

+ E[τ ] + V(τ)

)
.

Proof. (Sketch). See Section 5.D.2. We use Chebychev's inequality to get a result

similar to Lemma 5.5 and then use a similar argument to the bounded delay case.

Corollary 5.9. For any problem instance satisfying Assumptions 1 and 3, the expected

regret of Algorithm 5.1 satis�es

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] +KV(τ)).

Remark If E[τ ] ≥ 1, then the delay penalty can be reduced toO(KE[τ ]+KV(τ)/E[τ ])

(see Section 5.D).

Thus, it is su�cient to know a bound on the variance to obtain regret bounds

similar to those in the bounded delay case. Note that this approach is not possible

just using knowledge of the expected delay since we cannot guarantee that with high

probability, most of the reward entering phase i is from an arm active in phase i− 1.

5.5 Experimental Results

We compared the performance of our algorithm (under di�erent assumptions) to

QPM-D (Joulani et al., 2013) in various experimental settings. In these experiments,
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Figure 5.3: The ratios of regret of variants of our algorithm to that of QPM-D for
di�erent delay distributions.

our aim was to investigate the e�ect of the delay on the performance of the algo-

rithms. In order to focus on this, we used a simple setup of two arms with Bernoulli

rewards and µ = (0.5, 0.6). In every experiment, we ran each algorithm to horizon

T = 250000 and used UCB1 (Auer et al., 2002a) as the base algorithm in QPM-D. The

regret was averaged over 200 replications. For ease of reading, we de�ne ODAAF to be

our algorithm using only knowledge of the expected delay, with nm de�ned as in (5.2)

and run without a bridge period, and ODAAF-B and ODAAF-V to be the versions of

Algorithm 5.1 that use a bridge period and information on the bounded support or

the �nite variance of the delay to de�ne nm as in (5.6) and (5.7) respectively.

We tested the algorithms with di�erent delay distributions. In the �rst case, we

considered bounded delay distributions whereas in the second case, the delays were

unbounded. In Figure 5.3a, we plotted the ratios of the regret of ODAAF and ODAAF-

B (with knowledge of d, the delay bound) to the regret of QPM-D for bounded delay

distributions. We see that in all cases the ratios converge to a constant. This shows

that the regret of our algorithm is essentially of the same order as that of QPM-D.

Our algorithm predetermines the number of times to play each active arm per phase

(the randomness appears in whether an arm is active), so the jumps in the regret are
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it changing arm. This occurs at the same points in all replications.

Figure 5.3b shows a similar story for unbounded delays with mean E[τ ] = 50

(where N+ denotes the the half normal distribution). The ratios of the regret of

ODAAF and ODAAF-V (with knowledge of the delay variance) to the regret of QPM-

D again converge to constants. Note that in this case, these constants, and the location

of the jumps, vary with the delay distribution and V(τ). When the variance of the

delay is small, it can be seen that using the variance information leads to improved

performance. However, for exponential delays where V(τ) = E[τ ]2, the large variance

causes nm to be large and so the suboptimal arm is played more, increasing the regret.

In this case ODAAF-V had only just eliminated the suboptimal arm at time T .

It can also be illustrated experimentally that the regret of our algorithms and that

of QPM-D all increase linearly in E[τ ]. This is shown in Section 5.E. We also provide

an experimental comparison to Vernade et al. (2017) in Section 5.E.

5.6 Conclusion

We have studied an extension of the multi-armed bandit problem to bandits with

delayed, aggregated anonymous feedback. Here, a sum of observations is received

after some stochastic delay and we do not learn which arms contributed to each

observation. In this more di�cult setting, we have proven that, surprisingly, it is

possible to develop an algorithm that performs comparably to those for the simpler

delayed feedback bandits problem, where the assignment of rewards to plays is known.

Particularly, using only knowledge of the expected delay, our algorithm matches the

worst case regret of Joulani et al. (2013) up to a logarithmic factor. This logarithmic

factor can be removed using an improved analysis and slightly more information about

the delay; if the delay is bounded, we achieve the same worst case regret as Joulani

et al. (2013), and for unbounded delays with known �nite variance, we have an extra



CHAPTER 5. DELAYED, AGGREGATED ANONYMOUS FEEDBACK 123

additive V(τ) term. We supported these claims experimentally. Note that while our

algorithm matches the order of regret of QPM-D, the constants are worse. Hence, it

is an open problem to �nd algorithms with better constants.

5.A Supplementary Material

5.A.1 Table of Notation

For ease of reading, we de�ne here key notation that will be used in this section.

T : The horizon.

∆j : The gap between the mean of the optimal arm and the mean of

arm j, ∆j = µ∗ − µj.

∆̃m : The approximation to ∆j at round m of the ODAAF algorithm,

∆̃m = 1
2m
.

nm : The number of samples of an active arm j ODAAF needs by the

end of round m.

νm : The number of times each arm is played in phase m, νm = nm −

nm−1.

d : The bound on the delay in the case of bounded delay.

mj : The �rst round of the ODAAF algorithm where ∆̃m < ∆j/2.

Mj : The random variable representing the round arm j is eliminated

in.

Tj(m) : The set of all time point where arm j is played up to (and including)

round m.

Xt : The reward received at time t (from any possible past plays).

Rt,j : The reward generated by playing arm j at time t.

τt,j : The delay associated with playing arm j at time t.

E[τ ] : The expected delay (assuming i.i.d. delays).
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V(τ) : The variance of the delay (assuming i.i.d. delays).

X̄m,j : The estimated reward of arm j in phase m. See Algorithm 5.1 for

the de�nition.

Sm : The start point of the mth phase. See Section 5.A.2 for more

details.

Um : The end point of themth phase. See Section 5.A.2 for more details.

Sm,j : The start point of phase m of playing arm j. See Section 5.A.2 for

more details.

Um,j : The end point of phase m of playing arm j. See Section 5.A.2 for

more details.

Am : The set of active arms in round m of the ODAAF algorithm.

Ai,t, Bi,t, Ci,t : The contribution of the reward generated at time t in certain inter-

vals relating to phase i to the corruption. See (5.11) for the exact

de�nitions.

Gt : The smallest σ-algebra containing all information up to time t, see

(5.8) for a de�nition.

5.A.2 Beginning and End of Phases

We formalize here some notation that will be used throughout the analysis to denote

the start and end points of each phase. De�ne the random variables Si and Ui for

each phase i = 1, . . . ,m to be the start and end points of the phase. Then let Si,j, Ui,j

denote the start and end points of playing arm j in phase i. See Figure 5.4 for details.

By convention, let Si,j = Ui,j = ∞ if arm j is not active in phase i, Si = Ui = ∞ if

the algorithm never reaches phase i, and let S0,j = U0,j = S0 = U0 = 0 for all j. It is

important to point out that nm are deterministic so at the end of any phase m − 1,

once we have eliminated sub-optimal arms, we also know which arms are in Am and

consequently the start and end points of phase m. Furthermore, since we play arms
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Si

Si,j Ui,j Ui,j′ + 1

Ui

Phase i

Tj(i) \ Tj(i− 1) Bridge

Figure 5.4: An example of phase i of our algorithm. Here j′ is the last active arm
played in phase i.

in a given order, we also know the speci�c rounds when we start and �nish playing

each active arm in phase m. Hence, at any time step t in phase m, Sm, Um, Sm+1

and Um,j, Sm,j for all active arms j ∈ Am will be known. More formally, de�ne the

�ltration {Gt}∞t=0 where

Gt = σ(X1, . . . , Xt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . , Rt,Jt , J1, . . . , Jt) (5.8)

and G0 = {∅,Ω}. This means the joint events like {Si ≤ t} ∩ {Si,j = s′} ∈ Gt for all

s′ ∈ N, j ∈ A.

5.A.3 Useful Results

For our analysis, we will need Freedman's version of Bernstein's inequality for the

right-tail of martingales with bounded increments:

Theorem 5.10 (Freedman's version of Bernstein's inequality; Theorem 1.6 of (Freed-

man, 1975)). Let {Yk}∞k=0 be a real-valued martingale with respect to the �ltration

{Fk}∞k=0 with increments {Zk}∞k=1: E[Zk|Fk−1] = 0 and Zk = Yk − Yk−1, for k =

1, 2, . . . . Assume that the di�erence sequence is uniformly bounded on the right:

Zk ≤ b almost surely for k = 1, 2, . . . . De�ne the predictable variation process

Wk =
∑k

j=1 E[Z2
j |Fj−1] for k = 1, 2, . . . . Then, for all t ≥ 0, σ2 > 0,

P
(
∃k ≥ 0 : Yk ≥ t and Wk ≤ σ2

)
≤ exp

{
− t2/2

σ2 + bt/3

}
.
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This result implies that if for some deterministic constant, σ2, Wk ≤ σ2 holds

almost surely, then P (Yk ≥ t) ≤ exp
{
− t2/2
σ2+bt/3

}
holds for any t ≥ 0.

We will also make use of the following technical lemma which combines the

Hoe�ding-Azuma inequality and Doob's optional skipping theorem (Theorem 2.3 in

Chapter VII of (Doob, 1953))):

Lemma 5.11. Fix the positive integers m,n and let a, c ∈ R. Let F = {Ft}nt=0 be

a �ltration, (εt, Zt)t=1,2,...,n be a sequence of {0, 1} × R-valued random variables such

that for t ∈ {1, 2, . . . , n}, εt is Ft−1-measurable, Zt is Ft-measurable, E[Zt|Ft−1] = 0

and Zt ∈ [a, a+ c]. Further, assume that
∑n

s=1 εs ≤ m with probability one. Then, for

any λ > 0,

P
( n∑

t=1

εtZt ≥ λ

)
≤ exp

{
− 2λ2

c2m

}
. (5.9)

Proof. This lemma appeared in a slightly more general form (where n =∞ is allowed)

as Lemma A.1 in the paper by Szita and Szepesvári (2011) so we refer the reader to

the proof there.

5.B Results for Known and Bounded Expected De-

lay

5.B.1 High Probability Bounds

Lemma 5.1. Under Assumption 1 and the choice of nm given by (5.2), the estimates

X̄m,j constructed by Algorithm 5.1 satisfy the following: For every �xed arm j and

phase m, with probability 1− 3
T ∆̃2

m
, either j /∈ Am, or:

X̄m,j − µj ≤ ∆̃m/2 .
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Proof. Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

3mE[τ ]

nm
. (5.10)

We �rst show that with probability greater than 1− 3
T ∆̃2

m
, j /∈ Am or 1

nm

∑
t∈Tj(m)(Xt−

µj) ≤ wm.

For arm j and phase m, assume j ∈ Am. For notational simplicity we will use in

the following Ii{H} := I{H ∩ {j ∈ Ai}} ≤ I{H} for any event H. If j ∈ Am for a

particular experiment ω then Ii(H)(ω) = I(H)(ω). Then for any phase i ≤ m and

time t, de�ne,

Ai,t = Rt,JtI{τt,Jt + t ≥ Si}, Bi,t = Rt,JtI{τt,Jt + t ≥ Si,j}, Ci,t = Rt,JtI{τt,Jt + t > Ui,j},

(5.11)

and note that since Si,j = Ui,j = ∞ if arm j is not active in phase i, we have the

equalities Ii{τt,Jt + t ≥ Si,j} = I{τt,Jt + t ≥ Si,j} and Ii{τt,Jt + t > Ui,j} = I{τt,Jt + t >

Ui,j}. De�ne the �ltration {Gs}∞s=0 by G0 = {Ω, ∅} and

Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt). (5.12)



CHAPTER 5. DELAYED, AGGREGATED ANONYMOUS FEEDBACK 128

Then, we use the decomposition,

m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj) ≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)

−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si−1∑
t=Si−1,j

Rt,JtI{τt,Jt + t ≥ Si}+

Si,j−1∑
t=Si

Rt,JtI{τt,Jt + t ≥ Si,j}

+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtI{τt,Jt + t > Ui,j}
)

=
m∑
i=1

( Si−1∑
t=Si−1,j

Ai,t +

Si,j−1∑
t=Si

Bi,t +

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=
m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=
m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

(5.13)

+

( Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

)
,︸ ︷︷ ︸

Term IV.

where,

Qt =
m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})

Pt =
m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j}.

Recall that the �ltration {Gs}∞s=0 is de�ned by

G0 = {Ω, ∅}, Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt)
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and we have de�ned Si,j =∞ if arm j is eliminated before phase i and Si =∞ if the

algorithm stops before reaching phase i.

Outline of proof We will bound each term of the above decomposition in (5.13)

in turn, however �rst we need to prove several intermediary results. For term II., we

will use Freedman's inequality so we �rst need Lemma 5.12 to show that Zt = Qt −

E[Qt|Gt−1] is a martingale di�erence and Lemma 5.13 to bound the variance of the sum

of the Zt's. Similarly, for term III., in Lemma 5.14, we show that Z ′t = E[Pt|Gt−1]−Pt

is a martingale di�erence and bound its variance in Lemma 5.15. In Lemma 5.16, we

consider term IV. and bound the conditional expectations of Ai,t, Bi,t, Ci,t. Finally, in

Lemma 5.17, we bound term I. using Lemma 5.11. We then combine the bounds on

all terms together to conclude the proof.

Lemma 5.12. Let Ys =
∑s

t=1(Qt−E[Qt|Gt−1]) for all s ≥ 1, Y0 = 0. Then {Ys}∞s=0 is

a martingale with respect to the �ltration {Gs}∞s=0 with increments Zs = Ys − Ys−1 =

Qs − E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, Zs ≤ 1 for all s ≥ 1.

Proof. To show {Ys}∞s=0 is a martingale with respect to {Gs}∞s=0, we need to show that

Ys is Gs measurable for all s and E[Ys|Gs−1] = Ys−1.

Measurability: First note that by de�nition of Gs, τt,Jt , Rt,Jt are all Gs-measurable

for t ≤ s. Then, for each i, either t is in a phase later than i so Si−1,j and Si

are Gt-measurable, or Si−1,j and Si are not Gt-measurable, but I{t ≥ Si,j} = 0 so

I{t ≥ Si,j} is Gt-measurable. In the �rst case, since Si−1,j and Si are Gt-measurable

Ai,tI{Si−1,j ≤ t ≤ Si − νi} is Gt-measurable. In the second case, Ai,tI{Si−1,j ≤ t ≤

Si − 1} = Ai,tI{{Si−1,j ≤ t}I{t ≤ Si − 1} = 0 so it is also Gt-measurable. Similarly, if

t is after Si , Si and Si,j will be G-measurable or I{Si ≤ t ≤ Si,j − 1} = 0. In both

cases, Bi,tI{Si ≤ t ≤ Si,j − 1} is Gt-measurable. Hence, Qt is Gt-measurable, and also

Qt is Gs measurable for any s ≥ t. It then follows that Ys is Gs-measurable for all s.
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Expectation: Since Qt is Gs measurable for all t ≤ s,

E[Ys|Gs−1] = E
[ s∑
t=1

(Qt − E[Qt|Gt−1])|Gs−1

]

= E
[ s−1∑
t=1

(Qt − E[Qt|Gt−1])|Gs−1

]
+ E[(Qs − E[Qs|Gs−1])|Gs−1]

=
s−1∑
t=1

(Qt − E[Qt|Gt−1]) + E[Qs|Gs−1]− E[Qs|Gs−1]

=
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Ys−1

Hence, {Ys}∞s=0 is a martingale with respect to the �ltration {Gs}∞s=0.

Increments: For any s = 1, . . . , we have that

Zs = Ys − Ys−1 =
s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].

Then,

E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0.

Lastly, since for any t, there is only one i where one of I{Si−1,j ≤ t ≤ Si − 1} = 1

or I{Si ≤ t ≤ Si,j − 1} = 1 (and they cannot both be one), and since Rt,Jt ∈ [0, 1],

Ai,t, Bi,t ≤ 1, so it follows that Zs = Qs − E[Qs|Gs−1] ≤ 1 for all s.

Lemma 5.13. For any t, let Zt = Qt − E[Qt|Gt−1], then, for any s < Sm,j,

s∑
t=1

E[Z2
t |Gt−1] ≤ 2mE[τ ].
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Proof. First note that

s∑
t=1

E[Z2
t |Gt−1] =

s∑
t=1

V(Qt|Gt−1) ≤
s∑
t=1

E[Q2
t |Gt−1]

=
s∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
)2∣∣∣∣Gt−1

]
.

Then, given Gt−1, all indicator terms I{Si−1,j ≤ t ≤ Si − 1} and I{Si ≤ Si,j − 1} for

all i = 1, . . . ,m are measurable and only one can be non zero. Hence, all interaction

terms in the expansion of the quadratic are 0 and so we are left with

s∑
t=1

E[Z2
t |Gt−1]

≤
s∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
)2∣∣∣∣Gt−1

]
=

s∑
t=1

E
[ m∑
i=1

(A2
i,tI{Si−1,j ≤ t ≤ Si − 1}2 +B2

i,tI{Si ≤ t ≤ Si,j − 1}2)

∣∣∣∣Gt−1

]
=

m∑
i=1

s∑
t=1

E[A2
i,tI{Si−1,j ≤ t ≤ Si − 1}|Gt−1]

+
m∑
i=1

s∑
t=1

E[B2
i,tI{Si ≤ t ≤ Si,j − 1}|Gt−1]

≤
m∑
i=1

Si−1∑
t=Si−1,j

E[A2
i,t|Gt−1] +

m∑
i=1

Si,j−1∑
t=Si

E[B2
i,t|Gt−1].
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Then, for any i ≥ 1,

Si−1∑
t=Si−1,j

E[A2
i,t|Gt−1] =

Si−1∑
t=Si−1,j

E[R2
t,JtI{τt,Jt + t ≥ Si}|Gt−1]

≤
Si−1∑

t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {t ≥ Si−1,j, Si = s′} ∈ Gt−1)

=
∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si−1,j, Si = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑
l=0

P(τ > l)

≤ E[τ ].
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Likewise, for any i ≥ 1,

Si,j−1∑
t=Si

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑
t=Si

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ Si,j}|Gt−1]

(Since {t ≥ Si, Si,j = s′} ∈ Gt−1)

=
∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ s′}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si, Si,j = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si = s, Si,j = s′}
∞∑
l=0

P(τ ≥ l)

≤ E[τ ].

Hence, combining both terms and summing over the phases m gives the result.

Lemma 5.14. Let Y ′s =
∑s

t=1(E[Ps|Gs−1]− Ps) for all s ≥ 1, Y ′0 = 0. Then {Y ′s}∞s=0

is a martingale with respect to the �ltration {Gs}∞s=0 with increments Z
′
s = Y ′s−Y ′s−1 =

E[Ps|Gs−1]− Ps satisfying E[Z ′s|Gs−1] = 0, Z ′s ≤ 1 for all s ≥ 1.

Proof. The proof is similar to that of Lemma 5.12. To show {Y ′s}∞s=0 is a martingale

with respect to {Gs}∞s=0, we need to show that Y ′s is Gs measurable for all s and

E[Y ′s |Gs−1] = Y ′s−1.
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Measurability: As before, by de�nition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s.

Also, we can reduce measurability again to measurability of I{τs,Js + s ≥ Ui,j, Si,j ≤

s ≤ Ui,j}. But, {Ui,j = s′} ∩ {Si,j ≤ s} ∈ Gs for all s′ ∈ N and Y ′s is adapted to Gs.

Increments: For any s ≥ 1, we have that

Z ′s = Y ′s − Y ′s−1 =
s∑
t=1

(E[Pt|Gt−1]− Pt)−
s−1∑
t=1

(E[Pt|Gt−1]− Pt) = E[Ps|Gs−1]− Ps.

Then,

E[Z ′s|Gs−1] = E[E[Ps|Gs−1]− Ps|Gs−1] = E[Ps|Gs−1]− E[Ps|Gs−1] = 0.

Lastly, since for any t and ω ∈ Ω, there is at most one i for which I{Si,j ≤ t ≤ Ui,j} =

1, and by de�nition of Rt,Jt , Ci,t ≤ 1, so it follows that Z ′s = E[Ps|Gs−1]− Ps ≤ 1 for

all s.

Lemma 5.15. For any t, let Z ′t = E[Pt|Gt−1]− Pt, then

Um,j∑
t=1

E[Z ′t
2|Gt−1] ≤ mE[τ ].

Proof. The proof is similar to that of Lemma 5.13. First note that

Um,j∑
t=1

E[Z ′t
2|Gt−1] =

Um,j∑
t=1

V(Pt|Gt−1) ≤
Um,j∑
t=1

E[P 2
t |Gt−1]

=

Um,j∑
t=1

E
[( m∑

i=1

(Ci,tI{Si,j ≤ t ≤ Ui,j}
)2

|Gt−1

]
.

Then, given Gt−1, all indicator terms I{Si,j ≤ t ≤ Ui,j} for i = 1, . . . ,m are measurable

and at most one can be non zero. Hence, all interaction terms are 0 and so we are
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left with

Um,j∑
t=1

E[Z ′t
2|Gt−1] ≤

Um,j∑
t=1

E
[( m∑

i=1

(Ci,tI{Si,j ≤ t ≤ Ui,j}
)2

|Gt−1

]

=
m∑
i=1

Um,j∑
t=1

E[C2
i,tI{Si,j ≤ t ≤ Ui,j}|Gt−1]

≤
m∑
i=1

Ui,j∑
t=Si,j

E[C2
i,t|Gt−1] (since the indicator is Gt−1-measurable)

=
m∑
i=1

Ui,j∑
t=Si,j

E[R2
t,JtI{τt,Jt + t > Ui,j}|Gt−1]

≤
m∑
i=1

Ui,j∑
t=Si,j

E[I{τt,Jt + t > Ui,j}|Gt−1]

=
m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

E[I{τt,Jt + t > Ui,j}|Gt−1]

=
m∑
i=1

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[I{Si,j = s, Ui,j = s′, τt,Jt + t > Ui,j}|Gt−1]

=
m∑
i=1

∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[I{Si,j = s, Ui,j = s′, τt,Jt + t > s′}|Gt−1]

=
m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

P(τt,Jt + t > s′)

≤
m∑
i=1

∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
∞∑
l=0

P(τ > l)

≤
m∑
i=1

E[τ ] = mE[τ ].

Lemma 5.16. For Ai,t, Bi,t and Ci,t de�ned as in (5.11), let νi = ni − ni−1 be the

number of times each arm is played in phase i and j′i be the arm played directly before

arm j in phase i. Then, it holds that, for any arm j and phase i ≥ 1,

(i)

Si−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤ E[τ ]
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(ii)

Si,j−1∑
t=Si

E[Bi,t|Gt−1] ≤ E[τ ] + µj′i

νi∑
l=0

P(τ > l)

(iii)

Ui,j∑
t=Si,j

E[Ci,t|Gt−1] = µj

νi∑
l=0

P(τ > l)

Proof. We prove each statement individually. Several of the proofs are similar to

those appearing in Lemmas 5.13 and 5.15.

Statement (i):

Si−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
Si−1∑

t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {t ≥ Si−1,j, Si = s′} ∈ Gt−1)

=
∞∑
s=0

∞∑
s′=s

s′−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−1∑
t=s

P(τt,Jt + t ≥ s′)

(Since {t ≥ Si−1,j, Si = s′} ∈ Gt−1)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑
l=0

P(τ > l)

=
∞∑
l=0

P(τ > l) = E[τ ].
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Statement (iii):

Ui,j∑
t=Si,j

E[Ci,t|Gt−1] =

Ui,j∑
t=Si,j

E[Rt,JtI{τt,Jt + t > Ui,j}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

E[Rt,JtI{τt,Jt + t > Ui,j}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[Rt,JtI{Si,j = s, Ui,j = s′, τt,Jt + t > Ui,j}|Gt−1]

(Since {Si,j = s, Ui,j = s′} ∈ Gt−1 for s ≤ t)

=
∞∑
s=0

∞∑
s′=s

s′∑
t=s

E[Rt,JtI{Si,j = s, Ui,j = s′, τt,Jt + t > s′}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}
s′∑
t=s

µjP(τt,Jt + t > s′)

(Since {Si,j = s, Ui,j = s′} ∈ Gt−1 and given Gt−1, Rt,Jt and τt,Jt are independent)

=
∞∑
s=0

∞∑
s′=s

I{Si,j = s, Ui,j = s′}µj
νi∑
l=0

P(τ > l)

= µj

νi∑
l=0

P(τ > l)

Statement (ii): For statement (ii), we have that for (i, j) 6= (1, 1),

Si,j−1∑
t=Si

E[Bi,t|Gt−1] =

Si,j−νi−1−2∑
t=Si

E[Bi,t|Gt−1] +

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1].

Then, Si,j is Gt−1 measurable for t ≥ Si, so we can use the same technique as for

statement (i) to bound the �rst term. For the second term, since we will only be

playing arm j′i for Si,j − νi−1 − 1, . . . , Si,j − 1, we can use the same technique as for

statement (iii). Hence,

Si,j−1∑
t=Si

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ > l) + µj′i

νi−1∑
l=0

P(τ > l) ≤ E[τ ] + µj′i

νi∑
l=0

P(τ > l).
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Note that, for (i, j) = (1, 1), the amount seeping in will be 0, so using ν0 = 0, µ′11
= 0,

the result trivially holds. Hence the result holds for all i, j ≥ 1.

Lemma 5.17. For any arm j ∈ {1, . . . , K} and phase m, it holds that for any λ > 0,

P
( ∑
t∈Tj(m)

(Rt,j − µj) ≥ λ

)
≤ exp

{
− 2λ2

nm

}
.

Proof. The result follows from Lemma 5.11. When applying this lemma, we use

n = T , m = nm, for t = 0, 1, . . . , T set Ft = σ(X1, . . . , Xt, R1,j, . . . , Rt,j) and for

t = 1, 2, . . . , T de�ne Zt = Rt,j − µj and εt = I{Jt = j, t ≤ Um,j}. Note that

Tj(m) = {t ∈ {1, . . . , T} : εt = 1} and hence
∑

t∈Tj(m)(Rt,j−µj) =
∑T

t=1 εt(Rt,j−µj).

Further,
∑T

t=1 εt = |Tj(m)| ≤ nm with probability one.

Fix 1 ≤ t ≤ T . We now argue that εt is Ft−1-measurable. First, notice that by the

de�nition of ODAAF, the index M of the phase that t belongs to can be calculated

based on the observations X1, . . . , Xt−1 up to time t− 1. Since t ≤ Um,j is equivalent

to whether for this phase index M , the inequality M ≤ m holds, it follows that

{t ≤ Um,j} is Ft−1-measurable. The same holds for {Jt = j} for the same reason.

Hence, it follows that εt is indeed Ft−1-measurable.

Now, Zt is Ft-measurable as Rt,j is clearly Ft-measurable. Furthermore, by our

assumptions on (Rt,j)t,j and (Xt)t, E[Rt,j|Ft−1] = µj also holds, implying that Zt also

satis�es the conditions of the lemma with a = −µj and c = 1. Thus, the result follows

by applying Lemma 5.11.

We now bound each term of the decomposition in (5.13) in turn.
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Bounding Term I.: For Term I., we use Lemma 5.17 to get that with probability

greater than 1− 1
T ∆̃2

m
,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.

Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 5.10).

From Lemma 5.12, {Ys}∞s=0 with Ys =
∑s

t=1(Qt−E[Qt|Gt−1]) is a martingale with re-

spect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0 and Zs ≤ 1 for

all s. Further, by Lemma 5.13,
∑s

t=1 E[Z2
t |Gt−1] ≤ 2mE[τ ] ≤ 6m×2mE[τ ]

12
≤ nm/12 with

probability 1. Hence we can apply Freedman's inequality to get that with probability

greater than 1− 1
T ∆̃2

m
,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) ≤ 2

3
log(T ∆̃2

m) +

√
1

12
nm log(T ∆̃2

m).

Bounding Term III.: For Term III., we again use Freedman's inequality (Theo-

rem 5.10) but using Lemma 5.14 to show that {Y ′s}∞s=0 with Y
′
s =

∑s
t=1(E[Pt|Gt−1]−Pt)

is a martingale with respect to {Gs}∞s=0 with increments {Z ′s}∞s=0 satisfying E[Z ′s|Gs−1] =

0 and Z ′s ≤ 1 for all s. Further, by Lemma 5.15,
∑s

t=1 E[Z2
t |Gt−1] ≤ mE[τ ] ≤ nm/12

with probability 1. Hence, with probability greater than 1− 1
T ∆̃2

m
,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) ≤
2

3
log(T ∆̃m) +

√
1

12
nm log(T ∆̃2

m).
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Bounding Term IV.: We bound term IV. using Lemma 5.16,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

=

Sm,j∑
t=1

E
[ m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − 1}+Bi,tI{Si ≤ t ≤ Si,j − 1})
∣∣∣∣Gt−1

]

−
Um,j∑
t=1

E
[ m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j}
∣∣∣∣Gt−1

]

=
m∑
i=1

Sm,j∑
t=1

E[Ai,tI{Si−1,j ≤ t ≤ Si − 1}|Gt−1] +
m∑
i=1

Sm,j∑
t=1

E[Bi,tI{Si ≤ t ≤ Si,j − 1}|Gt−1]

−
m∑
i=1

Um,j∑
t=1

E[Ci,tI{Si,j ≤ t ≤ Ui,j}|Gt−1]

=
m∑
i=1

( Si−1∑
t=Si−1,j

E[Ai,t|Gt−1] +

Si,j−1∑
t=Si

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)

≤
m∑
i=1

(
2E[τ ] + µj′i

νi∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l)

)
≤ 3mE[τ ].

since Rt,j ∈ [0, 1].

Combining all terms: To get the �nal high probability bound, we sum the bounds

for each term I.-IV.. Then, with probability greater than 1− 3
T ∆̃2

m
, either j /∈ Am or

arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
12

+
1√
2

)√
log(T ∆̃2

m)

nm
+

3mE[τ ]

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

3mE[τ ]

nm
= wm.
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De�ning nm: Setting

nm =

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 6∆̃mmE[τ ]

)2⌉
.

(5.14)

ensures that wm ≤ ∆̃m

2
which concludes the proof.

5.B.2 Regret Bounds

Here we prove the regret bound in Theorem 5.2 under Assumption 1 and the choice

of nm given by (5.14). Under Assumption 1, the bridge period is not necessary so

the results here hold for the version of Algorithm 5.1 with the bridge period omitted.

Note that if we were to include the bridge period, we would be playing each arm at

most 2nm times by the end of phase m so our regret would simply increase by a factor

of 2.

Theorem 5.2. Under Assumption 1, the expected regret of Algorithm 5.1 is upper

bounded as

E[RT ] ≤
K∑
j=1
j 6=j∗

O

(
log(T∆2

j)

∆j

+ log(1/∆j)E[τ ]

)
. (5.5)

Proof. Our proof is a restructuring of the proof of Theorem 3.1 in (Auer and Ortner,

2010). For any arm j, de�ne Mj to be the random variable representing the phase

when arm j is eliminated in. We set Mj =∞ if the arm did not get eliminated before

time step T . Note that if Mj is �nite, j ∈ AMj
(this also means that AMj

is well-

de�ned) and if AMj+1 is also de�ned (Mj is not the last phase) then j 6∈ AMj+1. We

also let mj denote the phase arm j should be eliminated in, that is mj = min{m ≥
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1 : ∆̃m <
∆j

2
}. From the de�nition of ∆̃m in our algorithm, we get the relations

2mj =
1

∆̃mj

≤ 4

∆j

<
1

∆̃mj+1

and
∆j

4
≤ ∆̃mj ≤

∆j

2
. (5.15)

De�ne Nj =
∑T

t=1 I{Jt = j} be the number of times arm j is used and letR
(j)
T = Nj∆j

be the �pseudo�-regret contribution from each arm 1 ≤ j ≤ K so that E[RT ] =

E
[∑K

j=1 R
(j)
T

]
. Let M∗ be the round when the optimal arm j∗ is eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ K∑
j=1

R
(j)
T I {M∗ ≥ mj}

]
︸ ︷︷ ︸

Term I.

+E
[ K∑
j=1

R
(j)
T I {M∗ < mj}

]
︸ ︷︷ ︸

Term II.

.

We will bound the regret in each of these cases in turn. To do so, we need the

following results which consider the probabilities of con�dence bounds failing and

arms being eliminated in the incorrect rounds.

Lemma 5.18. For any suboptimal arm j,

P(Mj > mj and M
∗ ≥ mj) ≤

6

T ∆̃2
mj

.

Proof. De�ne

E = {X̄mj ,j ≤ µj + wmj} and H = {X̄mj ,j∗ > µ∗ − wmj} .
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If both E and H occur, it follows that,

X̄mj ,j ≤ µj + wmj

= µ∗j −∆j + wmj (since ∆j = µj∗ − µj)

≤ X̄mj ,j∗ + wmj −∆j + wmj

< X̄mj ,j∗ − 2∆̃mj + 2wmj (by (5.15))

≤ X̄mj ,j∗ − ∆̃mj (since nm is such that wm ≤ ∆̃m/2)

and arm j would be eliminated. Hence, on the event M∗ ≥ mj, Mj ≤ mj. Thus,

M∗ ≥ mj and Mj > mj imply that either E or H does not occur and so P(Mj >

mj and M
∗ ≥ mj) ≤ P({Ec ∪Hc} ∩ {j, j∗ ∈ Amj}) ≤ P(Ec ∩ j ∈ Amj) + P(Hc ∩ j∗ ∈

Amj). Using Lemma 5.1, we then get that,

P(Mj ≥ mj and M
∗ ≥ mj) ≤

6

T ∆̃2
mj

.

Note that the random set Am may not be de�ned for certain ω ∈ Ω. That is, Am is

a partially de�ned random element. For convenience, we modify the de�nition of Am

so that it is an emptyset for any ω when it is not de�ned by the previous de�nition.

De�ne the event Fj(m) = {X̄m,j∗ < X̄m,j − ∆̃m} ∩ {j, j∗ ∈ Am} to be the event that

arm j∗ is eliminated by arm j in phase m (given our note on Am, this is well-de�ned).

The probability of this occurring is bounded in the following lemma.

Lemma 5.19. The probability that the optimal arm j∗ is eliminated in round m <∞

by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 6

T ∆̃2
m

.
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Proof. First note that for a suboptimal arm j to eliminate arm j∗ in round m, both

j and j∗ must be active in round m and X̄m,j − wm > X̄m,j∗ + wm. Hence,

P(Fj(m)) = P(j, j∗ ∈ Am and X̄m,j − wm > X̄m,j∗ + wm)

Then, observe that if

E = {X̄m,j ≤ µj + wm} and H = {X̄m,j∗ > µ∗ − wm}

both hold in round m, it follows that,

X̄m,j − ∆̃m ≤ µj + wm − ∆̃m ≤ µj −
∆̃m

2
≤ µj∗ −

∆̃m

2
≤ X̄m,j∗ + wm −

∆̃m

2
≤ X̄m,j∗

so arm j∗ will not be eliminated by arm j in round m. Hence, for arm j∗ to be

eliminated by arm j in round m, one of E or H must not occur and the probability

of this is bounded by Lemma 5.1 as,

P(Fj(m)) ≤ P((EC ∪HC) ∩ (j, j∗ ∈ Am)) ≤ P(EC ∩ (j ∈ Am)) + P(HC ∩ (j∗ ∈ Am))

≤ 6

T ∆̃2
m

.

We now return to bounding the expected regret in each of the two cases.

Bounding Term I. To bound the �rst term, we consider the cases where arm j is

eliminated in or before the correct round (Mj ≤ mj) and where arm j is eliminated
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late (Mj > mj). Then, by Lemma 5.18,

E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}

]

= E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj ≤ mj}

]
+ E

[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj > mj}

]

≤
K∑
j=1

E[R
(j)
T I{Mj ≤ mj}] +

K∑
j=1

E[T∆jI{M∗ ≥ mj,Mj > mj}]

≤
K∑
j=1

∆jnmj +
K∑
j=1

T∆jP(Mj > mj and M
∗ ≥ mj)

≤
K∑
j=1

∆jnmj +
K∑
j=1

T∆j
6

T ∆̃2
mj

≤
K∑
j=1

(
∆jnmj +

24

∆̃mj

)
≤

K∑
j=1

(
96

∆j

+ ∆jnmj

)
.

Bounding Term II For the second term, let mmax = maxj 6=j∗mj. and recall that

Nj is the total number of times arm j is played. Then,

E
[ K∑
j=1

R
(j)
T I {M∗ < mj}

]
= E

[mmax∑
m=1

∑
j:m<mj

R
(j)
T I{M∗ = m}

]

=
mmax∑
m=1

E
[
I{M∗ = m}

∑
j:mj>m

R
(j)
T

]

=
mmax∑
m=1

E
[
I{M∗ = m}

∑
j:mj>m

Nj∆j

]

≤
mmax∑
m=1

E
[
I{M∗ = m}T max

j:mj>m
∆j

]
≤

mmax∑
m=1

4P(M∗ = m)T ∆̃m .

Now consider the probability that arm j∗ is eliminated in round m. This includes

the probability that it is eliminated by any suboptimal arm. For arm j∗ to be elimi-

nated in roundm by a suboptimal arm withmj < m, arm j must be active (Mj > mj)
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and the optimal arm must also have been active in round mj (M
∗ ≥ mj). Using this,

it follows that

P(M∗ = m) ≤
K∑
j=1

P(Fj(m)) =
∑

j:mj<m

P(Fj(m)) +
∑

j:mj≥m

P(Fj(m))

≤
∑

j:mj<m

P(Mj > mj and M
∗ ≥ mj) +

∑
j:mj≥m

P(Fj(m)).

Then, using Lemmas 5.18 and 5.19 and summing over all m ≤M gives,

mmax∑
m=1

( ∑
j:mj<m

4P(Mj > mj and M
∗ ≥ mj)T ∆̃m +

∑
j:mj≥m

4P(Fj(m))T ∆̃m

)

≤
mmax∑
m=1

( ∑
j:mj<m

4
6

T ∆̃2
mj

T
∆̃mj

2m−mj
+

∑
j:mj≥m

24

T ∆̃2
m

T ∆̃m

)

≤
K∑
j=1

24

∆̃mj

mmax∑
m=mj

2−(m−mj) +
K∑
j=1

mj∑
m=1

24

2−m

≤
K∑
j=1

96 · 2
∆j

+
K∑
j=1

24 · 2mj+1

≤
K∑
j=1

192

∆j

+
K∑
j=1

48 · 4

∆j

=
K∑
j=1

384

∆j

.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
480

∆j

+ ∆jnmj

)
.
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Hence, all that remains is to bound nm in terms of ∆j, T and d,

nmj =

⌈
1

∆̃2
mj

(√
2 log(T ∆̃2

mj
) +

√
2 log(T ∆̃2

mj
) +

8

3
∆̃mj log(T ∆̃2

mj
) + 6∆̃mjmjE[τ ]

)2⌉

≤

⌈
1

∆̃2
mj

(
8 log(T ∆̃2

mj
) +

16

3
∆̃mj log(T ∆̃2

mj
) + 12∆̃mjmjE[τ ]

)⌉

≤ 1 +
8 log(T∆2

j/4)

∆̃2
mj

+
16 log(T∆2

j/4)

3∆̃mj

+
12 log2(4/∆j)E[τ ]

∆̃mj

≤ 1 +
128 log(T∆2

j)

∆2
j

+
32 log(T∆2

j)

3∆j

+
96 log(4/∆j)E[τ ]

∆j

,

where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0 and log2(x) ≤ 2 log(x) for x > 0.

Hence, the total expected regret from ODAAF with bounded delays can be bounded

by,

E[Rt] ≤
K∑

j=1:j 6=j∗

(
128 log(T∆2

j)

∆j

+
32

3
log(T∆2

j) + 96 log(4/∆j)E[τ ] +
480

∆j

+ ∆j

)
.

(5.16)

We now prove the problem independent regret bound,

Corollary 5.3. For any problem instance satisfying Assumption 1, the expected regret

of Algorithm 5.1 satis�es

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] log(T )).

Proof. Let

λ =

√
K log(K)e2

T

and note that for ∆ > λ, log(T∆2)/∆ is a decreasing function of ∆. Then, for some
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constants C1, C2, and using the previous theorem, we can bound the regret by,

E[RT ] ≤
∑

j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+KdC2 log(1/λ) + Tλ.

Then, substituting the above value of λ gives a worst case regret bound that scales

with O(
√
KT log(K) +KE[τ ] log(T )).

5.C Results for Delays with Bounded Support

5.C.1 High Probability Bounds

Lemma 5.5. Under Assumptions 1 of known expected delay and 2 of bounded delays,

and choice of nm given in (5.6), the estimates X̄m,j obtained by Algorithm 5.1 satisfy

the following: For any arm j and phase m, with probability at least 1 − 12
T ∆̃2

m
, either

j /∈ Am or

X̄m,j − µj ≤ ∆̃m/2.

Proof. Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ]

nm
. (5.17)

We show that with probability greater than 1− 12
T ∆̃2

m
, either j /∈ Am or 1

nm

∑
t∈Tj(m)(Xt−

µj) ≤ wm. For now, assume that nm ≥ md.

For arm j and phase m, assume j ∈ Am and de�ne pi to be the probability of

the con�dence bounds on arm j failing at the end of each phase i ≤ m, ie. pi
.
=

P(
∑

t∈Tj(i)(Xt − µj) ≥ niwi) with p0 = 0. Again, let Bi,t = RtI{τt,Jt + t ≥ Si,j}

and Ci,t = RtI{τt,Jt + t > Ui,j} (note that we don't need to consider Ai,t since νi =

ni−ni−1 ≥ d so all reward entering [Si,j, Ui,j] will be from the last νi ≥ d plays) and for

any event H, let Ii{H} := I{H ∩ {j ∈ Ai}}. Recall the �ltration {Gt}∞t=0 from (5.12)
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where Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . , Rt,Jt) and G0 = {∅,Ω}.

Now, de�ning,

Qt =
m∑
i=1

Bi,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}),

Pt =
m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j},

we use the decomposition

∑
t∈Tj(m)

(Xt − µj) =
m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj)

≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)

−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si,j−1∑
t=Si,j−d

Bi,t +

Ui,j∑
t=Si,j

(Rt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=
m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=
m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

+

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1].︸ ︷︷ ︸
Term IV.

Outline of proof Again, the proof continues by bounding each term of this de-

composition in turn. Note that we do not have the Ai,t terms in this decomposition

since there will be no reward from phase i − 1 (before the bridge period) received

in [Si,j, Ui,j]. We bound each of these terms with high probability. For terms I. and

III., this is the same as in the general case (see the proof of Lemma 5.1, Section 5.B).
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For term II. we need the following results to show that Zt = Qt − E[Qs|Gt−1] is a

martingale di�erence (Lemma 5.20) and to bound its variance (Lemma 5.21) before

we can apply Freedman's inequality. The bound for term IV. is also di�erent due to

the bridge period and boundedness of the delay. After bounding each term, we collect

them together and recursively calculate the probability with which the bounds hold.

Lemma 5.20. Let Ys =
∑s

t=1(Qt − E[Qt|Gt−1]) for all s ≥ 1, and Y0 = 0. Then

{Ys}∞s=0 is a martingale with respect to the �ltration {Gs}∞s=0 with increments Zs =

Ys − Ys−1 = Qs − E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, |Zs| ≤ 1 for all s ≥ 1.

Proof. To show {Ys}∞s=0 is a martingale we need to show that Ys is Gs-measurable for

all s and E[Ys|Gs−1] = Ys−1.

Measurability: We show that Bi,sI{Si,j − d− 1 ≤ s ≤ Si,j − 1} is Gs-measurable. This

then su�ces to show that Ys is Gs-measurable since the �ltration Gs is non-decreasing

in s.

First note that by de�nition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s.

Hence, it is su�cient to show that I{τs,Js + s ≥ Si,j, Si,j − d − 1 ≤ s ≤ Si,j − 1}

is Gs-measurable since the product of measurable functions is measurable. For any

s′ ∈ N ∪ {∞}, {Si,j = s′, s′ − d − 1 ≤ s} ∈ Gs for s ≥ Si − νi−1 and so the union⋃
s′∈N∪{∞}{τs,Js+s ≥ s′, s′−d−1 ≤ s ≤ s′−1, Si,j = s′} = {τs,Js+s ≥ Si,j, Si,j−d−1 ≤

s ≤ Si,j − 1} is an element of Gs.

Increments: Hence, {Ys}∞s=0 is a martingale with respect to the �ltration {Gs}∞s=0 if

the increments conditional on the past are zero. For any s ≥ 1, we have that

Zs = Ys − Ys−1 =
s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].

Then,

E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0
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and so {Ys}∞s=0 is a martingale.

Lastly, since for any t and ω ∈ Ω, there is at most one i where I{Si,j − d ≤

t ≤ Si,j − 1}(ω) = 1, and by de�nition of Rt,Jt , Bi,t ≤ 1, it follows that |Zs| =

|Qs − E[Qs|Gs−1]| ≤ 1 for all s.

Lemma 5.21. For any t ≥ 1, let Zt = Qt − E[Qt|Gt−1], then

Sm,j−1∑
t=1

E[Z2
t |Gt−1] ≤ mE[τ ].

Proof. Let us denote S ′
.
= Sm,j − 1. Observe that

S′∑
t=1

E[Z2
t |Gt−1] =

S′∑
t=1

V(Qt|Gt−1) ≤
S′∑
t=1

E[Q2
t |Gt−1]

=
S′∑
t=1

E
[( m∑

i=1

(Bi,tI{Si,j − d ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]
.

Then for all i = 1, . . . ,m, all indicator terms I{Si,j − d ≤ t ≤ Si,j − 1} are Gt−1-

measurable and only one can be non zero for any ω ∈ Ω. Hence, for any i, i′ ≤ m,

i 6= i′,

Bi,t × I{Si,j − d− 1 ≤ t ≤ Si,j − 1} ×Bi′,t × I{Si′,j − d− 1 ≤ t ≤ Si′,j − 1} = 0,
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Using the above we see that

S′∑
t=1

E[Z2
t |Gt−1] ≤

S′∑
t=1

E
[(
Bi,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}

)2∣∣∣Gt−1

]

=
S′∑
t=1

E
[ m∑
i=1

B2
i,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}2

∣∣∣Gt−1

]

=
m∑
i=1

S′∑
t=1

E[B2
i,tI{Si,j − d− 1 ≤ t ≤ Si,j − 1}|Gt−1]

(using that the indicator is Gt−1-measurable)

≤
m∑
i=1

Si,j−1∑
t=Si,j−d−1

E[B2
i,t|Gt−1].
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Then, for any i ≥ 1,

Si,j−1∑
t=Si,j−d−1

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si,j−d−1

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑

t=Si,j−d−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑
s=0

I{Si,j = s}
s−1∑

t=s−d−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑
s=0

s−1∑
t=s−d−1

E[I{Si,j = s, τt,Jt + t ≥ Si,j}|Gt−1]

(Since Si,j ≥ Si and so, due to the bridge period, {Si,j = s} ∈ Gt−1 for any t ≥ s− d)

=
∞∑
s=0

s−1∑
t=s−d−1

E[I{Si,j = s, τt,Jt + t ≥ s}|Gt−1]

=
∞∑
s=0

I{Si,j = s}
s−1∑

t=s−d−1

P(τt,Jt + t ≥ s)

(Since {Si,j = s} ∈ Gt−1 for any t ≥ s− d)

≤
∞∑
s=0

I{Si,j = s}
∞∑
l=0

P(τ > l)

≤ E[τ ].

Combining all terms gives the result.

We now return to bounding each term of the decomposition

Bounding Term I.: For term II., as in Lemma 5.1, we can use Lemma 5.17 to get

that with probability greater than 1− 1
T ∆̃2

m
,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.
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Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 5.10).

From Lemma 5.20, {Ys}∞s=0 with Ys =
∑s

t=1(Qt−E[Qt|Gt−1]) is a martingale with re-

spect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0 and Zs ≤ 1 for

all s. Further, by Lemma 5.21,
∑s

t=1 E[Z2
t |Gt−1] ≤ mE[τ ] ≤ 4×2mE[τ ]

8
≤ nm/8 with

probability 1. Hence we can apply Freedman's inequality to get that with probability

greater than 1− 1
T ∆̃2

m
,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) ≤ 2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).

Bounding Term III.: For Term III., we again use Freedman's inequality (The-

orem 5.10). As in Lemma 5.1, we use Lemma 5.14 to show that {Y ′s}∞s=0 with

Y ′s =
∑s

t=1(E[Pt|Gt−1] − Pt) is a martingale with respect to {Gs}∞s=0 with increments

{Z ′s}∞s=0 satisfying E[Z ′s|Gs−1] = 0 and Z ′s ≤ 1 for all s. Further, by Lemma 5.15,∑s
t=1 E[Z2

t |Gt−1] ≤ mE[τ ] ≤ nm/8 with probability 1. Hence, with probability greater

than 1− 1
T ∆̃2

m
,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).

Bounding Term IV.: For term IV., we consider the expected di�erence at each

round 1 ≤ i ≤ m and exploit the independence of τt,Jt and Rt,Jt . Consider �rst i ≥ 2

and let j′i be the arm played just before arm j is played in the ith phase (allowing

for j′i to be the last arm played in phase i − 1). Then, much in the same way as
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Lemma 5.21,

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1] =

Si,j−1∑
t=Si,j−d−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑

s′=d+1

∞∑
s=s′

I{Si = s′, Si,j = s}
s−1∑
t=s−d

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑

s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

E[Rt,JtI{Si = s′, Si,j = s, τt,Jt + t ≥ Si,j, Jt = k}|Gt−1]

(Due to the bridge period {Si = s′, Si,j = s} ∈ Gt−1 for t ≥ s− d ≥ s′ − d)

=
∞∑

s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

I{Si = s′, Si,j = s, Jt = k}E[Rt,kI{τt,k + t ≥ s}|Gt−1]

=
∞∑

s′=d+1

∞∑
s=s′

s−1∑
t=s−d

K∑
k=1

µkI{Si = s′, Si,j = s, Jt = k}P(τ ≥ s− t)

= µj′i

d−1∑
l=0

P(τ > l).

A similar argument works for i = 1, j > 1 with the simpli�cation that Si,j is not a

random quantity but known . Finally, for i = 1, j = 1 the sum is 0. Furthermore,

using a similar argument, for all i, j,

Ui,j∑
t=Si,j

E[Ci,t|Gt−1] =

Ui,j∑
t=Ui,j−d+1

E[Ci,t|Gt−1]

=
∞∑

s′=d+1

∞∑
s=s′

s∑
t=s−d

E[Rt,jI{τt,j + t > s}I{Ui,j = s, Si = s′}|Gt−1]

= µj

∞∑
s=d+1

I{Ui,j = s, Si = s′}
s∑

t=s−d

P(τ + t > s)

= µj

d−1∑
l=0

P(τ > l).
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Combining these we get the following bound for term IV for all (i, j) 6= (1, 1),

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] ≤ µj′i

d−1∑
l=0

P(τ > l)− µj
d−1∑
l=0

P(τ > l)

≤ |µj′i − µj|E[τ ].

If (i, j) = (1, 1) then we have the upper bounded by µ1E[τ ] ≤ E[τ ] = ∆̃0E[τ ] since no

pay-o� seeps in and we de�ne ∆̃0 = 1.

Let pi be the probability that the con�dence bounds for one arm fail in phase i

and p0 = 0. Then, the probability that either arm j′i or j is active in phase i when

it should have been eliminated in or before phase i − 1 is less than 2pi−1. If neither

arm should have been eliminated by phase i, this means that their mean rewards are

within ∆̃i−1 of each other. This follows since if the con�dence bounds on arms j and

j′ both hold and both arms are active in phase i, then |µj −µj′| < ∆i−1. Hence, with

probability greater than 1− 2pi−1,

Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1] ≤ ∆̃i−1E[τ ].

Then, summing over all phases gives that with probability greater than 1−2
∑m−1

i=0 pi,

m∑
i=1

( Si,j−1∑
t=Si,j−d−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)
≤ E[τ ]

m∑
i=1

∆̃i−1 = E[τ ]
m−1∑
i=0

1

2i
≤ 2E[τ ].

Combining all Terms: To get the �nal high probability bound, we sum the bounds

for each term I.-IV.. Then, with probability greater than 1−( 3
T ∆̃2

m
+2
∑m−1

i=1 pi) either
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j /∈ Am or arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
8

+
1√
2

)√
log(T ∆̃2

m)

nm
+

2E[τ ]

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ]

nm
= wm.

Using the fact that p0 = 0 and substituting the other pi's using the recursive relation-

ship pi = 3
T ∆̃2

i

+ 2
∑i−1

l=1 pl gives,

3

T ∆̃2
m

+ 2
m−1∑
i=0

pi =
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 2(pm−2 + · · ·+ p1) + pm−2 + · · ·+ p1)

=
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 3(pm−2 + · · ·+ p1))

=
3

T ∆̃2
m

+ 2(
3

T ∆̃2
m−1

+ 3(
3

T ∆̃2
m−2

+ 3(pm−3 + · · ·+ p1))

≤
m∑
i=1

3m−i
3

T ∆̃2
i

=
3

T

m∑
i=1

3m−i22i

=
3

T

m∑
i=1

3m−i4i

=
3

T

m∑
i=1

(
3

4
)m−i4m−i4i

=
3× 4m

T

m∑
i=1

(
3

4
)m−i

≤ 12

T ∆̃2
m

.

Hence, with probability greater than 1− 12
T ∆̃2

m
, either j /∈ Am or 1

nm

∑
t∈Tj(m)(Xt−µj) ≤

wm.
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De�ning nm: The above results rely on the assumption that nm ≥ md, so that only

the previous arm can corrupt our observations. In practice, if d is too large then we

will not want to play each active arm d times per phase because we will end up playing

sub-optimal arms too many times. In this case, it is better to ignore the bound on

the delay and use the results from Lemma 5.1 to set nm as in (5.14). Formalizing this

gives

nm = max

{
md̃m,⌈

1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 4∆̃mE[τ ]

)2⌉}
(5.18)

where d̃m = min{d, (5.14)
m
}. This ensures that if d is small, we play each active arm

enough times to ensure that wm ≤ ∆̃m

2
for wm in (5.17). Similarly, for large d, by

Lemma 5.1, we know that nm is su�ently large to guarantee wm ≤ ∆̃m

2
for wm from

(5.10).

5.C.2 Regret Bounds

We now prove the regret bound given in Theorem 5.6. Note that for these results, it

is necessary to use the bridge period of the algorithm.

Theorem 5.6. Under Assumption 1 and bounded delay Assumption 2, the expected

regret of Algorithm 5.1 satis�es

E[RT ] ≤
K∑

j=1;j 6=j∗
O

(
log(T∆2

j)

∆j

+ E[τ ] + min

{
d,

log(T∆2
j)

∆j

+ log(
1

∆j

)E[τ ]

})
.

Proof. For any sub-optimal arm j, de�ne Mj to be the random variable representing

the phase arm j is eliminated in and note that ifMj is �nite, j ∈ AMj
but j 6∈ AMj+1.

Then let mj be the phase arm j should be eliminated in, that is mj = min{m|∆̃m <
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∆j

2
} and note that, from the de�nition of ∆̃m in our algorithm, we get the relations

2m =
1

∆̃m

, 2∆̃mj = ∆̃mj−1 ≥
∆j

2
and so,

∆j

4
≤ ∆̃mj ≤

∆j

2
. (5.19)

De�ne R
(j)
T to be the regret contribution from each arm 1 ≤ j ≤ K and let M∗ be

the round where the optimal arm j∗is eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ ∞∑
m=0

K∑
j=1

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}+

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

I.

+E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

II.

We will bound the regret in each of these cases in turn. First, however, we need

the following results.

Lemma 5.22. For any suboptimal arm j, if j∗ ∈ Amj , then the probability arm j is

not eliminated by round mj is,

P(Mj > mj and M
∗ ≥ mj) ≤

24

T ∆̃2
mj

Proof. The proof is exactly that of Lemma 5.18 but using Lemma 5.5 to bound the

probability of the con�dence bounds on either arm j or j∗ failing.

De�ne the event Fj(m) = {X̄m,j∗ < X̄m,j − ∆̃m} ∩ {j, j∗ ∈ Am} to be the event

that arm j∗ is eliminated by arm j in phase m. The probability of this occurring is

bounded in the following lemma.

Lemma 5.23. The probability that the optimal arm j∗ is eliminated in round m <∞
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by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 24

T ∆̃2
m

Proof. Again, the proof follows from Lemma 5.19 but using Lemma 5.5 to bound the

probability of the con�dence bounds failing.

We now return to bounding the expected regret in each of the two cases.

Bounding Term I. To bound the �rst term, we consider the cases where arm j is

eliminated in or before the correct round (Mj ≤ mj) and where arm j is eliminated

late (Mj > mj). Then,

E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
= E

[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}

]

= E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj ≤ mj}

]

+ E
[ K∑
j=1

R
(j)
T I{M∗ ≥ mj}I{Mj > mj}

]

≤
K∑
j=1

E[R
(j)
T I{Mj ≤ mj}] +

K∑
j=1

E[T∆jI{M∗ ≥ mj,Mj > mj}]

≤
K∑
j=1

2∆jnmj ,j +
K∑
j=1

T∆jP(Mj > mj and M
∗ ≥ mj)

≤
K∑
j=1

2∆jnmj ,j +
K∑
j=1

T∆j
24

T ∆̃2
mj

≤
K∑
j=1

(
2∆jnmj ,j +

384

∆j

)
,

where the extra factor of 2 comes from the fact that each arm will be played nm times

by the end of phase m to get the data for the estimated mean, then in the worst case,

arm j is chosen as the arm to be played in the bridge period of each phase that it is
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active, and thus is played another nm times.

Bounding Term II For the second term, we use the results from Theorem 5.2, but

using Lemma 5.22 to bound the probability a suboptimal arm is eliminated in a later

round and Lemma 5.23 to bound the probability j∗ is eliminated by a suboptimal

arm. Hence,

E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

1536

∆j

.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
1920

∆j

+ 2∆jnmj ,j

)

Hence, all that remains is to bound nm in terms of ∆j, T and d. Using Lm,T =

log(T ∆̃2
m), we have that,

nmj ,j = max

{
mj d̃mj ,⌈

1

∆̃2
m

(√
2 log(T ∆̃m) +

√
2 log(T ∆̃m) +

8

3
∆̃m log(T ∆̃m) + 4∆̃mE[τ ]

)2⌉}
≤ max

{
mj d̃mj ,

⌈
1

∆̃2
mj

(
8Lmj ,T +

16

3
∆̃mjLmj ,T + 8∆̃mjE[τ ]

)⌉}
≤ max

{
mj d̃mj , 1 +

8Lmj ,T

∆̃2
mj

+
8Lmj ,T

3∆̃mj

+
8E[τ ]

∆̃mj

}
≤ max

{
mj d̃mj , 1 +

128Lmj ,T

∆2
j

+
32Lmj ,T

∆j

+
32E[τ ]

∆j

.

}

where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0.

Hence, using the de�nition of d̃m = min{d, (5.14)
m
} and the results from Theo-

rem 5.2, the total expected regret from ODAAF with bounded delays can be bounded
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by,

E[Rt] ≤
K∑

j=1;j 6=j∗
max

{
min{d, (5.16)},

(
256 log(T∆2

j)

∆j

+ 64E[τ ] +
1920

∆j

+ 64 log(T∆2
j) + 2∆j

)}
. (5.20)

≤
K∑

j=1;j 6=j∗

(
256 log(T∆2

j)

∆j

+ 64E[τ ] +
1920

∆j

+ 64 log(T∆2
j) + 2∆j

+ min

{
d,

128 log(T∆2
j)

∆j

+ 96 log(4/∆j)E[τ ]

})

Note that the constants in these regret bounds can be improved by only requiring

the con�dence bounds in phase m to hold with probability 1
T ∆̃m

rather than 1
T ∆̃2

m
.

This comes at a cost of increasing the logarithmic term to log(T∆j). We now prove

the problem independent regret bound,

Corollary 5.7. For any problem instance satisfying Assumptions 1 and 2 with d ≤√
T logK
K

+ E[τ ], the expected regret of Algorithm 5.1 satis�es

E[RT ] ≤ O(
√
KT log(K) +KE[τ ]).

Proof. We consider the maximal value each part of the regret in (5.20) can take. From

Corollary 5.3, the �rst term is bounded by

O(min{Kd,
√
KT logK +K log(T )E[τ ]}).

For the �rst term, we again set λ =
√

K log(K)e2

T
. Then, as in corollary Corollary 5.3,

for constants C1, C2 > 0, we bound the regret contribution by

∑
j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+ C2KE[τ ] + Tλ.
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Then, substituting in for λ implies that the second term of (5.20) is O(
√
KT logK +

KE[τ ]).

For d ≤
√

T logK
K

+ E[τ ], min{Kd,
√
KT logK + K log TE[τ ]} ≤

√
KT logK +

KE[τ ]. Hence the bound in (5.20) gives

E[RT ] ≤ O(
√
KT logK +KE[τ ] +

√
KT logK +KE[τ ]) = O(

√
KT logK +KE[τ ]).

5.D Results for Delay with Known and Bounded Vari-

ance and Expectation

5.D.1 High Probability Bounds

Lemma 5.24. Under Assumption 1 of known expected value and 3 of known (bound

on) the expectation and variance of the delay, and choice of nm given in (5.7), the

estimates X̄m,j obtained by Algorithm 5.1 satisfy the following: For any arm j and

phase m, with probability at least 1− 12
T ∆̃2

m
, either j /∈ Am or

X̄m,j − µj ≤ ∆̃m/2.

Proof. Let

wm =
4 log(T ∆̃2

m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm
. (5.21)

We show that with probability greater than 1− 12
T ∆̃2

m
, j /∈ Am or 1

nm

∑
t∈Tj(m)(Xt−µj) ≤

wm.
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For any arm j, phase i and time t, de�ne,

Ai,t = Rt,JtI{τt,Jt + t ≥ Si}, Bi,t = Rt,JtI{τt,Jt + t ≥ Si,j}, (5.22)

Ci,t = Rt,JtI{τt,Jt + t > Ui,j}

as in (5.11) and

Qt =
m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1}),

Pt =
m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j},

where νi = ni − ni−1 is the number of times each active arm is played in phase i ≥ 1

(assume n0 = 0). Recall from the proof of Theorem 5.2, Ii{H} := I{H ∩{j ∈ Ai}} ≤

I{H} and for all arms j and phases i, Ii{τt,Jt + t ≥ Si,j} = I{τt,Jt + t ≥ Si,j} and

Ii{τt,Jt + t > Ui,j} = I{τt,Jt + t > Ui,j}.
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Then, using the convention S0 = S0,j = 0 for all arms j, we use the decomposition,

m∑
i=1

Ui,j∑
t=Si,j

(Xt − µj) ≤
m∑
i=1

( Si,j−1∑
t=Si−1,j

Rt,JtIi{τt,Jt + t ≥ Si,j}+

Ui,j∑
t=Si,j

(Rt,Jt − µj)

−
Ui,j∑
t=Si,j

Rt,JtIi{τt,Jt + t > Ui,j}
)

≤
m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

Rt,JtI{τt,Jt + t ≥ Si}+

Si,j−1∑
t=Si−νi−1

Rt,JtI{τt,Jt + t ≥ Si,j}

+

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Rt,JtI{τt,Jt + t > Ui,j}
)

=
m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

Ai,t +

Si,j−1∑
t=Si−νi−1

Bi,t +

Ui,j∑
t=Si,j

(Rt,Jt − µj)−
Ui,j∑
t=Si,j

Ci,t

)

=
m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) +

Sm,j∑
t=1

Qt −
Um,j∑
t=1

Pt

=
m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj)︸ ︷︷ ︸
Term I.

+

Sm,j∑
t=1

(Qt − E[Qt|Gt−1])︸ ︷︷ ︸
Term II.

+

Um,j∑
t=1

(E[Pt|Gt−1]− Pt)︸ ︷︷ ︸
Term III.

(5.23)

+

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1],︸ ︷︷ ︸
Term IV.

Recall that the �ltration {Gs}∞s=0 is de�ned by G0 = {Ω, ∅} and

Gt = σ(X1, . . . , Xt, J1, . . . , Jt, τ1,J1 , . . . , τt,Jt , R1,J1 , . . . Rt,Jt).

Furthermore, we have de�ned Si,j = ∞ if arm j is eliminated before phase i and

Si =∞ if the algorithm stops before reaching phase i.

Outline of proof: We will bound each term of the above decomposition in turn.

We �rst show in Lemma 5.25 how the bounded second moment information can be
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incorporated using Chebychev's inequality. In Lemma 5.26, we show that Zt = Qt −

E[Qt|Gt−1] is a martingale di�erence sequence and bound its variance in Lemma 5.27

before using Freedman's inequality. Then in Lemma 5.28, we provide alternative

(tighter) bounds on Ai,t, Bi,t, Ci,t which are used to bound term IV.. All these results

are then combined to give a high probability bound on the entire decomposition.

Lemma 5.25. For any a > bE[τ ]c+ 1, a ∈ N,

∞∑
l=a

P(τ ≥ l) ≤ V(τ)

a− bE[τ ]c − 1
.

Proof. For any b > a, b ∈ N, and by denoting ξ
.
= bE(τ)c,

b∑
l=a

P(τ ≥ l) =
b∑
l=a

P(τ − ξ ≥ l − ξ) =

b−ξ∑
l=a−ξ

P(τ − ξ ≥ l)

≤
b−ξ∑
l=a−ξ

V(τ)

l2

(by Chebychev's inequality since l + ξ > E[τ ] for l ≥ a− ξ)

≤ V(τ)

b−ξ−1∑
l=a−ξ−1

1

l(l + 1)

= V(τ)

b−ξ−1∑
l=a−ξ−1

(
1

l
− 1

l + 1

)
= V(τ)

(
1

a− ξ − 1
− 1

b− ξ

)
.

Hence, taking b→∞ gives

∞∑
l=a

P(τ ≥ l) ≤ V(τ)
1

a− ξ − 1
.

Lemma 5.26. Let Ys =
∑s

t=1(Qt − E[Qt|Gt−1]) for all s ≥ 1, and Y0 = 0. Then

{Ys}∞s=0 is a martingale with respect to the �ltration {Gs}∞s=0 with increments Zs =
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Ys − Ys−1 = Qs − E[Qs|Gs−1] satisfying E[Zs|Gs−1] = 0, |Zs| ≤ 1 for all s ≥ 1.

Proof. To show {Ys}∞s=0 is a martingale we need to show that Ys is Gs-measurable for

all s and E[Ys|Gs−1] = Ys−1.

Measurability: We show that Ai,sI{Si−1,j ≤ s ≤ Si− νi−1}+Bi,sI{Si− νi−1 + 1 ≤ s ≤

Si,j − 1} is Gs-measurable for every i ≤ m. This then su�ces to show that Ys is Gs-

measurable since each Qt is a sum of such terms and the �ltration Gs is non-decreasing

in s.

First note that by de�nition of Gs, τt,Jt , Rt,Jt are all Gs-measurable for t ≤ s.

It is su�cient to show that I{τs,Js + s ≥ Si, Si−1,j ≤ s ≤ Si − νi} + I{τs,Js + s ≥

Si,j, Si − νi−1 + 1 ≤ s ≤ Si,j − 1} is Gs-measurable since the product of measurable

functions is measurable. The �rst summand is Gs measurable since {Si−1,j ≤ s} ∈ Gs

and {Si = s′, Si−1,j ≤ s} ∈ Gs for all s′ ∈ N∪{∞}. So the union
⋃
s′∈N∪{∞}{τs,Js +s ≥

s′, Si−1,j ≤ s ≤ s′− νi, Si = s′} = {τs,Js + s ≥ Si, Si−1,j ≤ s ≤ Si− νi−1} is an element

of Gs. The same argument works for the second summand since {Sij = s′, Si− νi−1 ≤

s} ∈ Gs for all s′ ∈ N ∪ {∞}

Increments: Hence, to show that {Ys}∞s=0 is a martingale with respect to the �ltration

{Gs}∞s=0 it just remains to show that the increments conditional on the past are zero.

For any s ≥ 1, we have that

Zs = Ys − Ys−1 =
s∑
t=1

(Qt − E[Qt|Gt−1])−
s−1∑
t=1

(Qt − E[Qt|Gt−1]) = Qs − E[Qs|Gs−1].

Then,

E[Zs|Gs−1] = E[Qs − E[Qs|Gs−1]|Gs−1] = E[Qs|Gs−1]− E[Qs|Gs−1] = 0

and so {Ys}∞s=0 is a martingale.

Lastly, since for any t and ω ∈ Ω, there is only one i where one of I{Si−1,j ≤ t ≤

Si− νi−1} or I{Si− νi−1 + 1 ≤ t ≤ Si,j− 1} is equal to one (they cannot both be one),
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and by de�nition of Rt,Jt , Ai,t, Bi,t ≤ 1, it follows that |Zs| = |Qs − E[Qs|Gs−1]| ≤ 1

for all s.

Lemma 5.27. For any t ≥ 1, let Zt = Qt − E[Qt|Gt−1], then

Sm,j−1∑
t=1

E[Z2
t |Gt−1] ≤ mE[τ ] +mV(τ).

Proof. Let us denote S ′
.
= Sm,j − 1. Observe that

S′∑
t=1

E[Z2
t |Gt−1] =

S′∑
t=1

V(Qt|Gt−1) ≤
S′∑
t=1

E[Q2
t |Gt−1]

=
S′∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}

+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]
.

Then all indicator terms I{Si−1,j ≤ t ≤ Si − νi−1 − 1} and I{Si − νi−1 ≤ t ≤ Si,j − 1}

for all i = 1, . . . ,m are Gt−1-measurable and only one can be non zero for any ω ∈ Ω.

Hence, for any ω ∈ Ω, their product must be 0. Furthermore, for any i, i′ ≤ m, i 6= i′,

Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1} × Ai′,tI{Si′−1,j ≤ t ≤ Si′ − νi′−1 − 1} = 0,

Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1} ×Bi′,tI{Si′ − νi′−1 ≤ t ≤ Si′,j − 1} = 0,

Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1} ×Bi′,tI{Si′ − νi′−1 ≤ t ≤ Si′,j − 1} = 0,

Ai′,tI{Si′−1,j ≤ t ≤ Si′ − νi′−1 − 1} ×Bi,t × I{Si − νi−1 ≤ t ≤ Si,j − 1} = 0.
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Using the above we see that,

S′∑
t=1

E[Z2
t |Gt−1]

≤
S′∑
t=1

E
[( m∑

i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}

+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1})
)2∣∣∣Gt−1

]
=

S′∑
t=1

E
[ m∑
i=1

(A2
i,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}2

+B2
i,tI{Si − νi−1 ≤ t ≤ Si,j − 1}2)

∣∣∣Gt−1

]
=

m∑
i=2

S′∑
t=1

E[A2
i,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}|Gt−1]

+
m∑
i=1

S′∑
t=1

E[B2
i,tI{Si − νi ≤ t ≤ Si,j − 1}|Gt−1]

(using that both indicators are Gt−1-measurable)

≤
m∑
i=2

Si−νi−1−1∑
t=Si−1,j

E[A2
i,t|Gt−1] +

m∑
i=1

Si,j−1∑
t=Si−νi−1

E[B2
i,t|Gt−1].
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Then, for any i ≥ 2,

Si−νi−1−1∑
t=Si−1,j

E[A2
i,t|Gt−1] =

Si−νi−1−1∑
t=Si−1,j

E[R2
t,JtI{τt,Jt + t ≥ Si}|Gt−1]

≤
Si−νi−1−1∑
t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ Si}|Gt−1]

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

=
∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

P(τt,Jt + t ≥ s′)

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑

l=νi−1+1

P(τ > l)

≤ V[τ ],
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by Lemma 5.25 since νi ≥ bE[τ ]c+ 2 for all i. Likewise, for any i ≥ 2,

Si,j−1∑
t=Si−νi−1

E[B2
i,t|Gt−1] =

Si,j−1∑
t=Si−νi−1

E[R2
t,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

≤
Si,j−1∑

t=Si−νi−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑

s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑

t=s−νi−1

E[I{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑

s=νi−1+1

∞∑
s′=s

s′−1∑
t=s−νi−1

E[I{Si = s, Si,j = s′, τt,Jt + t ≥ s′}|Gt−1]

(Since {Si,j = s′, Si = s} ∈ Gt−1 for t ≥ s− νi − 1)

=
∞∑

s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
s′−1∑

t=s−νi−1

P(τt,Jt + t ≥ s′)

≤
∞∑

s=νi−1+1

∞∑
s′=s

I{Si = s, Si,j = s′}
∞∑
l=0

P(τ > l)

≤ E[τ ]

and for i = 1 the derivation simpli�es since we need to some over 1 to S1,j − 1 only.

Combining all terms gives the result.

Lemma 5.28. For Ai,t, Bi,t and Ci,t de�ned as in (5.22), let νi = ni − ni−1 be the

number of times each arm is played in phase i and j′i be the arm played directly before

arm j in phase i. Then, it holds that, for any arm j and phase i ≥ 1,

(i)

Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l).

(ii)

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l).

(iii)

Ui,j∑
t=Si,j

E[Ci,t|Gt−1] = µj

νi−1∑
l=0

P(τ > l).
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Proof. The proof is very similar to that of Lemma 5.27. We prove each statement

individually.

Statement (i): This is similar to the proof of Lemma 5.27,

Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] ≤
Si−νi−1−1∑
t=Si−1,j

E[I{τt,Jt + t ≥ Si}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

E[I{τt,Jt + t ≥ Si}|Gt−1]

=
∞∑
s=0

∞∑
s′=s

s′−νi−1−1∑
t=s

E[I{Si−1,j = s, Si = s′, τt,Jt + t ≥ s′}|Gt−1]

(Since {Si = s′, Si−1,j = s} ∈ Gt−1 for t ≥ s)

=
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
s′−νi−1−1∑

t=s

P(τt,Jt + t ≥ s′)

≤
∞∑
s=0

∞∑
s′=s

I{Si−1,j = s, Si = s′}
∞∑

l=νi−1+1

P(τ > l)

=
∞∑

l=νi−1+1

P(τ > l).

Statement (ii): For statement (ii), we have that for (i, j) 6= (1, 1),

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1] =

Si,j−νi−1−2∑
t=Si−νi−1

E[Bi,t|Gt−1] +

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1].

Then, since{Si,j = s′} ∩ {Si − νi−1 ≤ t} ∈ Gt−1 so we can use the same technique

as for statement (i) to bound the �rst term. For the second term, since we will be
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playing only arm j′i for Si,j − νi−1 − 1, . . . , Si,j − 1, so,

Si,j−1∑
t=Si,j−νi−1−1

E[Bi,t|Gt−1] =

Si,j−1∑
t=Si,j−νi−1−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑
s=0

I{Si,j = s}
s−1∑

t=s−νi−1−1

E[Rt,JtI{τt,Jt + t ≥ Si,j}|Gt−1]

=
∞∑
s=0

s−1∑
t=s−νi−1−1

E[Rt,JtI{Si,j = s, τt,Jt + t ≥ Si,j}|Gt−1]

(Since {Si,j = s′, Si,j − νi−1 ≤ t} ∈ Gt−1 )

=
∞∑
s=0

s−1∑
t=s−νi−1−1

E[Rt,JtI{Si,j = s, τt,Jt + t ≥ s}|Gt−1]

=
∞∑
s=0

I{Si,j = s}
s−1∑

t=s−νi−1−1

µj′iP(τt,Jt + t ≥ s)

(Since {Si,j = s} ∈ Gt−1 for t ≥ s− νi−1 − 1 and given Gt−1, Rt,Jt and τt,Jt are independent)

=
∞∑
s=0

I{Si,j = s}µj′i

νi−1∑
l=0

P(τ > l)

= µj′i

νi−1∑
l=0

P(τ > l).

Then, for (i, j) = (1, 1), the amount seeping in will be 0, so using ν0 = 0, µ′11
= 0, the

result trivially holds. Hence,

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1] ≤
∞∑

l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l).

Statement (iii): This is the same as in Lemma 5.16.

We now bound each term of the decomposition in (5.23).
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Bounding Term I.: For Term I., we can again use Lemma 5.17 as in the proof of

Lemma 5.1 to get that with probability greater than 1− 1
T ∆̃2

m
,

m∑
i=1

Ui,j∑
t=Si,j

(Rt,Jt − µj) ≤

√
nm log(T ∆̃2

m)

2
.

Bounding Term II.: For Term II., we will use Freedmans inequality (Theorem 5.10).

From Lemma 5.26, {Ys}∞s=0 with Ys =
∑s

t=1(Qt−E[Qt|Gt−1]) is a martingale with re-

spect to {Gs}∞s=0 with increments {Zs}∞s=0 satisfying E[Zs|Gs−1] = 0 and Zs ≤ 1 for all

s. Further, by Lemma 5.27,
∑s

t=1 E[Z2
t |Gt−1] ≤ mE[τ ]+mV(τ) ≤ 4×2m

8
(E[τ ]+V(τ)) ≤

nm/8 with probability 1. Hence we can apply Freedman's inequality to get that with

probability greater than 1− 1
T ∆̃2

m
,

Sm,j∑
t=1

(Qt − E[Qt|Gt−1]) =
∞∑
s=1

I{Sm,j = s} × Ys ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m),

using that Freedman's inequality applies simultaneously to all s ≥ 1.

Bounding Term III.: For Term III., we again use Freedman's inequality (Theo-

rem 5.10), using Lemma 5.14 to show that {Y ′s}∞s=0 with Y
′
s =

∑s
t=1(E[Pt|Gt−1]−Pt) is a

martingale with respect to {Gs}∞s=0 with increments {Z ′s}∞s=0 satisfying E[Z ′s|Gs−1] = 0

and Z ′s ≤ 1 for all s. Further, by Lemma 5.15,
∑s

t=1 E[Z2
t |Gt−1] ≤ mE[τ ] ≤ nm/8 with

probability 1. Hence, with probability greater than 1− 1
T ∆̃2

m
,

Um,j∑
t=1

(E[Pt|Gt−1]− Pt) =
∞∑
s=1

I{Um,j = s} × Y ′s ≤
2

3
log(T ∆̃2

m) +

√
1

8
nm log(T ∆̃2

m).
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Bounding Term IV.: To begin with, observe that,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1]

=

Sm,j∑
t=1

E
[ m∑
i=1

(Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}+Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1})
∣∣∣∣Gt−1

]

−
Um,j∑
t=1

E
[ m∑
i=1

Ci,tI{Si,j ≤ t ≤ Ui,j}
∣∣∣∣Gt−1

]

=
m∑
i=1

Sm,j∑
t=1

E[Ai,tI{Si−1,j ≤ t ≤ Si − νi−1 − 1}|Gt−1]

+
m∑
i=1

Sm,j∑
t=1

E[Bi,tI{Si − νi−1 ≤ t ≤ Si,j − 1}|Gt−1]

−
m∑
i=1

Um,j∑
t=1

E[Ci,tI{Si,j ≤ t ≤ Ui,j}|Gt−1]

=
m∑
i=1

( Si−νi−1−1∑
t=Si−1,j

E[Ai,t|Gt−1] +

Si,j−1∑
t=Si−νi−1

E[Bi,t|Gt−1]−
Ui,j∑
t=Si,j

E[Ci,t|Gt−1]

)
(using that the indicators are Gt−1-measurable)

≤
m∑
i=1

( ∞∑
l=νi−1+1

P(τ ≥ l) + µj′i

νi−1∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l)

)
,

≤
m∑
i=1

(
2V(τ)

νi−1 − E[τ ]
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)
,

≤
m∑
i=1

(
2V(τ)

2i−1
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)
, (5.24)

by Lemma 5.28 and Lemma 5.25 where we have used the fact that since nm ≤ T , the

maximal number of rounds of the algorithm is 1
2

log2(T/4) and for m ≤ 1
2

log2(T/4),

log(T ∆̃2
m)

∆̃2
m

≥ 2 log(T ∆̃2
m−1)

∆̃2
m−1

so nm ≥ 2nm−1 and νm ≥ nm−1. Then for E[τ ] ≥ 1, νi−1 −

E[τ ] ≥ 2/∆̃i−1E[τ ] − E[τ ] ≥ (2 × 2i−1 − 1)E[τ ] ≥ 2i−1E[τ ] ≥ 2i−1 and for E[τ ] ≤ 1,

νi−1 − E[τ ] ≥ νi−1 − 1 ≥ 2 log(4)/∆̃i−1 − 1 ≥ 2i−1 so νi−1 − E[τ ] ≥ 2i−1. Then,

the probability that either arm j′i or j is active in phase i when it should have been

eliminated in or before phase i− 1 is less than 2pi−1, where pi is the probability that
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the con�dence bounds for one arm holds in phase i and p0 = 0. If neither arm should

have been eliminated by phase i, this means that their mean rewards are within ∆̃i−1

of each other. Hence, with probability greater than 1− 2pi−1,

µj′i

νi∑
l=0

P(τ > l)− µj
νi∑
l=0

P(τ > l) ≤ ∆̃i−1

νi∑
l=0

P(τ > l) ≤ ∆̃i−1E[τ ].

Then, summing over all phases gives that with probability greater than 1−2
∑m−1

i=0 pi,

Sm,j∑
t=1

E[Qt|Gt−1]−
Um,j∑
t=1

E[Pt|Gt−1] ≤ 2V(τ)
m∑
i=1

1

2i−1
+ E[τ ]

m∑
i=1

∆̃i−1

= (2V(τ) + E[τ ])
m−1∑
i=0

1

2i
≤ 4V(τ) + 2E[τ ].

Combining all terms: To get the �nal high probability bound, we sum the bounds

for each term I.-IV.. Then, with probability greater than 1−( 3
T ∆̃2

m
+2
∑m−1

i=1 pi), either

j /∈ Am or arm j is played nm times by the end of phase m and

1

nm

∑
t∈Tj(m)

(Xt − µj) ≤
4 log(T ∆̃2

m)

3nm
+

(
2√
8

+
1√
2

)√
log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm

≤ 4 log(T ∆̃2
m)

3nm
+

√
2 log(T ∆̃2

m)

nm
+

2E[τ ] + 4V(τ)

nm
= wm.

Using the fact that p0 = 0 and substituting the other pi's using the same recursive

relationship pi = 3
T ∆̃2

i

+ 2
∑i−1

l=1 pl as in the case for bounded delays (see the proof of

Lemma 5.5) gives, pm = 12
T ∆̃2

m
so the above bound holds with probability greater than

1− 12
T ∆̃2

m
.
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De�ning nm: Setting

nm =

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m)

+

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃2

m) + 4∆̃m(E[τ ] + 2V(τ))

)2⌉
. (5.25)

ensures that wm ≤ ∆̃m

2
which concludes the proof.

Remark: Note that if E[τ ] ≥ 1, then the con�dence bounds can be tightened by

replacing (5.24) with

m∑
i=1

(
2V(τ)

2i−1E[τ ]
+ (µj′i − µj)

νi∑
l=0

P(τ > l)

)

This is obtained by noting that for E[τ ] ≥ 1. νi−1 − E[τ ] ≥ 2/∆̃i−1E[τ ] − E[τ ] ≥

(2× 2i−1 − 1)E[τ ] ≥ 2i−1E[τ ]. This leads to replacing the V(τ) term in the de�nition

of nm by V(τ)/E[τ ].

5.D.2 Regret Bounds

Theorem 5.8. Under Assumption 1 and Assumption 3 of known (bound on) the

expectation and variance of the delay, and choice of nm from (5.7), the expected regret

of Algorithm 5.1 can be upper bounded by,

E[RT ] ≤
K∑

j=1:µj 6=µ∗
O

(
log(T∆2

j)

∆j

+ E[τ ] + V(τ)

)
.

Proof. The proof is very similar to that of Theorem 5.2, however, for clarity, we repeat

the main arguments here. For any sub-optimal arm j, de�ne Mj to be the random

variable representing the phase arm j is eliminated in and note that if Mj is �nite,

j ∈ AMj
but j 6∈ AMj+1. Then let mj be the phase arm j should be eliminated in,

that is mj = min{m|∆̃m <
∆j

2
} and note that, from the new de�nition of ∆̃m in our
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algorithm, we get the relations

2m =
1

∆̃m

, 2∆̃mj = ∆̃mj−1 ≥
∆j

2
and so,

∆j

4
≤ ∆̃mj ≤

∆j

2
. (5.26)

De�ne R
(j)
T to be the regret contribution from each arm 1 ≤ j ≤ K and let M∗ be

the round where the optimal arm j∗is eliminated. Hence,

E[RT ] = E
[ K∑
j=1

R
(j)
T

]
= E

[ ∞∑
m=0

K∑
j=1

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}+

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]

= E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

I.

+E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
︸ ︷︷ ︸

II.

We will bound the regret in each of these cases in turn. First, however, we need

the following results.

Lemma 5.29. For any suboptimal arm j, if j∗ ∈ Amj , then the probability arm j is

not eliminated by round mj is,

P(Mj > mj and M
∗ ≥ mj) ≤

24

T ∆̃2
mj

Proof. The proof is exactly that of Lemma 5.18 but using Lemma 5.24 to bound the

probability of the con�dence bounds on either arm j or j∗ failing.

De�ne the event Fj(m) = {X̄m,j∗ < X̄m,j−∆̃m}∩{j, j∗ ∈ Am} to be the event that

arm j∗ is eliminated by arm j in phase m. The probability of this event is bounded

in the following lemma.

Lemma 5.30. The probability that the optimal arm j∗ is eliminated in round m <∞
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by the suboptimal arm j is bounded by

P(Fj(m)) ≤ 24

T ∆̃2
m

Proof. Again, the proof follows from Lemma 5.19 but using Lemma 5.24 to bound

the probability of the con�dence bounds failing.

We now return to bounding the expected regret in each of the two cases.

Bounding Term I. As in the proof of Theorem 5.2, to bound the �rst term, we

consider the cases where arm j is eliminated in or before the correct round (Mj ≤ mj)

and where arm j is eliminated late (Mj > mj). Then, using Lemma 5.29,

E
[ ∞∑
m=0

∑
j:mj<m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

(
2∆jnmj ,j +

384

∆j

)

Bounding Term II For the second term, we again use the results from Theorem 5.2,

but using Lemma 5.29 to bound the probability a suboptimal arm is eliminated in a

later round and Lemma 5.30 to bound the probability j∗ is eliminated by a suboptimal

arm. Hence,

E
[ ∞∑
m=0

∑
j:mj≥m

R
(j)
T I{M∗ = m}

]
≤

K∑
j=1

1920

∆j

.

Combining the regret from terms I and II gives,

E[RT ] ≤
K∑
j=1

(
1920

∆j

+ 2∆jnmj ,j

)

Hence, all that remains is to bound nm in terms of ∆j, T and E[τ ],V(τ). Using
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Lm,T = log(T ∆̃2
m), we have that,

nmj ,j

=

⌈
1

∆̃2
m

(√
2 log(T ∆̃2

m) +

√
2 log(T ∆̃2

m) +
8

3
∆̃m log(T ∆̃m) + 4∆̃m(E[τ ] + 2V(τ))

)2⌉
≤

⌈
1

∆̃2
mj

(
8Lmj ,T +

16

3
∆̃mjLmj ,T + 8∆̃mjE[τ ] + 16∆̃mjV(τ)

)⌉

≤ 1 +
8Lmj ,T

∆̃2
mj

+
16Lmj ,T

3∆̃mj

+
8E[τ ]

∆̃mj

+
16V(τ)

∆̃mj

≤ 1 +
128Lmj ,T

∆2
j

+
32Lmj ,T

∆j

+
32E[τ ]

∆j

+
64V(τ)

∆j

.

where we have used (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0.

Hence, the total expected regret from ODAAF with bounded delays can be bounded

by,

E[Rt] ≤
K∑
j=1

(
256 log(T∆2

j)

∆j

+ 64E[τ ] + 128V(τ) +
1920

∆j

+ 64 log(T ) + 2∆j

)
.

Note that again, these constants can be improved at a cost of increasing log(T∆2
j)

to log(T∆j). We now prove the problem independent regret bound.

Corollary 5.9. For any problem instance satisfying Assumptions 1 and 3, the expected

regret of Algorithm 5.1 satis�es

E[RT ] ≤ O(
√
KT log(K) +KE[τ ] +KV(τ)).

Proof. Let λ =
√

K log(K)e2

T
and note that for ∆ > λ, log(T∆2)/∆ is decreasing in ∆.
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Then, for constants C1, C2 > 0 we can bound the regret in the previous theorem by

E[RT ] ≤
∑

j:∆j≤λ

E[R
(j)
t ] +

∑
j:∆j>λ

E[R
(j)
T ] ≤ KC1 log(Tλ2)

λ
+KC2(E[τ ] + V(τ)) + Tλ.

substituting in the above value of λ gives a worst case regret bound that scales with

O(
√
KT log(K) +K(E[τ ] + V(τ))).

Remark: If E[τ ] ≥ 1, we can replace the V(τ) terms in the regret bounds with

V(τ)/E[τ ]. This follows by using the alternative de�nition of nm suggested in the

remark at the end of Section 5.D.1.

5.E Additional Experimental Results

5.E.1 Increasing the Expected Delay

Here we investigate the e�ect of increasing the mean delay on both our algorithm and

QPM-D (Joulani et al., 2013) and demonstrate that the regret of both algorithms

increases linearly with E[τ ], as indicated by our theoretical results. We use the same

experimental set up as described in Section 5.5. In Figure 5.5, we are interested in the

impact of the mean delay on the regret so we kept the delay distribution family the

same, using a N+(µ, 100) (Normal distribution with mean µ, variance 100, truncated

at 0) as the delay distribution. We then ran the algorithms for increasing mean delays

and plotted the ratio of the regret at T to the regret of the same algorithm when the

delay distribution was N+(0, 100). In this case, the regret was averaged over 1000

replications for ODAAF and ODAAF-V, and 5000 for QPM-D (this was necessary

since the variance of the regret of QPM-D was signi�cant). Here, it can be seen

that increasing the mean delay causes the regret of all three algorithms to increase

linearly. This is in accordance with the regret bounds which all include a linear factor
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Figure 5.5: The relative increase in regret at horizon T = 250000 for increasing mean
delay when the delay is N+ with variance 100.
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Figure 5.6: The ratios of regret of variants of our algorithm to that of DUCB for
di�erent delay distributions.

of E[τ ] (since here log(T ) is kept constant). It can also be seen that ODAAF-V scales

better with E[τ ] than ODAAF (for constant variance). Particularly, at E[τ ] = 100,

the relative increase in ODAAF-V is only 1.2 whereas that of ODAAF is 4 (QPM-D

has the best relative increase of 1.05).

5.E.2 Comparison with Vernade et al. (2017)

Here we compare our algorithms, ODAAF, ODAAF-B and ODAAF-V, to the (non-

censored) DUCB algorithm of Vernade et al. (2017). We use the same experimental

setup as described in Section 5.5. As in the comparison to QPM-D, in Figure 5.6 we



CHAPTER 5. DELAYED, AGGREGATED ANONYMOUS FEEDBACK 183

plot the ratios of the cumulative regret of our algorithms to that of DUCB for di�erent

delay distributions. In Figure 5.6a, we consider bounded delay distributions and in

Figure 5.6b, we consider unbounded delay distributions. From these plots, we observe

that, as in the comparison to QPM-D in Figure 5.3, the regret ratios all converge to a

constant. Thus we can conclude that the order of regret of our algorithms match that

of DUCB, even though the DUCB algorithm of Vernade et al. (2017) has considerably

more information about the delay distribution. In particular, along with knowledge on

the individual rewards of each play (non-anonymous observations), DUCB also uses

complete knowledge of the cdf of the delay distribution to re-weigh the average reward

for each arm. Thus, our algorithms are able to match the rate of regret of Vernade

et al. (2017) and QPM-D of Joulani et al. (2013) while just receiving aggregated,

anonymous observations and using only knowledge of the expected delay rather than

the entire cdf.

We ran the DUCB algorithm with parameter ε = 0. As pointed out in (Vernade

et al., 2017), the computational bottleneck in the DUCB algorithm is evaluating the

cdf at all past plays of the arms in every round. For bounded delay distributions, this

can be avoided using the fact that the cdf will be 1 for plays more than d steps ago. In

the case of unbounded distributions, in order to make our experiments computation-

ally feasible, we used the approximation P(τ ≤ d) = 1 for d ≥ 200. Another nuance

of the DUCB algorithm is that in the early stages, the upper con�dence bounds are

dominated by the uncertainty terms, which themselves involve dividing by the cdf of

the delay distributions. The arm that is played last in the initialization period will

have the highest cdf and so it's con�dence bound will be largest and DUCB will play

this arm at time K + 1 (and possibly in subsequent rounds unless the cdf increases

quickly enough). In order to overcome this, we randomize the order that we play the

arms in during the initialization period in each replication of the experiment. Note

that we did not run DUCB with half normal delays as DUCB divides by the cdf of
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the delay distribution and in this case the cdf would be 0 at some points.

5.F Naive Approach for Bounded Delays

In this section we describe a naive approach to de�ning the con�dence intervals when

the delay is bounded by some d ≥ 0 and show that this leads to sub-optimal regret.

Let

wm =

√
log(T ∆̃2

m)

2nm
+
md

nm
.

denote the width of the con�dence intervals used in phase m for any arm j. We start

by showing that the con�dence bounds hold with high probability:

Lemma 5.31. For any phase m and arm, j,

P(|X̄m,j − µj| > wm) ≤ 2

T ∆̃2
m

.

Proof. First note that since the delay is bounded by d, at most d rewards from other

arms can seep into phase i of playing arm j and at most d rewards from arm j can

be lost. De�ning Si,j and Ui,j as the start and end points of playing arm j in phase i,

respectively, we have

∣∣∣∣∣∣
Ui,j∑
t=Si,j

Rj,t −
Ui,j∑
t=Si,j

Xt

∣∣∣∣∣∣ ≤ d , (5.27)

because we can pair up some of the missing and extra rewards, and in each pair the

di�erence is at most one. Then, by de�nition of Tj(m) and using (5.27) we get

1

nm

∣∣∣∣∣∣
∑

t∈Tj(m)

Rj,t −
∑

t∈Tj(m)

Xt

∣∣∣∣∣∣ ≤ md

nm
.

De�ne R̄m,j = 1
|Tj(m)|

∑
t∈Tj(m) Rj,t and recall that X̄m,j = 1

|Tj(m)|
∑

t∈Tj(m)Xt. For any
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a > md
nm

,

P
(
|X̄m,j − µj| > a

)
≤ P

(
|X̄m,j − R̄m,j|+ |R̄m,j − µj| > a

)
≤ P

(
|R̄m,j − µj| > a− md

nm

)
≤ 2 exp

{
−2nm

(
a− md

nm

)2
}
,

where the �rst inequality is from the triangle inequality and the last from Hoe�d-

ing's inequality since Rj,t ∈ [0, 1] are independent samples from νj, the reward

distribution of arm j. In particular, taking a =
√

log(T ∆̃2
m)

2nm
+ md

nm
guarantees that

P
(
|X̄j − µj| > a

)
≤ 2

T ∆̃2
m
, �nishing the proof.

Observe that setting

nm =

⌈
1

2∆̃2
m

(√
log(T ∆̃2

m) +

√
log(T ∆̃2

m) + 4∆̃mmd

)2 ⌉
. (5.28)

ensures that wm ≤ ∆̃m

2
. We can substitute this value of nm into Improved UCB and

use the analysis from (Auer and Ortner, 2010) to get the following regret bound.

Theorem 5.32. Assume there exists a bound d ≥ 0 on the delay. Then for all λ > 0,

the expected regret of the Improved UCB algorithm run with nm de�ned as in (5.28)

can be upper bounded by

∑
j∈A

∆j>λ

(
∆j +

64 log(T∆2
j)

∆j

+ 64 log(2/∆j)d+
96

∆j

)
+

∑
j∈A

0<∆j<λ

64

λ
+ T max

j∈A
∆j≤λ

∆j

Proof. The result follows from the proof of Theorem 3.1 in (Auer and Ortner, 2010)

using the above de�nition of nm.

In particular, optimizing with respect to λ gives worst case regret ofO(
√
KT logK+

Kd log T ). This is a suboptimal dependence on the delay, particularly when d >>

E[τ ].



Chapter 6

Recovering Bandits

6.1 Introduction

The multi-armed bandit problem has been introduced in Chapter 2. In its standard

form, it consists of T rounds where, in each round 1 ≤ t ≤ T , we play an arm Jt and

receive a reward Yt generated from the underlying reward distribution of the arm. The

aim is to maximize the total reward over T rounds. Bandit algorithms have become

ubiquitous in many settings such as web advertising and product recommendation.

Consider, for example, suggesting items to a user on an internet shopping platform.

This is typically modeled as a bandit problem where each product (or group of prod-

ucts) is an arm. Over time, the bandit algorithm will learn to suggest only good

products to the user. In particular, once the algorithm learns that a product (eg.

a television) has good reward, it will continue to suggest it to the user. However,

if the user buys the television, the bene�t of continuing to show them televisions is

immediately diminished (but may increase again as the purchased television reaches

the end of its lifetime). To improve customer experience (and pro�t), it would be

bene�cial for the recommendation algorithm to learn not to recommend the same

product again immediately, but to wait an appropriate amount of time until the re-

186
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ward from that product has `recovered'. This sort of reward dynamic also occurs in

other scenarios such as �lm and TV recommendation where a user may wish to wait

before re-watching their favorite �lm, or conversely, may wish to continue watching a

series but will lose interest in it if they haven't seen it recently. The recovering ban-

dits framework presented here provides a natural extension of the stochastic bandit

problem to capture these phenomena.

In the recovering bandits problem, we assume that the expected reward of each

arm can be modeled as an (unknown) function of the number of rounds since it was

last played. In particular, we assume that for each arm j, there is a function fj(z)

that speci�es the expected reward from playing arm j when it has not been played

for z steps, and that this function is smooth enough to be modeled by a Gaussian

process (GP) (see Figure 6.1). We take a Bayesian approach and further assume that

the fj's are sampled from a GP. For any time t, let Zj,t be the time since arm j was

last played. At every time step, this changes for both the played arm (it resets to

0) and also for the unplayed arms (it increases by 1). Hence, the expected reward

of every arm changes at every time step, and the magnitude of this change depends

on which arm was played. This problem is therefore related to both the restless and

rested bandits problems (Whittle, 1988).

A key feature of the recovering bandits problem is that the reward of each arm

depends on the entire sequence of past actions we have taken. This means that,

even when the reward functions are known, selecting the best sequence of T arms is

intractable (since, in particular the state space of a MDP representation would be

unacceptably large). One tractable alternative is to select the action that maximizes

the instantaneous reward, without considering future decisions. This still poses quite

a challenge compared to the standard K-armed bandit problem as instead of just

learning the reward of each arm, we must learn an entire recovery function. In many

cases, maximizing the instantaneous reward may not be optimal. Recall the earlier
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internet shopping example. If a user has recently purchased a television, the expected

reward of suggesting another one may be low, but it could still be higher than that

of other products. Maximizing the instantaneous reward would mean suggesting the

television. However, the total reward from showing the other products and waiting

until the reward of the television recovers is greater. Thus, although it is infeasible

to select a sequence of T arms, it is natural to consider selecting a sequence of d ≥ 1

arms to maximize the reward in the next d plays.

In this chapter, we present and analyse two algorithms for the recovering bandits

problem, one based on the Upper Con�dence Bound (UCB) approach (Auer et al.,

2002a), and one based on Thompson Sampling (Thompson, 1933). Both of these

lookahead to select a good sequence of actions and achieve good regret guarantees

and experimental performance. The chapter continues as follows. In Section 6.2 we

discuss related work then formally de�ne our problem in Section 6.3. In Section 6.4 we

de�ne our regret with respect to a d-step lookahead oracle. In Section 6.5, we brie�y

introduce a baseline algorithm. Then, in Section 6.6, we present our algorithms

for recovering bandits and bound their regret. We discuss an optimistic planning

approximation to improve computational complexity in Section 6.7, then demonstrate

the empirical performance in Section 6.8 before concluding.

6.2 Related Work

In the restless bandits problem, the reward distribution of any arm can change at

any time, regardless of whether it has been played. This problem has been studied

by Whittle (1988); Slivkins and Upfal (2008); Garivier and Moulines (2011); Raj and

Kalyani (2017); Besbes et al. (2014) and others (see Section 2.3.5 for more details). In

the rested bandits problem, the reward distribution of an arm only changes when it is

played. Recently, this has been applied to the problem of user fatigue in recommen-
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Figure 6.1: Examples of the recovery functions.

dation scenarios. Levine et al. (2017); Cortes et al. (2017); Boune�ouf and Feraud

(2016); Heidari et al. (2016) study rested bandits problems with rewards that vary

predominantly with the number of plays of an arm. More details on these approaches

are given in Section 2.3.5.

In recovering bandits, the reward distributions change in every round and this

change depends on whether the arm was played. Yi et al. (2017) incorporate inter-

purchase times into recommendation systems by considering recovery functions that

are known step functions. In the rogue bandits problem of Mintz et al. (2017), the

expected reward of each arm depends on an underlying state (which could be the

time since the arm was last played) via some parametric function. This is related to

the recovering bandits problem. They use maximum likelihood estimation (although

there are no guarantees the estimates will converge) and adapt the KL-UCB algorithm

(Cappé et al., 2013) to this problem. The expected frequentist regret of their algorithm

is bounded by O(
∑

j
log(T )/δ2

j ) where δj depends on the random number of plays of each

arm and the minimum distance between the rewards of any arms at any time. These

δj's can get arbitrarily small so these bounds can be very poor. By the standard worst

case analysis, the frequentist problem independent regret is O∗(T 2/3K1/3), where we
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use the notation O∗ to suppress log factors. In comparison, our algorithms achieve

O∗(
√
KT ) Bayesian regret while requiring less knowledge of the recovery functions.

Mintz et al. (2017) also provide an algorithm based on asymptotics which has no

theoretical guarantees but improved experimental performance. In Section 6.8, we

show that our algorithms outperform this algorithm experimentally.

The Gasussian process bandits problem was introduced in Section 2.3.3. In this

problem, there is a single function, f , sampled from a GP and the aim is to minimize

the (Bayesian) regret of the actions taken with respect to the maximum of f . The

celebrated GP-UCB algorithm of Srinivas et al. (2010) has Bayesian regret O∗(
√
TγT )

where γT is the `maximal information gain' (see Section 6.6.4). Russo and Van Roy

(2014) showed that a Thompson sampling algorithm for the GP bandits problem

achieves the same Bayesian regret as GP-UCB. Bogunovic et al. (2016) considered the

GP bandit problem with a slowly drifting reward function and Krause and Ong (2011)

studied the contextual GP bandit problem. In both these problems, the contexts or

drifts do not depend on the previous actions taken.

It is important to note that all of the above approaches only look at instantaneous

regret whereas in recovering bandits, it is more appropriate to consider lookahead

regret (see Section 6.4). We will also consider Bayesian regret.

6.3 Problem De�nition

We have K independent arms and play the bandit game over T rounds (T is not

necessarily known). For each arm j ∈ A = {1, . . . , K} and round t ∈ {1, . . . , T},

denote by Zj,t the number of rounds since arm j was last played, where Zj,t ∈ Z =

{0, . . . , zmax} for a �nite zmax ∈ N and T ≥ K|Z|. Note that Zj,t are random variables
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since they depend on our past actions. If we play arm Jt at time t, then, at time t+1,

Zj,t+1 =


0 if Jt = j,

min{zmax, Zj,t + 1} if Jt 6= j.

(6.1)

Hence, if arm j has not been played for more than zmax steps, Zj,t will stay at zmax.

Only one arm is played at time t, so there is always one arm with Zj,t = 0, and if

Zj,t 6= zmax then Zj,t 6= Zi,t for i 6= j.

The expected reward for arm j is modeled by an (unknown) recovery function, fj.

We assume that the fj's are sampled independently from a Gaussian processes with

mean 0 and known kernel. Let Zt = (Z1,t, . . . , ZK,t) be the vector of covariates for

each arm at time t. At round t, we observe Zt and use this and past observations to

select an arm Jt to play. We then receive a noisy observation YJt,t = fJt(ZJt,t) + εt

where εt are iid N (0, σ2) random variables and the standard deviation, σ, is known.

Gaussian Processes A brief introduction to Gaussian Processes (GP) is given in

Appendix A.4 and more details can be found in (Rasmussen and Williams, 2006).

A Gaussian process gives a distribution over functions, when for every �nite set

z1, . . . , zN of covariates, the distribution of f(z1), . . . , f(zN) is multivariate Gaus-

sian. A GP is de�ned by its mean function, µ(z) = E[f(z)], and kernel function,

k(z, z′) = E[(f(z)−µ(z))(f(z′)−µ(z′))], which speci�es the smoothness. If we observe

YN = (Y1, . . . , YN)T at covariates zN = (z1, . . . , zN)T where Yn = f(zn)+εn and εn are

iidN (0, σ2) noise variables, then the posterior distribution afterN observations is con-

jugate, and so is GP(µ(z;N), k(z, z′;N)). Where for kN(z) = (k(z1, z), . . . , k(zN , z))
T

and positive semi-de�nite kernel matrix KN = [k(zi, zj)]
N
i,j=1, the posterior mean and
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covariance are given by,

µ(z;N) = kN(z)T (KN + σ2I)−1yN ,

k(z, z;N) = k(z, z′)− kN(z)T (KN + σ2I)−1kN(z′),

so σ2(z;N) = k(z, z;N). For any z ∈ Z, the posterior distribution of f(z) is then

N (µ(z;N), σ2(z;N)). We consider the posterior distribution of fj for each arm at

every round, when it has been played some (random) number of times. For each arm

j, denote the posterior mean and variance of fj at z after n plays of the arm by

µj(z;n) and σ2
j (z;n). Let Nj(t) be the (random) number of times arm j has been

played up to time t. It will be convenient to denote the posterior mean and variance

of arm j at round t of the algorithm by,

µt(j) = µj(Zj,t;Nj(t− 1)), and, σ2
t (j) = σ2

j (Zj,t;Nj(t− 1)).

6.4 De�ning the Regret

We will measure the performance of our algorithm for the recovering bandits problem

in terms of its Bayesian regret. The regret is typically de�ned as the cumulative

di�erence in the expected reward of an algorithm and an oracle. In the Bayesian

regret, the expectation is taken over the recovery curves as well as the actions. In

recovering bandits, there are various choices for the oracle. We discuss some of these

here before de�ning the d-step lookahead regret which will be used in the remainder

of this chapter.

6.4.1 Full Horizon Regret

A natural candidate for the oracle is one which uses knowledge of the recovery func-

tions to select the best sequence of T actions up to horizon T . However, computing
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this policy is computationally infeasible even when the fj's are known. Speci�cally, if

we were to model this as a Markov decision process, the state space would have size

K |Z|. This would make solution techniques such as dynamic programming impossi-

ble to apply to any realistically sized problem, especially since there are no discount

factors. Furthermore, it would require that the horizon T is known, whereas we are

interested in anytime algorithms which do not know T . For these reasons, we will not

consider the full horizon regret.

6.4.2 Instantaneous Regret

Another candidate for the oracle is the policy which greedily plays the action corre-

sponding to the highest immediate reward given the Zt available at each time step t.

These Zt would depend on the actions previously taken by the oracle. Consider an

alternative policy which plays this oracle up to time s−1, and then selects a di�erent

action at time s, and continues to play greedily. The cumulative reward of this al-

ternative policy could be vastly di�erent to that of the oracle since they may end up

with very di�erent Z values. Therefore, de�ning regret in relation to this oracle could

penalize us severely for early mistakes. This is similar to the notion of Arora et al.

(2012) that sub-linear policy regret (with respect to a sequence of actions) may not be

achievable in adversarial bandits. Instead, one can de�ne the regret of an algorithm

π with respect to an oracle which selects the best action at the Zt's generated by π.

We will call this the instantaneous regret. This is the de�nition of regret in most

non-stationary bandit problems and in (Mintz et al., 2017).

6.4.3 d-step Lookahead Regret

A policy achieving low instantaneous regret could be missing out on additional reward

by not considering the impact of its actions on the future Zt's. In particular, looking

ahead and using knowledge of how the Zj,t's evolve can lead to choosing a good
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sequence of arms which are collectively better than the individual greedy arms. For

example, if there are two arms j1, j2 with similar fj(Zj,t) but if we don't play j1 then

its reward doubles, whereas the reward of j2 stays the same, it is better to play j2 �rst

and wait for the reward of j1 to increase. This leads us to consider oracles which take

the current Zt generated by our algorithm and select the best sequence of d actions

for d ≥ 1. We call the regret with respect to this oracle the d-step lookahead regret.

In order to formally de�ne this regret, we model the problem of selecting a sequence

of d actions as a decision tree. Here nodes correspond to Z values and edges represent

playing arms and updating Z (see Figure 6.2). Each sequence of d actions is a leaf of

this tree. Let Ld(Z) be the set of leaves of a d-step lookahead tree with root Z. For

any leaf i ∈ Ld(Z), denote by Mi(Z) the expected reward at that leaf, that is the sum

of the fj's along the path to i at the corresponding Zj values (see Section 6.6 for a

full de�nition). The d-step lookahead regret is de�ned with respect to an oracle which

knows the fj's and, when given a root node Zt, selects the leaf with highest Mi(Zt),

denote this value by M∗(Zt). This corresponds to selecting the best sequence of d

arms from Zt. Let It be the leaf we select at time t. We play the arms to It for the

next d steps so select a sequence of arms every d steps. The d-step lookahead regret

is then,

E[R
(d)
T ] =

bT/dc∑
h=0

E
[
M∗(Zhd+1)−MIhd+1

(Zhd+1)

]
,

where the expectation is over both Ihd+1 and fj. The full horizon and instantaneous

regret can be recovered from this by setting d = T and d = 1, respectively. We

consider two variants of this regret. In the single play regret, E[R
(d,s)
T ], each arm

can only be played a single time in the d-step lookahead (this can occur if there is a

constraint on how often an arm can be played). In the multiple play regret, E[R
(d,m)
T ],

arms can be played multiple times in a lookahead.
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Selecting d

For large d the optimal d-step lookahead policy will behave similarly to the (infeasible)

full horizon oracle. Intuitively, if we look far enough ahead that we consider each arm

at its maximal value, then the d-step lookahead oracle will be able to use knowledge

of the peaks of the recovery curve of each arm to select a sequence of arms to play

(this could be playing each arm at its maximal value or an alternative which gives

higher reward). The challenge is how to select d to guarantee this occurs. However,

observe that if d ≥ |Z|, looking d-steps ahead will guarantee we consider each arm

at its maximum (since in the worst case each arm arrives at its optimal state after

|Z| − 1 steps).

In some cases, it may not be feasible to look d ≥ |Z| steps ahead. In these cases,

we can use the assumptions on the recovery functions to select d according to how

often we expect to see near-optimal values of the recovery functions. For example, if

the recovery functions are sampled from a GP whose kernel has lengthscale l (many

kernels such as squared exponential and Matérn kernels satisfy this), then, on average,

we will see a local maximum of each function every 2l steps (Murray, 2016; Rasmussen

and Williams, 2006). Hence, looking 2l steps ahead means that, on average, we will

consider a local maximum of each fj.

6.5 Baseline Approach

We use an algorithm which has no information about the recovery structure as a

baseline. For this, we model each (arm, z) pair as an arm. This reduces the problem

to a standard multi-armed bandit problem with K|Z| arms, where only some arms

are available each round. Using the UCB1 algorithm (Auer et al., 2002a) gives the

following regret.

Theorem 6.1. The instantaneous regret up to time T of the UCB1 algorithm with
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Figure 6.2: An example of a d-step lookahead tree.

K|Z| arms can be bounded by

E[R
(1)
T ] ≤ O(

√
K|Z|T log(T ) +K|Z|2)

See Section 6.D for details. This is as to be expected as there are now essentially

K|Z| arms. The additional K|Z|2 term comes from having to wait for each arm to

recover so it can be played at each z ∈ Z during initialization. A common baseline

in non-stationary bandits is to use an algorithm for adversarial bandits on K arms.

This would lead to poor results here since the aim in the adversarial bandits problem

is to minimize the regret with respect to the best constant arm whereas in recovering

bandits the regret is with respect to an optimal switching strategy.

6.6 Gaussian Process Recovery

In Algorithm 6.1 we present a UCB (dRGP-UCB) and Thompson Sampling (dRGP-

TS) algorithm for the d-step lookahead recovering bandits problem. We present the

algorithms here for both the single and multiple play case.
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Our algorithms (described in Algorithm 6.1) proceed as follows. For each arm j,

we place a prior GP distribution on fj and initialize Zj,1 (often this initial value is

known, otherwise we set it to 0). Every d steps we construct the d-step lookahead

tree as in Figure 6.2. At time t, we select a sequence of arms by choosing a leaf It

of the tree with root node Zt. Each leaf represents a unique sequence of d arms at z

values which have been updated using (6.1). For any leaf i ∈ Ld(Zt), de�ne the total

reward at i as Mi(Zt),

Mi(Zt) =
d−1∑
`=0

fJt+`(ZJt+`,t+`)

where {Jt+`}d−1
`=0 and{ZJt+`,t+`}d−1

`=0 are the sequences of arms and z's on the path to

leaf i. Since the posterior distribution of each fj(z) at time t is Gaussian, for any

node i ∈ Ld(Zt), Mi(Zt) ∼ N (ηt(i), ς
2
t (i)) where,

ηt(i) =
d−1∑
`=0

µt(Jt+`) (6.2)

and ς2
t (i) =

d−1∑
`,q=0

covt(fJt+`(ZJt+`,t+`), fJt+q(ZJt+q ,t+q))

for covt(fJt+`(ZJt+`,t+`), fJt+q(ZJt+q ,t+q)) = I{Jt+` = Jt+q}kJt+`(ZJt+`,t+`, ZJt+q ,t+q;NJt+`(t)).

For dRGP-UCB, we construct upper con�dence bounds on each Mi(Zt) using

Gaussianity. We then select the leaf It with largest upper con�dence bound at time

t. That is,

It = arg max
1≤i≤Kd

{ηt(i) + αtςt(i)}

where αt =
√

2 log((K|Z|)d(t+ d− 1)2). (6.3)

In dRGP-TS, we select a sequence of d arms by sampling the recovery function of

each arm j at Z
(d)
j,t = (Zj,t, . . . , Zj,t + d − 1, 0, . . . , d − 1)T and then calculating the

sampled reward of each node using these sampled values. Denote the sampled reward
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Algorithm 6.1 d-step lookahead UCB and Thompson Sampling

Input: αt from (6.3) (for UCB).
Initialization: De�ne Td = {1, d+ 1, 2d+ 1, . . . }. For all arms j ∈ A, set Zj,1 = 0.

for t ∈ Td do
Construct the d-step lookahead tree. Then,

If UCB: It = arg max
i∈Ld(Zt)

{
ηt(i) + αtςt(i)

}
.

If TS:
(i) ∀j ∈ A, sample f̃j from the posterior at Z

(d)
j,t ,

(ii) ∀i ∈ Ld(Zt), η̃t(i) =
∑d−1

l=0 f̃Jt+`(ZJt+`,t+`),
(iii) It = arg maxi∈Ld(Zt){η̃t(i)}.

for ` = 0, . . . , d− 1 do
Play `th arm to It, J`, and get reward YJ`,t+`.
Set ZJ`,t+`+1 = 0. For all j 6= J`, set Zj,t+`+1 = min{Zj,t+` + 1, zmax}.

end for
Update the posterior distributions of the played arms.

end for

of node i by η̃t(i). We choose the leaf It with highest η̃t(i).

In both dRGP-UCB and dRGP-TS, we play the sequence of d arms indicated by

It over the next d time steps. We then update the posteriors and repeat this process.

We analyze the regret in the single and multiple play cases separately since in the

multiple play case, we may loose information from not updating the posterior between

plays of the same arm. The regret of our algorithms will depend on the kernel of

the GP through the maximal information gain, as in (Srinivas et al., 2010). For a

set S of covariates and observations YS = [f(z) + εz]z∈S , we de�ne the information

gain, I(YS ; f) = H(YS) −H(YS |f) where H(·) is the entropy. Intuitively, this is the

increase in information about f after observing data YS . As in (Srinivas et al., 2010),

we express the information gain in terms of the posterior variances and bound it by
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the maximal information gain from N samples, γN . If zt ∈ S is played at time t,

I(YS , f) =
1

2

|S|∑
t=1

log(1 + σ−2σ2(zt; t− 1)), and, γN = max
S⊂ZN :|S|=N

I(YS ; f).

(6.4)

6.6.1 Single Play Lookahead Regret

In the single play case, each am can only be played once in the d-step lookahead. This

simpli�es the variance of the Mi's in (6.2) since the arms are independent. In this

case, for any leaf i corresponding to playing arms Jt, . . . , Jt+d−1 (at the corresponding

z values), ς2
t (i) =

∑d−1
`=0 σ

2
t (Jt+`). This involves the posterior variances at time t.

However, as we cannot repeat arms, if we play arm j at time t+ ` for 0 ≤ ` ≤ d− 1,

it cannot have been played since time t so its posterior distribution is the same. By

(6.4), we then relate the variances of MIt(Zt) to the posterior variance of each arm

when it was played, and hence to the information gain about the fj's. We get the

following regret bounds.

Theorem 6.2. The d-step single play lookahead regret of dRGP-UCB satis�es,

E[R
(d,s)
T ] ≤ O(

√
KTγT log(TK|Z|)).

Proof. The full proof is in Section 6.B.1. By normality, the con�dence bounds fail with

low probability. If the con�dence bounds hold, our regret bound involves
∑

t∈Td ςt(It) =∑T
t=1 σ

2
t (Jt). We then relate this to the information gain about the fj's. Dependence

on d is avoided since we only use these con�dence bounds every d steps.

Theorem 6.3. The d-step non-repeating lookahead regret of dRGP-TS satis�es,

E[R
(d,s)
T ] ≤ O(

√
KTγT log(TK|Z|)).
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Proof. See Section 6.C.1. The result follows by (Russo and Van Roy, 2014) and

Theorem 6.2.

6.6.2 Multiple Play Lookahead Regret

When arms can be played multiple times in the d-step lookahead, it is not as straight-

forward to relate ς2
t (It) to the information gain about each fj. In particular, ς2

t (It)

contains covariance terms and is de�ned using the posteriors at time t. On the other

hand, γT is de�ned in terms of the posterior variances when each arm is played (which

may be di�erent to the posterior variance at time t if an arm is played multiple times

in the lookahead). However, using the fact that the posterior covariance matrix of any

arm is positive semi-de�nite, 2kj(z1, z2;n) ≤ σ2
j (z1;n) + σ2

j (z2;n), so we can bound

ς2
t (It) ≤ 3

∑d−1
`=0 σ

2
t (Jt+`). Then, the change in the posterior variance of a repeated

arm can be bounded using the following lemma (whose proof is in Section 6.A).

Lemma 6.4. For any z ∈ Z, arm j and n ∈ N, n ≥ 1, let Z
(n)
j be the z value at the

nth play of arm j. Then, σ2
j (z;n− 1)− σ2

j (z;n) ≤ σ−2σ2
j (Z

(n)
j ;n− 1).

This leads to the following regret bounds for dRGP-UCB and dRGP-TS. Due to

not updating the posterior between repeated plays of an arm, they both increase by

a factor of
√
d compared to the single play case.

Theorem 6.5. The d-step multiple play lookahead regret of dRGP-UCB satis�es,

E[R
(d,m)
T ] ≤ O

(√
KTγT log((K|Z|)dT )

)
.

Proof. See Section 6.B.2. The regret is again bounded in terms of
∑

t∈Td ςt(It). Using

Lemma 6.4 we bound
∑

t∈Td ς
2
t (It) by d

∑T
t=1 σ

2
t (Jt) and relate this to γT .
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Theorem 6.6. The d-step multiple play lookahead regret of dRGP-TS satis�es,

E[R
(d,m)
T ] ≤ O

(√
KTγT log((K|Z|)dT )

)
.

Proof. See Section 6.C.2. We again use Theorem 6.5 and (Russo and Van Roy, 2014).

6.6.3 Instantaneous Algorithm

If we set d = 1 in Algorithm 6.1, we obtain algorithms for minimizing the instan-

taneous regret. In this case, T = {1, . . . , T} and there are K leaves of the 1-step

lookahead tree, so each Mi(Zt) corresponds to one arm. Hence, one arm is selected

and played at each time step and ηt(i) = µt(j), ς
2
t (i) = σ2

t (j) for some arm j. For the

UCB approach, we de�ne αt as in (6.3) with d = 1. We bound the regret of 1RGP-TS

and 1RGP-UCB in the following corollary,

Corollary 6.7. The instantaneous regret of the 1RGP-UCB and 1RGP-TS algorithms

up to horizon T satisfy

E[R
(1)
T ] ≤ O(

√
KTγT log(TK|Z|)).

Hence, the instantaneous regret of both algorithms is O∗(
√
KTγT ) and by exploit-

ing the GP structure, we have reduced the dependency on |Z| from
√
|Z| to

√
log |Z|

compared to the naive algorithm in Section 6.5.

6.6.4 Bounds on the Information Gain

Our regret bounds depend on the kernel of the recovery functions through the maxi-

mal information gain, γT . Theorem 5 of Srinivas et al. (2010) gives bounds on γT for

some popular kernels. For linear and squared exponential kernels (with any length-
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scale), γT = O(log(T )) and for Matérn kernels with smoothness parameter ν and any

lengthscale, γT = O(T 2/(2ν+2) log(T )). These can be placed into our regret bounds for

recovering bandits.

6.7 Improving Computational E�ciency via Optimistic

Planning

For large values of K and d, the proposed algorithm (Algorithm 6.1) may not be

computationally e�cient since it searches over Kd leaves. However, we can use ideas

from optimistic planning (Hren and Munos, 2008; Munos et al., 2014) to improve the

computational complexity of this tree search. This works particularly well for Thomp-

son sampling and so we will focus on this case. We adapt the Thompson sampling

procedure as follows. At time t, for all arms j, we sample f̃j(z) from the posterior

distribution of fj at Z
(d)
j,t = (Zj,t, . . . , Zj,t + d, 0, . . . d)T . Instead of searching the com-

plete tree to �nd the sequence of arms with largest total f̃j(z)'s (as in Algorithm 6.1),

we iteratively build the tree, starting with the most promising sequences. It is known

that in many settings this approach returns a good sequence even if the algorithm is

stopped after only a limited number of evaluations (Hren and Munos, 2008; Munos

et al., 2014).

We base our approach on optimistic planning for deterministic systems. The orig-

inal approach in (Hren and Munos, 2008) uses discount factors and rewards bounded

in [0, 1]. We adapt this to consider undiscounted rewards that are in the range

[minj,z f̃j(z),maxj,z f̃j(z)]. We start from an initial tree of just one node, i0 = Zt.

At step n of the optimistic planning procedure, let Tn be the expanded tree and let

Sn be the set of nodes not in Tn but whose parents are in Tn. We select a node in Sn

to expand, and move it from Sn to Tn, adding its children to Sn. If we select a node

in of depth d to expand, we stop the algorithm and output node in. Otherwise we
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run the algorithm until we reach the computational limit (i.e. until n = N for some

prede�ned N). Let dN be the maximal depth of any node in TN . We then output the

node at depth dN with the largest upper bound on the value of its continuation (i.e.

with largest bN(i) de�ned in (6.5)).

The choice of which node to expand is made using upper bounds on the total value

of a continuation of a sequence passing through each node. For node i ∈ Sn ∪ Tn, let

u(i) denote the summed reward on the path to i (i.e. the sum of the corresponding

f̃j(z)'s) and de�ne the value, v(i), as the maximal reward of any continuation of the

path to node i to depth d. Then, we de�ne upper bounds on v(i) as,

bn(i) = u(i) + Ψ(z(i), d− l(i)) for i ∈ Sn (6.5)

where l(i) is the depth of node i and, with some abuse of notation, z(i) is the vector of

zj's at node i. The function Ψ(z(i), d− l(i)) provides an upper bound on the maximal

reward of a sub-path from node i to a leaf. In the multiple play case, for every arm j ∈

A, z ∈ Z
(d)
j,t , and 1 ≤ l ≤ d, let gj(z, l) = max{f̃j(z), . . . , f̃j(z + l), f̃j(0), . . . , f̃j(l)} be

the maximal reward that can be gained from playing arm j in the next l steps. Then,

Ψ(z(i), d− l(i)) = (d− l(i)) max1≤j≤K gj(zj(i), d− l(i)). In the single play case, we can

get a tighter bound. De�ne Ψ(z(i), d−l(i)) = maxB⊆Ji,|B|=d−l(i)
∑

j∈B gj(zj(i), d−l(i))

where Ji is the set of arms that have not been played on the path to node i. Note

that in both cases, Ψ(z(i), 0) = 0 for any z(i).

In some cases it is possible to bound the error resulting from this procedure. Let

v∗ = maxi∈Ld(Z) v(i) be the value of the maximal node. The performance of the

procedure depends on the number of near-optimal nodes. Let pl(ε) be the proportion

of ε-optimal nodes at depth l of the lookahead tree, where i is ε-optimal if v∗−v(i) ≤ ε.

Also de�ne Ψ∗(l) = maxz∈Z Ψ(z, l) for any l = 0, 1, . . . , d and let ∆ = maxj,z f̃j(z)−

min{minj,x f̃j(z), 0}. Then,
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(b) Lookahead: d = 3

Figure 6.3: The posterior mean (blue) of RGP-UCB with density given by the blue
region for a squared exponential kernel with l = 2. The red curve is the true recovery
curve and the crosses are our observed samples.

Proposition 6.8. In the multiple play case, for the optimistic planning procedure

with a budget of N samples, if the procedure is stopped at step n < N because we

selected a node in of depth d to expand, then v∗− v(in) = 0. Otherwise, if there exists

some λ ∈ ( 1
K
, 1] and d0 ∈ {1, . . . , d} such that ∀l ≥ d0, pl((d − l)∆) ≤ λl, then for

N > n0 = Kd0+1−1
K−1

,

v∗ − v(iN) ≤
(
d− log(N − n0)

log(λK)
− log(λK − 1)

log(λK)
+ 1

)
∆. (6.6)

Proof. See Section 6.E.

Hence, if we stop the procedure at n < N , the node in of depth d we return

will be optimal. In many cases, especially for small λ (where there are not many

near optimal policies), this will occur. Note that, in such cases, for very small λ, the

bound in (6.6) can be weak. Otherwise, by (6.6), when we do not stop the procedure

early, the sub-optimality of the returned node will depend on the proportion of other

near-optimal nodes, λ, and the budget, N . Furthermore, by (6.6), for N ≈ (λK)d,

we can conclude that the returned node should be optimal.
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Table 6.1: Total reward at T = 1000 for single step experiments with parametric
functions

Setting 1RGP-UCB (l = 5) 1RGP-TS (l = 5) RogueUCB-Tuned UCB-Z

Logistic 461.7 462.6 446.2 242.6
(454.3,468.9) (455.7,469.3) (438.2,453.5) (229.6,256.0)

Gamma 145.6 156.5 132.7 116.8
(139.6, 151.7) (149.6,163.0) (111.0,144.5) (108.4,125.5)
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(c) Lookahead: d = 8, arms: K = 10

Figure 6.4: The total reward and �nal depth of the lookahead tree, dN , as the policy
budget, N , increases.

6.8 Experimental Results

We tested our algorithms in various experimental settings with zmax = 30, noise

standard deviation σ = 0.1, and horizon T = 1000. We used the GPy package (GPy,

2012) to �t the GPs. The �rst experiment aimed to check that our algorithms were

playing arms at good z values (i.e. play arm j when fj(z) is high). For this, we
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set K = 10 and sampled the recovery functions from a GP with squared exponential

kernel and ran the algorithms once. Figure 6.3 illustrates that, for lengthscale l = 2,

1RGP-UCB and 3RGP-UCB both accurately estimate the recovery functions and

learn to play each arm in the regions of Z where the reward is high. Although, as

expected, 3RGP-UCB has more samples at the top of the peaks, it is reassuring that

the instantaneous algorithm also plays in good regions. The same is true for dRGP-TS

and di�erent values of d and l (see Section 6.F.1).

In the second experiment, we tested the performance of the optimistic planning

procedure within dRGP-TS. We averaged all results over 100 replications and used a

squared exponential kernel with l = 4. In the �rst setting, K = 10 and d = 4, so the

lookahead tree was relatively small and direct tree search would have been possible.

Figure 6.4a shows that, when the bound on the number of policies the optimistic

planning procedure can evaluate per lookahead, N , increases above 500, the total

reward plateaus, and the average depth of the returned policy, dN , is approximately

4. By Proposition 6.8, this means that we have found the same leaf of the lookahead

tree as dRGP-TS, while evaluating signi�cantly fewer policies. Next, we increased

the number of arms to K = 30. Here, searching the whole lookahead tree would be

computationally ine�cient. However, Figure 6.4b shows that we found the optimal

policy after searching about 20,000 policies (since here dN = d), which is less than

0.1% of the total number of policies. In Figure 6.4c, we increased d, the depth of

the lookahead policy. In this case, we needed to search more policies to �nd optimal

leaves. However this was still less than 0.1% of the total number of policies. From

Figure 6.4c, we also see that even when dN < d, increasing N leads to higher reward.

Lastly, we compared our algorithms to RogueUCB-Tuned (Mintz et al., 2017)

and the baseline from Section 6.5 (denoted UCB-Z) in two settings with parametric

recovery functions. As in (Mintz et al., 2017), we only considered the instantaneous

case (d = 1). We used squared exponential kernels in 1RGP-UCB and 1RGP-TS,
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Figure 6.5: Cumulative instantaneous regret for parametric setup

with lengthscale l = 5 (results for other lengthscales are in Section 6.F.2). In the

�rst experiment, the recovery function was a 3 parameter logistic function, f(z) =

θ0(1 + exp{−θ1(z − θ2)})−1 which increases in z. In the second case, we used a

modi�ed gamma, f(z) = θ0C exp{−θ1z}zθ2 where C is a normalizer. This increases

until a point and then decreases. The values of θ were sampled uniformly and are

given in Section 6.F.2. We averaged the results over 500 replications. The cumulative

regret (and con�dence regions) in these experiments is shown in Figure 6.5 and the

cumulative reward (and con�dence bounds) in Table 6.1. Our algorithms achieve

lower regret and higher reward than RogueUCB-Tuned. UCB-Z does badly here since

the time required to play each (arm,z) combination once is greater than the horizon.

6.9 Conclusion

In recovering bandits, the expected reward of each arm is a function of the time since

it was last played. Modeling this recovery curve as a Gaussian process, we presented

UCB and Thompson sampling algorithms for this problem. These algorithms looka-

head to �nd good sequences of arms. They achieve d-step lookahead Bayesian regret

of O∗(
√
KdT ) for linear and squared exponential kernels, and perform well experi-

mentally. We also improved the computational e�ciency using optimistic planning.
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Future work would include extending this optimistic planning approximation to the

UCB case (this is challenging since the UCBs cannot be decomposed by arm) and

obtaining frequentist regret bounds for our algorithms.

6.A Preliminaries

De�ne the �ltration {Ft}∞t=0 as F0 = ∅ and

Ft = σ(J1, . . . , Jt, Y1, . . . , Yt,Z1, . . . ,Zt) (6.7)

where Zt = [Z1,t, . . . , ZK,t]. It is important to note that µt(j), σt(j), Jt and Zt are

Ft−1 measurable.

Recall that in both dRGP-UCB and dRGP-TS, we select a sequence of arms to

play at time t by building a d-step lookahead tree with root Zt and selecting the

leaf node i with highest upper con�dence bound on Mi, the cumulative reward from

playing all arms in that policy,

Mi(Zt) =
d−1∑
`=0

fJt+`(ZJt+`,t+`)

where {Jt+`}d−1
`=0 are the sequence of arms played on the path to leaf i and {ZJt+`,t+`}d−1

`=0

the corresponding z values. Denote the posterior mean and variance ofMi(Zt) at time

t as ηt(i) and ςt(i), then, conditional on the history Ft−1, Mi(Zt) ∼ N (ηt(i), ς
2
t (i)).

When each arm can be played multiple times, there are interaction terms in the

variance of the Mi(Zt)'s and thus we su�er some additional cost for not updating

after every play. For each leaf node i, we can calculate

ς2
t (i) =

d−1∑
`=0

σ2
t (Jt+`) +

d−1∑
` 6=q;`,q=0

covt(fJt+`(ZJt+`,t+`), fJt+q(ZJt+q ,t+q))
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where covt(fJt+`(ZJt+`,t+`), fJt+q(ZJt+q ,t+q)) is 0 if Jt+` 6= Jt+q

and kJt+`(ZJt+`,t+`, ZJt+qt+q;NJt+`(t − 1)) for Jt+` = Jt+q. Note that throughout, we

assume that the variances and covariances are calculated at the Zj,t's where the arms

are played, ie. σ2
t (Jt+`) = σ2

Jt+`
(ZJt+`,t+`;NJt+`(t− 1)).

Before providing the proofs of the regret bounds, we need the following lemmas,

Lemma 6.9.
T∑
t=1

K∑
j=1

σ2
t (Jt)I{Jt = j} ≤ C1KγT .

where C1 = 1/ log(1 + σ−2).

Proof. Using the results of Lemma 5.4 of Srinivas et al. (2010) and the fact that the

maximal information gain is increasing in the number of data points, it follows that

T∑
t=1

K∑
j=1

σ2
t (Jt)I{Jt = j} =

K∑
j=1

Nj(T )∑
n=1

σ2
j (Z

(n)
j ;n− 1)

≤ T
K∑
j=1

C1I(yj,Nj(T ); fj,Nj(T )) ≤ C1

K∑
j=1

γNj(T ) ≤ C1KγT .

The following lemmas bound the amount of information we loose by only updating

the posterior every d steps in the case where we can play each arm multiple times in

a d-step lookahead. The �rst result proves Lemma 6.4 in the main text.

Lemma 6.10. For any z ∈ Z arm j and n ∈ N, n ≥ 1, let Z(n) be the z value when

arm j is played for the nth time. Then,

σ2
j (z;n− 1)− σ2

j (z;n) =
k2
j (Z

(n)
j , z;n− 1)

σ2
j (Z

(n)
j ;n− 1) + σ2

≤
σ2
j (Z

(n)
j ;n− 1)

σ2

Proof. For convenience, we drop the j notation and let kn(z) = [k(Z(1), z), . . . , k(Z(n), z)]T



CHAPTER 6. RECOVERING BANDITS 210

and Kn = [k(Z(i), Z(j))]ni,j=1. Then,

σ2(z;n− 1)− σ2(z;n)

= k(z, z)− kn−1(z)T (Kn−1 + σ2I)−1kn−1(z)− k(z, z) + kn(z)T (Kn + σ2I)−1kn(z)

= kn(z)T (Kn + σ2I)−1kn(z)− kn−1(z)T (Kn−1 + σ2I)−1kn−1(z) (6.8)

We write,

kn(z) =

 kn−1(z)

k(Z(n), z)

 Kn + σ2I =

Kn−1 + σ2I kn−1(z)

kn−1(z)T k(Z(n), Z(n)) + σ2

 =

A B

BT C

 .

Then, by the block matrix inversion formula,

(Kn + σ2I)−1 =

A−1 + A−1B(C −BTA−1B)−1BTA−1 −A−1B(C −BTA−1B)−1

−(C −BTA−1B)−1BTA−1 (C −BTA−1B)−1
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Hence,

kn(z)T (Kn + σ2I)−1kn(z) = [kn−1(z)T , k(Z(n), z)](Kn + σ2I)−1

 kn−1(z)

k(Z(n), z)


= kn−1(z)T (A−1 + A−1B(C −BTA−1B)−1BTA−1)kn−1(z)

− k(Z(n), z)(C −BTA−1B)−1BTA−1kn−1(z)

− kn−1(z)TA−1B(C −BTA−1B)−1k(Z(n), z)

+ k(Z(n), z)(C −BTA−1B)−1k(Z(n), z)

= kn−1(z)TA−1kn−1(z)

+ kn−1(z)T (A−1B(C −BTA−1B)−1(BTA−1kn−1(z)− k(Z(n), z))

+ (k(Z(n), z)− kn−1(z)TA−1B)(C −BTA−1B)−1k(Z(n), z)

= kn−1(z)TA−1kn−1(z)

+ (k(Z(n), z)− kn−1(z)TA−1B)(C −BTA−1B)−1(k(Z(n), z)− (kn−1(z)TA−1B)T )

Then, substituting back A = Kn−1 + σ2I,B = kn−1(z), C = k(Z(n), z(n)) + σ2 gives,

kn(z)T (Kn + σ2I)−1kn(z) =kn−1(z)T (Kn−1 + σ2I)−1kn−1(z)

+ (k(Z(n), z)− kn−1(z)T (Kn−1 + σ2I)−1kn−1(z))

(k(Z(n), Z(n))− kn−1(zn)T (Kn−1 + σ2I)−1kn−1(z) + σ2)−1

(k(Z(n), z)− (kn−1(z)T (Kn−1 + σ2I)−1kn−1(z))T )

= kn−1(z)T (Kn−1 + σ2I)−1kn−1(z) +
k2(Z(n), z;n− 1)

σ2(Z(n);n− 1) + σ2

Hence, substituting into (6.8) gives,

σ2(z;n− 1)− σ2(z;n) =
k2(Z(n), z;n− 1)

σ2(Z(n);n− 1) + σ2
.

Then, since the covariance matrix is positive semi-de�nite, for any z, z′ and m ∈ N,
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k(z, z′;m) ≤
√
σ2(z;m)σ2(z′;m) and so

σ2(z;n− 1)− σ2(z;n) ≤ σ2(Z(n);n− 1)σ2(z;n− 1)

σ2(Z(n);n− 1) + σ2
≤ σ2(Z(n);n− 1)

σ2

since for any z ∈ Z and m ∈ N, 0 ≤ σ2(z;m) ≤ 1. This concludes the proof.

We then use this result in the following lemma,

Lemma 6.11. For any leaf node i of the d-step look ahead tree constructed at time t,

ς2
t (i) ≤ 3

K∑
j=1

( Nj(t+d)∑
m=Nj(t)+1

Nj(t+ d)−m+ 1

σ2
σ2
j (z

(m);m− 1)

)
= ζ2

t

and ζt is Ft−1 measurable.

Proof. First note that since the posterior covariance matrix of fj is positive semi-

de�nite, for any z1, z2 and number of samples, n− 1, kj(z1, z2;n− 1) ≤ 1/2(σ2
j (z1;n−

1) + σ2
j (z2;n− 1)). Hence,

ςt(i) ≤ 3
d−1∑
`=0

σ2
t (Jt+`).

Now consider arm j and assume it appears s ≤ d times in the d-step look ahead policy

selected at time t. Then, the contribution of arm j (which for ease of notation we

assume has been played n− 1 times previously) to ς2
t (i) is given below where we use

the notation σ2
j (z

(i);n−1) to denote the posterior variance at the ith z of arm j given
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n− 1 observations of arm j.

n+s−1∑
m=n

σ2
j (Z

(m)
j ;n− 1) = σ2

j (z
(n);n− 1) + · · ·+ σ2

j (z
(n+s−1);n− 1)

= σ2
j (z

(n);n− 1) + σ2
j (z

(n+1);n) +
(
σ2
j (z

(n+1);n− 1)− σ2
j (z

(n+1);n)
)

+ . . .

+ σ2
j (z

(n+s−1);n+ s− 2) +
(
σ2
j (z

(n+s−1);n+ s− 3)− σ2
j (z

(n+s−1);n+ s− 2)
)

+ · · ·+
(
σ2
j (z

(n+s−1);n− 1)− σ2
j (z

(n+s−1);n)
)

≤ σ2
j (z

(n);n− 1) + σ2
j (z

(n+1);n) +
σ2
j (z

(n);n− 1)

σ2
+ . . .

+ σ2
j (z

(n+s−1);n+ s− 2) + · · ·+
σ2
j (z

(n+1);n)

σ2
+
σ2
j (z

(n);n− 1)

σ2

=
s−1∑
q=0

(1 +
s− q − 1

σ2
)σ2

j (z
(n+q);n+ q − 1)

≤
s−1∑
q=0

s− q
σ2

σ2
j (z

(n+q);n+ q − 1)

which follows by recursively applying Lemma 6.4. Then, summing over all arms j

gives,

ς2
t (i) ≤ 3

K∑
j=1

( Nj(t+d)∑
m=Nj(t)+1

σ2
j (z

(m);Nj(t))

)

≤ 3
K∑
j=1

( Nj(t+d)∑
m=Nj(t)+1

Nj(t+ d)−m+ 1

σ2
σ2
j (z

(m);m− 1)

)

Then, we note that ζt is Ft−1 measurable since for a given leaf node i of the tree

constructed at time t, the sequence of arms played to get to node i is known so

Nj(t + d) will be known and also the sequence of Z
(m)
j 's where arm j is played will

also be known. Since the posterior variance of arm j after m plays depends only on

the number of plays and the covariates (not the observed rewards), σ2
j (z

(m);m− 1) is

Ft−1 measurable for m = Nj(t) + 1, . . . , Nj(t+ d).

Lemma 6.12. Let X1, . . . Xn be Gaussian random variables such that max1≤i≤nV(Xi) ≤
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ζ2. Then,

E
[

max
1≤i≤n

Xi

]
≤ ζ
√

2 log(n).

Proof. See for example, Lemma 2.2 in (Devroye and Lugosi, 2001).

6.B Theoretical Results for dRGP-UCB

We �rst prove the following lemma.

Lemma 6.13. For any leaf node i, initial node z and constant a > 0,

∫ ∞
a

P(Mi(z)− ηt(i) ≥ x|Ft−1)dx ≤
√

2πςt(i) exp

{
− a2

2ς2
t (i)

}
.

Proof. The proof follows using the normality of the posterior of Mi(z) (so at time t,

Mi(Zt) ∼ N (ηt(i), ςt(i)
2).

∫ ∞
a

P(Mi(z)− ηt(i) ≥ x|Ft−1)dx ≤
∫ ∞
a

exp

{
− x2

2ς2
t (i)

}
dx

=
√

2πςt(i)

∫ ∞
a

1√
2πςt(i)

exp

{
− x2

2ς2
t (i)

}
dx

≤
√

2πςt(i) exp

{
− a2

2ς2
t (i)

}
.

Where we have used that if X ∼ N (µ, σ2), P(X−µ ≥ b) ≤ exp{− b2

2σ22
} for any b > 0,

and the last inequality follows through integration of the pmf of a N (0, ςt(i)) random

variable.

Then, de�ne MI∗t
(Zt) to be the sum of the fj(z)'s to leaf It

∗ of the optimal d step

look ahead policy from time t chosen using the unknown fj(z)'s. Let rt be the per step

regret at time t. We now bound the expected regret from time steps t, t+1, . . . , t+d−1

where we have played arms according to the choice of It by our algorithm. Let rs be
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the contribution to the regret at time s, that is rs = fJ∗t (ZJ∗t ,t)− fJt(ZJt,t). Then, let

αt =
√

2 log((K|Z|)d(t+ d− 1)2).

We will use the following lemma,

Lemma 6.14. Assume we start a d-step look ahead policy at time t, selecting leaf

node It, then

t+d−1∑
s=t

E[rs|Ft−1] ≤
√

2dπ

(t+ d− 1)2
+ αtςt(It).

Proof. From (6.3), the upper con�dence bound of node i at time t is given by,

ηt(i) + αtςt(i),

and since we play node It, this has the highest upper con�dence bound. Then, we use

the following decomposition of the regret,

t+d−1∑
s=t

E[rs|Ft−1] = E[MI∗t
(Zt)−MIt(Zt)|Ft−1]

= E[MI∗t
(Zt)− (ηt(I

∗
t ) + αtςt(I

∗
t )) + (ηt(I

∗
t ) + αtςt(I

∗
t ))−MIt(Zt)|Ft−1]

≤ E[MI∗t
(Zt)− (ηt(I

∗
t ) + αtςt(I

∗
t )) + (ηt(It) + αtςt(It))−MIt(Zt)|Ft−1]

= E[MI∗t
(Zt)− ηt(I∗t )− αtςt(I∗t )|Ft−1] + E[ηt(It) + αtςt(It)−MIt(Zt)|Ft−1]

For the �rst term, note that for any random variable X, E[X] ≤ E[XI{X > 0}] =∫∞
0

P(X ≥ x)dx. Then, by Lemma 6.13 and using the fact that ς2
t (i) ≤

∑d−1
`=0 k(z`, z`) ≤
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d, it follows that,

E[MI∗t
(Zt)− ηt(I∗t )− αtςt(I∗t )|Ft−1]

≤
∫ ∞

0

P(MI∗t
(Zt)− ηt(I∗t )− αtςt(I∗t ) ≥ x|Ft−1)dx

≤
∫ ∞

0

Kd∑
i=1

∑
z∈Zd

P(Mi(z)− ηt(i)− αtςt(i) ≥ x|Ft−1)dx

=
Kd∑
i=1

∑
z∈Zd

∫ ∞
αtςt(i)

P(Mi(z)− ηt(i) ≥ x|Ft−1)dx

=
Kd∑
i=1

∑
z∈Zd

√
2πςt(i) exp

{
− (αtςt(i))

2

2ς2
t (i)

}

≤
Kd∑
i=1

∑
z∈Zd

√
2dπ

1

(t+ d− 1)2(K|Z|)d

=

√
2dπ

(t+ d− 1)2
,

where the last inequality follows from the de�nition of αt.

For the second term, recall that ηt(i) = E[Mi(Zt)|Ft−1] and It is Ft−1 measurable.

Hence,

E[ηt(It) + αtςt(It)−MIt(Zt)|Ft−1] = ηt(It) + αtςt(It)− ηt(It) = αtςt(It).

Combining both terms gives the result.

We now prove the regret bounds for dRGP-UCB in the repeating and non-repeating

cases.
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6.B.1 Non-Repeating

Theorem 6.2. The d-step single play lookahead regret of dRGP-UCB satis�es,

E[R
(d,s)
T ] ≤ O(

√
KTγT log(TK|Z|)).

Proof. For ease of notation de�ne RT as the d-step lookahead regret with single plays

that we are interested in (i.e. RT = R
(d,s)
T ) and note that,

E[RT ] ≤
bT/dc∑
h=0

E
[ (h+1)d∑
s=hd+1

E[rs|Fhd]
]
.

Then, using Lemma 6.14, and the fact that since we cannot repeat plays, σt(Jt+`) =

σt+`(Jt+`) for any ` = 0, . . . , d− 1,

E[RT ] ≤
bT/dc∑
h=0

E
[ (h+1)d∑
s=hd+1

E[rs|Fhd]
]

≤
bT/dc∑
h=0

E
[ √

2dπ

(h+ 1)2d2
+ αhd+1

√
ς2
hd+1(Ihd+1)

]

≤
√

2π

d

bT/dc+1∑
h=1

1

h2
+

bT/dc∑
h=0

√
2 log((K|Z|)d(h+ 1)2d2)E

[√√√√d−1∑
`=0

σhd+1(Jhd+1+`)

]

≤ π5/2

√
23d

+
√

4 log((K|Z|)d(T + d))
√
bT/dc+ 1E

[√√√√ T∑
t=1

σ2
t (Jt)

]

≤ π5/2

√
23d

+
√

4 log((K|Z|)d(T + d))
√
bT/dc+ 1E

[√√√√ K∑
j=1

T∑
t=1

σ2
t (j)I{Jt = j}

]

≤ π5/2

√
23d

+
√

4 log((K|Z|)d(T + d))
√
bT/dc+ 1

√
C1KγT

where C1 = 1/ log(1 + σ−2) and the last line follows by Lemma 6.9. This gives the

result.
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6.B.2 Repeating

Theorem 6.5. The d-step multiple play lookahead regret of dRGP-UCB satis�es,

E[R
(d,m)
T ] ≤ O

(√
KTγT log((K|Z|)dT )

)
.

Proof. For ease of notation de�ne RT as the d-step lookahead regret with multiple

plays that we are interested in (i.e. RT = R
(d,m)
T ) and note that,

E[RT ] =

bT/dc∑
h=0

E
[ (h+1)d∑
s=hd+1

E[rs|Fhd]
]
.

Then, note that from Lemma 6.11, it follows that

ς2
t (i) ≤ 3

K∑
j=1

( Nj(t+d)∑
m=Nj(t)+1

Nj(t+ d)−m+ 1

σ2
σ2
j (z

(m);m− 1)

)

≤ 3d

σ2

K∑
j=1

Nj(t+d)∑
m=Nj(t)+1

σ2
j (z

(m);m− 1).

Hence, by Lemma 6.14 and summing over all time points where we start a d-step look
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ahead policy, it follows that,

E[RT ] =

dT/de−1∑
h=0

E
[ (h+1)d∑
s=hd+1

E[rs|Fhd]
]

≤
bT/dc∑
h=0

E
[ √

2dπ

(h+ 1)2d2
+ αhd+1

√
ς2
hd+1(Ihd+1)

]

≤
√

2π

d

bT/dc+1∑
h=1

1

h2

+

bT/dc∑
h=0

√
2 log((K|Z|)d(h+ 1)2d2)E

[√√√√√3d

σ2

K∑
j=1

Nj(d(h+1))∑
m=Nj(dh)+1

σ2
j (z

(m);m− 1)

]

≤ π5/2

√
23d

+

√
12d

σ2
log((K|Z|)d(T + d))

√
bT/dc+ 1E

[√√√√√bT/dc∑
h=0

K∑
j=1

Nj(d(h+1))∑
m=Nj(dh)+1

σ2
j (z

(m);m− 1)

]

Then, from Lemma 6.9 and the fact that γn is increasing in n,

√√√√√bT/dc∑
h=0

K∑
j=1

Nj(d(h+1))∑
m=Nj(dh)+1

σ2
j (z

(m);m− 1) =

√√√√ K∑
j=1

Nj(T )∑
m=1

σ2
j (z

(m);m− 1)

≤

√√√√ K∑
j=1

C1γNj(T ) ≤
√
C1KγT

for C1 = (1 + log(σ−2))−1. Hence,

E[RT ] ≤ π5/2

√
23d

+

√
12d

σ2
log((K|Z|)d(T + d))

√
T/d+ 1

√
C1KγT

and so the result follows.
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6.C Theoretical Results for dRGP-TS

The regret bounds for the Thompson sampling approach(dRGP-TS) follow in a similar

manner to those for dRGP-UCB using the techniques of Russo and Van Roy (2014).

Speci�cally, using (Russo and Van Roy, 2014), we get the following result which is

equivalent to Lemma 6.14, which can then be used to get the regret bound much in

the same way as Theorem 6.2 and Theorem 6.5.

Lemma 6.15. Assume we start a d-step look ahead policy at time t, selecting leaf

node It, then

t+d−1∑
s=t

E[rs|Ft−1] ≤
√

2dπ

(t+ d− 1)2
+ αtςt(It).

Proof. As in (Russo and Van Roy, 2014) we relate the Bayesian regret of Thomp-

son sampling to the upper con�dence bounds used in our upper con�dence bound

approach. Speci�cally, by Proposition 1 in (Russo and Van Roy, 2014),

t+d−1∑
s=t

E[rs|Ft−1] = E[MI∗t
(Zt)−MIt(Zt)|Ft−1]

= E[MI∗t
(Zt)− ηt(I∗t )− αtςt(I∗t )|Ft−1] + E[ηt(It) + αtςt(It)−MIt(Zt)|Ft−1]

The same argument as Lemma 6.14 then gives the result.

6.C.1 Non-Repeating

Theorem 6.3. The d-step non-repeating lookahead regret of dRGP-TS satis�es,

E[R
(d,s)
T ] ≤ O(

√
KTγT log(TK|Z|)).

Proof. Given Lemma 6.15, the proof follows in the same manner as the proof of
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Theorem 6.2.

6.C.2 Repeating

Theorem 6.6. The d-step multiple play lookahead regret of dRGP-TS satis�es,

E[R
(d,m)
T ] ≤ O

(√
KTγT log((K|Z|)dT )

)
.

Proof. The proof follows by the same argument as Theorem 6.5 using Lemma 6.15.

6.D Regret Bounds for Non-Parametric Approach

Recall the non-parametric approach described in Section 6.5. We model each (arm,

z) combination as an `arm' and let µj,z denote the expected reward of arm j when

zj = z. We can then create estimates Ȳj,z,t of the reward of each arm from the Nj,z(t)

samples of arm j with Zj = z we receive up to time t. These estimates can be used

to de�ne an upper con�dence bound style algorithm over the `arms' {(j, z)}K,Zmax

j=1,z=0.

We de�ne con�dence bound based on UCB1 (Auer et al., 2002a) and Russo and

Van Roy (2014)

U(j, z, t) = Ȳz,j,t +

√
σ2(2 + 6 log(T ))

Nj,z(t)
.

where σ is the standard error of the noise. After playing each j, z combinations once,

we proceed to play the arm with largest U(j, Zj,t, t) at time t. We now bound the

regret of this algorithm to horizon T .

Theorem 6.1. The instantaneous regret up to time T of the UCB1 algorithm with

K|Z| arms can be bounded by

E[R
(1)
T ] ≤ O(

√
K|Z|T log(T ) +K|Z|2)
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Proof. First let t0 = K|Z|(|Z|+ 1) and note that since we need to wait z steps after

playing arm j to have Zj = z, after t0 steps, we can guarantee to have played each

arm at least once. Then by Lemma 6.12, for any 1 ≤ t ≤ t0,

E[fJ∗t (ZJ∗t ,t)− fJt(ZJt,t)] ≤ E[ max
1≤t≤t0

{fJ∗t (ZJ∗t ,t)− fJt(ZJt,t)}] ≤ 2
√

2 log(t0)

since the distribution of the di�erence of two zero mean Gaussian random variables is

also a Gaussian random variable with mean 0 and variance σ2
1 + σ2

2 ≤ 2 here. Then,

we can use a similar technique to Russo and Van Roy (2014) to bound the cumulative

regret in the remaining t0 + 1 ≤ t ≤ T steps but using Lemma 6.12 again to bound

the maximal di�erence in fj's.

E[RT ] =
T∑
t=t0

E[fJ∗t (ZJ∗t ,t)− fJt(ZJt,t)I{∀j, z; fj(z) ∈ [L(j, z, t), U(j, z, t)]}]

+
T∑
t=t0

E[fJ∗t (ZJ∗t ,t)− fJt(ZJt,t)I{∃j, z; fj(z) /∈ [L(j, z, t), U(j, z, t)]}]

≤
T∑
t=t0

E[U(J∗t , ZJ∗t ,t, t)− L(Jt, ZJt,t, t)]

+ 2
√

2 log(T )TP(∃j, z; fj(z) /∈ [L(j, z, t), U(j, z, t)])

≤
T∑
t=t0

E[U(Jt, ZJt,t, t)− L(Jt, ZJt,t, t)]

+ 2
√

2 log(T )T
K∑
j=1

∑
z∈Z

P(fj(z) /∈ [L(j, z, t), U(j, z, t)])

Since εt ∼ N (0, σ2), by Lemma 1 in (Russo and Van Roy, 2014),

2
√

2 log(T )T
K∑
j=1

∑
z∈Z

P(fj(z) /∈ [L(j, z, t), U(j, z, t)]) ≤ 1

T |Z|K
≤ 2
√

2 log(T ).
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Then, for the �rst term, by the same argument as Russo and Van Roy (2014),

T∑
t=t0

E[U(Jt, ZJt,t, t)− L(Jt, ZJt,t, t)]

≤
T∑
t=t0

K∑
j=1

∑
z∈Z

E[U(j, z, t)− L(j, z, t)I{Jt = j, ZJt,t = z}]

≤ 2
√
σ2(2 + 6 log(T )

T∑
t=t0

K∑
j=1

∑
z∈Z

E
[

1√
2Nj,z(t)

I{Jt = j, ZJt,t = z}
]

≤ 2
√
σ2(2 + 6 log(T )

K∑
j=1

∑
z∈Z

E
[Nj,z(T )−1∑

l=0

1√
l + 1

]

≤ 2
√
σ2(2 + 6 log(T )

K∑
j=1

∑
z∈Z

E
[√

Nj,z(T )

]
≤ 2
√
σ2(2 + 6 log(T )

√
K|Z|T

where the last line follows by Cauchy-Schwartz. This concludes the proof.

6.E Theoretical Guarantees on Optimistic Planning

Procedure

Proposition 6.8. In the multiple play case, for the optimistic planning procedure

with a budget of N samples, if the procedure is stopped at step n < N because we

selected a node in of depth d to expand, then v∗− v(in) = 0. Otherwise, if there exists

some λ ∈ ( 1
K
, 1] and d0 ∈ {1, . . . , d} such that ∀l ≥ d0, pl((d − l)∆) ≤ λl, then for

N > n0 = Kd0+1−1
K−1

,

v∗ − v(iN) ≤
(
d− log(N − n0)

log(λK)
− log(λK − 1)

log(λK)
+ 1

)
∆. (6.6)

Proof. Since our f̃j(z)'s are samples from a Gaussian posterior, they can be negative.
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Hence it will be convenient to work with a transformation that guarantees positivity.

To this end, let δ = −minj,z f̃j(z) if minj,z f̃j(z) < 0 and δ = 0 if minj,z f̃j(z) ≥ 0 and

for any arm j and covariate z, de�ne,

f̃ ′j(z) = f̃j(z) + δ ≥ 0.

Then we de�ne the corresponding v, b and u values of any node i ∈ Sn at step n and

Ψ functions as,

v′(i) = v(i) + dδ b′n(i) = bn(i) + dδ u′(i) = u(i) + l(i)δ

Ψ′(z(i), d− l(i)) = Ψ(z(i), d− l(i)) + (d− l(i))δ Ψ′∗(l) = Ψ∗(l) + lδ,

where l(i) is the depth of node i. Note that node i∗ maximizing v(i) will also maximize

v′(i) and that if at step n we select a node maximizing bn(i) this will also be the node

maximizing b′n(i) and so v(i1) ≥ v(i2) ⇐⇒ v′(i1) ≥ v′(i2) and b(i1) ≥ b(i2) ⇐⇒

b′(i1) ≥ b′(i2) for all nodes i1, i2. Furthermore, it holds that v′(i) ≥ u′(i) and that b′(i)

is an upper bound on v′(i) for all nodes i and in particular b′(i) = u′(i) + Ψ′(z(i), d−

l(i)).

We begin with the case where the algorithm is stopped after some number n of

nodes have been expanded because the selected node is of depth d. Let i∗1, . . . , i
∗
d be

the nodes on the path to i∗ and let j be the maximal depth of this path in Tn ∪ Sn.

If in is the node at depth d selected to be expanded at time n, then,

0 ≤ v∗−v(in) = v′(i∗j)−v′(in) ≤ b′(i∗j)−v′(in) ≤ b′(in)−v′(in) = Ψ′(z(in), d−d) = 0,

since we select node in at time n so it must have the largest bn(i) and b′n(i) value.

This proves the �rst statement.
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For the other case, de�ne the set

Γ =
d⋃
l=0

{ node i of depth l such that v∗ − v(i) ≤ Ψ′∗(d− l)},

and note that if v∗ − v(i) ≤ Ψ′∗(d − l) then also v′∗ − v′(i) ≤ Ψ′∗(d − l) As in (Hren

and Munos, 2008), we will show that all nodes expanded by our algorithm are in Γ.

For this, let node i of depth l be chosen to be expanded at time n. This means it has

the largest bn(i) (and b′n(i)) value of all nodes in Sn. We also now need to de�ne the b

value of a node in Tn as bn(i) = maxj∈C(i) bn(j) where C(i) is the set of all children of

node i, and we de�ne b′n(i) correspondingly. This de�nition together with the previous

remark means that for any j ∈ Tn, b′n(i) ≥ b′n(j). Then for some 1 ≤ j ≤ d, i∗j ∈ Tn,

so it follows that b′n(i∗j) ≤ b′n(in). But, the best value of any continuation of a path to

the optimal node is simply v∗ and so by de�nition of the b values b′n(i∗j) ≥ v′(i∗j) = v′∗.

Hence, since v′(i) ≥ u′(i) and Ψ′(z(i), d− l) ≤ Ψ′∗(d− l),

v′(i) ≥ u′(i) = b′n(i)−Ψ′(z(i), d− l) ≥ b′n(i∗j)−Ψ′(z(i), d− l) ≥ v′∗ −Ψ′(z(i), d− l)

≥ v′∗ −Ψ′∗(d− l),

it follows that i ∈ Γ. Then, we bound from below the maximal depth at which a

node is chosen to be expanded. Let n0 be the number of policies in Γ up to depth

d0 and let dN be the maximal depth of any node expanded before the algorithm is

stopped at time N . By the assumption in the proposition, the proportion of (d− l)∆-

optimal nodes at depth l is bounded by λl. Then, Ψ′∗(d − l) = Ψ(d − l) + (d −

l)δ ≤ (d − l) maxj,z f̃j(z) − (d − l) minj,z f̃j(z) = (d − l)∆ by de�nition of Ψ and so

pl(Ψ
′∗(d− l)) ≤ pl((d− l)∆) ≤ λl. Hence,

N ≤ n0 +

dN∑
l=d0

λlK l = n0 +

dN∑
l=d0

Al ≤ n0 + Ad0+1A
dN−d0 − 1

A− 1
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for A = λK > 1. Rearranging gives,

dN ≥ d0 + logA

(
(N − n0)(A− 1)

Ad0+1
+ 1

)
≥ d0 + logA

(
(N − n0)(A− 1)

Ad0+1

)
≥ log(N − n0)

log(Kλ)
− 1 +

log(λK − 1)

log(λK)

Let iN be the node the algorithm outputs at step N when the computational resources

have been exceeded and note that this is the node in TN with largest depth (i.e.

l(iN) = dN) that has the largest bN (or b′N) value. Since iN ∈ TN , there is some step

n ≤ N when node iN was expanded. Then, let j be the maximal depth of nodes on

the path i∗1, . . . , i
∗
d in Sn. It then follows that

v′∗ − v′(iN) ≤ b′n(i∗j)− v′(iN) ≤ b′n(iN)− v(iN) ≤ Ψ′(z(iN), d− l(iN)) ≤ Ψ′∗(d− dN).

Hence,

v∗ − v(iN) = v′∗ − v′(iN) ≤ Ψ′∗(d− dN) = Ψ∗(d− dN) + (d− dN)δ

≤ (d− dN)(max
j,z

f̃j(z)−min
j,z

f̃j(z))

≤
(
d− log(N − n0)

log(Kλ)
− log(λK − 1)

log(λK)
+ 1

)
∆

which gives the result.
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6.F Further Experimental Results

6.F.1 Posterior Distributions and Covariates

dRGP-UCB

In this section, we plot the posterior (blue) of dRGP-UCB with density given by the

blue region in the instantaneous case for various values of d and di�erent kernels.

The red curve is the true recovery curve and the crosses are our observed samples.

Note that as the kernel gets smoother, the algorithm places more samples in the good

regions. This is to be expected as for smoother kernels, there is less need to explore

as many sub-optimal regions. Also, as d increases more samples are at the peak and

there are less poorly estimated areas.
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(a) d = 1

(b) d = 2

(c) d = 3

Figure 6.6: dRGP-UCB with squared exponential kernel with l = 0.5.
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(a) d = 1

(b) d = 2

(c) d = 3

Figure 6.7: dRGP-UCB with squared exponential kernel with l = 2.
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(a) d = 1

(b) d = 2

(c) d = 3

Figure 6.8: dRGP-UCB with squared exponential kernel with l = 5.
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dRGP-TS

In this section, we plot the posterior (blue) of dRGP-TS. with density given by the

blue region with di�erent l's and d's. We see much the same pattern as for dRGP-

UCB, although it does seem to demonstrate poorer estimation of the recovery curve

in the single step case. However, it is worth noting that the algorithms have only

been run once for these plots.

(a) d = 1

(b) d = 2

(c) d = 3

Figure 6.9: dRGP-TS for squared exponential kernel with l = 0.5.
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(a) d = 1

(b) d = 2

(c) d = 3

Figure 6.10: dRGP-TS for squared exponential kernel with l = 2.



CHAPTER 6. RECOVERING BANDITS 233

(a) d = 1

(b) d = 2

(c) d = 3

Figure 6.11: dRGP-TS wit squared exponential kernel with l = 5.
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6.F.2 Values of Theta in Parametric Experiments

Here we give the values of θ (to 3dp) which were used in the logistic and gamma

experiments in Section 6.8.

Logistic

Table 6.2: θ values used in experiments with logistic recovery functions

θ

Arm 1 0.584 0.521 12.239
Arm 2 0.971 0.357 10.460
Arm 3 0.121 0.622 25.631
Arm 4 0.240 0.943 18.870
Arm 5 0.613 0.925 20.310
Arm 6 0.480 0.914 1.452
Arm 7 0.974 0.484 10.128
Arm 8 0.780 0.422 0.396
Arm 9 0.658 0.591 23.264
Arm 10 0.687 0.753 7.908

Gamma
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Table 6.3: θ values used in experiments with gamma recovery functions

θ

Arm 1 2.068 0.249 0.508
Arm 2 5.023 0.375 0.551
Arm 3 3.657 0.470 0.772
Arm 4 0.560 0.176 0.569
Arm 5 3.901 0.747 0.500
Arm 6 0.600 0.145 0.266
Arm 7 6.482 0.522 0.554
Arm 8 13.645 0.748 0.678
Arm 9 7.365 0.562 0.288
Arm 10 2.705 0.593 0.381

6.F.3 Results for Di�erent Lengthscales

In this section, we present results for the parametric setting where we have used

di�erent lenghtscales for the kernel of the Gaussian process in our methods. The

parametric functions that we are considering are quite smooth so we choose a squared

exponential kernel and used l = 5 in the main text, and present results here for

l = 2.5 and l = 7.5. Note that in this setting looking at the smoothness of the

recovery functions to inform a decision about the lengthscale is reasonable since we are

comparing our algorithms to RogueUCB-Tuned of Mintz et al. (2017) which requires

knowledge of the parametric family and Lipschitz constant of the recovery function.

The results for l = 2.5 are shown in Table 6.4 and Figure 6.12. The results for

l = 7.5 are in Table 6.5 and Figure 6.13. From these results, we can see that in the

Gamma case, our algorithms are almost invariant to the choice of l, obtaining similar

results for all choices of l. In particular, for all three choices of l considered, our

algorithms considerably outperform RogueUCB-Tuned of Mintz et al. (2017). In the

logistic setting, there is slightly more variation in the performance of our algorithms

when the lengthscale changes, although the results are still fairly similar. In this case,

we see that choosing l = 7.5 leads to the best results for both of our algorithms. This
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Table 6.4: Total reward at T = 1000 for single step experiments with parametric
functions and l = 2.5

Setting 1RGP-UCB 1RGP-TS RogueUCB-Tuned UCB-Z
(l = 2.5) (l = 2.5)

Logistic 448.6 452.5 446.2 242.6 )
(441.1,456.6) (443.7,460.3) (438.2,453.5) (229.6,256.0

Gamma 145.1 155.8 132.7 116.8
(138.5, 151.5) (148.8,162.5) (111.0,144.5) (108.4,125.5)

Table 6.5: Total reward at T = 1000 for single step experiments with parametric
functions and l = 7.5

Setting 1RGP-UCB 1RGP-TS RogueUCB-Tuned UCB-Z
(l = 7.5) (l = 7.5)

Logistic 465.1 465.1 446.2 242.6
(457.3,472.9) (457.4,472.7) (438.2,453.5) (229.6,256.0)

Gamma 145.2 155.8 132.7 116.8
(139.8, 151.0) (149.0,162.5) (111.0,144.5) (108.4,125.5)

is most likely due to the fact that logistic functions are quite smooth and l = 7.5

represents the smoothest GPs we have considered.
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(a) Logistic setup, l = 2.5
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(b) Gamma setup, l = 2.5

Figure 6.12: Cumulative instantaneous regret for parametric setup with l = 2.5
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(a) Logistic setup, l = 7.5
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(b) Gamma setup, l = 7.5

Figure 6.13: Cumulative instantaneous regret for parametric setup with l = 7.5



Chapter 7

Conclusions

In this thesis we have presented and analyzed sequential decision problems motivated

by the problem of selecting questions to present to students in online education. We

now summarize the contributions of each chapter and relate the work back to the

motivating problems in education (see Chapter 3).

In Chapter 4, we considered the problem of constructing an adaptive sequence of

questions to maximize a student's learning in a homework task of �xed length. We

modeled this as the stochastic knapsack problem, where each question was an item

that could be placed in the knapsack and the knapsack capacity was the duration

of the homework task. The size of the question was the length of time it took the

student to answer it, and the reward was the bene�t to the student from answering

it. For this problem, we assumed we had access to a generative model of item sizes

and rewards. This is a reasonable assumption in the education context since there

has been much work in the educational data mining community on constructing such

models (see e.g. Corbett and Anderson (1994); Hambleton and Swaminathan (2013);

Jaru²ek and Pelánek (2012)). Under the further assumption that the item sizes were

discrete, we modeled the problem of selecting the best adaptive sequence of items

as the problem of �nding the best policy from a given decision tree. This was done

238
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o�ine, and we were able to estimate the value of a potential policy by sampling from

the generative models. The objective was to be able to output a near optimal policy

after relatively few samples from the generative model.

Our algorithm OpStoK, presented in Chapter 4, was an optimistic planning algo-

rithm speci�cally adapted to the stochastic knapsack problem. Here, instead of using

discount factors, as in other optimistic planning algorithms, we directly estimated the

remaining capacity. Con�dence bounds on both the remaining capacity and accu-

mulated reward were then constructed, and these were used to bound the potential

reward of an extension of a partial policy. We proved that, with high probability, our

algorithm returned an ε-optimal policy and bounded the number of samples from the

generative models required for this. The OpStoK algorithm was an anytime algorithm

and returned a good solution even if stopped early. This was demonstrated experi-

mentally, where we also demonstrated favorable performance compared to a state of

the art algorithm for the stochastic knapsack problem (Dean et al., 2008), in terms

of the number of policies sampled.

The work in Chapter 5 was motivated by the issue that students do not learn from

a question immediately after answering it. Instead, learning will actually take place

some time after the student has answered the question, and it will not necessarily

be possible to identify the individual e�ect of each question the student answered.

Speci�cally, the student may answer many questions on a topic, and then after some

delay, we will observe an increase in their understanding of the topic in the form of

a test score or equivalent, but we will not know the individual contribution of each

question to this. Modeling this as a bandit problem, we de�ned each question as an

arm and assumed that the reward of each question was not observed by the algorithm

immediately, instead it was stochastically delayed and only received as a part of an

aggregated reward some time later. This aggregated reward was the summed reward

of some unknown number of previous plays. We referred to this bandit problem as
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`bandits with delayed, aggregated anonymous feedback'.

For the bandits with delayed, aggregated anonymous feedback problem, we pre-

sented an algorithm, ODAAF, in Chapter 5 and analyzed its performance under various

assumptions about the delay distributions. Our algorithm was a rarely switching al-

gorithm and ran in phases. In each phase, each active arm was played consecutively,

thus minimizing contamination from delayed samples of other arms. From the sam-

ples received while playing a given arm, con�dence bounds were constructed using

the assumptions on the delay to control the bias in the observations. At the end of

each phase an arm was eliminated if its upper con�dence bound was less than a lower

con�dence bound of a di�erent arm. The lengths of the phases were determined by the

assumptions on the delay. The assumptions we made on the delay were weak, and we

showed that under these assumptions the regret of our algorithm nearly matched the

rate of regret of Joulani et al. (2013) for the simpler delayed feedback bandit problem

(where the observations were delayed but non-anonymous, so which arm generated

which reward was known). Speci�cally, under only the assumption that the expected

delay was bounded and known, the regret of our algorithm matched that of Joulani

et al. (2013) up to logarithmic factors. If we also knew that the delay was bounded

with known bound, our algorithm matched the rate of Joulani et al. (2013) exactly,

whereas if it had known bounded variance, we were penalized by an additive variance

term in our regret. We also demonstrated these rates experimentally.

The recovering bandits problem presented in Chapter 6 aimed to capture the e�ect

of the time between repetitions of the same question on the bene�t the student gained

from answering the question. Speci�cally, we assumed that for each question (arm)

there was some unknown recovery function modeling the reward of the question as

a function of the time since it was last asked. Consider the problem of teaching

times tables via an online education system. Clearly, if the student has just answered

a question and the same question is asked again straight away, the bene�t to the
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student will be less than if we wait until they have forgotten the answer and ask it

again. We did not make any parametric assumptions on this recovery function, but

assumed that it was smooth enough to be modeled by a Gaussian process with known

kernel. We assumed that the noise on our observations was Gaussian.

In recovering bandits, the reward of each arm at a given time step depended on

the entire sequence of past plays, since these determined how long it had been since

each arm was played. This dependence meant that instead of just selecting one arm

per time step, it was better to look ahead and select sequences of d arms that played

each arm near its optimal value. In Chapter 6, we presented two algorithms for

the recovering bandits problem. They both consisted of placing Gaussian Process

priors on the recovery function of each arm and then updating the posterior with the

observations whenever the arms were played. Since we had a GP prior and Gaussian

noise, our posteriors were conjugate. These posteriors were then used to lookahead

and select a sequence of d arms to play, either using a Thompson sampling or a UCB

selection procedure. We showed that both these algorithms satis�ed strong Bayesian

regret guarantees with respect to an oracle which selects the optimal sequence of

d arms. Our algorithms also performed well experimentally. Particularly, it was

demonstrated in experiments that our algorithms learned to only play arms at times

when the recovery function corresponded to high reward. We also considered using

techniques from optimistic planning to make our Thompson sampling algorithm more

computationally e�cient in the case where d was large.

7.1 Further Work

In this section, we consider future directions for research relating to the material in this

thesis. We begin by discussing particular extensions to the work in each chapter, and

then consider more general issues arising from using bandit algorithms in education
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software.

7.1.1 Optimistic Planning for the Stochastic Knapsack Prob-

lem

The algorithm OpStoK, proposed in Chapter 4, is an anytime algorithm for the stochas-

tic knapsack problem when we have access to a generative model of item sizes and

rewards. It was observed experimentally that the algorithm attained high reward

even when it was stopped early. This is clearly a bene�cial property of the algorithm,

and so it would be good to obtain theoretical guarantees on the performance of the

algorithm when it is stopped early. Related to this is the problem of determining the

accuracy of the algorithm for a given number of samples per policy evaluated. Our

guarantees give a bound on the number of samples required for a given accuracy, so it

would be interesting to consider these reverse guarantees. This would allow the user

to specify a number of samples, rather than a desired accuracy, and get an estimate

of how accurate the algorithm would be if it was allowed this number of samples.

One way to achieve this could be to use the results from the literature on best arm

identi�cation. Speci�cally, Theorem 1 of Gabillon et al. (2012) gives a bound on the

accuracy of a best arm identi�cation procedure similar to the one we use in Algo-

rithm 4.1 for a speci�ed number of samples. Alternatively, Hren and Munos (2008)

provide such guarantees for optimistic planning of deterministic systems so we may

be able to adapt their results to our setting.

When interested in applying the OpStoK algorithm to the education setting, one

obvious obstacle is our assumption that item sizes (question duration) and rewards

(bene�t to the student of answering the question) do not depend on the previous

items in the policy. Clearly, in the educational domain, this is not a realistic as-

sumption as the bene�t to a student of answering a question will depend on how

many similar questions they have answered recently. The challenge of incorporating
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factors like this into a model of student attainment has been considered recently in

the educational data mining community (Harpstead and Aleven, 2015; Martin et al.,

2011; Pelánek, 2014). These sorts of models could then be used in our algorithm to

provide a generative model of the reward of a particular question given the history

of past questions in the policy. This would restrict the potential for sharing samples

across policies, and so would increase the sample complexity, but would allow us to

capture this more realistic phenomenon. Note that the decision tree we use to model

the policies would stay the same as it already captures the dependence of the total

reward on the sequence in a weaker manner.

Throughout, we have assumed that the models presented in the educational data

mining community have been correct, and that they are able to appropriately deal

with uncertainty. We are proposing to use these models as a generative model for our

algorithm, so we need to be sure that they are able to generate samples which accu-

rately represent the true data. Therefore, a challenge when applying this algorithm to

the educational domain would be to check the model output was correct, and if nec-

essary develop our own generative models for educational data. For this a Bayesian

approach may be appropriate since this would provide us with a distribution over item

rewards and sizes from which to sample. A �nal broader open problem is whether the

assumption that the item sizes are discrete (or can be discretized) can be removed.

In the case of continuous item sizes, the previous decision tree representation would

no longer be feasible, so a new approach may be necessary.

7.1.2 Bandits with Delayed, Aggregated Anonymous Feedback

The algorithm we presented in Chapter 5 for the delayed, aggregated anonymous

feedback bandits problem is a rarely switching algorithm. In the education setting,

and in many other application domains, the use of rarely switching algorithms is not

practically bene�cial. In particular, in education, when we model each question as
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an arm, it is undesirable to repeatedly ask a student the same question. Therefore, a

natural direction for future work is to consider whether, under some further assump-

tions on the reward or delay distribution, it is possible to develop algorithms for the

delayed, aggregated anonymous feedback problem which switch arms more often. One

approach to this would be to assume that the reward at each time step can be rep-

resented by a mixture model of the reward from the di�erent arms played previously.

Under the additional assumption that the reward and delay distributions were from

an exponential family distribution with known parametric form, the EM algorithm

could be used to obtain estimates of the parameters of the model (see (Dempster

et al., 1977) for more details on the EM algorithm). Online variants of the EM algo-

rithm have also been proposed (Cappé and Moulines, 2009; Cappé, 2011) with some

theoretical guarantees on performance. One could then try to use an online EM algo-

rithm within the bandits with delayed, aggregated anonymous feedback problem to

obtain estimates of the reward parameter of each arm in the case where the algorithm

switches arms frequently.

An additional algorithmic question relating to our work on the delayed, aggregated

anonymous feedback problem studied in Chapter 5 is whether the `bridge period' in

our algorithm (ODAAF) can be removed. This was added in order to deal with

the dependencies between arms being active and the reward they contribute to each

observation. It would be interesting to see if theoretical guarantees on the performance

of this algorithm could be obtained without this bridge period. A further extension to

the delayed, aggregated anonymous feedback problem would be to extend the model

to allow for composite rewards. This problem was studied in the adversarial setting by

Cesa-Bianchi et al. (2018). In the delayed composite rewards setting, the reward RJt

obtained by playing arm Jt at time t can be split into m components, R
(1)
Jt

+ · · ·+R
(m)
Jt

and each component R
(i)
Jt

is delayed, possibly by a di�erent amount. At time t, the

player then receives the sum of all components of past plays that have arrived at time t.
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This is particularly relevant in the education setting since it can be assumed that the

bene�t of asking a particular question can be broken down into the amount of learning

about a set of speci�c skill components (this underpins the approach of Bayesian

Knowledge Tracing and many other approaches to modeling student performance,

e.g. Corbett and Anderson (1994); Hambleton and Swaminathan (2013); Shahiri et al.

(2015)) and the delay in learning of each skill component may be di�erent. Lastly, to

the best of our knowledge, there is currently no lower bound for the stochastic delayed

feedback bandits problem that involves a delay parameter. Hence, an interesting

open problem is to �nd a tight lower bound. This would tell us whether the additive

expected delay term seen in the regret of our algorithm, and many other algorithms

for delayed feedback bandits, is unavoidable.

7.1.3 Recovering Bandits

Within the approach for the recovering bandits problem proposed and analyzed in

Chapter 6, there are further open questions which would be interesting to address.

In particular, when selecting the number of steps to lookahead in order to de�ne the

optimal lookahead policy, we argued that since, in expectation, we see a local maxima

of a GP with lengthscale ` every 2` steps (Murray, 2016; Rasmussen and Williams,

2006), this would be a good number of steps to lookahead. It would be advantageous

to formalize this intuition more, and if possible bound the expected di�erence in

reward of an optimal policy which looks 2` steps ahead and one which considers the

entire horizon.

One limitation of the work presented in Chapter 6 is the assumption that the

rewards must be Gaussian. The reason for this was to ensure that the posterior dis-

tributions were conjugate, so Gaussian concentration could be used to obtain upper

con�dence bounds and samples from the posterior. In order to obtain similar bounds

for non-Gaussian noise, it would be necessary to have some guarantees on the con-
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centration of a non-conjugate posterior. This is typically very challenging, although

progress has been made in (van der Vaart et al., 2008a) where asymptotic convergence

guarantees on the expected distance between the posterior mean and true mean were

given in the non-conjugate Gaussian process classi�cation setting (see Appendix A.4).

The guarantees in Chapter 6 were also given in terms of the Bayesian regret of the

algorithm. It would be interesting to consider frequentist regret guarantees as well.

Here we would assume that there is a true underlying recovery curve for each arm.

The results of van der Vaart et al. (2008a) are frequentist so, again, obtaining �nite

time results equivalent to those in (van der Vaart et al., 2008a) may be one way to get

frequentist regret guarantees in the recovering bandits problem. van der Vaart and

van Zanten (2011) give explicit �nite time frequentist rates for the concentration of a

Gaussian process posterior under conjugate Gaussian noise, so the challenge would be

to combine the techniques there with those in (van der Vaart et al., 2008a) to obtain

explicit �nite time rates for the concentration of the posterior in the Gaussian process

classi�cation setting.

In order to apply the recovering bandits algorithms to the education setting, we

would model each question as an arm. In this case, one practical extension of the

recovering bandits problem would be to allow for the recovery curve to also depend

on the correctness of the question. In particular, we would expect the reward of asking

a student a question to depend on how long it has been since they have seen it, and

also on whether they got it correct at the last attempt. One might imagine that it

might be possible to achieve this by extending Zj,t to be a vector of two variables; the

time since the question was last answered correctly, and the time since the question

was last answered incorrectly. However, increasing the covariate dimension makes

learning the Gaussian process more di�cult, so we would need to check that our

algorithm is still able to accurately learn the recovery curves in this case.



CHAPTER 7. CONCLUSIONS 247

7.1.4 Bandit Problems in Online Education

Although, all of the work in this thesis was motivated by the problem of selecting ques-

tions in education software, unfortunately, we are yet to test any of the algorithms in

a real life educational environment. Therefore, testing the practical performance of

our approaches remains an area for further work. In particular, it would be interesting

to investigate how well the recovering bandits approach to simultaneously estimating

the forgetting curve and using this to decide when to give the students questions

works in practice. Given the promising experimental results on simulated data (see

Section 6.8), one would hope that the algorithm could be applied to the educational

domain to yield good results. In order for this to happen, it will be necessary to

construct a good de�nition of reward. As discussed in Chapter 3, this is not straight-

forward. Future research would therefore need to involve working with educational

practitioners to come up with a good de�nition of reward that is both pedagogically

appropriate and that yields good results when placed into a bandit algorithm.

Each problem considered in this thesis has been studied in isolation. In practice, it

also would be necessary to combine these techniques in order to develop an algorithm

that can deal with all these problems simultaneously. Of particular interest would be

incorporating the recovering structure into either the knapsack or delayed problem.

The problems discussed in this thesis do not cover all the issues which may arise

from using bandit approaches in educational software. In particular, throughout this

thesis, we have tried to develop algorithms for one student individually. However,

it may be bene�cial to share information between students. In the bandit setting, a

natural way to capture this would be to de�ne a set of features which characterize

each student and consider contextual bandit algorithms which aim to maximize some

function of these features. In the recovering bandits problem, this could be achieved

by increasing the covariate space of the GPs to incorporate these student features,

and changing the de�nition of time since a question was asked to be student spe-
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ci�c. In the bandits with delayed aggregated anonymous feedback problem, a more

signi�cant change to the algorithm would need to be made in order to use this con-

textual information. In the stochastic knapsack problem studied in Chapter 4, often

information will be shared between students in order to de�ne the generative models

used. However, it would be interesting to investigate whether information about tree

structure could also be shared between students.

There are also many other problems arising from the educational domain that

would lead to interesting variants of the standard multi-armed bandit problem. In

particular, in education, the sequencing of plays of the arm is important and can

e�ect the total reward from that sequence. This was touched upon with the recovering

bandits problem of Chapter 6. However, there are various other sequencing e�ects that

would make interesting bandit problems to study. For instance, if you ask a student

question A and then question B, the bene�t to their learning is not guaranteed to

simply be the summed bene�t of asking each question in isolation. Particularly, if

questions A and B are both necessary to understand a topic, their combined reward

could be considerably greater than their summed individual rewards. This is related

to the combinatorial bandits problem introduced by Cesa-Bianchi and Lugosi (2012).

A key di�erence is that, in this case, we would expect the reward to be a non-linear

combination of individual rewards that also depends on the sequencing of actions.

A related problem is to de�ne a bandit model that can capture the necessity for

pre-requisite questions to have been answered (correctly) before certain questions can

be given. A naive approach would be to consider arms as blocks of questions, but

this would not allow us to choose between di�erent follow-up questions e�ciently, nor

would it have the �exibility to stop giving students a string of questions if they were

seen to struggle with the �rst (often easiest) pre-requisite question. Other interesting

areas for future research are the inclusion of revision exercises from a di�erent topic,

so that, for example, an algorithm could learn to go back and revise past topics after a
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certain knowledge level has been achieved in the current topic. Conversely, the reward

of asking a question (or repeating a topic) could decay with the number of times it has

been previously seen. This problem has been studied in the rotting bandits problem

(Levine et al., 2017) and so it would be interesting to combine this with our recovering

bandits framework.



Appendix A

Useful Results and De�nitions

A.1 De�nitions

De�nition 1 (KL Divergence, (Cover and Thomas, 2012)). The relative entropy or

Kullback-Leibler (KL) divergence between two probability distributions p(x) and q(x)

on X is de�ned as

KL(p|q) = Ep
[

log

(
p(X)

q(X)

)]
.

Hence, for discrete distributions,

KL(p|q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
,

and for continuous distributions

KL(p|q) =

∫
X
p(x) log

(
p(x)

q(x)

)
dx.

For some common distributions there is an exact analytic expression for the KL di-

vergence. For X = [0, 1] and p(x) and q(x) Bernoulli distributions with success

parameters θp and θq respectively, KL(p|q) = (1− θp) log

(
1−θp
1−θq

)
+ θp log

(
θp
θq

)
, while

for univariate Gaussian distributions on X = R with means µp and µq and common

250
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variance σ2, KL(p|q) = (µp−µq)2

2σ2 .

De�nition 2 (λ-sub-Gaussian, Boucheron et al. (2013)). A random variable X is

said to be λ-sub-Gaussian if E[X] = 0 and for all a > 0,

P(X > a) ≤ exp

{
− a2

2λ2

}
.

A.2 Inequalities

Theorem A.1 (Hoe�ding's Inequality). Let X1, . . . , Xn be independent random vari-

ables such that Xi ∈ [ai, bi] for all i = 1, . . . , n. Then, for every a > 0,

P
( n∑

i=1

(Xi − E[Xi]) ≥ a

)
≤ exp

{
− 2a2∑n

i=1(bi − ai)2

}

Proof. See e.g. (Boucheron et al., 2013).

Note that a similar result holds for X1, . . . , Xn i.i.d λ-sub-Gaussian random vari-

ables. In this case, P(
∑n

i=1(Xi − E[Xi]) ≥ a) ≤ exp{− a2

2λ2}

Theorem A.2 (Azuma-Hoe�ding Inequality). Let X1, . . . Xn be a martingale di�er-

ence sequence such that |Xi −Xi−1| ≤ ci and X0 = 0 for some positive constants ci.

Then, for any a > 0,

P
( n∑

i=1

> t

)
≤ exp

{
− 2a2∑n

i=1 ci

}
Proof. See e.g. (Cesa-Bianchi and Lugosi, 2006).

Theorem A.3 (Bernstein's Inequality). Let X1, . . . , Xn be independent real valued

random variables with E[Xi] = 0 and Xi ≤ 1 for all i = 1, . . . , n. De�ne σ2 =

1
n

∑n
i=1 E[x2

i ], then, for any a > 0,

P
( n∑

i=1

(Xi − E[Xi]) ≥ a

)
≤ exp

{
− na2

2σ2 + 2a/3

}
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Proof. See e.g. (Cesa-Bianchi and Lugosi, 2006).

Theorem A.4 (Freedman's Inequality). Let {Yk}∞k=0 be a real-valued martingale with

respect to the �ltration {Fk}∞k=0 with increments {Zk}∞k=1: E[Zk|Fk−1] = 0 and Zk =

Yk−Yk−1, for k = 1, 2, . . . . Assume that the di�erence sequence is uniformly bounded

on the right: Zk ≤ b almost surely for k = 1, 2, . . . . De�ne the predictable variation

process Wk =
∑k

j=1 E[Z2
j |Fj−1] for k = 1, 2, . . . . Then, for all t ≥ 0, σ2 > 0,

P
(
∃k ≥ 0 : Yk ≥ t and Wk ≤ σ2

)
≤ exp

{
− t2/2

σ2 + bt/3

}
.

Proof. See (Freedman, 1975).

This result implies that if for some deterministic constant, σ2, Wk ≤ σ2 holds

almost surely, then P (Yk ≥ t) ≤ exp
{
− t2/2
σ2+bt/3

}
holds for any t ≥ 0.

Theorem A.5 (Doob's Maximal Inequality). Let {Xi}ni=0 be a sub-martingale with

respect to {Fi}ni=0. Then for any a > 0,

P
(

max
0≤i≤n

Xi ≥ a

)
≤ E[Xn]

λ

Proof. See e.g. (Shiryaev, 1995).

Theorem A.6 (Pinsker's Inequality). Let p and q be probability distributions on

(Ω,A), then,

sup
a∈A
|p(a)− q(a)| ≤

√
1

2
KL(q|p).

Proof. See e.g. (Boucheron et al., 2013).

A.3 Markov Decision Processes

A Markov decision process (Sutton and Barto, 1998; Puterman, 2014) (MDP), is a

tuple (S,A, P, R, γ) where S is a �nite set of states, A is a �nite set of actions, P is
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a set of matrices of state transition probabilities, R is a set of reward probabilities,

and γ ∈ [0, 1] is a discount factor. At time t, if the MDP is in state St = s ∈ S, if the

player takes action At = a ∈ A, they will transition to state s′ ∈ S with probability

Pa[s, s
′] = P(St+1 = s′|St = s, At = a) and receive reward r with probability Ra[s, r].

Here Pa is the matrix of transition probabilities for action a and Pa[s, s
′] is the (s, s′)th

element of this, and Ra[s, r] is the probability of receiving reward r after taking action

a from state s.

A.4 Gaussian Processes and RKHS's

A Gaussian process (GP) represents a distribution over functions. More formally, a

Gaussian process is a stochastic process such that any �nite collection of the random

variables has a multi-variate Gaussian density. Let f be a Gaussian process on [0, 1]d.

A Gaussian process is completely speci�ed by its mean function µ(x) = E[f(x)] and

covariance function k(x, x′) = E[(f(x)−µ(x))(f(x′)−µ(x′))]. The covariance function

speci�es the smoothness of the function. Some popular choices of covariance functions

are given in Section A.4.3

A.4.1 Regression and Classi�cation

Assume for now that we have a Gaussian process with mean 0, that is µ(x) = 0 for all

x ∈ [0, 1]d. Gaussian process regression refers to the problem where for i = 1, . . . , n,

we observe

Yi = f(xi) + εi

for εi ∼ N (0, σ2) iid with known standard deviation σ. If we take a Bayesian approach

and place a GP prior on f , the posterior is conjugate. Speci�cally, for kN(z) =

(k(z1, z), . . . , k(zN , z))
T and positive semi-de�nite kernel matrix KN = [k(zi, zj)]

N
i,j=1,
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the posterior mean and covariance are given by,

µN(z) = kN(z)T (KN + σ2I)−1yN ,

kN(z, z) = k(z, z′)− kN(z)T (KN + σ2I)−1kN(z′)

so σ2
N(z) = kN(z, z). Then, for any z ∈ Z, the posterior distribution of f(z) is

N (µN(z), σ2
N(z)).

In the classi�cation setting, our observations take the form,

Yi ∼ Bern(φ(f(xi)))

where Bern(θ) represents the Bernoulli distribution with success probability θ and

φ(·) is some link function. Normally, φ is taken to be the logistic link so φ(z) =

(1 + exp(−z))−1, or the probit link in which case φ(z) = Φ(z) for Φ(·) the standard

Gaussian cdf. In the classi�cation case, the Gaussian process prior is non-conjugate

so there exists no closed form expressions for the posterior mean and covariance func-

tions. Instead these should be found using MCMC methods or approximations (Nick-

isch and Rasmussen, 2008). See (Rasmussen and Williams, 2006) for more details on

Gaussian process regression and classi�cation.

A.4.2 RKHS

An RKHS or Reproducing Kernel Hilbert Space is a Hilbert space H of real functions

de�ned on an index set X endowed with an inner product 〈·, ·〉H such that there exists

a function k : X × X → R satisfying:

(i) for every x ∈ X , k(x, x′) is a function of x′ and is in H,

(ii) k has the reproducing property, 〈f(·), k(·, x)〉H = f(x).

Note that also k(·, x) ∈ H and k(x′, ·) ∈ H, and that also 〈k(x, ·), k(x′, ·)〉H = k(x, x′).
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The RKHS attached to a Gaussian process with covariance function k is the com-

pletion H of the linear space of all functions

x→
m∑
i=1

aik(si, x) such that a1, . . . , am ∈ R, s1, . . . , sm ∈ X ,m ∈ N

relative to the norm,

〈 m∑
i=1

aik(si, ·),
r∑
j=1

bjk(tj, ·)
〉

H
=

m∑
i=1

r∑
j=1

aibjk(si, tj).

Intuitively it is the set of all linear combinations of kernel functions. See (van der

Vaart et al., 2008b) for more details.

A.4.3 Covariance Functions

One popular choices of covariance function in the machine learning literature is the

squared exponential covariance function with lengthscale l > 0,

k(x, x′) = exp

{
− (x− x′)2

2l2

}
.

Intuitively the lengthscale measures the smoothness of the Gaussian process.

Another common covariance function is the Matérn covariance function with length-

scale l > 0 and positive parameter ν > 0,

k(x, x′) =
2l−ν

Γ(ν)

(√
2ν|x− x′|

l

)ν
Kν

(√
2ν|x− x′|

l

)

where Kν is a modi�ed Bessel function. Often we choose ν = 3/2, in which case,

k(x, x′) =

(
1 +

√
3|x− x′|
l

)
exp

{
−
√

3|x− x′|
l

}
,
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or ν = 5/2 in which case,

k(x, x′) =

(
1 +

√
5|x− x′|
l

+

√
5(x− x′|)2

3l2

)
exp

{
−
√

5|x− x′|
l

}
.

There are several other covariance functions which may be used, see (Rasmussen and

Williams, 2006) for details.
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