
Set Theory, Type Theory and the future of Proof

Verification Software

James Palmer

3rd Year Mathematics and Philosophy undergradate

University of Warwick

James.G.Palmer@warwick.ac.uk

July - August 2020

Contents

1 Preface and Introduction to the Xena Project 2

2 Introduction 4

3 Set Theory 7

4 Type Theory 11

5 Dependent Type Theory 16

6 The future of Lean and philosophy of mathematics 20

A Axiom of choice 24

B Additional remarks on intuitionistic mathematics 26

C Glossary 28

D Further Reading 32

E References 33

1

1 Preface and Introduction to the Xena Project

This essay was written to introduce readers to foundational ideas of set theory
and type theory, which are not as widely known as they should be. This es-
say will also introduce readers to the power of Lean, discuss the questions we
should ask about what Lean implies for the future of mathematics as well as
what impacts it could have in the ongoing philosophy of mathematics.

The end of the essay will raise another discussion as well: the pragmatic compro-
mises needed to be made between man and machine in order for the progression
of mathematics, and the enhancement of mathematical research via automated
theorem proving, ensuring its large potential is fulfilled.

This essay will be a worthwhile read for any undergraduate student studying ei-
ther mathematics or philosophy and hopefully an enthusiastic sixth-form/ high
school student will be able to take away something worthwhile as well.

The Lean project was originally launched in 2013, at Microsoft Research Red-
mond by Leonardo de Moura. Paired with mathlib, both allow an open source
library of automated proofs to whomever wants to harness it. It allows us to
formally verify proofs usually made in mathematical terms by using methods
from both logic and computer science. Formal verification allows us to check
that these proofs are true by computer, which is important in a mathematical
age where proofs of the Poincare conjecture and Fermat’s last theorem have
been the length of novellas. Human error within these proofs is more and more
likely to be overlooked by the fellow humans verifying the proof by eye, hence it
is clear to see that such formal verification is destined to be the future of math-
ematics. Famously, Andrew Wiles’ initial proof of Fermat’s last theorem had an
error in it that needed to be corrected, something Wiles would’ve spotted him-
self were he using a proof verification software. Computer software, especially
with big data, is becoming more and more integral to the way science is done
and maths is surely going to follow suit.

Most mathematics, although rigorous, is explained through terms which im-
ply the use of formal logical rules but does not explicitly express them. The
extra effort thus has to be made when feeding them to proof-verification soft-
ware due to the fact that we have to use a formal language to make these logical
inferences explicit for the software to verify the proofs properly. Lean somewhat
sidesteps this issue by introducing a ’tactics’ mode, allowing us to express the
mathematics somewhat closer to how we would write a mathematical proof in
an exam for a human to then mark.

The Xena project was set up by Kevin Buzzard, with the goal of encouraging
mathematicians to use proof verification software (Lean being the most used
proof verification software at the moment). Its current goal is to formalise all of
the Imperial College London (where it is based) mathematics course and then

2

feed the resulting database to an AI, seeing where the AI takes the maths from
there. It is worth noting that having the mathematics required by a standard
undergraduate mathematics course available to anyone by Lean will be a mas-
sive help in verifying proofs at higher levels. This essay is not intended to be a
tutorial for how to use Lean, there are many better documents you can find in
the wild which would do a better job at that which are mentioned in the further
reading section. The majority of good resources for learning Lean can be located
on the main website for The Xena Project. This essay has the main purpose of
explaining a couple of the key foundational issues that still plague mathemat-
ics, due to the fact that more undergrads and prospective mathematics students
should know these issues as they affect the very way we do mathematics. In
places, we will also be showcasing the power of Lean as a method of formalising
mathematics.

Due to the ongoing pandemic that will last throughout the summer months,
Buzzard’s previous plans which involved hosting a number of undergraduate
students at Imperial College London to formalise mathematics found in most
contemporary undergraduate mathematics courses around the world into Lean
had to be cancelled. However, due to the digital nature of what these students
had to do, it was easy not only to transition the summer projects to a digital
platform, but also to allow even more students worldwide to take part in their
own formalization projects. This led to this essay’s inception. Here we will
cover important ideas within set theory, type theory and intuitionistic maths
that I think every mathematician and analytic philosopher should know about.

I would like to thank Kevin Buzzard for the opportunity to write this essay in
association with the Xena project as well as his help with improving it, David
Loeffler for reading through and offering invaluable critiques of the essay, as well
as giving me my first taste of defending my arguments to an actual expert with
’Professor’ in their title. Thank you to Luca Seemungal for introducing me to
Lean in the first place and checking over drafts of this essay for me. Lauren
Nicholson must also be thanked for her suggestions on how to make this essay
more readable and for casting her watchful eye over my grammar. I would also
like to give a special mention to everyone who has contributed to Lean and the
Xena project, automated theorem proving is the future of mathematics and you
are the trailblazers.

3

2 Introduction

Throughout history, humans have engaged in mathematical practices and this
practice has become more and more advanced in its technique and methods.
Mathematics has become a framework with which we make advancements in
the sciences through use of measurement, make inferences based on the mathe-
matical applications of statistics and probability in the social sciences and use
to model markets in economics. All of these applications and more are derived
from what we discover in mathematics.

Yet, there are very valid questions that precede our applications of mathemat-
ics, which is to say where does mathematics come from? What makes up the
bedrock of mathematical reasoning? What is a mathematical object? What is a
proof? These questions are important for the mathematician because it influ-
ences the way we then decide to practise mathematics (as we will see in how
intuitionistic logic works). These questions are also important to the philoso-
pher because of how important the discipline of mathematics is to questions
in epistemology and the philosophy of language. An argument about how we
come to gain knowledge or how language is made meaningful to us can live or
die based on the application of it to mathematics. Throughout history, the most
well-known thinkers from both mathematics and philosophy have offered their
answers to these questions, with varying degrees of success and influence on our
contemporary discussions.

Two of the positions that philosophers of mathematics take on the origins of
mathematics are the ideas of logicism and intuitionism, which will be discussed
at length here. Logicism, if we were to condense the ideas into a single slogan,
states that all of mathematics is built from ideas found in classical logic, i.e.
using ideas such as the truth values and derivability of sentences involving the
logical laws that come from using the connectives ∧,∨,¬,→,↔, defined (respec-
tively) as ‘and, or, not, implies, equivalence’ to form the statements we would
find in all branches of mathematics, where P ∧ Q is true if and only if P and
Q are true, P ∨Q is true if and only if either of P or Q are true, ¬P is true if
and only if P is false, P → Q is true if and only if Q is false or both P and Q
are true, P ↔ Q is true if and only if P and Q are equivalent statements (i.e.
P is true if and only if Q is true). Predicate logic expands on this. We then
introduce variables such as x, y, z, the universal quantifier ∀ and the existential
quantifier ∃. The universal quantifier effectively translates to ”for all” and the
existential qualifier effectively translates to ”there is”. Hence ∀xP (x) is true if
for every constant t, P (t) is true and ∃xP (x) is true if there is one constant
term t such that P (t) is true. For example, ”all the natural numbers are even”
is false, as 3 is odd, but ”there is a natural number” is true due to 2 being a
natural number (among other choices).

One of the key rules of classical logic that dictates a large amount of our math-
ematical practises is the law of excluded middle, written formally as P ∨ ¬P .It

4

is a tautology which states, when harnessed in mathematical practise, that for
every mathematical statement P , either P is true or ¬P is true. This idea is
key to performing a proof by contradiction in mathematics, where we assume
the negation of a statement in order to derive a contradiction.

From the logicism movement, set theory (in ZFC form) and type theory (in
Bertrand Russell’s ramified type theory) were born in an attempt to capture
this underlying structure by which all mathematics is done. These theories,
as well as their many variations which won’t be covered here, have produced
results with varying degrees of success.

The intuitionists, with their main ideas also condensed into a single slogan,
state that mathematics is not the study of object universal truths independent
of humanity, it is instead the study of our own mental constructs that guide
our perception of the world around us. They also believe that it is arrogant for
us to assume that a mathematical statement always be proven or disproven. A
mathematical statement is true to the intuitionists if a valid proof can be con-
structed for the statement. A key part of intuitionist practise is rejecting the
law of excluded middle, due to the fact that the intuitionists believe it entails
mathematical Platonism, a philosophical view which states that mathematical
objects are real and exist in a world of the forms which we cannot perceive.
This leads to many proofs which were previously doable via the use of proof by
contradiction now being undoable.

Early intuitionistic logic managed to prove that every function whose domain
and codomain are the real numbers is continuous. Intuitionistic logic also leads
to intuitionistic type theory via the Curry-Howard correspondence, a big topic
in both mathematics and computer science, so there is no doubt that it has pos-
itive effects on mathematical practice. Through the way proofs are constructed,
intuitionistic logic allows us to read said proofs as algorithms which we could
then go on to use as programs. This is the key central element that makes the
Curry-Howard correspondence so powerful and what makes intuitionistic logic
worth study.

But what is a proof? To the mathematician, a proof will be something much
different to what it is to the logician. In mathematics, we mainly see proofs
as being the method by which we show that statements are true or false, yet I
would be willing to put money on the fact that if you asked the average math-
ematics student what a proof looked like, they would only be able to point to
examples of proofs rather than give a satisfying abstract answer. It is only really
in philosophy, with the study of logic, that we get a true understanding of what
a proof actually is.

In mathematics, proofs are mainly are series of logical deductions written in
prose, with steps being outlined as to how we go from our hypotheses to our
conclusion. Typically, a mathematician will be building a theory. Hence entire

5

sub-proofs are stored in ‘lemmas’ before a theorem is proved by building around
the results of said lemmas. A classic type of proof in maths is a proof by in-
duction, where if we prove that a result being true for n means that it is then
true for n+ 1, as long as we prove that the result holds for 1, we prove it holds
for every natural number n. Another type more commonly used is proof by
contradiction, where we make a statement, assume that the statement is false
and show that this leads to contradiction.

In logic, proof theory and the formal study of what a proof is form a key part of
the academic field. Natural deduction systems are studied, which show us the
rules by which all proofs are logically valid. These are the rules that underpin
mathematics, with any proof using the rules found in classical proof systems
such as the Fitch proof system.

These proofs are much more technical than the prose found in mathematical
proofs, yet they are essential in proof-verification software as computers do not
(currently) reason through a paragraph of prose as we would. Hence there is an
inherent obstacle here when it comes to getting mathematicians to use Lean, as
mathematicians must learn to write proofs in much more detail. A solution is
found in the ‘tactics’ mode in lean, where methods of going through multiple
steps of a proof can be saved to a couple letters. ‘The Natural Numbers Game’
found on the Xena Project’s website introduces you to tactics almost instantly.
Later on when we encounter the proof that the real numbers are uncountable
written in Lean, we will see lemmas and tactics saved to words allowing us to
write the entire proof in one easy line of code.

It is worth noting now that when formalizing mathematics onto Lean, we are us-
ing a version of type theory known as dependent type theory as our formal basis
of mathematics, which uses something known as a propositions-as-types corre-
spondence using intuitionistic logic simultaneously as a functional programming
language. Notably, we are not using classical logic at all at the basis. This may
surprise some readers, due to set theory being more wildly popular and widely
used among mathematicians. However, dependent type theory offers a huge
practical advantage while programming due to the fact that it requires us to be
more specific with types we are using, as we will see later. It is worth noting,
however, that Lean allows for classical reasoning to be done when formalising
mathematics, which has contributed a lot to its popularity over theorem for-
malisers like Coq.

Having characterised the main ideas that will be involved in this essay, it is
time for us to move onto the foundational theory that almost every reader will
be vaguely familiar with, namely set theory.

It is worth noting now, for those who haven’t seen, that Appendix C contains
a glossary which the reader is encouraged to use if they get lost.

6

3 Set Theory

In the British education system, students will be introduced to set theory by the
visualisation of it through Venn diagrams, to the point where students are likely
to believe that sets are nothing but Venn diagrams. This, as with most things
taught to us in high school, turns out to not be the entire story. Even then,
the set theory used in high school maths is mainly nothing but näıve set theory,
without the necessary axioms in Zermelo-Frankel-Choice set theory which allow
us to give a formalized definition to sets and avoid paradoxes.

The logicist movement as well as a desire to study infinity is what propelled
set theory into existence. The goal of the logicist movement was to show that
mathematics could be written by using the rules of logic. As set theory manages
to use first-order logic in order to express its axioms and thus by extension a
large amount of mathematics, this was seen as the goal for a lot of mathemati-
cians with regards to finding a foundational theory of mathematics. Of course,
set theory has evolved since this, as mathematics has evolved and other theories
besides logicism have come to light, hence ideas that compete with set theory
have been present since its inception.

A set, informally, is just a collection of objects. The objects themselves could
be sets and in ZFC, every object is a set. A member of a set is known as an
element and to express that an element x belongs to a set X, we write x ∈ X.
A subset of a set A is a set B such that for every element x ∈ B, x ∈ A as well.
This is commonly denoted A ⊂ B. A function f is a mapping between two sets
A and B, this is usually denoted as f : A → B, with A referred to as domain
and B referred to as a codomain. Hence for each element a ∈ A, we have an
element f(a) ∈ B, where f(a) is equal to some b ∈ B, where b is the element
that a is mapped to by f .

For those unfamiliar with what an axiom is, in the dictionary an axiom is de-
fined as a ‘self-evident truth’. In maths, the term axiom is used more to mean
a rule that does not need to be proven upon which we then base the rest of
our theory. While we would love these axioms to be self-evident truths in order
to feel like we are unearthing the secrets of the universe by which all natural
and logical laws are dictated, we will see in practice that set theory and type
theory both have their fair share of axioms that instead are put in place more
for convenience rather than for presenting a self-evident truth. In fact, both
Ernst Zermelo and Bertrand Russell both developed their axioms in response
to various paradoxes and inconsistencies which Cantor, in his development of
set theory, and Frege, in his development of logicism, had run into. The most
famous of which was Russell’s paradox, which states (if we put it in naive set-
theoretical terms) that there exists a set A = {X|X 6∈ X}, i.e. A is the set of all
sets X such that X is not a member of itself. Yet A ∈ A if and only if A 6∈ A,
which is clearly an unwanted equivalence.

7

The axioms are as follows, do note that an ’axiom schema’ is just a collec-
tion of axioms:

Assume that A, B, u, v, x, y are sets. Then we have:

The Axiom of Extentionality: ∀A∀B((∀x(x ∈ A↔ x ∈ B))→ A = B))
(If two sets have the exact same elements in them, then they are the same set.)

Axiom of the Empty Set: ∃B∀x(x 6∈ B)
(There exists a set with no elements)

Axiom of Pairing: ∀u∀v∃B∀x(x ∈ B ↔ (x = u ∨ x = v))
(For every pair of sets, there is a set that contains them both)

Axiom of the Power Set: ∀u∃B∀x(x ∈ B ↔ x ⊂ u)
(For every set u, there exists another set whose members are the subsets of u)

Axiom Schema of Comprehension: Let φ be any formula that does not
contain B and it only has bound variables excepts for x, t1, t2, ..., tn. Then we
have the following Axiom:

∀t1∀t2...∀tn∀A∃B∀x(x ∈ B ↔ (x ∈ A ∧ φ(x))).

This axiom lets us avoid Russell’s paradox as it means we have to be much
more specific about how we build subsets. It is important to note that these x
must be a member of the original set A. φ(x) is just a generalised notion of a
first-order logic formula, effectively stating ’x must have predicate φ. An exam-
ple of this would be ’x is even’ or ’x is a square number’. So what the formula
is saying is that there are subsets of a set which satisfy certain predicates.

Axiom of Union ∀A∃B∀x(x ∈ B ↔ ∃y(x ∈ y ∧ y ∈ A))
(i.e. given two sets, there is a set which contains all the members of both sets
and nothing more.)

Axiom Schema of Replacement: ∀A((∀x∀y∀y′(x ∈ A∧φ(x, y)∧φ(x, y′))→
y = y′))→ ∃B∀y(y ∈ B ↔ ∃x(x ∈ A ∧ φ(x, y)))
(i.e. the image of a function is a set)

Axiom of Infinity: There is an inductive set; that is,
∃A(∅ ∈ A ∧ ∀x(x ∈ A→ x+ ∈ A)
(i.e. there exists a set with an infinite amount of members. x+ is defined as
the successor of x, e.g. 1 is the successor of 0, 2 is the successor of 1, 3 is the
successor of 2, etc)

Axiom of Choice: Let A be a set of pairwise disjoint non-empty sets (which
could be infinite). Then there exists a set C containing exactly one member of

8

A; that is for each B ∈ A, C ∩B has only one element.

These axioms became so popular due to the fact that we could now express
almost all of mathematics through statements in first-order logic. First-order
logic is an example of a formal language, which try to capture how humans
reason in an abstract mathematical way. What we do is choose a model which
may contain a domain, functions, relations and constants as well as a language
with which to express the model, and then using sentences within the language,
we can express theories by using abstract symbols.

It is a remarkable achievement of logic and mathematics that these axioms,
which are consistent with each other, not only manage to build up through the
technicalities of elementary number theory so well, but they even manage to
capture the most complicated parts of mathematics today. Dynamical systems,
mathematical analysis, hyperbolic geometry and topology are some of the many
fields which ZFC manages to capture. In fact, ZFC set theory manages to ex-
press virtually everything that mathematics has to offer.

These axioms manage to cover a large amount of modern mathematics, however
they come with weaknesses. It is commonplace for philosophers of set theory to
complain about either one or more of these axioms, with complaints usually be-
ing about the power/lack of power of each axiom. By far the most controversial
of all axioms is the axiom of choice, mainly for the central fact that the axiom
of choice asserts that certain sets exist. However, unlike the other axioms, it
does not give us any hint as to what these sets end up looking like. For more
discussion of the axiom of choice, see Appendix A.

In addition to these axioms, we can also represent functions as sets! To rep-
resent these mappings as a set, we use something called ‘ordered pairs’, which
are written 〈x, y〉. By using a set of ordered pairs {〈a1, b1〉〈a2, b2〉, . . . }, where
ai ∈ A and bi ∈ B and f(ai) = bi, we can thus represent a function as a set.
This is the simplest example of a part of mathematics being modelled in ZFC
set theory, yet considering how functions are arguably as important as sets to
forming the bedrock of mathematics, it may well be one of the most important.

The key strength of set theory and these axioms is that, for the most part,
these axioms look intuitive. While some, comprehension especially, test the
limit of ‘self-evident truth’, for the most part ZFC gives us sets and rules that
we would want and expect a conception of the foundation of mathematics to
have.

Of course, however, there are more drawbacks than just the axioms. As much
mathematics as this manages to model, sadly there are still some parts of math-
ematics that set theory fails to cover. The most famous example of a hypothesis
which is independent of the axioms of ZFC set theory is the continuum hy-
pothesis. A hypothesis is independent of a collection of axioms if it is neither

9

provable nor disprovable from the axioms. Both the continuum hypothesis and
the negation of the continuum hypothesis are consistent with ZFC set theory,
yet neither of them are provable. This is an application of a very famous re-
sult in mathematical logic known as “Gödel’s incompleteness theorems”, where
for certain collections of axioms which are consistent, there is another sentence
which is consistent with these axioms, yet we cannot use our rules of natural
deduction to craft a proof of this sentence from these axioms.

The continuum hypothesis states that there is no set whose cardinality is greater
than the cardinality of the natural numbers (which we refer to as aleph-naught)
and the less than cardinality of the real numbers (which we refer to as the con-
tinuum). Both these sets have an infinite number of elements, yet the set of
the natural numbers is countably infinite, i.e. it is possible for us to list out
its members {1, 2, 3, ...}, whereas the set of the real numbers is uncountably
infinite, i.e. it is impossible for us to list its numbers out, as any list we make
using finite generators will not contain every member of the set. The following
is a showcase of the proof of the fact that the set of real numbers is uncountably
infinite - done in Lean.

lemma not_countable_real : ¬ countable (set.univ : set R) :=
by {rw [countable_iff, not_le, mk_univ_real], apply cantor}

Listing 1: A remarkably consise proof of the uncountability of the reals in Lean
produced by Floris van Doorn. The ’rw’ function rearranges the previously
proved theorems to prove the statement above.

Due to the fact that the continuum hypothesis is independent in ZFC, it mean
that a number of other assertions in other areas of mathematical study like
analysis and point-set topology are also independent of ZFC due to their reliance
on it. It seems that even when we do assume the law of excluded middle, P ∨
¬P , we still run into the issue that it is not always enough to tell us which of P
or ¬P is true, as for some theories such as ZFC set theory, both P and ¬P are
consistent with the theory and thus there is still a limit to its power. In some
ways, mathematicians who wish to stick with classical logic over intuitionistic
logic have to realise it’s not a case of accepting or rejecting the law of excluded
middle, it is rather picking your poison in the limitations of what the law of
excluded middle can tell us.

10

4 Type Theory

Type theory has evolved arguably more than set theory has as a foundational
idea during the last century. Set theory evolved from Cantor trying to study
the infinite by harnessing mathematical techniques to becoming a foundational
idea due to the ideas and axioms of Zermelo and Fraenkel. There are multiple
different versions of set theory, such as descriptive set theory and fuzzy set the-
ory, which have the aim of covering different parts of mathematics as well, yet
ZFC set theory remains the most well-known of all approaches to set theory.

Meanwhile, type theory begins with the ideas of Bertrand Russell and Alonzo
Church, two titans of mathematical logic. Through Russell’s ramified type the-
ory and Church’s lambda calculus (an evolved version of which Lean utilises
in its programming language), type theory was born. Meanwhile, due to Per
Martin-Löf’s work on intuitionistic type theory, modern type theory, usually re-
ferred to as intuitionistic, dependent or homotopy type theory (with each having
their own variation on the theory), has an intuitionistic basis and is used much
more frequently in computer science for functional programming than it is in
mathematics. This change of foundational basis from classical to intuitionistic
logic is why it has evolved much more substantially than set theory has.

What type theory has retained throughout is its specificity - our ability to dis-
tinguish between types of mathematical object that we are dealing with. This
has a legion of advantages when it comes to formalising mathematics, which we
will illustrate now in the following example.

Within set theory, we ascribe sets to natural numbers as a way of defining
them, as every mathematical object is a set and thus natural numbers are no
different. Hence, we have the following:

0 is represented by the empty set, ∅.
1 is represented by the set containing the empty set, {∅}
2 is represented by the set containing both the set of the empty set and the
empty set, {{∅}, ∅}
3 is represented by the set containing the set containing both the set of the
empty set and the empty set, the set containing the empty set and the empty
set, {{{∅}, ∅}, {∅}, ∅}

A similar pattern follows for the rest of the natural numbers. What is in-
teresting to note here is that there are implications that may then be made
about the relationship between these numbers. For example, those of you who
are aware of the definition of a topology may notice that the set representing
the number 3 meets the definition of being a topology on the number 2. Topol-
ogy is a field of study concerned with geometric properties that preserve under
continuous deformations, so it seems strange that suddenly we have topologies
on the natural numbers to some mathematicians. Thus due to this, we have

11

many different contexts where we could be referring to the mathematical object
“3”. Is it the natural number? The integer? The rational number? The real
number? Is it even the topology on the number “2”?

The lack of specificity regarding an object is something that would be nothing
less than a nightmare to deal with in a programming context, so in type theory,
we can assign types to the mathematical objects we denote instead. This does
mean that in pure mathematical terms, the number “2” belonging to the type
‘natural number’ and the type 2 belonging to the type ‘real number’ are two sep-
arate different mathematical objects. The following is a representation of some
very bad Lean code, for we have defined constant ’a’ to be of four different types.

constant a : nat
constant a : Q
constant a : R
constant a : C

In set theory, we could get away with this as if a ∈ N, then a belongs to all of
the other sets as well. Meanwhile in type theory, due to us having to specify
the type that the constant belongs to, it is not equal to the same constant in a
different type. Effectively, we have got rid of the idea of subsets in type theory
as we knew them in set theory.

constant a : Q
Listing 2: A simple example of code that is actually usable in Lean

Hence, type theory is remarkably better than set theory for building program-
ming languages on due to its specificity, thus it is also a much more helpful
foundational mathematical theory to use when formalising a proof into proof
verification software. In terms of how we write proofs in type theory, this will be
covered in chapter 5 after we have met the Curry-Howard correspondence. The
main difference from writing formal set theory proofs is the fact that set theory
uses first-order logic as the formal language of its proofs, yet the Curry-Howard
correspondence allows us to write proofs by using types themselves.

Another advantage for early type theory is how it really takes care of ‘impred-
icative definitions’, something Bertrand Russell was especially keen to tackle
because of how Russell’s paradox (named after him after his discover of it at
the turn of the 20th Century), arose from the use of impredicative definitions
in his view. An impredicative definition is a definition which defines itself in
relation to a collection of objects. For example, the ‘supremum’ of a set is de-
fined to be the least (smallest valued) upper bound (a number M such that for
all x ∈ X, x < M) of the set, hence we define a number here from a collection
of numbers. After defining individuals as being of type 0, classes (which are a
collection of individuals) being of type 1, classes of classes being of type 2, we
move on to the hierarchy of types which gives Russell’s type theory the name

12

of ‘Ramified Type Theory’.

Russell went on to introduce another hierarchy of types, dealing with impred-
icative definitions. He introduced a hierarchy of orders, so for any type n, we
can have a type n class of order 0, a type n class of order 1, etc. A class is of
order 0 if it is predicative, a class is of order 1 if the class is not predicative, but
it can be defined in terms of predicative classes (e.g. a class whose members
were the supremums of other classes), a class is of order 2 if it is not of order 0
or order 1 but can be defined in terms of order 1 classes, etc. So for example, a
collection of individuals that could be defined in terms of order 1 classes would
be considered a type 1 class of order 2.

Thus, something which appears epistemically problematic at first is dealt with
in a neat way. Using Lean, we can express a similar hierarchy of types but not of
orders and thus show the descendants of Russell’s works implemented into the
language. Using the check function in Lean, we can see where on the hierarchy
of types any type is.

/- Note that for any n in the natural numbers, type n will
be of type n + 1 as type n is a collection of type n - 1
classes. -/

constant α : Type
constant β : Type 45

#check α -- Type
#check β -- Type 45
#check Type -- Type 1
#check Type 73494 -- Type 73495

Russell’s type theory did not come without its issues however, as is common
place for any theory tackling foundational mathematics. The axioms were called
into question when they did not seem like a self-evident truth, but rather they
seemed more like something thrown into a theory to cover up paradoxes and
deficiencies within it.

The axiom which caused the most issues for Russell’s type theory specifically
was the axiom of reducibility. It states that for each type of a class C, there is
an impredicative class I with the same members as C. So seemingly, we begin
to ignore the structure of orders and suddenly pretend that impredicative issues
do not matter.

This axiom was born out of the issue that we have no confirmation that the
set of the natural numbers has the same definition at each order of the hier-
archy, which is an obvious issue due to the fact that having one set with two
(or more) unidentical definitions is a massive problem. A natural number n is
originally defined by Russell as a Type 2 class; it is the class of classes which

13

contain exactly n individuals. The natural numbers are defined as the class
of these classes. Hence from this, it is unclear how we would then define the
natural numbers in an identical way at various orders.

Another early version of Type Theory was Alonzo Church’s introduction of
types through the lambda calculus. The lambda calculus works in a similar way
to first order logic, however instead of using sentences featuring atomic sen-
tences, constants, variables, quantifiers, connectives and parentheses, we have
terms made up of atomic terms, applications and abstractions. The core idea to
the lambda calculus is that functions are our objects of study, as it is a model of
computation. This gives us a framework with which to study computable func-
tions (i.e. functions where we have an effective process for deciding an output,
given an input) in a subject called computability theory. Computability theory
makes up the theoretical basis upon which all current computation is based and
is worth its own essay, hence we will mention it only where necessary.

What Curry found was that by applying a theory of types to the lambda cal-
culus, the programs written in the lambda calculus represented proofs made in
intuitionistic logic. This became known as the Curry-Howard correspondence,
as people realised that intuitionistic proofs and programs have a one-to-one cor-
respondence.

The type theory applied to the lambda calculus for this is very similar to the
dependent type theory covered in Chapter 5, hence we will go into it a lot more
there. For now, however, do note the examples of ways we would express func-
tions in the lambda calculus. The type theory introduced over these ends up
having atomic types (which we would consider analogous to sets in set theory)
and function types (which we would consider analogous to functions in set the-
ory).

constants α β γ: Type -- atomic types
constant a : α -- expressing individuals as belonging to a
type
constant f: α → β -- f is a function belonging to function
type α → β
constant g: α → Type -- g is a function belonging to
function type α → Type
-- all of the above are atomic constants, hence they are
terms in λ-calculus
#check f a -- application, this allows us to get a term of
type β from a term of type α and a term of type f: α → β.
#check λ x : α, f x -- abstraction over a term, this allows
us to get a term of type f: α → β from a term of type α and
a term of type β.
#check λ (α : Type), g -- we can abstract over types

themselves, this has type ′Type′.
/- Examples of functions expressed in λ-calculus -/

14

constants m n : nat
constant (m,n): nat × nat
constant g: nat → nat
#reduce (λ x : nat, x) n -- returns n, this is the identity
function
#reduce (λ x : nat, m) n -- returns m, this is the constant
function
#reduce (λ x : nat, x + n) m -- returns m + n, the addition
function

15

5 Dependent Type Theory

Before leaping into the more technical aspects of dependent type theory, it is
worth understanding where the intuitionists lie philosophically. As mentioned
above, the intuitionists reject the law of the excluded middle. L.E.J Brouwer
is known as the founder of this position within the philosophy of mathematics.
The story has it that he was famously unimpressed with Gödel’s incompleteness
theorems because they had been published around 15 years after he had already
denounced the law of excluded middle for its faults.

Brouwer stated that the law of excluded middle inherently assumes that the
mathematical objects we refer to are real objects. To explain why he thought
this, it is worth looking at an analogous example that Russell is famous for us-
ing in an argument regarding the philosophy of language. If I were to say “The
King of France is bald”, then is this statement true or false? Due to the fact
that there is no King of France, the statement itself is meaningless, so how does
a statement like P ∨ ¬P possibly make sense if P does not exist in the first
place? Russell solved this issue in the philosophy of language with his theory
of definite descriptions, which we will not divulge into here. It is worth noting
that his theory does not solve the issue of using the law of excluded middle’s
use (or misuse...) in mathematics.

The issue here is that without knowing it, mathematicians are walking into
mathematical Platonism. This is the belief that mathematical objects are real
and mind-independent, existing on some higher realm of being than physical
objects do. This originates from Plato’s idea of the world of the forms, where
every physical object has a corresponding form in the world of the forms.

Due to this inherent mathematical Platonism linked with using the law of ex-
cluded middle, Brouwer rejected it. Instead, intuitionism was born as a form of
mathematical constructivism. Constructivism itself is the belief that a mathe-
matical proposition is true if and only if there is a proof of it.

It is worth mentioning that when we think of the ontology of a proof and whether
we should take a realist stance (the proof exists and is mind-independent) or an
anti-realist stance (the proof only exists in our perception and is not indepen-
dent of human observation), this question is bound to be controversial. On the
other hand, the question of whether a program is mind-independent or not is
bound to come to a much more agreeable conclusion. Programs themselves are
just processes we get computers to enact as a routine, computers which have
been built in the first place by humans. Thus, it makes sense to use intuitionistic
logic when programming proofs, for the fact that when converting a proof into a
program in order for it to be formalised, we have an anti-real proof represented
by an anti-real program as well. To convert a mind-independent proof into a
mind-dependent program would be a fallacious philosophical jump.

16

Intuitionistic type theory is where a lot of modern interest in type theory lies,
due to the intersection between mathematics and computer science lying in it,
especially with its uses in functional programming. As stated above, due to the
specificity that comes from being able to ascribe a certain type to an object,
instead of all objects being sets, makes it much more practical as a programming
language, especially when it comes to formalising mathematics.

The origins of intuitionistic type theory could potentially be ascribed to Per
Martin-Löf, with his 1989 paper titled ‘Intuitionistic Type Theory’. Inspired by
the Curry-Howard correspondence, he lays out a syntax, semantics and proof
theory for intuitionistic type theory. Historically, it is worth noting that he
developed this as both a typed functional programming language as well as a
proof system due to the one-to-one correspondence between proofs and programs
mentioned at the end of Chapter 4. A lot of these rules introduced here can be
found in the dependent type theory used in Lean, including the rules regarding
Π-types and Σ-types. We will explain Π−types and showcase its usefulness in
Lean.

For set theory, we explained how we model functions using ordered pairs. If
we then wanted to express a set of functions f : A → B then we would create
a set of sets of ordered pairs, which may seem a bit cluttered, but it works.
What we instead have in dependent type theory is the idea of f instead being
a function type written as f : α → γ, similarly written as it is in set theory,
mapping individuals in a type α to a type γ. So let us now define α to be an
arbitrary type and define β to be a function type β : α → Type. For each a of
type α, β(a) denotes a different type, so depending on how many individuals
a belong to a type α, that same number will be the amount of different types
β(a) we are working with.

We then use the type Πx : α, βx to denote the type of functions f with the
property that for each individual a belonging to type α, f(a) belongs to the
type β(a). Hence what we are interested in is the type of f(a), which depends
on the input a. For the fact that the value of β depends on the parameters set
by the individuals belonging to type a and there is no fixed codomain, this is
why dependent type theory is given its name, as Πx : α, β is also known as a
Pi-type or a dependent function type. Effectively, this is a generalisation of a
function type, as instead of a function type mapping individuals from one type
to another type, a Π-type maps individuals from one type to many types instead.

This is only one example showcasing a dependent type however, sigma types
Σx : α, βx are another example and offer a generalisation of what are known
as cartesian products (α × β) and are another example of a dependent type,
hence they are sometimes known as dependent products. Both Sigma-types
and Pi-types are very important because they can be used to model the exis-
tential quantifier and the universal quantifier respectively, as was their purpose
when introduced by Martin-Löf in intuitionistic type theory. In fact by using

17

Pi-types, we can express logical propositions as types, aiding how we express
proofs through it and, by extension, how we express them in Lean. Propositions-
as-types is a key feature of intuitionistic type theory, as this feature is directly
influenced by the Curry-Howard correspondence.

constant α : Type
/- We want to fine a way to describe predicates of α, in the
same way we can use ∀xP(x) in first-order logic to describe
predicates in set theory. We use the following.-/
constant p: α → Prop -- Prop is the type representing
propositions, with our propositions-as-types magic being
showcased here
#check p x -- this is a proposition, so it makes sense for
it to be of type Prop! set theory and ramified type theory
do not allow for such fluidity as propositions-as-types does.
∀ x : α, p x -- assertion that p holds of x for every x,
this is an element of Type. The truth value is dependent on
input x, hence we use some dependent type theory machinery!

As a reminder, in natural deduction systems, systems in which the goal is to
formally develop rules how to construct a valid proof, to introduce ∀ into a
proof, we use the introduction rule below:

∀ Introduction - Given a proof of p x, in a context where x is arbitrary (i.e.
choice of x doesn’t matter as it’s just some indiscriminate variable), we obtain
a proof ∀ x : α, p x

If instead we have a statement including ∀ and want to get rid of it, we use
the following rule.

∀ Elimination - Given a proof ∀ x : α, p x and any term t : α, we obtain
a proof p t

For Pi-types, let us consider their introduction/ elimination rules for proofs
within the natural deduction system used in dependent type theory.

/- Intro - Given a term t of type β x, in a context where x :

α is arbitrary (i.e. choice of x doesn′t matter as it′s just
some indiscriminate variable) we have (λ x : α, t) : Π x : α
, β x -/
/- Elim - Given a term s : Π x : α, β x and any term t : α,
we have s t : β t-/

Notice the similarities. From Curry-Howard correspondence, it is clear to see
that Π-types are the program equivalent to how ∀ is used in proofs of propo-
sitions. Hence we use Π-types in our Propositons-as-types correspondence in
order to program in ∀ into proofs.

/- Now we will demonstrate a program for a natural deduction

18

law called ′modus ponens′, which states that if we have a
proof of P → Q and a proof of P, then we have a proof of Q-/
constant Proof: Prop → Type
#check implies -- equivalent of P → Q in first-order logic,
function type of Prop → Prop → Prop (as it is a binary
connective, it takes two propositions and returns a new one)
Π p q : Prop, Proof (implies p q) → Proof p → Proof q
/- This program states for every pair of hypotheses P and Q,
if we have a Proof of P and a Proof of P → Q, we have a
proof of Q. The equivalent of modus ponens!-/

In Lean we can also construct what are known as inductive types, where we
inductively define types with use of the distinctions between type 0, type 1, . . .
, type n, . . . by using a number of finite generators. We have seen this already
in Chapter 4 when discussing the hierarchies and definitions found in Russell’s
Ramified Type Theory. We can use these to construct new types as well. For
example, below is a method of constructing the natural numbers in Lean.

inductive nat
| zero : nat
| succ (n : nat) : nat

Listing 3: succ is the successor function so succ n is equeal to n + 1. Note the
similarity with the axiom of infinity.

A question worth dissecting is the question we started with, does the law of
excluded middle really lead to mathematical realism? If we choose to accept it,
then are we aligning ourselves with the view that mathematical objects exist
independently from us? One could easily make a case for the fact that while
“the present King of France is bald” certainly does imply the existence of a King
of France, should we not be more careful with the ontology of mathematical
objects? Which, from everything we can tell, do not share the same ontology
as physical objects such as the present King of France would do, were they to
exist? The fundamental question at play here is whether or not ideal objects
which exist as theoretical objects in our mind alone all share the same ontology
with each other, which is a philosophical can of worms about the nature of being
that I will leave the reader to dissect.

19

6 The future of Lean and philosophy of mathe-
matics

There are currently two schools of thought within the mathematical community
regarding the future of automated theorem proving software. There are those
who believe it is the future of mathematics: these academics usually have re-
search interests in algebra where automated theorem proving has been adopted
more. As well as those who believe it is a small trend that will die out, usu-
ally analysts who have not seen it used in their research circles as much. This
has been the indication given to me by the conversations I and other people
flying the proof verification software flag have had with various mathematics
academics.

I personally believe that it will be used more and more in the future, yet it
will only grow in popularity as quickly as we formalise the mathematics we
currently know. This is happening, but this is not happening at a lightning
speed. Particularly, topics in analysis are currently not as thoroughly devel-
oped as topics in algebra are. Perfectoid spaces and the continuum hypothesis
have both been formalised into Lean, both requiring some very heavy algebraic
machinery behind them. Meanwhile, it took a very long time to even prove that
the derivative of sin(x) is cos(x) using Lean, something proved within the first
year of an undergraduate course.

The fact that the formalisation of analysis is happening more slowly than the
formalisation of algebra is why algebraists are more enthusiastic about proof
verification software than analysts are, as academics in algebra will know of
more colleagues that are currently adopting proof verification software than
academics in analysis. Mathematicians being wholly pragmatic beasts (hence
why classical logic and set theory are still predominantly used over intuitionistic
logic and type theory, because mathematicians could not care less for founda-
tional issues), I imagine that as proof verification software is developed further
and further (potentially becoming more user-friendly on the way), more math-
ematicians will begin to use it. Kevin Buzzard of the Xena Project has said
before that he does not believe there is someone on earth who fully understands
the entire proof of Fermat’s Last Theorem due to its length and use of very
complex mathematical ideas, however theorem provers such as Coq and Lean
will be able to spot any mistakes with ease.

While Lean specifically allows for the user to use classical reasoning over in-
tuitionistic reasoning, due to the need to have a knowledge of dependent type
theory in order to properly get to grips with the language, this will confront
mathematicians to at least briefly think of the foundations of mathematics and
the issues regarding the use of the Law of Excluded Middle. As proof-verification
software becomes integral to more and more academics, it will almost certainly
begin to be taught in undergraduate mathematics courses (in my personal opin-

20

ion, it definitely should be at the moment). Mathematicians who wish to em-
brace the future may have to make a compromise, sacrificing their time to learn
enough dependent type theory and functional programming to be able to use
Lean or another proof verification software. However, Lean is moving in a really
exciting direction and in time, it could become a tool which accelerates the pace
of academic research into the subject.

There are, of course, compromises that the machine may also have to make
as well. Currently, mathematicians who are already deep into research will not
have the time to use such software due to the commitment to having to learn
about dependent type theory and the ways in which Lean works. This is a com-
promise which certainly seems to be being made, Kevin Buzzard has developed
a number of games (the further reading section will tell you where to find these!)
which allow you to learn how Lean works while concerning you with dependent
type theory as little as possible. It is worth noting that Lean rose to prominence
as the proof verification software of choice due to the fact that it allows for clas-
sical reasoning to be used, something which allows mathematicians wishing to
use Lean without having to learn as much dependent type theory as they would
otherwise. It is still fundamentally important to the system though.

While this essay has deeply covered Lean’s involvement with foundational is-
sues, it is worth noting that Lean’s ability to help us in mathematics research
reaches far beyond the questions it may make us reconsider about philosophy
of mathematics. For example, Kevin Buzzard cares far less about foundational
issues than I do, but his main motivation to start formalising mathematics
into Lean was due to the fact that errors in mathematics may not just appear
at the very foundational levels of maths, it could appear on higher levels as well.

To use an analogy that David Loeffler used when I discussed the matter with
him, a skyscraper can fall over due to error made at the foundations of the con-
struction of the skyscraper, however it is just as much of a disaster if an error
at the 37th, or 86th floor of the skyscraper causes the higher levels to topple.
Lean allows us to not only verify theories built off of the axioms with which we
build all of our mathematics in foundational theories, but also the axioms we
use to build many other parts of mathematics as well. Propositions we make
whose proofs use lemmas built off of the axioms of group theory, analysis proofs
built off of the completeness axiom, propositions anywhere using any sort of
lemma or theorem in their proof, virtually all can theoretically be formalised
and verified in Lean.

In my view, even allowing undergrad mathematicians the option to learn how to
use proof-verification software in their courses would be a great way to future-
proof mathematicians, as mathematicians with proof-verification software pro-
ficiency in their arsenal will be at a clear advantage in a future where proofs
are going to get longer and more susceptible to error. Even in smaller proofs,
there are a number of reasons why someone may make an error on a proof, but

21

there’s no doubt that it happens.

By teaching the foundational mathematics ideas necessary to fully understand
dependent type theory and Lean, mathematics undergraduates would then have
to think more about which of logicism and intuitionism captures the ontolog-
ical nature of mathematical objects. At the moment, perhaps your university
maths society or your friend who does a Mathematics and Philosophy degree
may inform you about the discrepancies found at the foundational levels of
mathematics. It would be encouraging to see Lean emerge as a mainstay in
undergraduate mathematics courses and thus the conversation regarding these
foundational ideas becoming more prevalent. Students will no longer be indoc-
trinated into accepting the ideas of set theory non-thinkingly as they are now.

Of course, there are a number of philosophical implications that come from ei-
ther adopting a classical or intuitionistic view of mathematics which will briefly
be explained here. These concern the ontology of mathematics as well as various
ideas about how we learn mathematics.

Of course, the plan is that once Lean has an undergraduate course worth of
mathematics formalised into it then an AI will be fed the mathematics and we
will see where that manages to take us. This is something of special interest in
our current times, as AI is beginning to have a more prominent role in many
industries. What implications does the philosophy of mathematics and compu-
tation have for AI?

For the fact that we have to inherently use constructivist/ computable mathe-
matics in any computer software that is used, Lean also constrained by this, it
is clear that any question proved incomputable by computability theory is going
to thus be impossible for any computer to do. This not a mainstream topic of
study, yet due to how pertinent it is to the foundations of computer science,
as well as considerations with regards to how much time/ energy it takes to
compute certain algorithms, anyone attempting to answer questions regarding
the possibility of AI taking over should be aware of these issues.

As we have seen, those who believe in intuitionist mathematics think that
the law of excluded middle presumes that mathematical objects are ostensibly
real things existing independently from the human mind, which the intuitionist
thinks is a fallacious claim. A lot of mathematicians sleep on the question of
the ontology of mathematical objects, leaving it for the philosophers to discuss
while they do not realise that the question impacts their work so much. If we
were to move away from the ‘accepted’ idea that these objects exist and move
towards mathematical intuitionism, then a number of our mathematical ideas
change.

Appendix B will show off one of the key changes from Brouwer’s intuitionism in
the fact that every function is continuous and hence we cannot do the maths we

22

could before with discontinuous functions. Thus, these questions about whether
mathematical objects are real or not are key due to their implications about how
we should do maths. To summarise how intuitionists believe we gain mathemat-
ical knowledge, the key phrase to use is ‘framework of perception’. Humans use
mathematics in statistics, physics, economics and many other subjects that it is
we use it to describe time, space and all the phenomena that occur within them
both. As intuitionistic mathematics is just the use of mental constructs in order
to show patterns in how we perceive things, it is one of the fundamental facets
of the mind in percieving things scientifically. All of the maths used in sciences
and social sciences is only us adapting these phenomena to the framework we
know.

What is the alternative then? Mathematical Platonism seems to be the view
that most mathematicians seem to sleepwalk into. This is the belief that math-
ematical objects exist independently of us. But is mathematical Platonism
entailed in set theory? Not necessarily, for while Frege, whose work inspired
multiple big names to research both set theory and type theory, believed that
mathematical objects existed independently from human perception, Russell
believed that the mathematical objects were nothing more than the logical con-
structions that we use to model them.

The ontology of mathematical objects is a discussion to be handled with care.
We must give them the privilege of being non-physical due to the obvious differ-
ences between numbers and the objects in the physical world around us. Yet at
the same time, we must make sure we do not come up with a philosophically un-
tenable argument for justifying metaphysical objects that we don’t necessarily
perceive. There are many ways to perhaps justify that set theory does not entail
mathematical Platonism, however intuitionists would still argue that using the
law of excluded middle entails mathematical Platonism. Considering the fact
that Diaconescu’s theorem in ZFC states that the axiom of choice implies the
law of excluded middle, intuitionists would not accept that you could have ZFC
set theory without it entailing mathematical Platonism.

As stated in our discussion of the continuum hypothesis in Chapter 3, even
if we let the law of the excluded middle runs its course, it still gives us a few
discrepancies. Hence it may well be better to chuck it out. However, consid-
ering the sacrifice of discontinuous functions that we discussed in Chapter 4,
we may wish to find a new way to model problems in probability and many
other subjects which rely on the discontinuities of functions, as well as proofs
in general which rely on the discontinuities of certain functions.

Hopefully these are all subjects which you, the reader, are now more inter-
ested in engaging with. Hopefully this encourages you to think more about
the underlying machinery that is being used when we are reasoning through
mathematical problems, whatever its basis and problems may be.

23

A Axiom of choice

The axiom of choice, when first posited, was met with a remarkable amount
of controversy. As a matter of fact, it is still regarded with some controversy
in some parts of the mathematical community. The Banach-Tarski Paradox is
a showcase of the worst of the counter-intuitive nature of the axiom of choice,
however there are ways in which it impacts measure theory as well which we
will explore here.

The axiom of choice is equivalent to a number of important statements in-
cluding the fact that every vector space has a basis, fundamental in algebra and
Zorn’s lemma, fundamental in analysis. For all the faults we are about to list,
the axiom cannot be said to have no use.

As stated, when we first mentioned the axiom of choice, the key to its problems
seem to be that unlike the rest of the axioms of ZFC, choice only posits that a
set exists, but gives no indication as to what the set looks like (i.e. how the set
is actually defined). It causes the following two counterintuitive results.

The Banach-Tarski paradox is a theorem which states that given a 3D ball
of any volume, there is a way to cut up the ball into pieces and reassemble
the pieces such that they can be assembled into two identical balls of the same
volume. This is known as a paradox for the fact that it contradicts our basic
geometric intuition. The axiom of choice is used in constructing sets before the
reassembly of the sphere and while Banach-Tarski is provable in ZFC, it is not
provable in just ZF (Zermelo-Frankel axioms without choice). Hence it seems
that the axiom of choice is instrumental in the contradictory nature of this the-
orem.

Measure theory is the study of how we define the length of sets, areas under
curves and volumes in mathematics. When initially deciding on some axioms
with which we then proceed to uncover the rest of our theory with, specifically
with regards to the length of sets in this case, three axioms that seem like they
fit the notion of ’self-evident truths’ may be the following:

(I) If we measure the length of an interval (one of [a, b], (a, b), (a, b]or[a, b). This
is a set which contains all the elements between a and b. If a or b is marked
with a square bracket, it is a member of the set. Otherwise it is not a member
of the set), then the length of these should be b− a.

(II) The length of the intervals [a, b], (a, b), (a, b] or [a, b) is equal to the length
of the [a+ h, b+ h], (a+ h, b+ h), (a+ h, b+ h] or [a+ h, b+ h).

(III) If n sets are all pairwise disjoint (i.e. for two sets A and B, if x ∈ A
then x 6∈ B) then the lengths of the union is equal to the sum of the length of
the individual sets.

24

The issue is, by constructing sets known as ‘The Vitali sets’ by using the axiom
of choice, we can show that these axioms are inconsistent, as we get a situation
where the length of [0, 1], which by (I) should be 1, ends up being less than
or equal to 0, an obvious contradiction which, yet again, happens due to the
involvement of the axiom of choice.

The fact that the axiom of choice with function extensionality and proposi-
tional extensionality can be used to prove the law of excluded middle, which is
controversial in its own way as we have documented time and again already in
this essay.

25

B Additional remarks on intuitionistic mathe-
matics

L.E.J. Brouwer managed to prove via the metatheory of his intuitionistic logic
(i.e. using mathematical methods to analyse the syntax, semantics and proof
theory of a formal language) that every function f : R→ R is continuous, where
R denotes the set of real numbers. To give the most simple (and, in many ways,
the most effective definition of continuity), a function is continuous if you can
draw all of it on an x-y plane without having to take your pencil off the paper
(for those who want the formal definition of what it means to be a continuous
mapping on the real numbers, given a function f : R → R, it is continuous
if ∀ε,∃δ such that whenever x ∈ R, if |x − c| < δ then |f(x) – f(c)| < ε, i.e.
whenever x is close to c, then f(x) is arbitrarily close to f(c).) Brouwer’s proof
means that in his version of intuitionistic mathematics, functions which are not
continuous (known as discontinuous functions) do not exist.

The idea that discontinuous functions do not exist is a foreign concept to most
mathematicians and there are many valid arguments for stating that we should
keep discontinuous functions as an entire concept. Of course, there are many
fields of applied mathematics where discontinuous functions are applied such
as probability and quantum mechanics. Even proofs in pure mathematics it-
self which rely on the discontinuity of certain functions would fail without the
existence of discontinuous functions. While in mathematics, intuitionists could
dismiss discontinuous functions easily by saying the concept of them entails the
law of excluded middle, it is remarkably harder to justify having to rework the
mathematical models that we have found so useful within the sciences.

There is a gaping rabbit hole here which I will have to direct us towards, how-
ever we will not be jumping down. The relationship between positions held in
philosophy of mathematics and positions held in philosophy of science is some-
thing that is very much worth dissecting, to the point where teaching the two in
conjunction would make for a fascinating undergraduate/postgraduate module.
Hence I will quickly explain how an intuitionist may explain away the lack of
existence of something integral to scientific fields now.

While one could hold that the scientific theories we currently have perfectly
mirror the structure of the universe (the ‘scientific realist’ position), one could
also hold that by looking at the history of science, we can see that mathematical
models for predicting various phenomenon have changed massively over time,
the unobservable scientific objects we use to describe the universe do not actu-
ally exist but we use the theories because currently they are the best explanation
we have (the extreme ‘scientific anti-realist’ position known as instrumentalism).

A mathematical intuitionist could easily adopt the position of an instrumen-
talist and claim that we are only using discontinuous functions because in our

26

fundamentally incorrect frame of perception, they work in the scientific fields we
then analyse with our frames of perception. Famously, Quine was very quick to
suggest that mathematical rules should be subject to the same empirical scrutiny
that the hypotheses of the physical sciences are. Using Quine’s methodology,
we could justify removing the law of excluded middle and just building a new
mathematical model to fit in with our scientific theory. This could then go on
to more accurately depict human perception of this scientific phenomenon.

There is an even simpler argument than this to make in favour of still keep-
ing mathematical intuitionism, despite all we may lose for it. One could easily
make the argument of ‘so what?’ in the face of people who think we should
change our methods of doing mathematics for the benefit of science.

There are some key works in philosophy regarding arguments in analytic phi-
losophy which seem to lie on the implicit argument that mathematics should
work for the benefit of us then being able to apply it to our ability to observe
the physical world. This idea that the purpose of studying mathematics is only
so that it can then help us in studying science is a fallacious argument that I
have never seen called out before, however I feel that this question what is the
purpose of doing mathematics? is one which is not discussed enough, and so
this argument is always seemingly allowed to pass with limited scrutiny. Hence
an intuitionist can claim that mathematics is its own independent discipline
which has no obligation to the physical sciences, so if discontinuous functions
not existing is a problem for the sciences, then that’s little more than tough
luck!

27

C Glossary

When reading advanced texts while I was in sixth form, the one thing that an-
noyed me the most was the lack of a glossary in some introductory texts. These
can be remarkably helpful for people trying to get into their academic discipline
and should probably be normalised more, as it allows you to revise technical
language without having to trudge through a lot of dense text.

Hence, I hope you enjoy this time-saver! If you’re looking for a specific word
and it is not here, then do not worry for it is likely that the word was not par-
ticularly important for your general understanding of the focus of this essay.

The terms are presented in alphabetical order:

Anti-realism – The philosophical position that certain objects do not exist in-
dependently from human perception. For example, a mathematical anti-realist
believes that mathematical objects are just mental constructs.

Axiom – A self-evident truth used as the basis of a theory.

Axiom of Choice – An axiom from ZFC set theory (informally) stating that
if we have any number of sets (including an infinite number!) then there exists
a set which contains exactly one element of each set.

Axiom of Reducibility – The axiom in Russell’s ramified type theory stating
that for every which states that for each type of a class C, there is an impred-
icative class I with the same members as C.

Cardinality – The amount of elements in a set.

Constructivism – A position in philosophy of mathematics which states that
a mathematical statement is true if we can construct a proof of it.

Continuous Function – A function which you can draw in an x-y plane with-
out taking your pen off of the paper (more formally, f : R→ R, it is continuous
if ∀ε,∃δ such that whenever x ∈ R, if |x− c| < δ then |f(x) – f(c)| < ε).

Continuum Hypothesis – The hypothesis which states that there are no sets
whose cardinality’s value is greater than the cardinality of the natural numbers
and less than the cardinality of the real numbers.

Curry-Howard Correspondence – The one-to-one correspondence between
programs in the lambda calculus (a model of computation) and proofs in natu-
ral deduction systems in intuitionistic logic. Also known as the Curry-Howard
isomorphism.

28

Dependent Type Theory – A variation of intuitionistic type theory which
introduces dependent types such as Π-types and Σ-types.

Diaconescu’s theorem – The axiom of choice, propositional extensionality
and function extensionality imply the law of excluded middle.

Element – An object that belongs to a set (the object itself could be a set).

Epistemology – The philosophical study of knowledge and how we gain knowl-
edge.

First-order logic – A formal language with the same structure as propositional
logic, however with addition rules to accommodate for additional variables and
quantifiers.

Formalising – Expressing a sentence from natural language/ normal math-
ematics in terms of a formal language (e.g. formalising mathematics in Lean
consists of us writing mathematical statements in the terms of dependent type
theory).

Formal language – A language which consists of sentences formed by us-
ing letters to denote atomic sentences as well as the rules from the syntax of
the language (e.g. connectives in propositional logic) to create a ‘well-formed
formula’ from the language.

Functional Programming – Programs are constructed by applying functions
and composing functions together (i.e. applying the result of one function to
another function).

Function – A mapping of elements from one set (known as the domain) to
elements in the same/another set (known as the codomain).

Function Type – A mapping of individuals from one type (known as the
domain) to individuals in the same/another type (known as the codomain).

Gödel’s Incompleteness theorems – A theorem which states that for cer-
tain theories, there are statements which are consistent with the theories but
not provable from the axioms of the theory.

Homotopy Type Theory – A recent new version of intuitionistic type theory
which draws similarities from homotopy theory in algebraic topology and shows
their similarities with intuitionistic type theory.

Impredicative – An object defined from a collection of objects e.g. “the
grumpiest maths students” is an object defined from comparing every maths
student.

29

Individual – A mathematical object that is a member of a type (it could
be a type itself)

Intuitionism – The position in philosophy of mathematics that states we should
reject the law of excluded middle as it entails mathematical realism.

Lambda Calculus – A language for computing functions which uses lambda
abstraction and lambda application to express terms.

Law of Excluded Middle – The sentence in classical logic that states that
either every sentence or its negation is true (written formally as P ∨ ¬P

Logic – The study of human reasoning by creating formal languages to study
the syntax (the rules of writing out the terms of the language), semantics (how
we can tell a sentence in a language is true or false) and proof theory (how
we formally prove a conclusion from a number of hypotheses of a language) of
language/reasoning.

Logicism – The position in philosophy of mathematics which states that math-
ematics is just an application of logic and every mathematical statement can be
rewritten as a logical statement.

Näıve set theory – Set theory being used without any axioms.

Natural number – 1,2, . . . , i.e. all of the whole numbers above 0 (in some
literature, mathematicians will define 0 to be a member of the natural numbers).

Ontology – The philosophical study of ‘being’ and the what it means for cer-
tain objects ‘to be’ and exist.

Platonism – The belief that all objects have an ideal form which exists on
a greater plane of being than our reality.

Predicative – An object that can be defined without having to refer to a
group of objects.

Program – A set of instructions given to a computer for the computer to
then run and give a result when given an input.

Proof – Rigorous and true steps taken from a hypothesis to a conclusion in
order to show that the conclusion is true when the hypotheses are also true.

Proof by contradiction – A proof that starts by assuming the negation of
what you are trying to prove and deriving a contradiction, effectively showing
that it is impossible for the initial statement to not be true.

30

Propositional logic – A formal language using the 5 main logical connec-
tives ∧,∨,¬,→,↔, parentheses, and letters to denote sentences.

Ramified Type Theory – Russell’s type theory, which included a hierar-
chy of types to denote whether a type was a collection of individuals, types,
types of types, etc.

Real numbers – Numbers that can be written as ratios (e.g. 2, 5/2, 198/237)
and numbers that cannot be written as ratios (π, e).

Realism – The belief that objects around us exist independently from human
perception.

Set – A collection of objects.

Set theory – The study of sets.

Type – A collection of objects ascribed a type, effectively a set but more spe-
cific about the contents of the set.

Type theory – The study of types.

ZFC set theory – Zermelo-Fraenkel-Choice set theory. Uses each of the ZF
axioms and includes choice.

ZF set theory – Zermelo-Fraenkel set theory, using every axiom used in ZFC
except without the axiom of choice.

31

D Further Reading

For those wanting to explore first-order logic and predicate logic, then I would
recommend both Logic and Structure, 5th edition by Dirk van Dalen, Springer
Verlag, 2013 as well as Language, Proof and Logic, Jon Barwise and John
Etchemendy, CSLI Publications, 2002. The latter is much better as an intro-
ductory text so I would recommend starting with that first.

For more set theory, I would recommend checking Set Theory: The Third Mil-
lennium Edition, revised and expanded, 3rd edition by Thomas Jech, Springer
Verlag, 2006. It starts with the ten axioms stated here and expands on them
further.

For more on the lambda calculus and combintory logic, I would recommend
checking out Lambda-Calculus and Combinators, an Introduction by Hindley
and Seldin, Cambridge University Press, 2008. Before diving into it, I would
recommend knowing a bit about computability theory and metalogic in general
(the latter can be found in Logic and Structure, mentioned above.)

For philosophy of mathematics, Thinking about mathematics by Stewart Shapiro,
Oxford University Press, 2000 is a great place to start, with great further read-
ing suggestions in there as well for anyone wishing to interrogate specific issues
deeper.

For those wanting to know more about Intuitionistic Type Theory, then Per
Martin-Löf’s 1980 essay of the same name is a great starting point. Again, I
would recommend having a background knowledge of logic and metatheory be-
fore diving in.

For learning Lean itself, if you are a forward-thinking mathematician of the
future, there are a number of places you can go. Theorem proving in Lean is
where I have learned how to use it, it will take you a while to get through and
having a background in the lambda calculus/ logic is what helped me crack it
(mainly in terms of understanding other people’s code.) A link to that can be
found here: https://leanprover.github.io/theorem proving in lean/.

There are, of course, more hands-on approaches for those who like to dive right
in. http://wwwf.imperial.ac.uk/∼buzzard/xena/ is the main page for all things
Xena project. Located here are a number of games and tutorials which will
teach you how to program in Lean, as well as download links for Lean and a
useful document by Mario Carniero which explains even more of the technical
nature of the type theory used in Lean.

Some sixth-formers and undergrads read one introductory document (like this!)
and sometimes get it in their head that they are suddenly an expert on the
subject. This is very much not how it works so I would recommend exploring

32

the above! Even with all the above under your belt, you still won’t be an expert.
You’ll be slightly more specialised and able to blag that you’re an expert to your
friends though (I refer to this as the Seemungalian approach).

E References

Avigard, De Moura, Kong, Theorem Proving in Lean, Release 3.18.4, 2020,
chapters 1-4, 7, 11

Jesse Michael Han and Floris van Doorn. 2020. A Formal Proof of the In-
dependence of the Continuum Hypothesis. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP
’20), January 20–21, 2020, New Orleans, LA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3372885. 3373826

Hindley and Seldin, Lambda-Calculus and Combinators, an Introduction, Cam-
bridge University Press, 2008, chapters 1, 10

Jech, Set Theory: The Third Millennium Edition, revised and expanded, 3rd
edition, Springer Verlag, 2006, chapter 1

Martin-Löf, Intuitionistic Type Theory, Bibliopolis, edizioni di filosofia e scienze,
1980

Rorvig, Number Theorist Fears All Published Maths Is Wrong,
https://www.vice.com/en uk/article/8xwm54/number-theorist-fears-all-published-
maths-is-wrong

Shapiro, Thinking about mathematics, Oxford University Press, 2000, chap-
ters 5,7

33

