
Formalising Mathematics
Release 0.1

Kevin Buzzard

Mar 05, 2023

CONTENTS:

1 Introduction 3

2 Getting Lean running on your computer 5

3 Part A: the mathematics 7

4 Part B: Lean tips 15

5 Part C: Tactics 35

i

ii

Formalising Mathematics, Release 0.1

A handbook for mathematicians. Written by Kevin Buzzard, for his Formalising Mathematics course. Thanks as ever to
Imperial College London.

Note: This document is currently under active development. It is being written during the period of January to
March 2023 as part of an undergraduate course for mathematicians at Imperial College London. It’s online even though
it’s currently incomplete, so that the students can access it. It will be stabilising by April 2023.

This document is written for people with some mathematical experience (e.g., people in the final year of an undergraduate
mathematics degree). Its aim is to show such people how to formalise mathematics in the Lean theorem prover. We make
extensive use of Lean’s mathematical library mathlib. Right now this document covers Lean 3; when mathlib has
been ported to Lean 4 I will rewrite this document to cover Lean 4. My current hope is that in January 2024 we will be
using Lean 4 for this course; but in 2023 we’re using Lean 3.
If you’re new here, start at the introduction. The mathematics is all in Part A.
Here’s a link to the repository for this course containing all the code. In 2022 we were still in the pandemic so I made
some videos which may still be of some use (although they refer to a slightly different reordered repository). Here’s a link
to the YouTube playlist where I work through the 2022 problem sheets and discuss techniques.
Here is a pdf of this document.

CONTENTS: 1

https://github.com/ImperialCollegeLondon/formalising-mathematics-2023
https://www.youtube.com/watch?v=3XaL0tjnWSk&list=PLVZep5wTamMmRPvCLO4WVpCwkTi1F6OyF

Formalising Mathematics, Release 0.1

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

These are the notes for a course which is delivered to final year undergraduates and MSc students in the mathematics
department at Imperial College London. I hope that they will also be useful to other mathematicians.

1.1 Aims and objectives

The aim of the course is to teach people how to formalise undergraduate and MSc level mathematics in a computer proof
assistant. A computer proof assistant is a computer program which knows the axioms of mathematics and is capable
of understanding and checking mathematical proofs. To formalise mathematics means to type it into a computer proof
assistant.
Another way of looking at it is that a computer proof assistant turns the statement of a theorem of mathematics into a
level of a puzzle game, and proving the theorem corresponds to solving the level. Hence another way of thinking about
the aims and objectives of this course are that I am teaching you how to set and how to solve levels of a computer puzzle
game.
The methods used in this course are extremely “hands-on”. You will be learning by doing. Every topic will be introduced
via examples and you will be expected to learn it by solving problems.

1.2 Why formalise?

My personal belief is the following. Software of this nature will become more normalised in mathematics departments,
and libraries of formalised theorems will begin to grow quite large. Computer theorem provers will ultimately give rise
to tools which will help humans to learn and to do mathematics, from undergraduate level to the frontiers of modern
research. Complex tactics, perhaps backed by AI, will in the future start to help human researchers. PhD students will be
able to search these libraries to get hints on how to proceed, or find references for claims which they hope are true. Other
applications will appear as mathematicians begin to understand the potential of formalised libraries of mathematics and
of computer programs which can understand them.

3

Formalising Mathematics, Release 0.1

1.3 The Lean Theorem Prover

There are many computer proof assistants out there; the one we shall be using is called Lean. We will be using not just
Lean, but also Lean’s mathematics library mathlib, which contains a substantial number of proofs of mathematical
theorems already, as well as many high-powered tactics, tools which make theorem proving easier. There are many
other theorem provers out there; Isabelle/HOL and Coq are two other provers which have also been used to formalise a
substantial amount of mathematics. The reason we are using Lean is simply that it is the prover which I myself am most
familiar with; I do not see any obstruction in theory to porting this entire course over to another theorem prover.
We will be using Lean 3 this year, because right now Lean 4 is still a work in progress and in particular it does not yet
have a powerful mathematics library. When Lean 4 is ready I will port this course over.

1.4 Prerequisites

Experience has shown that trying to teach people new mathematics at the same time as teaching them Lean is asking too
much from most people. I will hence be assuming that the reader/player is comfortable with the material covered in the
first and second year of a traditional mathematics degree. Later on, when the reader is more familiar with Lean I will
introduce more mathematically challenging material.
This course is focussed on mathematics, or to be more precise, classical mathematics. We will not be concentrating on
the non-mathematical side of the story. Examples of topics we will say very little about are: type theories, functional
programming, the lambda calculus, and constructivism.

1.5 How to read this document

This book comes in three parts: Part A, Part B and Part C. Part A is the mathematical meat of the book. In each of the
various sections of Part A we will be talking about a mathematical idea and how to implement it and work with it in Lean.
We will be learning by doing: you will be writing the code and proving the theorems yourself. To do this you need to
download and install the course repository .
Part B is the non-mathematical background which you will need in order to make sense of what is going on. It covers
basic material of a more “computer-science” nature. I will flag in the exercises the time when it might be helpful to read
sections from this part.
Part C is a glossary of many common tactics. The problem sheets in the course repository will flag which tactics you need
to learn about and when.

4 Chapter 1. Introduction

https://github.com/ImperialCollegeLondon/formalising-mathematics-2022/

CHAPTER

TWO

GETTING LEAN RUNNING ON YOUR COMPUTER

Here’s an example of a simple logic proof in Lean. It’s a proof that that if P and Q are propositions (that is, true/false
statements), and if P is true and P ⇒ Q is true, then Q is true.

example (P Q : Prop) (h1 : P) (h2 : P → Q) : Q :=
begin

apply h2,
exact h1

end

The first line of the code states the theorem. Hypothesis h1 is that P is true, and hypothesis h2 is that P implies Q (note
that Lean uses a regular arrow for implication rather than the more common⇒ sign). The conclusion, after the colon, is
that Q is true. The proof is between the begin and the end and it’s clear that it somehow uses both hypothesis h1 and
hypothesis h2. But just reading the proof, it’s hard to see exactly what is going on. We can’t learn Lean this way.
The whole point of using a theorem prover is that it makes proofs like this interactive. So, before we get going, we need
to get this and other proofs running on your computer somehow. There are several ways to do it.

2.1 The best way: install Lean on your computer

The main advantage of this method is that, once you have it all working, Lean will be quick. It will start up instantly and
it will run fast.
You will need to install Lean 3, and the Lean community tools. Instructions on how to get these things installed on your
computer are here (right click and open in new tab if you don’t want to lose your place).
Once you have them, you can install the Lean repository formalising-mathematics-2023 associated with this
course. Fire up your command line, navigate to the place where you want to install the repository, and type

leanproject get ImperialCollegeLondon/formalising-mathematics-2023

Then use VS Code’s “open folder” open and open the formalising-mathematics-2023 directory.

5

https://leanprover-community.github.io/get_started.html

Formalising Mathematics, Release 0.1

2.2 An alternative: Gitpod

It is recommended that you install Lean on your own computer if you’re doing this course, but if for some reason you
do not want to do this then you can use Lean via a web browser. You will need to set up an account in some way (for
example a GitHub account), but it is possible to access the course repository using Gitpod.
Right click here and “open link in new tab” to access the repository using Gitpod. I strongly recommend that you do not
open any Lean files until all the downloading has finished and the output in the terminal window has stopped (it should
print something like files extracted: 3025 [00:08, 358.12/s] as the last line)
It takes longer to fire up, and I’ve had problems with some browsers, but I’ve got it working with Chrome. The disadvan-
tages of this method: you are not able to save your work, you are not able to create your own projects, and I believe there
is some time limit for the amount that you can use gitpod for free. However if you are just dabbling then this might be
the solution for you.

6 Chapter 2. Getting Lean running on your computer

https://gitpod.io/#/https://github.com/ImperialCollegeLondon/formalising-mathematics-2023/

CHAPTER

THREE

PART A: THE MATHEMATICS

Thematerial in Part A of this course is divided into some number of sections, each of which corresponds to amathematical
topic. The total number of sections will only become apparent when the course is over. For each section there is also
some associated Lean code in the github repository corresponding to the course. I would recommend that readers work
through the first few parts in order to learn about the basics; after a while it’s possible to start picking and choosing. Note
that the material in parts B and C can be read in any order.
Note: currently only sections 1 and 2 has been uploaded to the course website, and the order of the sections after that is
going to be changed.

3.1 Section 1 : Logic

By “logic” here we mean the study of propositions. A proposition is a true/false statement. For example 2+2=4, 2+2=5,
and the statement of the Riemann Hypothesis are all propositions.
Basic mathematics with propositions involves learning about how functions like→, ¬, ∧,↔ and ∨ interact with propo-
sitions like true and false.
In Lean we can prove mathematical theorems using tactics such as intro and apply. The purpose of this section is to
teach you ten or so basic tactics which can be used to solve logic problems.
Fire up a Lean session, open up the formalising-mathematics-2022 Lean repository, find section01within
the src directory of the repository, and try doing the problem sheets! If you need help getting started, you can read the
below, or you can watch the video TODO make a video and link to it here.

3.1.1 Lean’s notation for logic.

In Lean, P : Prop means “P is a proposition”, and P → Q is the proposition that “P implies Q”. Note that Lean uses
a single arrow→ rather than the double arrow⇒.
The notation h : P means any of the following equivalent things:

• h is a proof of P;
• h is the assumption that P is true;
• P is true, and this fact is called h.

Here h is just a variable name. We will often call proofs of P things like hP but you can call them pretty much anything.
WARNING: do not confuse P : Prop with hP : P. The former means that P is a true-false statement; the latter
means that it is a true statement (and hP is its proof).

7

Formalising Mathematics, Release 0.1

3.1.2 Lean’s tactic state.

Lean’s “tactic state”, or “local context”, is what you see on the right hand side of the screen when you have Lean up and
running. In the middle of a proof it might look something like this:

P Q : Prop
hP : P
hPQ : P → Q
⊢ Q

The proposition after the “sideways T” at the bottom (it’s called a “turnstile” apparently) is the thing you are supposed to
be proving – this is the goal of the level of the game. The stuff above the turnstile is the stuff you are assuming. In the
example above, P and Q are propositions, and we are assuming that P is true and that P implies Q, and we are supposed
to be proving that Q is true. If you succeed in proving the goal, Lean will display a “goals accomplished 2/7” message and,
assuming you didn’t use sorry at any point (which is cheating), you’ve solved the level.
How then do we manipulate the tactic state? We do this using tactics, which you type in on the left hand side of the
screen, between a begin and an end. Take a look at some of the tactic documentation in Part C of this book to learn
more about tactics. If you’re just getting started, then try reading about intro, apply and exact. Those are the tactics you’ll
need to solve the levels in the first problem sheet of the course, logic sheet 1 in section 1.

3.2 Section 2 : An introduction to the real numbers

3.2.1 The real real numbers

Lean’s maths library mathlib has the real numbers. This isn’t surprising, a lot of programming languages like Python etc
have the real numbers. But actually there is a difference between Python’s real numbers and Lean’s real numbers. Python’s
real numbers are actually what a computer scientist would call float s, i.e. floating point numbers. Are floating point
numbers different to real numbers? Yes, definitely! There are only finitely many floating point numbers, for example.
Floats are “real numbers stored up to a finite precision”. Addition on floats is not associative; if N is a really large floating
point number and ε is a really small floating point number, then N+ε=N because of rounding errors, so (-N)+(N+ε)=0
but ((-N)+N)+ε=ε.
Lean’s real numbers are the real real numbers. Lean’s real numbers are defined under the hood as equivalence classes of
Cauchy sequences (although you will never need to know this). You can prove that Lean’s real numbers are uncountable.
Remember that in Lean, we use types not sets. So the real numbers are a type. They have an official name of real, but
we never use this; we always use the notation, which is R. Type this in VS Code with \R.
Lean’s maths library mathlib doesn’t just have the real numbers – it also has what is known to computer scientists as
an “Application Programming Interface” for the real numbers, otherwise known as an “API” or “interface”. This sounds
extremely intimidating, until you discover what this actually means in practice: it means that Lean knows a whole bunch
of theorems about the real numbers (for example, a nonempty bounded set of reals has a least upper bound), and Lean
also has a whole bunch of definitions of standard functions on the real numbers like the cosine function real.cos :
R → R and the square root function real.sqrt : R → R and so on, and it knows a bunch of theorems about
these functions too.

8 Chapter 3. Part A: the mathematics

Formalising Mathematics, Release 0.1

3.2.2 Garbage in, garbage out

Did you spot what looked like a mistake in what I just said? I just claimed that the mathlib function real.sqrt took
in a real number and outputted a real number. So what happens if you feed in -1 or some other negative number? Lean
doesn’t give you an error! It just spits out some arbitrary answer – for all I know, real.sqrt(-1) = 37. I have no
idea what real.sqrt(-1) actually is, and it doesn’t even matter, because I am a mathematician, so I only run real.
sqrt on non-negative real numbers. If I want to take the square root of a negative number, I use complex.sqrt.
Perhaps you are worried that such a cavalier attitude towards square roots of negative numbers leads to contradictions in
the system – but it does not. The simplest way to explain why is the following. Let me define a function f on the real
numbers, by f(x)=sqrt(x) for x>=0, and f(x)=37 if x<0. Does defining such a function lead to a contradiction
in mathematics? Of course it does not! That’s what real.sqrt looks like (although they might have chosen 0 or
sqrt(-x) for the output when x was negative – who knows, and who cares). The trick is that it is in the theorems
about real.sqrt where the hypotheses of nonnegativity appear. For example, it is probably not true that real.
sqrt(a*b)=real.sqrt(a)*real.sqrt(b) in general, because a or b might be negative. However it is true
that real.sqrt(a*b)=real.sqrt(a)*real.sqrt(b) if a ≥ 0 and b ≥ 0, and this is the theorem in the
library. So you do have to check that you’re not taking the square roots of negative numbers – just not where you might
expect.

3.2.3 Lean is not a computer

The last thing I would like to say about the real numbers in this introduction is that Lean 3 is not designed to compute.
This might all change in Lean 4, but right now you cannot try and “evaluate” real.sqrt 2 and expect the answer to be
equal to 1.41421356.... That ... has no meaning in Lean, because real numbers have infinite precision. You could
prove that 1.41421356 < real.sqrt 2 < 1.41421357 and right now you would have to do this manually by
squaring up and multiplying out. I think it would be an interesting and possibly tricky challenge to prove something like
0.54 < real.cos 1 ∧ real.cos 1 < 0.55 (Lean’s cosines are of course in radians; one might want to try
and prove this using the power series expansion of cosine but it might well be painful).

3.2.4 Working with reals

How do we state that 2+2=4? We can do it like this:

example : (2 : R) + 2 = 4 :=
begin

sorry
end

What’s going on here? If I hadn’t put that R in there, Lean would have assumed that I meant the natural number 2 –
Lean’s “default” 2. The naturals, integers, rationals, reals and complexes (and p-adic numbers for all primes p, if you
know what they are) are all different types, so they all have different 2 s. Writing (2 : R) tells Lean exactly which 2
we mean.
So how come we didn’t have to write (2 : R) + (2 : R) = (4 : R)? The reason for this is that addition in
Lean takes two terms of a type X and outputs a term of the same type X, so once Lean knows that the first term has type
R it figures out that all the other terms must have type R as well for things to make sense.
How do we prove that 2+2=4? The answer is the norm_num tactic, which “normalises numerical expressions” – in other
words it proves equalities and inequalities as long as only numbers, and no variables, are involved.
To solve the sorry s in section 2 you’ll need to know about the norm_num and ring tactics, as well as the specialize tactic.
Read about them in the tactic documentation in Part C, and, if you like, in the mathlib community tactic documentation .

3.2. Section 2 : An introduction to the real numbers 9

https://leanprover-community.github.io/mathlib_docs/tactics.html

Formalising Mathematics, Release 0.1

3.3 Section 3 : An introduction to group theory

3.3.1 Overview of the sheets

Lean has a bunch of group theory already (Sylow’s theorems, nilpotent and solvable groups and other “final year under-
graduate level mathematics”). Should we use what is already there, or rebuild from scratch?
In section 3 of the course repository we study groups (in sheets 1 and 2), subgroups (in sheet 3) and group homomorphisms
(in sheet 4). The approach we take is the following. In sheets 1 and 2 we make some basic group theory from scratch.
In sheet 3 we dump our development and go back to Lean’s groups, but develop the theory of subgroups of a group from
scratch. And finally in sheet 4 we dump our theory of subgroups and use Lean’s subgroups, but develop the theory of
group homomorphisms from scratch.

3.3.2 Structures and classes

Groups, subgroups, and group homomorphisms in Lean are all encoded via inductive types. These inductive types are of
a particular boring nature: they only have one constructor. Thus in contrast to P ∨ Q, which can be proved in two ways
(you either prove P or you prove Q), there is only one way to make a subgroup of a group: you have to give a subset of
the group, plus proofs that it satisfies the axioms of a subgroup. You can read about the details of structures and classes
by following those links; I will not say any more about them here.

3.3.3 What you need to know to do sheets 1 and 2

There will be a lot of rw involved, because we are constantly using the group axioms. Lean’s simplifier simp is introduced
in sheet 1; don’t forget to experiment with it. It will do multiple rewrites in one go. As the sheet goes on, the simplifier
gets smarter because we tag more and more lemmas with the @[simp] attribute.
Sheet 2 is perhaps mathematically tricky.

3.3.4 What you need to know to do sheet 3

Although you don’t need it, the convert tactic can be useful at times. Otherwise it’s just a case of keeping your head,
and using intro, apply and rw.
The ext tactic can be used to prove that two subgroups are equal.

3.3.5 What you need to know to do sheet 4

The ext tactic can be used to prove that two functions are equal.

3.4 Section 4 : functions

Note to future Kevin: this needs to be moved to section 3; it’s easier than groups. We want functions section 3, sets section
4, groups section 5.
This short section is an introduction to “abstract” functions in Lean. We’ve seen functions from the naturals to the reals,
but here we’ll be talking about functions between types X and Y.

10 Chapter 3. Part A: the mathematics

Formalising Mathematics, Release 0.1

Lean is a functional programming language, and functional programmers realised a long time ago that brackets which
mathematicians put into their work are often not necessary. If f : X → Y and x : X then we can write f x in
Lean instead of f(x) and it works just as well. Brackets can be used – they are just optional.
Be warned though – functions in Lean are greedy: they will eat the next thing they see. For example f n + 1 means
(f n) + 1 and not f (n + 1). If you want f(n+1) then you need to use the brackets. Similarly, composite of
functions f : X → Y and g : Y → Z evaluated at x : X needs to be written g (f x) otherwise g would eat
f and then choke because f doesn’t have the right type.

3.4.1 The problem sheets

For the first sheet you should be able to get away with what you already know. For the second one I introduce a method
for making finite types and explain how to define functions from these finite types to other types. This is needed because
in the first sheet we are proving theorems, but in the second sheet we are expected to give counterexamples.

3.5 Section 5 : Sets

Note to future Kevin: this needs to be moved to section 4, and functions to section 3, and groups to section 5.
Lean uses type theory, not set theory. Lean has sets, but they’re always subsets of a type. For example, the real numbers
R are a type in Lean, so you can make sets of real numbers. The type of sets of real numbers is called set R in Lean.
More generally if X is any type, set X is the type of subsets of X.
Remember that in Lean’s type theory, every object lives at one of three “levels”. There are the two universes Type and
Prop at the top, and then there are the types and the theorem statements one level below them, and then there are the
terms and the theorem proofs at the bottom. The type of all real numbers R is a type, so R lives at the middle level, and
real numbers like 7 are terms; we write 7 : R to indicate that 7 is a real number.
Here’s how sets fit into the picture, and it might not be how you think. The type set R is the type of sets of real numbers,
so set R : Type. A term of this type is hence a term, so at the bottom level. Let S : set R be a set of real
numbers. Then S is a term, not a type, so 3 : S doesn’t make sense (because t : T means that t is a term and T is
a type). So how do we talk about elements of sets? The same way that mathematicians do. If x : R is a real number,
then we write x ∈ S to mean that x is an element of the set S. Note that both x and S in x ∈ S are terms. Note also
that x ∈ S : Prop, i.e. x ∈ S is a true-false statement.
The ext tactic is a useful one to know when dealing with equalities of sets. Extensionality is a mathematical principle
which states that two objects are equal if they’re made from the same things. For example, sets are extensional objects in
mathematics, which means that two sets are equal if and only if they have the same elements. If S : set R and T :
set R are sets, and your goal is ` S = T then the tactic ext x will introduce a new arbitrary real number x : R
into the tactic state, and will turn the goal into x ∈ S ↔ x ∈ T.

3.6 Section 6 : quotients

A few years ago, I started to understand much better the two completely different ways in which mathematicians construct
new objects. One way to define an object is to say what it is. The other way is to say what it does. Let’s take a look at some
examples.

3.5. Section 5 : Sets 11

Formalising Mathematics, Release 0.1

3.6.1 The natural numbers

Here is a “concrete” definition of the natural numbers. We can define 0 to be the empty set. We define 1 to be {0},
we define 2 to be {0,1} and so on. An axiom of mathematics tells us that we can put all these things together to make
an infinite set {0,1,2,3,...}. One can define n+1 to be the union of n and {n}, and then prove the principle of
mathematical induction for this concrete model of the natural numbers.
Another definition of the natural numbers, just as old, goes back to Peano. He defines them via postulates: 0 is a natural,
the successor of a natural is a natural, and that’s it. By “that’s it” we mean that “this is the only way to define naturals”;
more precisely we mean that if you want to prove a theorem about naturals, then it suffices to prove it for 0, and also to
show that if you’ve proved it for n then you can prove it for n+1. In other words, we are stating without proof that the
principle of induction holds.
The first definition of a natural is a “what it is” definition; the second is a “what it does” definition. To a mathematician it
simply does not matter which approach we use. All that a mathematician cares about is that there is an object called N in
which we can do arithmetic and which satisfies the principle of mathematical induction (and, strictly speaking, also the
principle of mathematical recursion). Whether induction is an axiom or a theorem is of no interest to us, just as it was of
no interest to people like Gauss and Euler. Furthermore, anyone who believes that “secretly they are using the concrete
model all the time” will have a big shock when it comes to formalising; there are copies of the natural numbers embedded
in the integers, the rationals, the reals, the complexes, the quaternions, the octonions, and the p-adic numbers for all prime
numbers p, and anyone who has seen the construction of a sensible concrete model for any of these mathematical ideas
will know that, for example, zero is not actually the empty set in any of them; and yet it turns out that we still use induction
and recursion on these copies of the naturals (for example, when adding them).

3.6.2 Products

Let X and Y be sets or types or whatever you want to call a “collection of abstract elements”. A crucial construction in
mathematics is the product of X and Y, typically denoted X × Y. We are often told what looks like a concrete model
for this object; an element of X × Y consists of an ordered pair of elements (x,y), with x an element of X and y an
element of Y. But what is an ordered pair? Well, there are two approaches: we can either say what it is, or what it does.
Wikipedia explains three ways to set up the theory of ordered pairs in set theory (due to Wiener, Hausdorff and Kura-
towski), and of course there are many more. I will not explain any of them here because clearly we do not care about
“what it is” here, we only care about “what it does”, which is that two ordered pairs (x1, y1) and (x2, y2) are equal
if and only if x1 = y1 and x2 = y2. What it is, is an uninteresting implementation issue rather than a mathematical
one.
On the other hand, when it comes to X × Y, what it does is the following: there are projection maps to X and Y, and
for any Z we know that to give a map from Z to X × Y is to give a map from Z to X and a map from Z to Y, with
the dictionary given via composition with the projections. However, imagine developing the theory of linear maps on R2

knowing only this; it’s really helpful to know what it is, namely ordered pairs of reals (x, y). We conclude that sometimes
mathematicians do use what it is, but sometimes they only use what it does. We also see that sometimes there is more
than one choice for what it is, and in a situation where we only care about what it does, we really don’t care what it actually
is.
There are many other situations in more advanced mathematics where we don’t care what it is, but only what it does:
examples are tensor products of vector spaces (and more generally of modules), pullbacks of sheaves on topological
spaces. Cohomology is a situation where we do sometimes care about what it is, however our definition of what it is
depends on what we’re doing; if doing abstract homological algebra our model might involve injective objects, and if doing
a calculation it might involve cycles and boundaries (possibly homogeneous, possibly inhomogeneous). Mathematicians
are extremely good at switching between models at will, or using no model at all, depending on the situation.
I’ll now explain how quotients work in Lean, using a “what it does” approach.

12 Chapter 3. Part A: the mathematics

https://en.wikipedia.org/wiki/Ordered_pair#Defining_the_ordered_pair_using_set_theory

Formalising Mathematics, Release 0.1

3.6.3 Quotients

Here’s the set-up. We have X and an equivalence relation ≈ on X. Equivalence relations are some kind of generalisation
of equality, and we want a new object Q where ≈ actually becomes equality; in other words we want a surjection ⟦.⟧
: X → Q and the theorem that x1 ≈ x2 ↔ ⟦x1⟧ = ⟦x2⟧. In Cambridge I learnt what Q is, namely the set of
equivalence classes of X, and the function ⟦.⟧ is called “equivalence class of”. Thirty years later Patrick Massot pointed
out to me that actually I never once used “what it is”, I only ever used “what it does”, and it did not take me long to realise
that he was exactly right. Just like the other examples above, this construction of the quotient Q as a set of sets is not “the
answer” but in fact just a model. The reason I am bringing this up is that Lean does not use this model. In fact Lean uses
a “secret” model for Q – a type called quotient s where s is a term which bundles together the binary relation ≈
and the proof that it’s an equivalence relation. We cannot “inspect” the terms of this type and ask if they are subsets of
X; it is an opaque construction. However we know what quotient s does because Lean provides the API to do it. In
particular, the fact that ⟦.⟧ is a surjection and that x1 ≈ x2 ↔ ⟦x1⟧ = ⟦x2⟧ are available to us as theorems in
Lean’s library.
In theory, we could prove everything about quotients using these two facts, however there is a construction in mathematics
which is so common that Lean singles it out and gives us extra API for it. We finish by talking about it. In Lean it is
called quotient.lift which is a great shame because mathematically it is a descent, not a lift. In mathematics it
goes by the far more unwieldy name of “the way to show that a function defined from a quotient using a certain method
is well-defined”.

3.6.4 What does it mean to be “well-defined”?

One thing which I’ve seen students struggle with over my decades of teaching is the concept of a function out of a quotient
being “well-defined”. We want to define a function f from Q to some other type/set Z and the strategy is as follows. Take
an element q of Q and pretend it’s an equivalence class. Now choose a random element of the equivalence class; this is
now an element x of X. Using x, construct an element of Z. Now claim that this element of Z is “well-defined”, and decree
that f(q) is this element. What does this well-definedness boil down to? It’s the idea that if we had chosen a different
element y of the equivalence class, and used that instead of x to construct the element of Z, we would have got the same
element.
I find this very confusing to write, so no wonder students find it hard to comprehend. It’s much easier to explain it in the
following way. Our “recipe” to make an element of Z from x is just a function F : X → Z. The check that if we’d
chosen a different element y in the equivalence class of q instead of x we’d get the same answer, is simply the assertion
that F(y)=F(x). Finally, the fact that x and y are in the same equivalence class is just the assertion that x ≈ y.
The upshot of all this is that the mathematician’s “principle of defining a function and then checking it’s well-defined”
boils down to finding a term of the following type:

∀ (F : X → Z) (h : ∀ (x y : X), x ≈ y → F x = F y), (Q → Z)

This term is called quotient.lift in Lean. You feed it F : X → Z and a proof h that F is constant on equivalence
classes, and it descends F to a function Q → Z called quotient.lift F h.
The only question left is how to prove that (quotient.lift F h) (⟦x⟧) = F x, that is, that quotient.lift
F h really is a descent of F down to Q. And in Lean, not only is this true, but the proof is refl.

3.6. Section 6 : quotients 13

Formalising Mathematics, Release 0.1

14 Chapter 3. Part A: the mathematics

CHAPTER

FOUR

PART B: LEAN TIPS

The purpose of this part is to explain some non-mathematical details about Lean. The sections are independent of each
other, and the primary use of this part is as a reference.

4.1 Types and terms

4.1.1 Sets and their elements

In mathematics you have seen many examples of sets and their elements. For example the real numbers R is a set, and it
has elements such as 37 and 12345. It is difficult to give a formal definition of a set. Typically a student thinks of a set
as a “collection of things”, and the elements of the set are the things.
Lean uses something called type theory as a foundation of mathematics rather than set theory. We will not be launching
into a deep study of type theory in this course; the idea of this section is to give you a working knowledge of the key
differences between type theory and set theory.
In Lean the type plays the role of the “collection of things”, and the things in the type are called terms. For example, in
Lean the real numbers R are a type, not a set, and specific real numbers like 37 and 12345 are called terms of this type.
The notation used is also different to what you have usually seen. In set theory, we write 37 ∈ R to mean that 37 is a
real number. More formally we might say “37 is an element of the set of real numbers”. In type theory the notation is
different. In type theory we express the idea that 37 is a real number by writing 37 : R, and more formally we would
say “37 is a term of the type of real numbers”. Basically the colon : in type theory plays the role of the “is an element
of” symbol ∈ in set theory.

4.1.2 The universe of all types

Some of you might know that whilst it’s unproblematic to talk about the set of real numbers in set theory, it is problematic
to talk about the set of all sets. Russell’s Paradox is the observation that if X is the set of all sets which are not elements
of themselves, then X ∈ X if and only if X /∈ X, a contradiction. For similar reasons one cannot expect there to be a
type of all types – this type of “self-referentiality” can lead to logical problems. In Lean, there is a universe of all types,
and this universe is called Type. The statement that the real numbers are a type can be expressed as R : Type.
Here is another example. If G is a group, and g is an element of this group, then in set theory one might say that G is a
set and g ∈ G is an element of the set. In type theory one says instead that G : Type and that g : G.
The mental model which you should have in your mind is that in Lean, every object exists at one of three “levels”. There
are universes, such as Type, there are types such as R or G and there are terms such as 37 and g. Every mathematical
object you know fits neatly into this heirarchy. For example rings, fields and topological spaces are all types in Lean, and
their elements are terms.

15

Formalising Mathematics, Release 0.1

4.1.3 Function types

Say X and Y are types. The standard notation which you have seen for a function from X to Y is f : X → Y. This
is also the notation used in Lean. A mathematician might write Hom(X,Y) for the set of all functions from X to Y. In
Lean this set is of course a type, and the notation for this type is X → Y. So f : X → Y says that f is a term of
type X → Y, i.e., the type theory version of the idea that f is an element of the set Hom(X,Y), or equivalently that f
is a function from X to Y.

4.1.4 The universe Prop

Mathematicians define objects such as the real numbers and groups, but they also prove theorems about these objects.
What is a theorem? It has two parts, a statement and a proof. Lean needs to be able to manipulate theorem statements
and proofs as well as being able to manipulate objects such as the real numbers and groups. How do theorem statements
and theorem proofs fit into the picture?
The answer to this question is beautifully simple. Lean regards a theorem statement as a type, not living in the Type
universe, but in another universe called Prop – the universe of true-false statements. A true-false statement, otberwise
known as a proposition in this course, is a statement such as 2+2=4 or 2+2=5 or the Riemann hypothesis. Note in
particular that we are reclaiming the word “proposition” from its traditional usage in other mathematics courses. You
might have seen the word “proposition” being used to mean the same thing as “lemma” or “theorem” or “corollary”
or “sublemma” or… . We don’t need so many words to express the same idea, so in this course we will use the word
“proposition” to mean the same thing as the logicians and the computer scientists: propositions, unlike theorems, can be
false! A proposition is the same thing as a true-false statement. The notation P : Prop means that P is a proposition.
For example 2 + 2 = 4 : Prop and 2 + 2 = 5 : Prop.
The idea that a proposition can be thought of as a type means in particular that a proposition has somehow got “elements”.
This is not the way that true-false statements are usually thought of by mathematicians, but it is a key idea in Lean’s type
theory. The “elements” (or, to use Lean’s language, the terms) of a proposition are its proofs! Every proposition in Lean
has at most one term. The true propositions have one term, and the false propositions have no terms. To give a concrete
example, we have 2 + 2 = 4 : Prop, because 2+2=4 is a true-false statement. we will learn in this course how
to make a term h : 2 + 2 = 4; this term h should be thought of as a proof that 2+2=4. You could read it as the
hypothesis that 2 + 2 = 4 or however you like, but under the hood what is happening is that h is a term of the type 2
+ 2 = 4.
We also have the proposition 2 + 2 = 5 : Prop. It is however impossible to make a term whose type is 2 + 2 =
5, because 2+2=5 is a false proposition. If you like, you can think of 2 + 2 = 4 as a set with one element, and 2 +
2 = 5 as a set with no elements. This is initially a rather bizarre way of thinking about true-false statements, however
you will soon get used to it.
The reason it is important to start thinking of elements of sets and proofs of propositions as “the same sort of thing”, is
that when formalising mathematics one frequently runs into things like the type of non-negative real numbers. To give a
term of this type is to give a pair (x,h) consisting of a real number x and a proof h that x ≥ 0, or, to put it in Lean’s
language, a term x : R and a term h : x ≥ 0. When doing mathematics like this in Lean, one just gets used to
the fact that some variables are representing elements of sets and others are representing proofs of propositions.

16 Chapter 4. Part B: Lean tips

Formalising Mathematics, Release 0.1

4.1.5 P ⇒ Q is P → Q

Here’s an interesting analogy.
In the usual set-theoretic language which mathematicians use, we might say the following: If X and Y are sets, then we
can consider the set Hom(X,Y) of functions from X to Y, and an element f ∈ Hom(X,Y) is a function from X to Y.
In Lean’s type theory we say it like this: if X and Y are types in the Type universe, then we can consider the type X →
Y of functions from X to Y, and a term f : X → Y of this type is a function from X to Y.
In usual mathematical logic, we might say the following: If P and Q are true-false statements, then P ⇒ Q is also a
true-false statement (for example if P is true and Q is false, then P ⇒ Q is false). If we have a hypothesis h that says
that P ⇒ Q is true, we might write h : P ⇒ Q.
In Lean’s type theory we say it like this. If P and Q are types in the Prop universe, i.e., propositions, then we can consider
the type P → Q of functions from proofs of P to proofs of Q. If we have such a function h, which takes as input a proof
of P and spits out a proof of Q, then h can be thought of as a proof that P ⇒ Q. In Lean the function type P → Q lives
in the Prop universe – it’s also a true-false statement.
What Lean’s type theory is suggesting here is that an interesting model for a true/false statement is a set with at most one
element. If the set has an element, it correponds to a true statement, and if it has no elements then it corresponds to a
false statement.
As an exercise, imagine that P and Q are sets with either 0 or 1 element, and try and work out in each of the four cases
the size of the set Hom(P,Q), which in Lean we would write as P → Q. The answer you should get is that the size of
Hom(P,Q) should be either 0 or 1, and it is 0 if P ⇒ Q is false, and 1 if P ⇒ Q is true.

4.2 Equality

Tip: “Syntactic equality is they look identical, definitional equality is they are the same, propositional equality is they
turn out to be the same.” – Bhavik Mehta

As mathematicians we tend not to fuss too much about equality, at least at undergraduate level. When formalising mathe-
matics in Lean’s type theory, it turns out that one has to think a bit more carefully about what is going on. In Lean there are
three different kinds of equality which one has to be aware of, and the differences between them are “non-mathematical”.
The strongest kind of equality is syntactic equality; this is the kind of equality that tactics like rw and simp care about.
Then there is definitional equality; this is he kind of equality that tactics like exact and intro and refl care about.
Finally, there is propositional equality; this is the “usual” kind of equality as understood by mathematicians.

4.2.1 Overview

To give you a flavour of what this document is about, and in particular to indicate that these refined notions of equality
are in some sense not “mathematical”, here is an example. Let x be a natural number. As mathematicians we would all
agree that 0 + x = x and x + 0 = x. Both of these are propositional equalities. However only one is a definitional
equality, and neither of them are syntactic equalities.

4.2. Equality 17

Formalising Mathematics, Release 0.1

4.2.2 Syntactic equality

Syntactic equality is the strongest kind of equality there is. Two expressions are syntactically equal if they are literally
made by pressing the same keys on your keyboard in the same order.
Example: x + 0 and x + 0 are syntactically equal.
Non-example: x + 0 and x are not syntactically equal (even though they are mathematically equal).
The rewrite tactic works at the syntactic equality level. For example, let’s say that your tactic state looks like this:

a b x : N
h : x + 0 = a
⊢ x = b

Then rw h will fail, even though x + 0 = x. The reason it will fail is that x + 0 and x are not syntactically equal,
so the rw tactic will fail to find the left hand side of h in the goal.

4.2.3 Definitional equality

Definitional equality is a weaker kind of equality than syntactic equality – two things can sometimes be definitionally
equal without being syntactically equal. A simple example is the following. In Lean, ¬P is notation for not P, and not
P is defined to mean P → false. So whilst ¬P and P → false are not syntactically equal, they are definitionally
equal.
As the name suggests, definitional equality depends on definitions, and in particular depends on implementation de-
tails (that is, on exactly how things are defined under the hood). As such, definitional equality is in some sense “not a
mathematical concept”. Here is an example to show you what I mean.
Addition on the natural numbers is defined “by induction”, or, more precisely, by recursion. If x and y are natural
numbers, then in the definition of x + y we have to choose which one to induct on. The designers of Lean chose to
induct on y. This means that x + 0 is defined to be x, and x + succ(y) is defined to be succ(x + y).
This means that x + 0 and x are equal by the very definition of +. To put it another way, x + 0 and x are definitionally
equal.
However, players of the Natural number game will know, if we use this as the definition of addition, then to prove that
0 + x = x we need to use induction. The problem is that we cannot “unfold” the definition of 0 + x any further;
the definition of 0 + x depends on whether x = 0 or x = succ(y) for some y, so to make any progress in the
proof of 0 + x = x we need to use more than just unfolding definitions; we need to use induction (to split into the
cases x=0 and x=succ(y), when we can start simplifying 0 + x). As a result, although 0 + x = x is true, it is not
definitionally true.
The fact that x + 0 = x is a definitional equality, but 0 + x = x is not, means that definitional equality is in some
sense not a mathematical concept. Furthermore, if the designers of Lean had decided to define addition by recursion on
the first variable instead of the second, then of course our conclusions would be the other way around.
Note also: the fact that x + 0 and x are definitionally equal is specific to the natural numbers. Addition of real numbers
is not defined by induction, it is defined in a far more complicated way using Cauchy sequences and quotients, and if r
: R then none of r + 0, r or 0 + r are definitionally equal to each other.
Tactics like exact and refl work up to definitional equality. For example, the following proof works:

example (x : N) : x + 0 = x :=
begin

refl
end

18 Chapter 4. Part B: Lean tips

https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/

Formalising Mathematics, Release 0.1

which is perhaps not what you would expect if you have played the natural number game; I explicitly withhold this
knowledge from the player (and occasionally get “bug reports” when people discover it). However the following does not
work:

example (x : N) : 0 + x = x :=
begin

refl -- failed to unify 0 + x = x with ?m_2 = ?m_2
end

Similarly, this code works:

example (x y : N) (h : x + 0 = y) : x = y :=
begin

exact h,
end

because hypothesis h is definitionally equal to the goal x = y.
intro is another tactic which works up to definitional equality. If P is a proposition, then ¬ P is notation for not P,
and the definition of not P is P → false, so the intro tactic works here:

example (P : Prop) : ¬ P :=
begin

intro h,
/-
tactic state now

P : Prop
h : P
⊢ false
-/
sorry,

end

(although the goal is of course not provable).

4.2.4 Propositional equality

This is the weakest kind of equality, and the kind most familiar to mathematicians. Two terms a and b are propositionally
equal if you can prove a = b, or equivalently if you can construct a term h : a = b of type a = b. For example,
if x is a natural then x, x + 0, 0 + x and x + 3 - 3 are all propositionally equal.

4.2.5 Appendix: syntactic equality again

What I said about syntactic equality is not strictly speaking true. The below paragraph fixes it, but can be ignored by
everyone other then pedants.
There are actually a couple of ways that things can be syntactically equal without literally being made by pressing the same
keys in the same order. Firstly, notation can be unfolded without breaking syntactic equality. For example the = sign in
x = y is actually notation for the eq function, and the terms x = y and eq x y are syntactically equal. Secondly,
the names of globally quantified variables can change without breaking syntactical equality; for example ∃ x, x^2 =
4 and ∃ y, y^2 = 4 are syntactically equal.

4.2. Equality 19

Formalising Mathematics, Release 0.1

4.3 The three kinds of types

This is some background on Lean’s type theory.

4.3.1 Introduction

Recall that every expression in Lean lives at one of three “levels” – it is either a universe, a type or a term. The universes
are easy to understand; as far as this course is concerned, there are only two, namely Type and Prop. This document
is about the next level down – types. It turns out that at the end of the day there are only three kinds of ways that you
can make types; there are function types, inductive types and quotient types. I will go through these three kinds of types
in this section, explaining abstractly how to make the type, how to make terms of that type, and how to make functions
whose domain is the type.
[A technical footnote about the “meaning” of this section. You might be wondering about the sets and theorem statements
you know in mathematics (recall that in Lean the type plays the role of both), and asking yourself which kind of type
each of these things is. However such a question is not really mathematically meaningful; for example the type of group
homomorphisms between two groups can be made either as an inductive type or a function type, and the quotient of a
group by a subgroup can be made as either an inductive type or a quotient type. In fact, it is not completely clear to me
that mathematicians need to know the ins and outs of these constructions if all they want to do is to prove theorems, but
here is a brief overview anyway. For more detailed information, read Lean’s type theory bible, Theorem Proving In Lean
(sections 2, 3, 7 and 11.4).]
[A technical footnote about universes. if you look in the source code of mathlib TODO add web link to github) you
will find more general Type universes called Type u (our Type is just Type 0), and you might even see Sort u,
which means “either Type u or Prop. These “higher universes” are a consequence of the fact that eveyrthing in Lean
has to have a type, so Type has to have a type, and this type is called Type 1, which has type Type 2 etc etc. We’re
not doing any category theory in this course, so we will ignore these higher universes.]

4.3.2 Function types (a.k.a. Pi types)

Set-theoretically, if X and Y are sets, we can consider the set Hom(X,Y) of maps from X to Y. In Lean the corresponding
type is called X → Y so you can think of the→ symbol as “the way to make this type”.
We make terms of this type using something called λ. In maths it’s quite common for λ to denote a real number, but λ is
a reserved symbol in Lean – it means one thing, and one thing only: it’s the λ in “lambda-calculus”, if you’ve ever heard of
that. If you want to make the function f(x) from the reals to the reals sending x to x^2+3 then in Lean the definition
of f looks like this:

def f : R → R := λ x, x^2+3

If you have understood the “mapsto” symbol 7→ in mathematics you might have seen this function defined as x 7→
x^2+3. Computer scientists use “prefix notation” for this construction rather than “infix notation”, i.e. they put the
symbol indicating that we’re making a function before the input and output, instead of between the input and output.
In fact Lean has a slightly more general kind of function type. The idea (expressed set-theoretically) is that if we have
infinitely many sets Y0, Y1, Y2,… then we can make the type of functions from the natural numbers to the union of the
Yn, but with the condition that the natural number i is sent to an element of Yi. More generally (and switching back to
type-theoretic language), say I is some index type, and for each i : I we have a type Y i. Then Lean will let you
make the type of “generalised functions” which take as input a term i of type I and which spit out a term of type Y i
– so the type of the output depends on the term which is input. Lean’s notation for the type of these functions is Π (i
: I), Y i. If f is such a function, then the fact that the type of the output of f depends on the term i which is input
means that f is called a “dependent function”, and the type Π (i : I), Y i of f is called a “dependent type”, or
a “Pi type”. Not all theorem provers have dependent types – for example the Isabelle/HOL theorem prover uses a logic
called Higher Order Logic, which does not have dependent types.

20 Chapter 4. Part B: Lean tips

https://leanprover.github.io/theorem_proving_in_lean/

Formalising Mathematics, Release 0.1

Dependent types in the Type universe started showing up in mathematics in the middle of the 20th century. Those of
you who have done some differential geometry might have seen this sort of thing before (if you haven’t then perhaps
ignore this paragraph!). The tangent space Tₓ of a manifold at a point x is a vector space, and these tangent spaces “glue
together” to make a tangent bundle, the union of the tangent spaces; a section s of the tangent bundle is a function from
the manifold to the union of the tangent spaces with the extra hypothesis that s(x) is an element of Tₓ for all x. So a
section of the tangent bundle is a term of type Π (x : X), T x. They also show up in algebraic geometry when
you start doing scheme theory (for example Hartshorne’s definition of the structure sheaf on an affine scheme involves the
dependent type of functions sending a prime ideal of a commutative ring to an element of the localisation of the ring at
this prime ideal).
If the simplest examples I can come up with in mathematics are some fancy differential geometry and algebraic geometry
examples, you might wonder whether we need to think about Pi types at all in this course. But in fact in the Prop
universe they show up all the time! Let’s consider a proof by induction. We have infinitely many true-false statements
P(0), P(1), P(2),…, and we want to prove them all. In other words, we want to prove the proposition ∀ n, P(n).
This proposition, like all propositions, is a type (in the Prop universe) and in fact it is a Pi type, because to give a term
of this type, we need to come up with a function which takes as input a natural number n and gives as output a proof of
P(n), that is, a term of type P(n). So different input terms give terms in different output types. In short, whilst you
can do a lot of mathematics without dependent types, we see dependent propositions everywhere. In fact the statement
of Fermat’s Last Theorem is a dependent type, because the type x ^ n + y ^ n = z ^ n depends on the terms
x, y, z and n. Of course it’s possible to state Fermat’s Last Theorem in Isabelle/HOL or another HOL system, however
the lack of dependent types might make doing modern algebraic geometry in such a system far more inconvenient.

4.3.3 Inductive types

Inductive types are an extremely flexible kind of type; you make them by basically listing the rules which you will allow
to make terms of this type. For example, if you want Lean’s version of “a set X with three elements a, b, and c” then you
can make it like this:

inductive X : Type
| a : X
| b : X
| c : X

We now have a new type X in the system, with three terms X.a : X, X.b : X and X.c : X.
So that’s now to make an inductive type, and how to make terms of this type. The remaining question is how to define
functions from this type, or equivalently how to use terms of this type. If you want to make a function from this type,
then instead of using λ you can use Lean’s “equation compiler”. Here’s how to define the function from X to the naturals
sending X.a to 37, X.b to 42 and X.c to 0:

def f : X → N
| X.a := 37
| X.b := 42
| X.c := 0

Note that if you open X then you don’t have to keep putting X. everywhere.
You might think that this kind of construction can only make finite types, but in fact the theory of inductive types is far
more powerful than this, and in particular we can make many infinite types with them. For example the definition of the
natural numbers in Lean looks like this:

inductive nat : Type
| zero : nat
| succ : nat → nat

4.3. The three kinds of types 21

Formalising Mathematics, Release 0.1

(Peano observed that these two construtions were enough to define all natural numbers) and then we set up the notation
N for nat immediately afterwards. If you’ve played the natural number game you’ll know that we can define addition
and multiplication on the natural numbers, and once one has these set up one can define functions from the naturals to the
naturals or other types using λ, for example λ (n : N), 2*n+3 defines a function from N to N. However we can
also use the equation compiler to inductively define (or more precisely, recursively define) functions from the naturals.
For example the sequence defined by a(0)=3 and a(n+1)=a(n)^2+37 could be defined like this:

def a : N → N
| nat.zero := 3
| nat.succ n := (a n)^2 + 37

You can make inductive propositions too. For example here are the definitions of true and false in Lean:

inductive true : Prop
| intro : true

inductive false : Prop

The inductive type true has one constructor (called true.intro); the inductive type false has no constructors.
Remember that we model truth and falsehood of propositions in Lean by whether the corresponding type has a term or
not. Faced with a goal of ` true you can prove it with exact true.intro. You cannot make a term of type
false “absolutely” – the only time it can happen is if you are in a “relative” situation where you have hypotheses, some
of which are contradictory.
If P and Q are Propositions, then you can use inductive types to make the propositions and P Q and or P Q, with
notations P ∧ Q and P ∨ Q. Here are their definitions:

variables (P Q : Prop)

inductive and : Prop
| intro (hp : P) (hq : Q) : and

inductive or : Prop
| intro_left (hP : P) : or
| intro_right (hQ : Q) : or

If you do cases h with h : P ∧ Q then, because and has one constructor (and.intro), you end up with
one goal. If you do cases h with h : P ∨ Q then you end up with two goals, because or has two constructors
(or.intro_left and or.intro_right). If you do cases h with h : false then you end up with no goals,
because false has no constructors. When Lean sees that there are no goals left, it prints Goals accomplished; if
you have no goals left, you’ve proved the result you were trying to prove. It took me some time to recalibrate my thinking
to this “inductive” way of thinking about logic.
We say “let G be a group” in Lean using inductive types, but the types involved are very simple inductive types with only
one constructor. The type group G is the type of group structures on G. There is only way to make a term of type
group G – you have to give a multiplication on G, an identity and an inverse function, and then check that it satisfies
the group axioms. So the inductive type group G has just one constructor which takes all of this data as input and then
outputs a term of type group G. We will talk more about how to make the inductive type group G when we get on
to groups in section 3 or so.

22 Chapter 4. Part B: Lean tips

Formalising Mathematics, Release 0.1

4.3.4 Quotient types

The third kind of type which you can make in Lean is a quotient type, which I mention here only for completeness. Lean
does not actually need this kind of type – it is possible to make quotient types explicitly using inductive types. However
for technical reasons (which mathematicians don’t need to worry about) they are a distinct primitive kind of type in Lean.
The basic set-up is that you have a type X and an equivalence relation R on X (for some reason this is referred to as a
term of type setoid X in Lean), and you want to make the quotient of X by R. This is the type which mathematicians
would typically refer to as “the set of equivalence classes of R”. In Lean it’s called quotient R, and the map from
X to quotient R is called quotient.mk : X → quotient R. In particular you can make terms of type
quotient R by applying quotient.mk to terms of type X (this is just the construction sending an element of X to
its equivalence class). To define a function from quotient R we use the quotient.lift function; more on this
later, when we construct some quotient types familiar to mathematicians.

4.4 Brackets in function inputs

This is about the different types of brackets which we see in Lean’s functions.
If we type #check @mul_assoc into Lean (assuming we’ve done import tactic or some other import which
imports group theory) then we get the following output:

mul_assoc : ∀ {G : Type u_1} [_inst_1 : semigroup G] (a b c : G), a * b * c = a * (b *␣
↪→c)

At first glance, this makes some kind of sense: a * b * c means by definition (a * b) * c so we can see that this
is some sort of claim that multiplication is associative. Looking more carefully, what is going on is that mul_assoc is
a function, which takes as input a type G, a semigroup structure _inst_1 on G and three terms a, b and c of G, and
returns a proof that (a * b) * c = a * (b * c). But what’s with all the different kinds of brackets? We can
see {}, [] and (). There’s even a fourth kind, although it’s rarer: try #check @mul_one_class.ext to even see
some {||} brackets. These are the four kinds of brackets which you can use for function input variables. Here’s a simple
explanation of what they all mean.

4.4.1 () brackets

These brackets are the easiest to explain. An input to a function in () brackets is an input which the user is expected to
apply. For example, if we have a theorem double (x : N) : 2 * x = x + x then double 37 is the
theorem that 2 * 37 = 37 + 37.

4.4.2 {} and {||} brackets

These brackets exist because Lean’s type theory is dependent type theory, meaning that some inputs to functions can be
completely determined by other inputs.
For example, the term subgroup.mul_mem is a proof of the theorem stating that if two elements of a group are in a
given subgroup, then their product is also in this subgroup. The type of this term is the following:

∀ {G : Type} [_inst_1 : group G] (H : subgroup G) {x y : G}
(hx : x ∈ H) (hy : y ∈ H) : x * y ∈ H

So subgroup.mul_mem takes as input the following rather long list of things. First it wants a type G. Then it wants
a group structure on G. Next it wants a subgroup H of G, then two elements x and y of G, and finally two proofs; first a
proof that x ∈ H and second a proof that y ∈ H. Given all of these inputs, it then outputs a proof that x * y ∈ H.

4.4. Brackets in function inputs 23

Formalising Mathematics, Release 0.1

Now let’s imagine we’re actually going to use this proof-emitting function to prove some explicit statement. We have
some explicit group, for example the symmetric group S5, and some explicit subgroup H and some explicit permutations
x and y in S5, and proofs hx and hy that x ∈ H and y ∈ H. At the point where we feed in the input hx into
subgroup.mul_mem, Lean can look at hx and see immediately what x is (by looking at the type of hx) and what G`
is (by looking at the type of ``x). So, when you think about it, it’s a bit pointless asking the user to
explicitly supply those inputs, because actually the type of the input hx (namely x ∈ H) contains enough information to
uniquely determine them.
Calculations like are what Lean’s unifier does, and the {} and {||} brackets are for this purpose; they mean that they are
inputs to the function which the user need not actually supply at all; Lean will figure them out.
Technical note: The difference between {} and {||} is that one is more eager than the other; this is all about the exact
timing of the unifier. Basically if you have f (a : X) {b : Y} (c : Z) and g (a : X) {|b : Y|} (c
: Z) then the unifier will attempt to figure out b in f the moment you have given it f a, but it will only start worrying
about b in g when you have given it g a c. For an example where this matters, see section 6.5 of Theorem Proving In
Lean . If you want a rule of thumb: use {}.

4.4.3 [] brackets

Like {} brackets, these square brackets are inputs which the user does not supply, but which the system is going to figure
out by itself. The {} brackets above were figured out by Lean’s unification system. The [] brackets in this section are
figured out by Lean’s type class inference system.
Lean’s type class inference system is a big list of facts. For example Lean knows that the reals are a field, that the natural
numbers are an additive monoid, that the rationals have a 0 and a 1, etc etc. Which facts does this system know? The
facts it knows are “instances of classes”, or “instances of typeclasses” to give them their full name.
Let’s take a look at add_comm. You can see its type with #check @add_comm. Its type is this:

add_comm : ∀ {G : Type} [_inst_1 : add_comm_semigroup G] (a b : G), a + b = b + a

An add_comm_semigroup is something a bit weaker than an additive commutative group; any abelian group with
group law + is an add_comm_semigroup.
The only inputs in round brackets to this proof are a and b. Here’s a short script which gives add_comm all the inputs
it needs.

import data.real.basic

def a : R := 37
def b : R := 42

#check add_comm a b -- add_comm a b : a + b = b + a

The add_comm function was given a, and Lean knows that a has type R because that’s part of the definition of a. So
the unifier figures out that G must be R. The one remaining input to the function is a variable with the weird name of
_inst_1, whose type is add_comm_semigroup R; you can think of it as “a proof that the reals are an additive
commutative semigroup” but it’s actually more than just a proof – it’s all the data of the addition and identity element as
well; the functions and constants as well as the proofs. Where does Lean get this variable _inst_1 from?
The answer is that in mathlib somewhere, someone proved that the real numbers were a field, and they tagged that
result with the @[instance] attribute, meaning that the typeclass inference system now knows about it. The typeclass
inference system knows that every field is an additive commutative group, and that every additive commutative group is an
additive commutative semigroup. So the system throws this package together and fills in the_inst_1 input automatically
for you. Basically this system is in charge of keeping all the group and ring proofs which we don’t want to bother about
ourselves.

24 Chapter 4. Part B: Lean tips

https://leanprover.github.io/theorem_proving_in_lean/interacting_with_lean.html#more-on-implicit-arguments
https://leanprover.github.io/theorem_proving_in_lean/interacting_with_lean.html#more-on-implicit-arguments

Formalising Mathematics, Release 0.1

You can add new facts into the typeclass system. Here’s a way of telling Lean that you want to work with an abstract
additive commutative group G.

import tactic

variables (G : Type) [add_comm_group G] (x y : G)

#check add_comm x y -- add_comm x y : x + y = y + x

Instead of using concrete types like the reals, we make a new abstract type G, give it the structure of an additive commu-
tative group, and let x and y be abstract elements of G (or more precisely terms of type G). The variables line has
square brackets in too – this means “add the fact that G is an additive commutative group to the typeclass system”. Then
when add_comm runs, the system will supply the proof that G is an additive commutative semigroup, so the function
add_comm x y runs successfully and outputs a proof that x + y = y + x.

4.4.4 Overriding brackets

You may well never need to do this in this course, but I put it here for completeness.
Sometimes the system goes wrong, and Lean cannot figure out the inputs it was supposed to figure out by itself. If this
happens, you can override all the systems by using the @ symbol in front of the function. In Lean 3 it’s all or nothing –
either the system is left alone, or the user supplies every single input (including the ones which the system could have done
itself). Here are some examples. Note that _ means “get the system to do it anyway”.

import tactic

variables (G : Type) [add_comm_group G] (x y : G)

/-
add_comm : ∀ {G : Type} [_inst_1 : add_comm_semigroup G] (a b : G), a + b = b + a
-/

-- override `{}` and `[]` inputs with `@`
#check @add_comm _ _ x y -- get the system to work out `G` and the group structure
#check @add_comm G _ x y -- user supplies `G`, Lean figures out group structure
#check @add_comm _ (by apply_instance) x y -- Lean figures out `G`, user supplies␣
↪→group structure

I say “the user supplies the group structure”, on the last line, but I do it by just running the apply_instance tactic,
which tells the typeclass inference system to do it anyway.
For fun examples of the system failing, search for things like _ _ _ _ _ in mathlib. In Lean 4 there will be a way of
supplying only those inputs which Lean was having problems with. However when the system is failing, it can sometimes
be an indication that the user’s definitions are not optimal.

4.5 Structures

A lot of the time in this course we are concerned with proving theorems. However sometimes it’s interesting to make a
new definition, and then prove theorems about the definition. In section 3 we made things like groups, subgroups, and
group homomorphisms from first principles, even though mathlib has them already. We made them using structures and
classes.
Let’s start by going through the example of group homomorphisms in some detail. The Lean code is in sheet 4 of section
3. A group homomorphism is a structure, so it will serve as an example of how structures work.

4.5. Structures 25

Formalising Mathematics, Release 0.1

4.5.1 The mathematics

LetG andH be groups. A group homomorphism f : G → H is a function f fromG toH satisfying f(ab) = f(a)f(b)
for all a, b ∈ G. So, pedantically speaking, a group homomorphism is a pair consisting of a function and a proof.

4.5.2 The Lean

In Lean the way to say “let G be a group” is variable (G : Type) [group G]. We’ll talk more about this
later when we get onto classes (group G is a class) but let’s not worry about this now. Here is the definition of a group
homomorphism from G to H in sheet 4 of section 3:

/-- `my_group_hom G H` is the type of group homomorphisms from `G` to `H`. -/
@[ext] structure my_group_hom (G H : Type) [group G] [group H] :=
(to_fun : G → H)
(map_mul' (a b : G) : to_fun (a * b) = to_fun a * to_fun b)

The first line, starting with /--, is the docstring for the definition, i.e., an explanation of the definition in human language.
This means that whenever you see my_group_hom in some Lean code, hovering over my_group_hom will display a
pop-up with this explanation.
The next line (@[ext] structure...) announces that we’re going to make a new structure called my_group_hom
which takes as input two groups G and H. The result of this command will be a new type my_group_hom G H, the type
of group homomorphisms from G to H. Remember that a type is just a collection of stuff, like a set; here we are making
the collection Hom(G,H) of all group homomorphisms from G to H; the way to talk about a group homomorphism
f : G → H will be f : my_group_hom G H (although in the file in section 3 I actually make notation f :
G →** H for this; I would have used f : G →* H but that notation is already taken by Lean’s actual group
homomorphisms).
The @[ext] tag on the structure means that it’s tagged with the @[ext] attribute. Group homomorphisms, like most
things in maths, are extensional objects: two group homomorphisms are equal iff they take the same value on every
input. Tagging the structure with this @[ext] attribute automatically generates some lemmas my_group_hom.ext
and my_group_hom.ext_iff expressing this idea. Extensionality for group homomorphisms is provable in Lean
whether or not you tag the structure; the advantage of tagging the structure is simply that the system generates the lemmas
automatically.
The remaining two lines in the definition are the fields of the structure; they are a list of the data which we have to give
to Lean to make a group homomorphism. The data is unsurprising: we want a function (called to_fun) which defines
a map from G to H, and then we want an axiom map_mul' which says that for all a b : G, to_fun (a * b)
= to_fun(a) * to_fun(b) (and note the usual functional programming trick of leaving off the brackets). Why
did we put a prime on map_mul? We’ll come back to this later; the point is that we want map_mul to be something
definitionally equal but syntactically more beautiful.
So that’s it for the definition. A group homomorphism is then two pieces of data; the function, and the axiom that it
preserves multiplication. We have made a new type my_group_hom G H. The next thing we need to know is its
constructor and eliminators; in less computer-sciency terms, we need to know how to make a term of this type, and also
how to get at the data (the function and the proof), given a term of this type.
Lean has a standard way of making any inductive type with one constructor; the pointy bracket constructor. If φ : G
→ H and h : ∀ a b : G, φ (a * b) = φ a * φ b then we can make the group homomorphism associated
to this data simply as 〈φ, h〉 : my_group_hom G H. But there are classier ways to make a term of a structure. If
you write

def f : my_group_hom G H :=
_

26 Chapter 4. Part B: Lean tips

Formalising Mathematics, Release 0.1

in VS Code, and put your cursor near the _, then a light bulb will pop up. Clicking on the light bulb and selecting “generate
a skeleton for the structure under construction” will give you

def f : my_group_hom G H :=
{ to_fun := _,

map_mul' := _ }

and you can now fill in the underscores with the function and the proof.
So there are two ways of constructing terms of type my_group_hom G H; what is a way of eliminating them, that
is, accessing the function and the proof from the group homomorphism? The way structures work is that the full names
of the fields become new functions which are added to Lean. When the structure is created, Lean generates a function
my_group_hom.to_fun, which takes as input f : my_group_hom G H and outputs the function G → H. It
also generates a function my_group_hom.map_mul' which takes as input f : my_group_hom G H and spits
out a proof that my_group_hom.to_fun f preserves multiplication.
Because my_group_hom.to_fun takes as input a term f of type my_group_hom..., this means that Lean’s dot
notation applies, giving us a shorthand; instead of writing my_group_hom.to_fun f we can write f.to_fun.
Similarly, we can write f.map_mul' : ∀ (a b : G), f.to_fun (a * b) = f.to_fun a *
f.to_fun b.
But dot notation does not solve the actual problem which we face here. Lean pedantically distinguishes between the
function G → H and the group homomorphism f : my_group_hom G H; a group homomorphism is a pair
consisting of a function and a proof. That’s all very funny of course, but in practice mathematicians don’t want that
pedantry; given a group homomorphism f : my_group_hom G H they want to talk about f g for g : G, and
not is_group_hom.to_fun f g or even f.to_fun g. We finish by explaining how to make this work.
Lean has things called coercions. This is a way that given a term x of one type, you can “pretend” that it has a different
type. What is actually happening is that a function which is essentially invisible to mathematicians is being called; the
function is usually omitted completely by mathematicians, and is typically denoted by some kind of up arrow in Lean.
One of the coercion capabilities that Lean has is that you can set up a coercion which takes a term of some type (like f
: my_group_hom G H) and coerces it to be a function with notation ⇑f : G → H. Furthermore, you do not
even need to type that ⇑ up-arrow (which you do with \u= by the way); once the coercion is defined, you can just write
f g and Lean will make sense of this.
We finish by looking at all the Lean code used to define group homomorphisms, and explain what it all means.

/-- `my_group_hom G H` is the type of group homomorphisms from `G` to `H`. -/
@[ext] structure my_group_hom (G H : Type) [group G] [group H] :=
(to_fun : G → H)
(map_mul' (a b : G) : to_fun (a * b) = to_fun a * to_fun b)

namespace my_group_hom

-- throughout this sheet, `G` and `H` will be groups.
variables {G H : Type} [group G] [group H]

-- We use notation `G →** H` for the type of group homs from `G` to `H`.
notation G ` →** ` H := my_group_hom G H

-- A group hom is a function, and so we set up a "coercion"
-- so that a group hom can be regarded as a function (even
-- though it's actually a pair consisting of a function and an axiom)
instance : has_coe_to_fun (G →** H) (λ _, G → H) :=
{ coe := my_group_hom.to_fun }

-- Notice that we can now write `f (a * b)` even though `f` isn't actually a
-- function, it's a pair consisting of a function `f.to_fun` and an axiom `f.map_mul
↪→'`. (continues on next page)

4.5. Structures 27

Formalising Mathematics, Release 0.1

(continued from previous page)
-- The below lemma is how we want to use it as mathematicians though.
lemma map_mul (f : G →** H) (a b : G) :

f (a * b) = f a * f b :=
begin

-- the point is that f.map_mul and f.map_mul' are *definitionally equal*
-- but *syntactically different*, and the primed version looks uglier.
-- The point of this lemma is that `f.map_mul` looks nicer.
exact f.map_mul' a b

end

end my_group_hom -- close namespace

After the structure my_group_hom G H is defined, we move into the my_group_hom namespace. This means that
any definitions wemake here (for example definition foo := ...will actually be called my_group_hom.foo.
The first thing we do is to set up notation G →** H for my_group_hom G H. I would have used G →* H but that’s
already used for Lean’s “official” group homomorphisms.
The next thing is to set up the coercion from G →** H to G → H. The coercion is the function my_group_hom.
to_fun which takes a group homomorphism to its underlying function.
And now we magically have the ability to write things like f a instead of f.to_fun a! So we can define map_mul
(without the ') to say f (a * b) = f a * f b, which is the expression we want to be using. Because this definition
is made in the my_group_hom namespace, it means that if f : G →** H then f.map_mul is the proof of ∀ a
b, f (a * b) = f a * f b. Note that f.map_mul and f.map_mul' are definitionally equal, however they
are syntactically different, and the unprimed version is the cleaner one.

4.6 Classes

4.6.1 Making groups; learning about classes

Here are some of the gory details. This is technical, and maybe you don’t need to know it.
In sheet 1 of the groups section, we make groups from scratch, by writing down the axioms of a group and making a
“class” called mygroup G (not to be confused with group G, which is the “official” definition of a group in Lean’s
maths library). So what is a class, and how do classes work?
A class is a structure which is tagged with the class attribute. A structure is a kind of inductive type with only one
constructor. An inductive type is a way to make new types in Lean. So let’s start at the beginning with an explanation of
the inductive type involved.
If (G : Type) is a type, then the idea is that we want one object which is going to do all the “group” stuff on G, and
turn G into a group. This one object will thus be a collection of eight things. It will be a multiplication on G, an identity
element, an inverse function G → G, and also proofs of the five group axioms (associativity, left and right identity, left
and right inverse). This one object is a term of type mygroup G, where mygroup G is defined as in sheet 1 of the
groups section.
But now think about howmathematicians use groups. They say “a group is a set G equipped with a bunch of data satisfying
some axioms” but then they don’t say “let’s call this data (and the proofs of the fact that the data satisfies the axioms) X”.
They say “let’s not give this data a name, let’s just say things like ‘G is a group’ even though really G is a set”. They’re
saying “let G be both the set and the set-with-all-the-group-structure”.
In Lean this is how we do it too. Here G is a type, not a set, and then we have a term _inst_1 : mygroup G
which is all the group data, but we are going to put this term into Lean’s typeclass inference structure, by using square
brackets [_inst_1 : mygroup G], and in fact we are not even going to name the term, we’re just going to be

28 Chapter 4. Part B: Lean tips

Formalising Mathematics, Release 0.1

writing [mygroup G]. Then when we see (g : G) this just means that g is a term of type G, but when we see g
* g something magic is happening; Lean sees that we are trying to use a multiplication on the type G, and multiplication
is a class, so Lean looks up G in its typeclass system and asks if there are any terms there which give G a multiplication,
and then _inst_1 pops up and says “oh yeah, I’m a group structure on G so I contain a bunch of stuff, including a
multiplication; use that”.
You can see this secret storage of all the group data and proofs if you look at Lean’s tactic state in the middle of a group
theory proof. For example, if you click in the middle of the proof of inv_mul_cancel_left in groups sheet 1, you
can see that the tactic state is

G : Type
_inst_1 : mygroup G
a b : G
⊢ a ¹ * (a * b) = b

That _inst_1 is something you never need to mention, the typeclass system is taking care of it. All theorems about
groups you need will magically apply to G because the typeclass inference system knows about _inst_1 and will use it
whenever necessary (e.g. when you want to invert an element, or apply an axiom from group theory).

4.6.2 What’s the difference between a class and a structure?

With classes, the idea is that a “magic” system which we don’t have to think about (Lean’s typeclass system) finds the
terms for you. Here is an example where you do not want this to happen! Say we’re proving theorems about subgroups of
a group G. We have two subgroups, and maybe we want to intersect them and prove that this is a subgroup too. If we had
made subgroups into a class, then it would be the job of the magic system to supply a term of type subgroup G from
its list, and there will only be one possible term on the list (that’s how the system works). So it’s going to be really hard to
talk about more than one subgroup of G at once; Lean will keep saying “here, I have the subgroup, use this”. Groups can
have more than one subgroup, so subgroups are a structure.
In contrast, when we say “let G be a group”, then 99.9 percent of the time that group structure on G will be one fixed group
structure, and it’s never going to change in the middle of a mathematical argument. So groups are a perfect example of
a class – we give the magic system G and we say “please find me a multiplication on G” and the system says “oh I have
exactly one group structure on G right here, you can use the multiplication from that”. A type will 99.9 percent of the
time have exactly one group structure, if it has one at all, and so this is why group is a class.

4.7 Dot notation

Say you have a type, like subgroup G, and a term of that type, like H : subgroup G. Say you have a function in
the subgroup namespace which takes as input a term of type subgroup G, for example subgroup.inv_mem,
which has as an explicit input a term H : subgroup G and spits out a proof that x ∈ H → x ¹ ∈ H. Then instead
of writing subgroup.inv_mem H : x ∈ H → x ¹ ∈ H you can just write H.inv_mem : x ∈ H → x ¹
∈ H.
In general the rule is that if you have a term H : foo ... of type foo or foo A B or whatever, and then you
have a function called foo.bar which has an explicit (i.e., round brackets) input of type foo ..., then instead of
foo.bar H you can just write H.bar. This is why it’s a good idea to define theorems about foo``s in the
``foo namespace.
This sort of trick can be used all over the place; it’s surprisingly powerful. For example Lean has a proof eq.symm :
x = y → y = x. If you have a term h : a = b then, remembering that = is just notation for eq so that h really
has type eq a b, you can write h.symm : b = a as shorthand for eq.symm h.

4.7. Dot notation 29

Formalising Mathematics, Release 0.1

4.8 Coercions

Sometimes you have a term of a type, and you really want it to have another type (because that’s what we do in maths;
we are liberal with our types, unlike Lean). For example you might have a natural number n : N but a function f :
R → R (like real.sqrt or similar), and you want to consider f n. This is problematic in a strongly typed language
like Lean: n has type nat and not real, so f n does not make sense. However, if you try it…

import data.real.sqrt

def a : N := 37

#check real.sqrt a -- real.sqrt ↑a : R

…it works anyway! But actually looking more closely, something funny is going on; what is that ↑ by the a? That up-
arrow is Lean’s notation for the completely obvious function from N to R which doesn’t have a name in mathematics but
which Lean needs to apply in order for everything to typecheck.
So where did this coercion come from, what other types of coercions are there, and how do we make them?

4.8.1 Making coercions

Coercions are handled by Lean’s type class inference system. There are three kinds. You can coerce a term into a term
(this is how a natural number becomes a real number), you can coerce a term into a type (this is how a subgroup becomes
a group; remember that subgroups are terms of type subgroup G and in particular they’re terms; if we want to treat
them as groups then they need to be promoted to types); and finally there is a special coercion which turns a term into a
function.

4.8.2 Coercion from terms to terms

An example of this is coe_subtype. If X : Type is a type, and p : X → Prop is a predicate on X, then one
can make a subtype of X consisting of the terms x : X such that p x is true. The notation for this subtype is {x : X
// p x}. Remember that in type theory, this subtype is not a “subset” of X; a term of type {x : X // p x} is a
pair consisting of a term x : X and a proof of p x. But given such a term, we might well want to treat it as a term of
type X anyway. Here is some code indicating how this happens automatically:

variables (X : Type) (p : X → Prop) (s : {x : X // p x})

#check (s : X) -- ↑s : X

The reason this happens is because of the term coe_subtype : has_coe {x : X // p x} X which is
defined in core Lean and which is tagged with the @[instance] attribute. The has_coe structure just has one field,
namely the function from {x : X // p x} to X, which of course just returns the term of type X and throws away the
proof. The type class system then takes care of everything after that; if Lean sees a term of type {x : X // p x}
where it expects a term of type X then it magically applies this function and denotes the function itself with the up-arrow
notation.

30 Chapter 4. Part B: Lean tips

Formalising Mathematics, Release 0.1

4.8.3 Coercions from terms to types

A subgroup of a group in Lean is a term, not a type. A subgroup H of G is a term of type subgroup G. In particular,
H isn’t a type. So the below code shouldn’t work – but it does.

import tactic
import group_theory.subgroup.basic -- group theory

variables (G : Type) [group G] (H : subgroup G)
variable (x : H) -- shouldn't work because H isn't a type

#check x -- x : ↥H

Lean promotes the term H to a type, because of a term of type has_coe_to_sort (subgroup G) Type in the
typeclass inference system. Coercions to types like this have a different notation than coercions from terms to terms; a
different up-arrow ↥ is used. Type it with \u-|.

4.8.4 Coercions from terms to functions

A group homomorphism is a term of type G →* H in Lean, and to give a group homomorphism is to give a function
plus some proofs. In particular, a group homomorphism is not actually a function, it is a tuple consisting of a function and
some proofs. But of course we’d like to regard a group homomorphism as a function, and we can, because of the third
type of coercion which Lean has, triggered by terms of type has_coe_to_fun.

import group_theory.subgroup.basic

variables (G H : Type) [group G] [group H] (f : G →* H) (x : G)

#check f x -- ⇑f x : H

Even though f isn’t strictly speaking a function (it’s a function plus some other stuff), Lean will still let us write f x, and
it will interpret f as the function ⇑f : G → H. Here ⇑, which you can get with \u=, is the function from G →* H to
G → H which the typeclass inference system produced for us, from the instance monoid_hom.has_coe_to_fun
: has_coe_to_fun (M →* N) (λ _, M → N).

4.9 The axiom of choice

The axiom of choice was something I found quite complicated as an undergraduate; it was summarised as “you can make
infinitely many choices at the same time” but because I didn’t really know much about set theory it took me a while before
this description made any sense.
In Lean’s type theory, the situation is much simpler (at least in my mind). There are two universes in Lean (at least for
the purposes of this course) – Prop and Type. The Prop universe is for proofs, and the Type universe is for data.
The axiom of choice is a route from the Prop universe to the Type universe. In other words, it is a way of getting data
from a proof.

4.9. The axiom of choice 31

Formalising Mathematics, Release 0.1

4.9.1 nonempty X

If X : Type then nonempty X : Prop is the true-false statement asserting that X is nonempty, or equivalently,
that there’s a term of type X. For example here’s part of the API for nonempty:

import tactic

example (X : Type) : (∃ x : X, true) ↔ nonempty X :=
begin

exact exists_true_iff_nonempty
end

This example shows that given a term of type nonempty X, you can get a term of type ∃ x : X, true (i.e.,
“there exists an element of X such that a true statement is true”). We would now like to go from this to actually get
a term of type X! In constructive mathematics this is impossible: because h lives in the Prop universe, Lean forgot
how it was proved. However in classical mathematics we can pass from the Prop universe to the Type universe with
classical.choice h, a term of type X. This gives us a “noncomputable” term of type X, magically constructed
only from the proof h that X was nonempty. Mathematically, “noncomputable” means “it exists, but we don’t actually
have an algorithm or a formula for it”. This is a subtlety which is often not explicitly talked about in mathematics courses,
probably because it is often not relevant in a mathematical argument.
You might wonder what the code for this classical.choice function looks like, but in fact there isn’t any code for
it; Lean simply declares that classical.choice is an axiom, just like how in set theory the axiom of choice is
declared to be an axiom.
When I first saw this axiom, it felt to me like it was way weaker than the set theory axiom of choice; in set theory you can
make infinitely many choices of elements of nonempty sets all at once, whereas in Lean we’re just making one choice.
But later on I realised that in fact you could think of it as much stronger than the set theory axiom of choice, because you
can interpret classical.choice as a function which makes, once and for all, a choice of an element of every single
nonempty type, so it easily implies the usual set-theoretic axiom of choice.

4.9.2 classical.some

In my experience, the way people want to use the axiom of choice when doing mathematics in Lean is to get an element of
X not from a hypothesis ∃ x : X, true, but from a hypothesis like ∃ x : X, x^2 = 2 or more generally ∃ x :
X, p x where p : X → Prop is a predicate on X. The way to do this is as follows: you run classical.some on
h : ∃ x : X, p x to get the element of X, and the proof that this element satisfies p is classical.some_spec
h. Here’s a worked example.

import analysis.complex.polynomial -- import proof of fundamental theorem of algebra

open_locale polynomial -- so I can use notation C[X] for polynomial rings

open polynomial -- so I can write `X` and not `polynomial.X`

noncomputable theory -- we are not supplying algorithms for being able
-- to compute what is about to happen

def f : C[X] := X^5 + X + 37 -- a random polynomial

theorem f_has_a_root : ∃ (z : C), f.is_root z :=
begin

apply complex.exists_root, -- the fundamental theorem of algebra
-- it remains to show that f has degree > 0
sorry -- proof omitted (more annoying than you would think!)

(continues on next page)

32 Chapter 4. Part B: Lean tips

Formalising Mathematics, Release 0.1

(continued from previous page)
end

-- let z be a root of f
def z : C := classical.some f_has_a_root

-- proof that z is a root of f
theorem z_is_a_root_of_f : f.is_root z :=
begin

exact classical.some_spec f_has_a_root,
end

4.10 How to format your code well

The first time this course ran I did not emphasize good code layout and when I was marking the projects I regretted
this. Formatting your code correctly helps a great deal with readability (as I discovered) and so I will be looking more
favourably on people who do this properly this year. The code I write in the course repository should always conform to
the correct standards. Here are the basics.

4.10.1 Indentation

Code in a tactic block gets indented two spaces.

example (a b : N) : a = b → a ^ 2 = b ^ 2 :=
begin

intro h, -- I am two spaces in, not under `begin`
rw h,

end

4.10.2 Spaces between operators

a = b, not a=b. See above. Similarly a + b, a ^ b and so on. Also x : T not x:T, and foo := bar not
foo:=bar.

4.10.3 Comments

You don’t have to put a comment on every line of code, but please feel free to put comments at points where something
is actually happening.

4.10.4 Only one goal

Sometimes you can end up with more than one goal. This can happen for two reasons. Firstly, perhaps you manually
created a new goal. For example, perhaps you wrote have intermediate_result : a = b + c, or
suffices : a = b + c,. You just created an extra goal on top of the goal which was already there, so this one
extra goal needs to go in brackets and get indented two more spaces.

4.10. How to format your code well 33

Formalising Mathematics, Release 0.1

example (a b c : N) (h : a = b) : a ^ 2 + c = b ^ 2 + c :=
begin

have h2 : a ^ 2 = b ^ 2, -- you made a second goal
{ rw h,
-- other lines of code would go here, also indented

},
rw h2, -- back to only two space indentation

end

The other way it can happen is if you use a tactic or apply a function which changes your old goal into more than one goal.

example (P Q : Prop) (hP : P) (hQ : Q) : P ∧ Q :=
begin

split, -- this tactic replaced the goal we were working on with two goals
{ -- so they both need to go in curly brackets
exact hP, },

{ exact hQ, },
end

4.10.5 Want to know more?

Check out the mathlib library style guidelines on the Lean community pages – not all of it applies to us, but most of the
section on tactic mode does.

34 Chapter 4. Part B: Lean tips

https://leanprover-community.github.io/contribute/style.html

CHAPTER

FIVE

PART C: TACTICS

Here is some documentation for the tactics which we will be using in the course. Note also that the Lean community
website has extensive documentation on all the tactics in Lean and mathlib. Check out the tactic page on the community
website here if you want to explore beyond the tactics below, or see another take on what they do.

5.1 Tactic cheatsheet

If you think you know which part of the tactic state your “next move” should relate to (i.e. you know whether you should
be manipulating the goal or using a hypothesis) then the below table might give you a hint as to which tactic to use.

Table 1: Cheat sheet
Form of proposition In the goal? Hypothesis named h?
P → Q intro hP apply h
true trivial (can’t be used)
false (can’t be used) exfalso, exact h or cases h
¬P intro hP apply h (if goal is false)
P ∧ Q split cases h with hP hQ
P ↔ Q split cases h or rw h
P ∨ Q left or right cases h with hP hQ
∀ (a : X), ... intro x specialize h x
∃ (a : X), ... use x cases h with x hx

5.2 Tactic documentation

5.2.1 apply

Warning: The apply tactic does one very specific thing, which I explain below. I have seen students trying to
use this tactic to do all sorts of other things, based solely on the fact that they want to “apply a theorem” or “apply a
technique”. The English word “apply” has far more uses than the Lean apply tactic. The apply tactic “argues
backwards”, using an implication to reduce the goal to something closer to the hypotheses. apply h is like saying
“because of h, it suffices to prove this new simpler thing”.

Summary

If your local context is

35

https://leanprover-community.github.io/mathlib_docs/tactics.html

Formalising Mathematics, Release 0.1

h : P → Q
⊢ Q

then apply h changes the goal to ` P.

Note: apply h will not work unless h is of the form P → Q. It will also not work unless the goal is equal to the
conclusion of h. You will get an obscure error message if you try using apply in situations which do not conform to the
pattern above.

Mathematically, the apply tactic does this: We’re trying to prove Q. If we know that P implies Q then of course it would
suffice to prove P instead, because P implies Q. So apply reduces the goal from Q to P. If you like, apply executes the
last step of a proof of Q, rather than what many mathematicians would think of as the “next” step.
If instead of an implication you have an iff statement h : P ↔ Q then apply h won’t work. You might want to
“apply” h by using the rw (rewrite) tactic.

Examples

1) If you have a hypothesis which is

h : a ^ 2 = b → a ^ 4 = b ^ 2
⊢ a ^ 4 = b ^ 2

then apply h will change the goal to ` a ^ 2 = b.
2) apply works up to definitional equality. For example if your local context is

h : ¬P
⊢ false

then apply h works and changes the goal to ` P. This is because h is definitionally equal to P → false.
3) The apply tactic does actually have one more trick up its sleeve: in the situation

h : P → Q → R
⊢ R

the tactic apply h will work (even though the brackets in h which Lean doesn’t print are P → (Q → R)), and the
result will be two goals ` P and ` Q. Mathematically, what is happening is that h says “if P is true, then if Q is true,
then R is true”, hence to prove R is true it suffices to prove that P and Q are true.

Further notes

The refine tactic is a more refined version of apply. For example, if h : P → Q and the goal is ` Q then apply
h does the same thing as refine h _.

36 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

5.2.2 assumption

Summary

The assumption tactic closes a goal ` P when there is a hypothesis h : P. Note that exact h also closes this
goal, and is shorter too, so only use this when the name of the hypothesis is five or more letters long ;-) Other uses include
when one is trying to be clever and using ; instead of , at the end of a tactic, to try and prove more than one goal at once.

Examples

1) Faced with the goal

reallylonghypothesisname : P
h1 : Q
h2 : 2 + 2 = 5
...
h100 : x = x
⊢ P

you could do exact reallylonghypothesisname but assumption works as well. Although what are you
doing with a really long hypothesis name?
2) If your tactic state is

hP : P
hQ : Q
⊢ P ∧ Q

you can do split; assumption. The semicolon, used instead of a comma, means “do split and then do as-
sumption on all goals produced by split”.

Further notes

If you decide that you are interested in learning how to write tactics then assumption is usually a good one to try and
write. Rob Lewis has made some excellent videos on tactic writing at insert link here. Note that there will be nothing
about tactic writing in this course because the author doesn’t have the first clue about it.

5.2.3 by_cases

Summary

All propositional logic problems can in theory be solved by just throwing a truth table at them. The by_cases tactic
is a simple truth table tactic: by_cases P turns one goal into two goals, with P is assumed in the first, and ¬P in the
second.

5.2. Tactic documentation 37

Formalising Mathematics, Release 0.1

Examples

1) If P is a proposition, then by_cases P turns your goal into two goals, and in each of your new tactic states you
have one extra hypothesis. In the first one you have a new hypothesis h : P and in the second you have a new
hypothesis h : ¬P.

2) If you already have a hypothesis h then this can get a bit confusing, so you can also do by_cases hP : P; then
your new hypotheses will be hP : P and hP : ¬P.

Details

For those of you interested in constructive mathematics, the by_cases tactic (like the by_contra tactic) is not valid
constructively. We are doing a case split on P ∨ ¬P, and to prove P ∨ ¬P in general we need to assume the law of the
excluded middle. In this course we will not be paying any attention to any logic other than classical logic, meaning that
this case split is mathematically valid.

Further notes

There’s a much higher powered tactic which does case splits on all propositions and grinds everything out: the tauto!
tactic. The tauto! tactic probably proves every goal in all the questions in section 1, however you won’t learn any other
tactics if you keep using it!

5.2.4 by_contra

Summary

The by_contra tactic is a “proof by contradiction” tactic. If your goal is ` P then by_contra h introduces a
hypothesis h : ¬P and changes the goal to false.

Example

Here is a proof of ¬ ¬ P → P.

example (P : Prop) : ¬ ¬ P → P :=
begin

intro hnnP, -- assume ¬ ¬ P
by_contra hnP, -- goal is now false
apply hnnP, -- goal is now ¬ P
exact hnP,

end

Make a new Lean file in a Lean project and cut and paste the above code into it. See if you can understand the logic.

38 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

Further notes

The by_contra tactic is strictly stronger than the exfalso tactic in that not only does it change the goal to false
but it also throws in an extra hypothesis. However exfalso often terminates in under a millisecond, a speed which
by_contra can only dream of.

5.2.5 cases

Summary

cases is a general-purpose tactic for “deconstructing” hypotheses. If h is a hypothesis which somehow “bundles up”
two pieces of information, then cases h with h1 h2 will make hypothesis h vanish and will replace it with the
two “components” which made the proof of h in the first place.

Examples

1) The way to make a proof of P ∧ Q is to use a proof of P and a proof of Q. If you have a hypothesis h : P ∧
Q, then cases h will delete the hypothesis and replace it with hypotheses h_left : P and h_right : Q.
These are not the best names for hypotheses; better to type cases h with hP hQ.

2) The way to make a proof of P ↔ Q is to prove P → Q and Q → P. So faced with h : P ↔ Q one thing
you can do is cases h with hPQ hQP which removes h and replaces it with hPQ: P → Q and hQP: Q
→ P. Note however that this might not be the best way to proceed; whilst you can apply hPQ and hQP, you
lose the ability to rewrite h with rw h. If you really need to keep a copy of h around, you could always try have
h2 := h, cases h with hPQ hQP.

3) There are two ways to make a proof of P ∨ Q. You either use a proof of P, or a proof of Q. So if h : P ∨ Q
then cases h with hP hQ has a different effect to the first two examples; after the tactic you will be left with
two goals, one with a new hypothesis hP : P and the other with hQ : Q. One way of understanding why this
happens is that the inductive type or has two constructors, whereas and only has one.

4) There are two ways to make a natural number n. Every natural number is either 0 or succ(m) for some natural
number m. So if n : N then cases n with m gives two goals; one where n is replaced by 0 and the other
where it is replaced by succ(m). Note that this is a strictly weaker version of the induction tactic, because
cases does not give us the inductive hypothesis.

5) If you have a hypothesis h : ∃ a, a^3 + a = 37 then cases h with x hx will give you a number x
and a proof hx : x^3 + x = 37.

Further notes

Note that ∧ is right associative: P ∧ Q ∧ R means ``P ∧ (Q ∧ R). So if h : P ∧ Q ∧ R then cases h
with h1 h2 will give you h1 : P and h2 : Q ∧ R and then you have to do cases h2 to get to the proofs
of Q and R. The syntax cases h with h1 h2 h3 doesn’t work (h3 just gets ignored). A more refined version of
the cases tactic is the rcases tactic (although the syntax is slightly different; you need to use pointy brackets 〈,〉 with
rcases). For example if h : P ∧ Q ∧ R then you can do rcases h with 〈hP, hQ, hR〉.

5.2. Tactic documentation 39

Formalising Mathematics, Release 0.1

5.2.6 change

Summary

If your goal is ` P, and if P and Q are definitionally equal, then change Q will change your goal to Q. You can use it
on hypotheses too: change Q at h will change h : P to h : Q. Note: change can sometimes be omitted, as
many tactics “see through” definitional equality.

Example

1) In Lean, ¬P is defined to mean P → false, so if your goal is ` ¬P then change P → false will change
it the goal to ` P → false.

2) The rw tactic works up to syntactic equality, not definitional equality, so if your tactic state is

h : ¬P ↔ Q
⊢ P → false

then rw h doesn’t work, even though the left hand side of h is definitionally equal to the goal. However

change ¬P,
rw h

works, and changes the goal to Q.
3) change also works on hypotheses: if you have a hypothesis h : ¬P then change P → false at h will

change h to h : P → false.

Details

Definitionally equal propositions are logically equivalent (indeed, they are equal!) so Lean allows you to change a goal P
to a definitionally equal goal Q, because P is true if and only if Q is true.

Further notes

Many tactics work up to definitional equality, so sometimes change is not necessary. For example if your goal is ` ¬P
then intro h works fine anyway, as intro works up to definitional equality.
show does the same thing as change on the goal, but it doesn’t work on hypotheses.

5.2.7 choose

Summary

The choose tactic is a relatively straightforward way to go from a proof of a proposition of the form ∀ x, ∃ y,
P(x,y) (where P(x,y) is some true-false statement depend on x and y), to an actual function which inputs an x and
outputs a y such that P(x,y) is true.

40 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

Basic usage

The simplest situation where you find yourself wanting to use choose is if you have a function f : X → Y which
you know is surjective, and you want to write down a one-sided inverse g : Y → X, i.e., such that f(g(y))=y for
all y : Y. Here’s the set-up:

import tactic

example (X Y : Type) (f : X → Y) (hf : ∀ y, ∃ x, f x = y) : ∃ g : Y → X, ∀ y, f (g␣
↪→y) = y :=
begin

sorry
end

The difficulty here is that you don’t have g to hand, you’re going to have to make it on the fly in the middle of this proof, so
you can’t do anything like definition g := ... (which you could do outside the proof), because definition
isn’t a tactic. Here’s the proof:

begin
choose g hg using hf,
use g,
exact hg,

end

The choose tactic creates both the function g and the proof hg that it does what you want it to do.

Example usage in analysis

Sometimes in analysis you have a proof that for all ϵ > 0 there’s some x (depending on ϵ) with some property (which
depends on x and ϵ and possibly some other things). And from this you want to get a sequence x1, x2, x3, . . .which satisfy
the condition for smaller and smaller ϵ. Typically in a lecture one would say “let xn be any x satisfying the property for
ϵ = 1/n and this sequence clearly works”. Here’s how one might construct that sequence in Lean.

import tactic
import data.real.basic

example (X : Type) (P : X → R → Prop) -- `X` is an abstract type and `P` is an␣
↪→abstract true-false

-- statement depending on an element of `X` and␣
↪→a real number.
(h : ∀ ε > 0, ∃ x, P x ε) -- `h` is the hypothesis that given some `ε > 0`␣
↪→you can find

-- an `x` such that the proposition is true for␣
↪→`x` and `ε`
: -- Conclusion:
∃ u : N → X, ∀ n, P (u n) (1/(n+1)) -- there's a sequence of elements of `X`␣
↪→satisfying the

-- condition for smaller and smaller ε
:=

begin
choose g hg using h,
/-
g : Π (ε : R), ε > 0 → X
hg : ∀ (ε : R) (H : ε > 0), P (g ε H) ε
-/
let u : N → X := λ n, g (1/(n+1)) (begin

(continues on next page)

5.2. Tactic documentation 41

Formalising Mathematics, Release 0.1

(continued from previous page)
-- need to prove 1/(n+1)>0 (this is why I chose 1/(n+1) not 1/n, as 1/0=0 in Lean!

↪→)
show (0 : R) < 1/(n+1),
rw one_div_pos, -- `linarith` can't deal with `/`
norm_cast, -- or `↑`; it knows `n ≥ 0` but doesn't know `↑n ≥ 0`
linarith,

end),
use u, -- `u` works
intro n,
apply hg,

end

5.2.8 convert

Summary

If a hypothesis h is nearly but not quite equal to your goal, then exact h will fail, because theorem provers are fussy
about details. But convert h might well succeed, and leave you instead with goals corresponding to the places where
h and the goal did not quite match up.

Examples

1) Here the hypothesis h is really close to the goal; the only difference is that one has a d and the other has an e. If
you already have a proof hde : d = e then you can rw hde at h and then exact h will close the goal.
But if you don’t have this proof to hand and would like Lean to reduce the goal to d = e then convert is exactly
the tactic you want.

import data.real.basic

example (a b c d e : R) (f : R → R) (h : f (a + b) + f (c + d) = 37) :
f(a + b) + f(c + e) = 37 :=

begin
convert h,
-- ⊢ e = d
sorry

end

2) Sometimes convert can go too far. For example consider the following (provable) goal:

a b c d e : R
f : R → R
h : f (a + b) + f (c + d) = 37
⊢ f (a + b) + f (d + c) = 37

If you try convert h you will be left with two goals ` d = c and ` c = d (and these goals are perhaps not provable).
You can probably guess what happened; convert was too eager. You can “tone convert down” with convert h
using 2 or some other appropriate small number, to tell it when to stop converting. Experiment with the number to
get it right. Here is an example.

import data.real.basic

example (a b c d e : R) (f : R → R) (h : f (a + b) + f (c + d) = 37) :

(continues on next page)

42 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

(continued from previous page)
f(a + b) + f(d + c) = 37 :=

begin
convert h using 3,
-- ⊢ d + c = c + d
ring,

end

5.2.9 exact

Summary

If your goal is ` P then exact h will close the goal if h : P has type P.

Examples

1) If the local context is

h : P
⊢ P

then the tactic exact h will close the goal.
2) exact works up to definitional equality. So for example, if the local context is

h : ¬ P
⊢ P → false

then exact h will work, because the type of h is definitionally equal to the goal.

Further notes

A common mistake amongst beginners is trying exact P to close a goal of type P. The goal is a type, but the exact
tactic takes a term of that type, not the type itself. Remember : P is the statement of the problem. To solve the goal you
need to supply the proof.

5.2.10 exfalso

Summary

The exfalso tactic changes your goal to false. Why might you want to do that? Usually because at this point you
can deduce a contradiction from your hypotheses (for example because you are in the middle of a proof by contradiction).

5.2. Tactic documentation 43

Formalising Mathematics, Release 0.1

Examples

If your tactic state is like this:

hP : P
h : P → false
⊢ Q

then this might initially look problematic, because we don’t have any facts about Q to hand. However, false → Q
regardless of whether Q is true or false, so and hP and h between them are enough to prove false. So you can solve
the goal with

exfalso,
apply h,
exact hP

Warning: Don’t use this tactic unless you can deduce a contradiction from your hypotheses! If your hypotheses are
not contradictory then exfalso will leave you with an unsolvable goal.

Details

What is actually happening here is that there’s a theorem in Lean called false.elimwhich says that for all propositions
P, false → P. Under the hood this tactic is just doing apply false.elim, but exfalso is a bit shorter.

5.2.11 ext

Summary

The ext tactic applies “extensionality lemmas”. An extensionality lemma says “two things are the same if they are built
from the same stuff”. Examples: two sets are the same if they have the same elements, two subgroups are the same if they
have the same elements, two functions are the same if they take the same values on all inputs, two group homomorphisms
are the same if they take the same values on all inputs.

Examples

1) Here we use the ext tactic to prove that two group homomorphisms are equal if they take the same values on all
inputs.

import group_theory.subgroup.basic

example (G H : Type) [group G] [group H] (φ ψ : G →* H)
(h : ∀ a, φ a = ψ a) : φ = ψ :=

begin
-- ⊢ φ = ψ
ext g,
-- ⊢ ⇑φ g = ⇑ψ g
apply h, -- goals accomplished

end

2) Here we use it to prove that two subgroups of a group are equal if they contain the same elements.

44 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

import group_theory.subgroup.basic

example (G : Type) [group G] (K L : subgroup G)
(h : ∀ a, a ∈ K ↔ a ∈ L) : K = L :=

begin
-- ⊢ K = L
ext g,
-- ⊢ g ∈ K ↔ g ∈ L
apply h, -- goals accomplished

end

Details

What the ext tactic does is it tries to apply lemmas which are tagged with the @[ext] attribute. For example if you
try #check @subgroup.ext you can see that in the second example above, ext g does the same thing as apply
subgroup.ext, intro g. Furthermore, if you try #print subgroup.ext, you’ll see a list at the very top of
the output, starting with an @, and somewhere in that list is the word ext, meaning that subgroup.ext is tagged with
the @[ext] attribute, which is why the ext tactic makes progress on the goal.

Further notes

Sometimes ext applies more lemmas than you want it to do. In this case you can use the less aggressive tactic ext1,
which only applies one lemma.

5.2.12 have

Summary

The have tactic lets you introduce new hypotheses into the system.

Examples

1) If you have hypotheses

hPQ : P → Q
hP : P

then from these hypotheses you know that you can prove Q. If your goal is Q then you can just apply hPQ, exact
hP. But if you need Q for some other reason (e.g. perhaps Q is of the form x = y and you want to rewrite it) then one
way of making it is by writing have hQ : Q,. This creates a new goal of Q, which you can prove with apply hPQ,
exact hP, and after this you’ll find that you have a new hypothesis hQ : Q in your tactic state.
2) If you can directly write the term of the type that you want to have, then you can do it using have hQ : Q :=

.... For instance, in the example above you could write have hQ : Q := hPQ hP,, because hPQ is a
function from proofs of P to proofs of Q so you can just feed it a proof of P.

5.2. Tactic documentation 45

Formalising Mathematics, Release 0.1

Further notes

The let and set tactics are related; they are however used to construct data rather than proofs.

5.2.13 induction

Summary

The induction tactic will turn a goal of the form ` P n (with P a predicate on naturals, and n a natural) into two
goals ` P 0 and ` ∀ d, P d → P d.succ.

Overview

The induction tactic does exactly what you think it will do; it’s a tactic which reduces a goal which depends on a
natural to two goals, the base case (always zero, in Lean) and the step case. In computer science it is very common to see
a lot of other so-called inductive types (for example list and expr) and the induction tactic can get quite a lot of
use; however in this course we only ever use induction on naturals.

Example

We show
∑n−1

i=0 i2 = n(n− 1)(2n− 1)/6 by induction on n.

import tactic

open_locale big_operators -- 2/7 notation

open finset -- so I can say `range n` for the finite set `{0,1,2,...,n-1}`

-- sum from i = 0 to n - 1 of i^2 is n(n-1)(2n-1)/6
-- note that I immediately coerce into rationals in the statement to get the correct␣
↪→subtraction and
-- division (natural number subtraction and division are pathological functions)
example (n : N) : 2/7 i in range n, (i : Q)^2 = n * (n - 1) * (2 * n - 1) / 6 :=
begin

induction n with d hd,
{ -- base case says that an empty sum is zero times something, and this sort of goal
-- is perfect for the simplifier
simp, },

{ -- inductive step
rw finset.sum_range_succ, -- the lemma saying

-- `2/7 i in range (n.succ), f i = (2/7 i in range n, f i)␣
↪→+ f n`

rw hd, -- the inductive hypothesis
simp, -- change `d.succ` into `d + 1`
ring,

}
end

46 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

Details

The definition of the natural numbers in Lean is this:

inductive nat
| zero : nat
| succ (n : nat) : nat

When this code is run, four new objects are created: the type nat, the term nat.zero, the function succ : nat →
nat and the recursor for the naturals, a statement automatically generated from the definition and which can be described
as saying that to do something for all naturals, you only have to do it for zero and succ n, and in the succ n case you
can assume you already did it for n. The induction tactic applies this recursor and then does some tidying up. This
is why you end up with goals containing n.succ rather than the more mathematically natural n + 1. In the example
above I use simp to change n.succ to n + 1 (and also to push casts as far in as possible).

5.2.14 intro

Summary

The intro tactic makes progress on goals of the form ` P → Q or ` ∀ x, P x (where P x is any proposition that
depends on x). Mathematically, it says “to prove that P implies Q, we can assume that P is true and then prove Q”, and
also “to prove that P x is true for all x, we can let x be arbitrary and then prove P x.

Examples

intro h turns

⊢ P → Q

into

h : P
⊢ Q

Similarly, intro x turns

⊢ ∀ a, a + a = 2 * a

into

x : X
⊢ x + x = 2 * x

where X is the type of x and a (for example X could be the naturals or the reals, or some other type equipped with an
addition and multiplication).

5.2. Tactic documentation 47

Formalising Mathematics, Release 0.1

Details

intro works when the goal is what is known as a “Pi type”. This is a fancy computer science word for some kind of
generalised function type. One Pi type goal which mathematicians often see is an implication type of the form P → Q
where P and Q are propositions. The other common Pi type goal is a “for all” goal of the form ∀ a, a + a = 2 *
a. Read more about Pi types in the Part B explanation of Lean’s three different types.
Variants of intro include the intros tactic (which enables you to intro several variables at once) and the rintro tactic
(which enables you to do case splits on variables whilst introducing them).

5.2.15 intros

Summary

The intros tactic is a variant of the intro tactic, which can be used if the user wants to use intro several times.
The tactic intros a b c is equivalent to intro a, intro b, intro c.

Examples

intros h turns

⊢ P → Q

into

h : P
⊢ Q

just as intro h would do. However
intros hP hQ hR turns

⊢ P → Q → R → S

into

hP : P
hQ : Q
hR : R
⊢ S

Similarly, intros x y z turns

⊢ ∀ (a b c : N), a + b + c = c + b + a

into

x y z : N
⊢ x + y + z = z + y + x

48 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

Further notes

A variant of intros is rintro, which also enables multiple intros at once, as well as allowing the user do case splits on
variables.

5.2.16 left

Summary

There are two ways to prove ` P ∨ Q; you can either prove P or you can prove Q. If you want to prove P then use the
left tactic, which changes ` P ∨ Q to ` P.

Details

It’s a theorem in Lean that P → P ∨ Q. The left tactic applies this theorem, thus reducing a goal of the form ` P
∨ Q to the goal ` P.

Further notes

See also right. More generally, if your goal is an inductive type with two constructors, left applies the first construc-
tor, and right applies the second one.

5.2.17 linarith

Summary

The linarith tactic solves certain kind of linear equalities and inequalities. Unlike the ring tactic, linarith uses
hypotheses in the tactic state. It’s very handy for epsilon-delta proofs.

Examples

1) If your local context looks like this:

a b c d : R
h1 : a < b
h2 : b ≤ c
h3 : c = d
⊢ a + a < d + b

then you would like to say that the goal “obviously” follows from the conclusions. but actually proving it from first
principles is a little bit messy, and will involve knowing or discovering the names of lemmas such as lt_of_lt_of_le
andadd_lt_add. Fortunately, you don’t have to do this: linarith closes this goal immediately. Note that in contrast
to ring, linarith does have access to the hypotheses in your local context.
2) If you have a goal of the form |x| < ε then linarith might not be much help yet, because it doesn’t know

about absolute values. So you could rw abs_lt and get a goal of the form -ε < x ∧ x < ε. Well, linarith
still won’t be of any help, because it doesn’t know about goals with ∧ in either! However after you split, perhaps
linarith will be able to help you.

5.2. Tactic documentation 49

Formalising Mathematics, Release 0.1

import tactic
import data.real.basic

example (x ε : R) (hε : 0 < ε) (h1 : x < ε / 2) (h2 : -x < ε / 2) : |x| < ε :=
begin

rw abs_lt, -- `⊢ -ε < x ∧ x < ε`
split; -- semicolon instead of comma means "do next tactic on all the goals this␣

↪→tactic produces"
linarith -- solves both goals

end

5.2.18 nlinarith

Summary

The nlinarith tactic is a stronger version of linarith which can deal with some nonlinear goals (for example it can
solve 0 ≤ x^2 if x : R).
Just as for linarith, you can feed extra information into the mix (for example, explicit proofs h1 and h2 that various things
are non-negative or other relevant information can be inserted into the algorithm with nlinarith [h1, h2]).
Read the documentation of the linarith tactic to see the sorts of goals which this tactic can solve. In brief, it uses
equalities and inequalities in the hypotheses to try and prove the goal (which can also be an inequality or an equality).

5.2.19 norm_num

Summary

The norm_num tactic solves equalities and inequalities which involve only normalised numerical expressions. It doesn’t
deal with variables, but it will prove things like A = B, A ≤ B, A < B and A 6= B, as long as A and B involve only
numbers like -37/5.

Examples

(with data.real.basic imported to get the reals, and of course tactic imported to get the tactics)

example : (1 : R) + 1 = 2 :=
begin

norm_num,
end

example : (1 : R) + 1 ≤ 3 :=
begin

norm_num,
end

example : (1 : R) + 1 < 4 :=
begin

norm_num,
end

example : (1 : R) + 1 ̸= 5 :=

(continues on next page)

50 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

(continued from previous page)
begin

norm_num,
end

I put a comma after norm_num so that I can check that the “goals accomplished” message is there.
norm_num also knows about a few other things; for example it seems to know about the absolute value on the real
numbers.

example : |(3 : R) - 7| = 4 :=
begin

norm_num,
end

5.2.20 nth_rewrite

Summary

If h : a = b then rw h turns all a s in the goal to b s. If you only want to turn one of the a s into a b, use
nth_rewrite. For example nth_rewrite 2 h will change only the third a into b, and nth_rewrite 0 h
will turn only the first one.

Examples

1) Faced with

h : x = y
⊢ x * x = a

the tactic nth_rewrite 0 h will turn the goal into ` y * x = a and nth_rewrite 1 h will turn it into ` x
* y = a. Compare with rw h which will turn it into ` y * y = a.
2) nth_rewrite works on hypotheses too. If h : x = y is a hypothesis and h2 : x * x = a then

nth_rewrite 0 h at h2 will change h2 to y * x = a.
3) Just like rw, nth_rewrite accepts ← h3 if you want to change the right hand side of h3 to the left hand side.

Further notes

Variants of nth_rewrite are nth_rewrite_lhs and nth_rewrite_rhs which operate only on the left hand
or right hand side of an = or↔.

5.2. Tactic documentation 51

Formalising Mathematics, Release 0.1

5.2.21 obtain

Summary

The obtain tactic can be used to do have and cases all in one go.

Example

If you have a hypothesis h : ∀ ε > 0, ∃ (N : N), (1 : R) / (N + 1) < ε, then you could specialize
h to the case ε = 0.01 with have h2 := h 0.01 (by norm_num) (or specialize h 0.01 (by
norm_num) if you’re prepared to change h) and then you can get to N and the hypothesis hN : 1 / (N + 1) < ε
with cases h2 with N hN or rcases h2 with 〈N, hN〉. But you can do both steps in one go with obtain
〈N, hN〉 := h 0.01 (by norm_num).
To make your code more readable you can explicitly mention the type of 〈N, hN〉. In the above example you could write
obtain 〈N, hN〉 : ∃ (N : N), (1 : R) / (N + 1) < 0.01 := h 0.01 (by norm_num),
meaning that the reader can instantly see what the type of hN is.

Details

Note that, like rcases and rintro, obtain works up to definitional equality.
As with rcases and rintro, there is a rfl trick, where you can eliminate a variable using rfl instead of a hypothesis
name.

5.2.22 rcases

Summary

The rcases tactic can be used to do multiple cases tactics all in one line. It can also be used to do certain variable
substitutions with a rfl trick.

Examples

1) If ε : R is in your tactic state, and also a hypothesis h : ∃ δ > 0, δ^2 = ε then you can take h apart
with the cases tactic. For example you can do this:

cases h with δ h1, -- h1 : ∃ (H : δ > 0), δ ^ 2 = ε
cases h1 with hδ h2,

which will leave you with the state

ε δ : R
hδ : δ > 0
h2 : δ ^ 2 = ε

However, you can get there in one line with rcases h with 〈δ, hδ, h2〉.
2) In fact you can do a little better. The hypothesis h2 can be used as a definition of ε, or a formula for ε, and the

rcases tactic has an extra trick which enables you to completely remove ε from the tactic state, replacing it
everywhere with δ ^ 2. Instead of calling the hypothesis h2 you can instead type rfl. This has the effect of
rewriting ← h2 everywhere and thus replacing all the ε s with δ ^ 2. If your tactic state contains this:

52 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

ε : R
h : ∃ (δ : R) (H : δ > 0), δ ^ 2 = ε
⊢ ε < 0.1

then rcases h with 〈δ, hδ, rfl〉 turns the state into

δ : R
hδ : δ > 0
⊢ δ ^ 2 < 0.1

Here ε has vanished, and all of the other occurrences of ε in the tactic state are now replaced with δ ^ 2.
3) If h : P ∧ Q ∧ R then rcases h with 〈hP, hQ, hR〉 directly decomposes h into hP : P, hQ :

Q and hR : R. Again this would take two moves with cases.
4) If h : P ∨ Q ∨ R then rcases h with (hP | hQ | hR) will replace the goal with three goals, one

containing hP : P, one containing hQ : Q and the other hR : R. Again cases would take two steps to do
this.

Details

Note that rcases works up to definitional equality.
Variants of intro include the intros tactic (intro + rcases) and the obtain tactic (have + rcases).

5.2.23 refine

Summary

The refine tactic is “exact with holes”. You can use an incomplete term containing one or more underscores _ and
Lean will give you these terms as new goals.

Examples

1) Faced with (amongst other things)

hQ : Q
⊢ P ∧ Q ∧ R

you can see that we already have a proof of Q, but we might still need to do some work to prove P and R. The tactic
refine 〈_, hQ, _〉 replaces this goal with two new goals ` P and ` R.
2) As well as being a generalization of the exact tactic, refine is also a generalization of the apply tactic. If

your tactic state is

h : P → Q
⊢ Q

then you can change the goal to ` P with refine h _.
3) refine _ does nothing at all; it leaves the goal unchanged.
4) Faced with ` ∃ (n : N), n ^ 4 = 16, the tactic refine 〈2, _〉 turns the goal into ` 2 ^ 4 = 16,

so it does the same as use 2. In fact here, because ` 2 ^ 4 = 16 can be solved with norm_num, the entire
goal can be closed with exact 〈2, by norm_num〉

5.2. Tactic documentation 53

Formalising Mathematics, Release 0.1

5) If your tactic state looks (in part) like this:

f : R → R
x y ε : R
hε : 0 < ε
⊢ ∃ (δ : R) (H : δ > 0), |f y - f x| < δ

then refine 〈ε^2, by nlinarith, _〉 changes the goal to ` |f y - f x| < ε ^ 2. Here we use the
nlinarith tactic to prove ε^2 > 0 from the hypothesis 0 < ε.

Further notes

refine works up to definitional equality, as does most tactics.

5.2.24 refl

Summary

The refl tactic proves goals of the form ` x = y where x and y are definitionally equal. More generally it proves
goals of the form R x y if x and y are definitionally equal and R is a reflexive binary relation.

Examples

1) refl will prove ` x = x.
2) refl will prove ` P ↔ P.
3) refl will prove ` ¬ P ↔ (P → false) because even though the two sides of the iff are not syntactically

equal, they are definitionally equal.
4) refl will prove ` 2 + 2 = 4 if the 2s and the 4 are natural numbers (i.e. have type N. This is because

both sides are definitionally equal to succ(succ(succ(succ(0)))). It will not prove ` 2 + 2 = 4
if the 2``s and the ``4 are real numbers however; one would have to use a more powerful tactic such as
norm_num to do this.

Further notes

Checking definitional equality can be extremely difficult. In fact it is a theorem of logic that checking definitional equality
in Lean is algorithmically undecidable in general. Of course this doesn’t necessarily mean that it’s hard in practice; in the
examples we will see in this course refl should work fine when it is supposed to work. There is a pathological example
in Lean’s reference manual of three terms A, B and C where `` A = B and `` B = C can both be proved by refl,
but refl fails to prove ` A = C (even though they are definitionally equal). Such pathological examples do not show
up in practice when doing the kind of mathematics that we’re doing in this course though.
If you’re doing harder mathematics in Lean then you can be faced with goals which look simple but which under the hood
are extremely long and complex terms; sometimes refl can take several seconds (or even longer) to succeed in these
cases. In this course I doubt that we will be seeing such terrifying terms.

54 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

5.2.25 right

Summary

There are two ways to prove ` P ∨ Q; you can either prove P or you can prove Q. If you want to change the goal to Q
then use the right tactic.

Details

It’s a theorem in Lean that Q → P ∨ Q, and the right tactic applies this theorem.

Further notes

See also left. More generally, if your goal is an inductive type with two constructors, left applies the first constructor,
and right applies the second one.

5.2.26 ring

Summary

The ring tactic proves identities in commutative rings such as (x+y)^2=x^2+2*x*y+y^2. It works on concrete
rings such as R and abstract rings, and will also prove some results in “semirings” such as N.
Note that ring does not and cannot look at hypotheses. See the examples for various ways of working around this.

Examples

1) A basic example is

example (x y : R) : x^3-y^3=(x-y)*(x^2+x*y+y^2) :=
begin

ring
end

2) Note that ring cannot use hypotheses – the goal has to be an identity. For example faced with

x y : R
h : x = y ^ 2
⊢ x ^ 2 = y ^ 4

the ring tactic will not close the goal, because it does not know about h. The way to solve this goal is rw h, ring.
3) Sometimes you are in a situation where you cannot rw the hypothesis you want to use. For example if the tactic

state is

x y : R
h : x ^ 2 = y ^ 2
⊢ x ^ 4 = y ^ 4

then rw h will fail (of course we know that x^4=(x^2)^2, but rw works up to syntactic equality and it cannot see
an x^2 in the goal). In this situation we can use ring to prove an intermediate result and then rewrite our way out of
trouble. For example this goal can be solved in the following way.

5.2. Tactic documentation 55

Formalising Mathematics, Release 0.1

example (x y : R) (h : x^2 = y^2) : x^4 = y^4 :=
begin

have h2 : x^4=(x^2)^2, -- introduce a new goal
{ ring }, -- proves ``h2``; note that the `{...}` brackets are good practice

-- when there is more than one goal
rw h2, -- goal now ``⊢ (x ^ 2) ^ 2 = y ^ 4``...
rw h, -- ...so ``rw h`` now works, giving us ``⊢ (y ^ 2) ^ 2 = y ^ 4``
ring,

end

Further notes

There’s a variant of ring called ring! but I don’t know a concrete example where one works and the other doesn’t.
ring is a “finishing tactic”; this means that it should only be used to close goals. If ring does not close a goal it will
issue a warning that you should use the related tactic ring_nf.
ring might not work sometimes with variable exponents like x^n. The variant ring_exp is better at dealing with
them.
The algorithm used in the ring tactic is based on the 2005 paper “Proving Equalities in a Commutative Ring Done Right
in Coq” by Benjamin Grégoire and Assia Mahboubi.

5.2.27 rintro

Summary

The rintro tactic can be used to do multiple intro and cases tactics all in one line.

Examples

1) Faced with the goal

⊢ P → Q ∧ R → S

one could use the following tactics

intro hP,
intro h,
cases h with hQ hR,

to get the tactic state

hP : P
hQ : Q
hR : R
⊢ S

However, one can get there in one line with

rintro hP ⟨hQ, hR⟩,

(the pointy brackets 〈〉 can be obtained by typing \< and \> in VS Code.)
2) Faced with a goal of the form

56 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

⊢ P ∨ Q → R

the tactic rintro (hP | hQ) will do the same as intro h, cases h with hP hQ. In particular, after the
application of the tactic there will be two goals, one with hypothesis hP : P and the other with hypothesis hQ : Q.
Note the round brackets for “or” goals.
3) There is a rfl easter egg with the rintro tactic. If the goal is

⊢ a = 2 * b → 2 * a = 4 * b

then rintro rfl will, instead of naming the hypothesis a = 2 * b and putting it in the tactic state, instead define
a to be 2 * b, leaving the goal as

⊢ 2 * (2 * b) = 4 * b

Details

Note that rintro works up to definitional equality, like intro, so for example if the goal is ` ¬P then rintro hP
works fine (because ¬P is definitionally equal to P → false), leaving the tactic state as

hP : P
⊢ false

Further notes

The syntax for rintro with pointy and round brackets is the same as the syntax for rcases.

5.2.28 rw

Summary

The rw or rewrite tactic is a “substitute in” tactic. If h : x = y is a hypothesis then rw h changes all of the
x``s in the goal to ``y``s. ``rw also works with iff statements: if h : P ↔ Q then rw h will replace
all the P``s in the goal by ``Q``s. ``rw works up to syntactic equality, and only works with = and ``

Examples

1) Faced with

h : x = y
⊢ x ^ 2 = 1369

the tactic rw h will turn the goal into y ^ 2 = 1369.
2) rw works with↔ statements as well. Faced with

h : P ↔ Q
⊢ P ∧ R

the tactic rw h will turn the goal into ` Q ∧ R.

5.2. Tactic documentation 57

Formalising Mathematics, Release 0.1

3) rw can also be used to rewrite in hypotheses. For example given h : x = y and h2 : x ^ 2 = 289, the
tactic rw h at h2 will turn h2 into h2 : y ^ 2 = 289. You can rewrite in multiple places at once – for
example rw h at h1 h2 h3 will change all occurrences of the left hand side of h into the right hand side, in
all of h1, h2 and h3. If you want to rewrite in a hypothesis and a goal at the same time, try rw h at h1 `
(type the turnstile ` symbol with \|-).

4) rw doesn’t just eat hypotheses – the theorem zero_add says ∀ x, 0 + x = x, so if you have a goal `` ` 0 +
t = 37`` then rw zero_add will change it to t = 37. Note that rw is smart enough to fill in the value of x for
you.

5) If you want to replace the right hand side of a hypothesis h with the left hand side, then rw ← h will do it. Type
← with \l, noting that l is a small letter L for left, and not a number 1.

6) You can chain rewrites in one tactic. Equivalent to rw h1, rw h2, rw h3 is rw [h1, h2, h3].
7) rw will match on the first thing it finds. For example, add_comm is the theorem that ∀ x y, x + y = y +

x. If the goal is ` a + b + c = 0 then rw add_comm will change it to ` c + (a + b) = 0, because
if we strip away the notation then a + b + c = add (add a b) c, which gets changed to add c (add
a b). If you wanted to switch a and b then you can tell Lean to do this explicitly with rw add_comm a b.

Further notes

1) rw tries a weak version of refl when it’s finished. Beginners can find this confusing; indeed I disabled this in the
natural number game because users found it confusing. As an example, if your tactic state is

h : P ↔ Q
⊢ P ∧ R ↔ Q ∧ R

then rw h will close the goal, because after the rewrite the goal becomes ` Q ∧ R ↔ Q ∧ R and refl closes this
goal.
2) A variant of rw is rwa, which is rw followed by the assumption tactic. For example if your tactic state is

h1 : P ↔ Q
h2 : Q ↔ R
⊢ P ↔ R

then rwa h1 closes the goal, because it turns the goal into Q ↔ R which is one of our assumptions.
3) If h : x = y and your goal is ` x * 2 + z = x, then rw h will turn both x``s into ``y``s. If

you only want to turn one of the ``x``s into a ``y then you can use nth_rewrite 0
h (for the first one) or nth_rewrite 1 h (for the second one).

4) rw works up to syntactic equality. This means that if h : (P → false) ↔ Q and the goal is ` ¬P then
rw h will fail, even though P → false and ¬P are definitionally equal. The left hand side has to match on the
nose.

5) rw does not work under binders. Examples of binders are ∀ and ∃. For example, if your goal is ` ∀ (x : N),
x + 0 = 0 + x then rw add_zero will not work. In situations like this you need to use the more powerful
simp_rw tactic; simp_rw add_zero works and changes the goal to ∀ (x : N), x = 0 + x.

58 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

5.2.29 simp

Summary

There are many lemmas of the form x = y or P ↔ Q in mathlib which are “tagged” with the @[simp] tag. Note
that these kinds of lemmas are ones for which the rw tactic can be used. A lemma tagged with @[simp] is called a
“simp lemma”.
When Lean’s simplifier simp is run, it tries to find simp lemmas for which the left hand side of the lemma is in the goal.
It then rewrites the lemma and continues. Ultimately what happens is that the goal ends up simplified, and, ideally, solved.

Overview

There are hundreds of lemmas in mathlib of the form x + 0 = x or x * 0 = 0, where one side is manifestly
simpler than the other (in the sense that a mathematician would instinctively replace the more complex side by the simpler
side if they were trying to prove a theorem). In Lean, such a lemma might be tagged with the @[simp] tag. A tag on a
lemma or definition does nothing mathematical; it is just a flag for certain tactics. The convention for @[simp] lemmas
in Lean is that the left hand side of such a lemma should be the more complicated side. For example Lean has

@[simp] add_zero (x) : x + 0 = x := ...
@[simp] zero_add (x) : 0 + x = x := ...

(proofs omitted). Because these lemmas are tagged with @[simp], the following proof works:

example (x : R) : 0 + 0 + x + 0 + 0 = (x + (0 + 0)) :=
begin

simp
end

If you want to know which lemmas simp used, you can use the related tactic squeeze_simp, which gives an output
listing the theorems which simp rewrote to make the progress which it made.

Examples

1) If you are doing a proof by induction, then simp will often deal with the base case, because it knows lots of ways
to simplify goals with a 0 in. Here is simp being used to prove that

∑n−1
i=0 i = n(n− 1)/2:

import data.finset.basic
import data.real.basic

open_locale big_operators

open finset

example (n : N) :
2/7 i in range n, (i : R) = n * (n - 1) / 2 :=

begin
induction n with d hd,
{ -- base case: sum over empty type is 0 * (0 - 1) / 2
simp },

{ -- inductive step
rw [sum_range_succ, hd],
simp, -- tidies up and reduces the goal to
-- ⊢ ↑d * (↑d - 1) / 2 + ↑d = (↑d + 1) * ↑d / 2

(continues on next page)

5.2. Tactic documentation 59

Formalising Mathematics, Release 0.1

(continued from previous page)
ring, -- a more appropriate tactic to finish the job

}
end

Details

Note that simp, like rw, works up to syntactic equality. In other words, if your goal mentions x and there is a simp
lemma h : x' = y where x' is definitionally, but not syntactically, equal to x, then simp will not do the rewrite;
this is because rw h fails.
You can use simp on goals too: simp at h will run the simplifier on h.
There’s quite a lot to say about the simp tactic. More details of how to use it are in the explanation of how to use simp
is in the community documentation and in section 5.7 of Theorem Proving In Lean .

Further notes

The two related tactics simp? and squeeze_simp both attempt to figure out exactly which lemmas simp used.
Sometimes they give different answers; it turns out that because simp is written in C++ rather than in Lean, reverse-
engineering it is a subtle problem.

5.2.30 simpa

Summary

If you have a goal and a hypothesis h, and Lean’s simplifier simp, if run on both of them, will turn them into the same
thing, then you could solve the goal in three lines with simp, simp at h, exact h, or even in two lines with
simp at *, exact h. But you could also solve it in one line with simpa using h. In fact h doesn’t need to be
a hypothesis, it can be any proof you like (e.g. a proof you made using some lemmas and some hypotheses).

Examples

1)

import tactic
import data.real.basic

example (x y z : R) (h : x = y + z + 0) : x * 1 = y + z :=
begin

-- Lean's simplifier knows that a + 0 = 0 and a * 1 = a
simpa using h,

end

Here the simplifier can do some work on both the hypothesis h (removing the + 0) and on the goal (removing * 1).
Once this work is done, h and the goal become equal.
2) Like with simp, you can also feed simpa a list of extra lemmas for the simplifier to use. For example here simpa

using h won’t work because the simplifier doesn’t know hxy (the simplifier doesn’t use hypotheses in the tactic
state).

60 Chapter 5. Part C: Tactics

https://leanprover-community.github.io/extras/simp.html
https://leanprover.github.io/theorem_proving_in_lean/tactics.html#using-the-simplifier

Formalising Mathematics, Release 0.1

import tactic

example (x y z : N) (hxy : x = y) (h : z = y + 0) : z = x * 1 :=
begin

simpa [hxy] using h,
end

Further notes

Easter egg: If your hypothesis is called this then you don’t have to write using this at all, you can just write
simpa.

5.2.31 specialize

Summary

The specialize tactic can be used specialize hypotheses which are function types, by giving some or all of the inputs
to the function. Its two main uses are with hypotheses of type P → Q and of type ∀ x, ... (that is, hypotheses where
you might use intro if their type was the goal).

Examples

1) If you have a hypothesis h : P → Q and another hypothesis hP : P (that is, a proof of P) then specialize
h hP will change the type of h to h : Q.

Note: h is a function from proofs of P to proofs of Q so if you just want to quickly access a proof of Q for use elsewhere,
then you don’t have to use specialize at all, you can make a proof of Q with the term h(hP) or, as the functional
programmers would prefer us to write, h hP.
2) If you have a hypothesis h : ∀ x, f x = 37 saying that the function f(x) is a constant function with value

37, then specialize h 10 will change h to h : f 10 = 37.
Note that h has now become a weaker statement; you have lost the hypothesis that ∀ x, f x = 37 after this
application of the specialize tactic. If you want to keep it around, you could make a copy by running have h2 :=
h beforehand.
3) You can specialize more than one variable at once. For example if you have a hypothesis h : ∀ (x y : N),

... then specialize h 37 42 sets x = 37 and y = 42 in h.
4) If you have a hypothesis h : ∀ ε > 0, ∃ δ > 0, ... then looking at your tactic state more carefully you

might find that it actually says something like ∀ (ε : R), ε > 0 → If you also have variables ε :
R and hε : ε > 0 then you can do specialize h ε hε in which case h will change to ∃ δ > 0,

5) If again you have a hypothesis h : ∀ ε > 0, ∃ δ > 0, ... but you would like to use h in the case where
ε = 37 then you can specialize h 37 and this will change h to h : 37 > 0 → (∃ δ.... Now
obviously 37 > 0 but h still wants a proof of this as its next input. You could make this proof in a couple of ways.
For example (assuming that 37 is the real number 37 : R, which it probably is if you’re doing epsilon-delta
arguments) this would work:

have h37 : (37 : R) > 0 -- two goals now
{ norm_num }, -- `h37` now proved
specialize h h37

However you could just drop the proof in directly:

5.2. Tactic documentation 61

Formalising Mathematics, Release 0.1

specialize h (begin norm_num end)

There is special notation by for tactic blocks with just one tactic in, so in fact the following variants would also work

have h37 : (37 : R) > 0 := by norm_num, -- still only one goal
specialize h h37

or even

specialize h (by norm_num)

In fact going back to the original hypothesis h : ∀ ε > 0, ∃ δ > 0, ..., and remembering that Lean actually
stores this as h : ∀ (ε : R), ε > 0 → ∃ δ ..., you could specialize to ε = 37 in one line with
specialize h 37 (by norm_num).

Further notes

You don’t always have to specialize. For example if you have h : ∀ ε > 0, ∃ N, some_fact where
some_fact is some proposition which depends on ε and N, and you also have ε : R and hε : ε > 0 in your
tactic state, you can just get straight to N and the fact with cases h ε hε with N hN.

5.2.32 split

Summary

If your goal is a proof which is “made up of subproofs” (for example a goal like ` P ∧ Q; to prove this you have to
prove P and Q) then the split tactic will turn your goal into these multiple simpler goals.

Examples

1) Faced with the goal ` P ∧ Q, the split tactic will turn it into two goals ` P and ` Q.
2) Faced with the goal ` P ↔ Q, split will turn it into two goals ` P → Q and ` Q → P.
3) Something which always amuses me – faced with ` true, split will solve the goal. This is because true is

made up of 0 subproofs, so split turns it into 0 goals.

Further notes

The refine tactic is a more refined version of split; faced with a goal of ` P ∧ Q, split does the same as
refine 〈_, _〉,. In fact refine is more powerful than split; faced with ` P ∧ Q ∧ R you would have to use
split twice to break it into three goals, whereas refine 〈_, _, _〉 does the job in one go.

62 Chapter 5. Part C: Tactics

Formalising Mathematics, Release 0.1

5.2.33 triv

Summary

The triv tactic proves ` true.
It also proves goals of the form x = x and more generally of the form x = y when x and y are definitionally equal,
but traditionally people use refl to do that.

Examples

If your goal is

⊢ true

then it’s pretty triv, so try triv.

Details

Note that true here is the true proposition. If you know a proof in your head that the goal is true, that’s not good enough.
If your goal is ` P and you can tell that P is true (e.g. because you can deduce it from the hypotheses), triv won’t
work; triv only works when the goal is actually definitionally equal to ` true.

Further notes

The split tactic also proves a true goal, although you would have to learn a bit about inductive types to understand
why. Also triv solves a true gol in 3 millisends on a modern computer, whereas split takes 4 milliseconds.

5.2.34 use

Summary

The use tactic can be used to make progress with ∃ goals; if the goal is to show that there exists a number n with some
property, then use 37 will reduce the goal to showing that 37 has the property.

Examples

1) Faced with the goal

⊢ ∃ (n : R), n + 37 = 42

progress can be made with use 5. Note that use is a tactic which can leave you with an impossible goal; use 6 would
be an example of this, where a goal which was solvable becomes unsolvable.
2) You can give use a list of things, if the goal is claiming the existence of more than one thing. For example

import tactic
import data.real.basic

example : ∃ (a b : R), a + b = 37 :=
begin

(continues on next page)

5.2. Tactic documentation 63

Formalising Mathematics, Release 0.1

(continued from previous page)
use [5, 32],
-- ⊢ 5 + 32 = 37
norm_num,

end

Further notes

The refine tactic can do what use does; for example instead of use [5, 32] in the above example, one can try
refine 〈5, 32, _〉. The underscore means “I’ll do the proof later”.

64 Chapter 5. Part C: Tactics

	Introduction
	Aims and objectives
	Why formalise?
	The Lean Theorem Prover
	Prerequisites
	How to read this document

	Getting Lean running on your computer
	The best way: install Lean on your computer
	An alternative: Gitpod

	Part A: the mathematics
	Section 1 : Logic
	Lean’s notation for logic.
	Lean’s tactic state.

	Section 2 : An introduction to the real numbers
	The real real numbers
	Garbage in, garbage out
	Lean is not a computer
	Working with reals

	Section 3 : An introduction to group theory
	Overview of the sheets
	Structures and classes
	What you need to know to do sheets 1 and 2
	What you need to know to do sheet 3
	What you need to know to do sheet 4

	Section 4 : functions
	The problem sheets

	Section 5 : Sets
	Section 6 : quotients
	The natural numbers
	Products
	Quotients
	What does it mean to be “well-defined”?

	Part B: Lean tips
	Types and terms
	Sets and their elements
	The universe of all types
	Function types
	The universe Prop
	P ⇒ Q is P → Q

	Equality
	Overview
	Syntactic equality
	Definitional equality
	Propositional equality
	Appendix: syntactic equality again

	The three kinds of types
	Introduction
	Function types (a.k.a. Pi types)
	Inductive types
	Quotient types

	Brackets in function inputs
	() brackets
	{} and ⦃⦄ brackets
	[] brackets
	Overriding brackets

	Structures
	The mathematics
	The Lean

	Classes
	Making groups; learning about classes
	What’s the difference between a class and a structure?

	Dot notation
	Coercions
	Making coercions
	Coercion from terms to terms
	Coercions from terms to types
	Coercions from terms to functions

	The axiom of choice
	nonempty X
	classical.some

	How to format your code well
	Indentation
	Spaces between operators
	Comments
	Only one goal
	Want to know more?

	Part C: Tactics
	Tactic cheatsheet
	Tactic documentation
	apply
	Summary
	Examples
	Further notes

	assumption
	Summary
	Examples
	Further notes

	by_cases
	Summary
	Examples
	Details
	Further notes

	by_contra
	Summary
	Example
	Further notes

	cases
	Summary
	Examples
	Further notes

	change
	Summary
	Example
	Details
	Further notes

	choose
	Summary
	Basic usage
	Example usage in analysis

	convert
	Summary
	Examples

	exact
	Summary
	Examples
	Further notes

	exfalso
	Summary
	Examples
	Details

	ext
	Summary
	Examples
	Details
	Further notes

	have
	Summary
	Examples
	Further notes

	induction
	Summary
	Overview
	Example
	Details

	intro
	Summary
	Examples
	Details

	intros
	Summary
	Examples
	Further notes

	left
	Summary
	Details
	Further notes

	linarith
	Summary
	Examples

	nlinarith
	Summary

	norm_num
	Summary
	Examples

	nth_rewrite
	Summary
	Examples
	Further notes

	obtain
	Summary
	Example
	Details

	rcases
	Summary
	Examples
	Details

	refine
	Summary
	Examples
	Further notes

	refl
	Summary
	Examples
	Further notes

	right
	Summary
	Details
	Further notes

	ring
	Summary
	Examples
	Further notes

	rintro
	Summary
	Examples
	Details
	Further notes

	rw
	Summary
	Examples
	Further notes

	simp
	Summary
	Overview
	Examples
	Details
	Further notes

	simpa
	Summary
	Examples
	Further notes

	specialize
	Summary
	Examples
	Further notes

	split
	Summary
	Examples
	Further notes

	triv
	Summary
	Examples
	Details
	Further notes

	use
	Summary
	Examples
	Further notes

