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Superhuman mathematics

In his 1987 paper “Deforming Galois representa-
tions”, Barry Mazur observes that the geometric con-
cept of a smoothly-varying complex family of rep-
resentations of a group has an arithmetic analogue.
He sets up deformation theory in the purely alge-
braic setting of mod p and p-adic Galois representa-
tions, and makes some interesting observations about
the relationship between deformation rings and Ga-
lois cohomology. By 1990, Mazur and Tilouine have
raised a profound question about whether a certain
universal deformation ring coming out of this the-
ory is isomorphic to one of Hida’s Hecke algebras.
In 1993 Wiles uses new techniques in commutative
algebra to reduce a variant of this question to a nu-
merical criterion, and a year later, aided by Taylor,
he has pushed the strategy through. The semistable
Shimura–Taniyama conjecture (at that time often
called the semistable Shimura–Taniyama–Weil con-
jecture) follows, and hence, by earlier work of Ribet,
Fermat’s Last Theorem.

This is but one of very many examples where
cross-fertilization has occured in mathematics. The
breadth of Mazur’s mathematical knowledge (he was
initially a topologist) played a key role here. In a 2014
article [Maz14] for the Math Intelligencer, Mazur
writes: “Reasoning by analogy is the keystone: it
is present in much (perhaps all) daily mathematical
thought, and is also often the inspiration behind some
of the major long-range projects in mathematics”.

One might hence ask the following question: if
one human had an understanding of all of modern
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pure mathematics simultaneously, how much further
would they immediately be able to see? How many
insights are there which are needed to unblock one
field, but which have already been made in another?

This question can of course be dismissed as a
“thought experiment”. Perhaps it is the kind of thing
which philosophers might muse over, but it is the year
2020 and pure mathematics is much too big for one
human to comprehend.

However, it is the year 2020 and hence we have
computer proof systems which are now in theory ca-
pable of understanding all of modern pure mathe-
matics. So why is our community not teaching it to
them? This is entirely within our grasp, and we have
absolutely no idea what will happen when we do.

1 Teaching mathematics to hu-
mans

Let us look at the way pure mathematics is learnt by
humans, from undergraduate to PhD level.

1.1 The basics.

Three key concepts in pure mathematics are the def-
inition, the theorem statement, and the proof. We
will talk more about this trichotomy later on, but for
now let us focus on the concept of proof. A course
introducing the formal notion of proof might cover
concepts such as sets, functions and binary relations,
and basic theorems about these objects will be care-
fully proved. For example, there might be a proof
that distinct equivalence classes for an equivalence
relation are disjoint. There are many ways that one
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can attempt to teach this to undergraduates. Re-
cently I have become fond of a method where I bring
a set of around 100 plastic shapes coloured red, yel-
low, green and blue into class. Two shapes are de-
fined to be equivalent if they have the same colour,
and it is not hard to convince the students that this
is an equivalence relation, and that the red shapes
form an equivalence class, the blue shapes form an-
other, and so on. The fact that distinct equivalence
classes are disjoint is now obvious. However this is an
example, not a proof. The formal proof, which I then
go on to show the students, is a series of elementary
steps, each of which follows from the rules of logic or
the axioms of an equivalence relation.

In proofs such as these, we are operating very close
to the “machine” which drives formal mathematics –
the machine which tells us that if P is true, and if P
implies Q, then Q is true, and other such logical rules.
This axiom-based attitude continues to play an im-
portant role in subsequent classes such as first courses
in group theory, linear algebra, and real analysis. The
real numbers might be presented as a complete totally
ordered archimedean field, that is, a structure satis-
fying a list of axioms. Using only these axioms we can
build a basic theory of real analysis from first princi-
ples. The theories of sequences, limits, infinite sums,
continuous functions R→ R, differentiation, integra-
tion and so on can all be carefully built from the ax-
ioms for complete totally ordered archimedean fields.
Similarly, a lecturer presents the axioms of a group in
a first course on group theory, and from these axioms
we can build the theory of subgroups, normal sub-
groups, group homomorphisms, kernels, images and
quotient groups, and prove the first isomorphism the-
orem for groups. At this stage in the development of
mathematics, every proof can be chased right down
to the axioms of the system we are considering, and
students are expected to lean from such courses that
mathematics can be done in this way. Much (but, as
we are about to see, not all) of undergraduate pure
mathematics is of this form.

1.2 Developing intuition.

After a while it becomes inconvenient to do mathe-
matics in a purely axiomatic fashion. For example,

proving that if we remove a finite set of points from
R2 then the resulting topological space is still path
connected could of course in theory be done from the
axioms, but in practice, rather than attempting to
write down the function defining a path between two
arbitrary points in the space, one would just draw a
picture. The same is also true when proving basic
results about contour integrals in complex analysis
– there are several “proofs by picture” in a typical
development of the theory. The concept of a curve
in the plane having an inside and an outside will of-
ten be taken as read, although very few students will
have seen a proof of the Jordan curve theorem at this
point in their mathematical education. Over time,
students learning mathematics begin to understand
our unwritten rules of “what is allowed in practice”.
One is reminded of the apocryphal story of a stu-
dent asking their professor whether the fact just pre-
sented to the class as “obvious” was indeed obvious,
and the professor going into deep thought to emerge
20 minutes later with the reply “yes”. By this point
in the development of a student’s education, lectur-
ers are expecting the students to “learn to fly”. Ar-
guments in lectures may take place high above the
axioms, with technical details being dismissed as ob-
vious or easy to verify, and left to the reader (per-
haps with some hints). This is the beginning of what
Terry Tao [Tao09] has called the post-rigorous stage
of mathematics. To borrow a phrase from computer
science, students begin to learn the intuitive “front
end” of mathematics.

1.3 PhD Research.

Those students who convince us that they can steer
their mathematical arguments correctly are rewarded
by being given PhD places. The prize for this “level-
ling up” is that they are allowed access to the mathe-
matical literature, and from now on they can assume
any result they like, as long as it is published in a
reasonably prestigious journal and their advisor be-
lieves it. A typical PhD thesis in pure mathemat-
ics will contain new proofs of results in a given the-
ory. In my personal case, this theory was the theory
of p-adic Galois representations attached to modular
forms. By the time they graduate, a PhD student will
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typically know many theorem statements concerning
the objects they chose to study, and may well have
contributed to this list of theorem statements them-
selves. Again to borrow a phrase from computer sci-
ence, the student knows the interface to each object
in their area of expertise. The student is allowed to
assume any results in the interface, and might well
know how to prove some of them – but possibly not
all of them. For example, when I was a PhD student,
I had not read the details of the proof of the theo-
rem of Deligne which attached a p-adic Galois repre-
sentation to a modular form, a key result from the
interface to the theory of modular forms upon which
my entire PhD work was based. In fact, at that time
there was only really a sketch proof of the result in
the literature. This was not however a problem, be-
cause the proof of Deligne’s theorem was “known to
the experts”. Students are expected to get their own
intuition of their area, and after a while should have a
feeling about what is accessible given known results,
and what requires genuinely new ideas.

In the rest of this article, I would like to discuss
the idea that computers can be taught mathemat-
ics in much the same sort of way. I leave it up to
the reader to decide whether they would like to be
involved, but what I do believe is that these com-
puter systems are now here, that they can eat math-
ematics, and that they will ultimately change the way
we do both teaching and research; furthermore, the
sooner these systems are noticed by mathematicians,
the sooner this will happen.

2 A brief introduction to in-
teractive theorem provers
(ITPs)

Before we talk about computer proof systems, let us
consider a computer program which many of us are
familiar with: LATEX.

The computer program LATEX is a mathematical
typesetting system. Thirty years ago, only a small
number of (typically young) mathematicians knew
how to write LATEX files, but now most of us do; this
program is now the standard typesetting system for

mathematicians. If one runs the LATEX program on
a LATEX file, one of two things can happen. The file
might contain errors, for example perhaps we acci-
dentally used a command in normal text mode which
is only valid in maths mode. In this case the LATEX
editor we are using will typically flag these errors and
ask that we fix them. But when all the errors are
gone, the LATEX program will compile the LATEX file,
and the output will be a (hopefully) beautifully type-
set document. This document is typically a pdf file
nowadays, which can be read on a screen, printed out,
or of course sent to another computer on the internet.

The computer program Lean is an interactive the-
orem prover (ITP). A small number of (typically
young) mathematicians know how to write Lean files.
A Lean file can contain definitions, theorem state-
ments, and proofs – we shall see examples later. Just
as a LATEX file is likely to contain some parts written
in “maths mode”, a Lean file is likely to contain some
parts written in “tactic mode”.

If one runs the Lean program on a Lean file, one of
two things can happen. The file might contain errors,
for example perhaps a proof in the file is incomplete
or incorrect, or a definition is not specified precisely
enough. In this case, the Lean editor we are using
will typically flag these errors and ask that we fix
them. When all the errors are gone, Lean will compile
the Lean file, and the output will be. . . nothing at
all. When this happens, Lean believes that all the
definitions in your file make sense, and it believes
that all the proofs in the file are correct.1

Note that Lean is not (just) a programming lan-
guage like Python or C++ or Haskell. To give an ex-
ample of the difference: in Python you could write a
program which printed out the first 1000 prime num-
bers, or the first 1000 digits of π. In Lean you could
write a proof that there are infinitely many prime
numbers, or a proof that π was transcendental.

Lean was written by Leonardo de Moura at Mi-

1It is not strictly speaking true that the output is nothing
at all – the actual output is a computer file, unreadable by hu-
mans, where each proof is represented as a complicated graph.
The proofs in this form (terms in a type theory) can be inde-
pendently verified by typecheckers written in other languages
and running on other operating systems and other chipsets,
to minimise the possibility that bugs in Lean’s kernel cause
incorrect proofs to be accepted as valid.
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crosoft Research, and is free and open source soft-
ware which runs on any modern operating system.
It is one of many ITP systems. Others include Coq,
Isabelle/HOL, Mizar, Metamath, HOL Light, Arend
and there are at least 20 more; many of these are
also free and open source, and some are over 30 years
old. All of these systems use slightly different logi-
cal foundations, and it is hard to automatically move
a mathematical proof from one system to another,
for the same reasons that it is hard to automatically
translate a computer program from one language to
another. However the differences in these systems
will not concern us here. Suffice it to say that essen-
tially all of the examples in this article can in theory
be written in essentially all of the proof verification
systems. We will focus on the Lean theorem prover
in the examples below, but this is only because it is
the system which the author knows best.

3 Teaching mathematics to
computers.

For the rest of this article, I would like to discuss the
possibility of teaching a computer pure mathematics,
following the same path as the way we teach it to
humans. Let us start with the basics. Earlier on, we
mentioned three fundamental mathematical concepts
– the theorem statement, the proof, and the defini-
tion. We will now see about how Lean understands
these concepts.

3.1 Propositions

First let us talk about general true/false statements,
a fundamental concept in mathematics. As well as
theorems, mathematicians are interested in conjec-
tures, which are true/false statements which might
be believed to be true, but which are not proven.
Here are some examples of true/false statements:

• 2 + 2 = 4;

• 2 + 2 = 5;

• Fermat’s Last Theorem;

• The Riemann Hypothesis.

Two of these statements are true, one is false, and
the truth value of the Riemann hypothesis is cur-
rently unknown. Mathematicians do not really have
a good word for a general true/false statement. The
Riemann Hypothesis is called a conjecture, but it
seems ridiculous to call 2 + 2 = 4 or 2 + 2 = 5 a con-
jecture. Note however that most mathematicians use
the words Theorem, Lemma, Proposition and Corol-
lary to express ideas which are formally the same,
whereas logicians use the word Proposition to mean
an arbitrary true/false statement. From now on we
will use the word Proposition in this way, meaning
a mathematical statement which has a truth value,
rather than one which is definitely true. For example,
2 + 2 = 5 is a false Proposition. We will capitalise
Proposition to remind us of this slightly non-standard
usage.

In Lean there is a “universe” called Prop, which
can be thought of as the collection of all Propositions.
Propositions written in Lean are often easily readable
to a trained mathematician. Here is an example of
some valid Lean code which defines a Proposition.

variables (X Y Z : Type)
(f : X → Y) (g : Y → Z)

open function -- giving us access to the
concept of injectivity

example : Prop :=
injective f ∧ injective g →
injective (g ◦ f)

This code defines the Proposition stating that the
composite of two injective functions is injective. Note
that there is no proof here – we are just observing that
the theorem statement can be formalised in Lean.
Note also that the variables X, Y and Z were ini-
tialised to be not sets but “types”; however in this
context the two ideas coincide, the only difference
being a linguistic one where we speak about terms x

of a given type X and write x : X rather than speak-
ing about elements x of a given set X and writing
x ∈ X. The difference is purely notational.

Here is an example which shows that 2 + 2 = 5 is
also a Proposition in Lean:
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example : Prop :=
2 + 2 = 5

A Proposition is any true/false statement.

3.2 Proofs

Creating a mathematical proof is like solving a puz-
zle. Probably many of us are familiar with Sudoku,
a game where one is presented with a partially filled-
in grid of numbers and asked to fill in the rest of
them, subject to some axioms. My first experience
with Sudoku was seeing levels of this game in newspa-
pers, and solving them with a pen. Solving a Sudoku
level in this way can be quite inconvenient – any er-
ror may create quite a mess and might be difficult to
recover from. It is far easier to solve Sudoku levels
on a phone app or a web browser, where errors can
be erased more efficiently, and experimental lines can
be explored and then painlessly accepted or rejected.

Many of us will have seen undergraduate work,
written in pen, which is also quite a mess. Lean of-
fers a structured environment where proofs can be
created. As an example, let us consider the proof of
the Proposition that if f : X → Y and g : Y → Z
are injective functions, then so is g ◦ f . Let us
first run through the mathematical proof. By def-
inition, our task is to prove that if a, b ∈ X and
g(f(a)) = g(f(b)), then a = b. By injectivity of f ,
it suffices to prove that f(a) = f(b), and this follows
from injectivity of g and our assumption.

We will go through a Lean proof below. As one cre-
ates the proof using a Lean editor, one can see Lean’s
“tactic state”, representing the things Lean knows at
any point during the proof. For example, just after
one has applied injectivity of f , Lean’s tactic state is
the following:

X Y Z : Type,

f : X → Y,

g : Y → Z,

f_inj : injective f,

g_inj : injective g,

a b : X,

hgf : (g ◦ f) a = (g ◦ f) b

` f a = f b

The hypotheses are listed above the “turnstile” `
and the goal is stated after it. Recall that a b : X

just means that a and b are elements of the set X.
The hypothesis f inj is the assertion that f is injec-
tive, and so on. As one solves the level, i.e., builds the
proof, in Lean, the tactic state changes, until it even-
tually becomes no goals or Proof complete (the
exact success message will depend on which editor
one is using to interact with Lean). Just like theo-
rem statements, Lean’s tactic state can often be eas-
ily understood by mathematicians without any spe-
cialist knowledge of ITP’s, because the notation used
is standard mathematical notation.

Here is a complete Lean file containing the proof,
written in Lean’s tactic mode, with comments
(written in grey, preceded by --, and ignored by
Lean). If you are reading this article in digital
format, I invite you to interact with this proof by
clicking on this link, which will open up a Lean edi-
tor within a web browser, where (after a few seconds
of waiting for Lean to initialise and process the file)
you can click around and see Lean’s tactic state at
any given point in the proof.

import tactic -- tactic mode

open function -- definition of injective
now available

variables (X Y Z : Type)
(f : X → Y) (g : Y → Z)

/-- The composite of two injective
functions is injective. -/

theorem injective_comp :
injective f ∧ injective g →
injective (g ◦ f) :=

begin
-- assume f and g are injective.

rintro 〈f_inj, g_inj〉,
-- We want to prove g ◦ f is injective.
So say a,b ∈ X and assume
g(f(a))=g(f(b)).

intros a b hgf,
-- We want to prove that a = b. By
injectivity of f, it suffices to prove
that f(a)=f(b).

apply f_inj,
-- By injectivity of g, it suffices to
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prove g(f(a))=g(f(b)).
apply g_inj,
-- But this is an assumption.
assumption

end

This tactic mode proof looks mildly intimidat-
ing but basically comprehensible, in the same way
that \sum_{n=0}^{100}n^2 looked mildly intimidat-
ing but basically comprehensible before we learnt
about LATEX’s maths mode. The tactics used in the
proof such as intros and apply perform basic logical
moves on the tactic state, and are not hard to pick
up. The last line of the proof, the assumption tactic,
solves the goal g(f(a)) = g(f(b)) by noting that it is
equal to one of our assumptions, namely hgf.

Anyone concerned about how such a triviality
might take five lines to prove might be interested in
seeing a complete “term mode” proof of the same
theorem:

theorem injective_comp′ :
injective f ∧ injective g → injective
(g ◦ f) :=

λ 〈f_inj, g_inj〉 _ _ hgf, f_inj $ g_inj hgf

This complete proof – shorter than the correspond-
ing LATEX proof – is far harder for a beginner to un-
derstand, and also indicates something about what is
going on under the hood, namely that a proof in Lean
is actually a function. Indeed, Lean is a functional
programming language. We will not go any further
into this issue here.

Below is another tactic mode Lean proof, this time
of the fact that if a and b are real numbers, then
(a + b)3 = a3 + 3a2b + 3ab2 + b3. Before we em-
bark upon it, let us consider what goes into a proof
from first principles, assuming that the real num-
bers are a field. We first write left hand side as
((a + b)(a + b))(a + b) or (a + b)((a + b)(a + b)) de-
pending on what definition we are using for x3. Then
we apply left and right distributivity several times to
expand out the brackets. If one does this whilst care-
fully keeping track of all brackets involved, one will
discover that one now needs to apply associativity
and commutativity of addition and multiplication 20
times or more in order to turn the left hand side into
the right hand side – operations which a mathemati-

cian applies intuitively and without comment. The
full proof, using only the axioms of a ring, seems to
be at least 30 lines long, although the exact num-
ber of axiom applications needed depends on other
foundational questions such as whether 3 is defined
to mean (1 + 1) + 1 or 1 + (1 + 1). Here is a complete
proof of this result in Lean’s tactic mode:

import tactic -- tactic mode
import data.real.basic -- the real numbers

example (a b : R) :
(a+b)^3=a^3+3∗a^2∗b+3∗a∗b^2+b^3 :=

begin
ring,

end

The ring tactic is a high-level tactic, concealing
tedious low-level work and enabling mathematicians
to operate using their usual interface, well above the
axioms of a ring. This tactic was implemented in
Lean by Mario Carneiro, a computer scientist, fol-
lowing the formally verified algorithm for checking
identities in rings described in 2005 by Grégoire and
Mahboubi in [GM05]. It has been indispensible for
the subsequent development of ring theory in Lean.

A general tactic mode proof will contain a mixture
of low-level and high-level tactics, corresponding to
whether the corresponding human proof is operating
at axiom level or well above the axioms.

Codewars is a website containing programming
challenges in many programming languages, includ-
ing Lean. The Lean Codewars levels contain many
mathematical puzzles, ranging from easy questions
(proving that the sum of two odd numbers is even,
for example), to far harder ones involving finding all
integer solutions to the subtle Diophantine equations
x2 − 37y2 = 3 and y2 = x3 + 11. Solving these
harder problems involves using a range of low-level
and high-level tactics. Of course one can also in-
voke theorems from Lean’s extensive mathematics li-
brary, where various number theoretic facts such as
quadratic reciprocity are already proved. We will say
more about Lean’s mathematics library below.
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3.3 Definitions

As well as Propositions and proofs, systems like Lean
can understand new mathematical definitions. Many
of the definitions in Lean’s maths library are defini-
tions of types or of terms. For example, the type
R is defined to be the type of equivalence classes
of Cauchy sequences of rationals, and the term π
is defined to be twice the smallest positive zero of
the cosine function. Groups, rings, fields, manifolds,
schemes and perfectoid spaces are all defined to be
types in Lean, and their definitions are all readable
to mathematicians. For example here is a definition
of a group in Lean.

class group (G : Type)
extends has_mul G, has_one G, has_inv G :=
(mul_assoc :
∀ (a b c : G), (a ∗ b) ∗ c = a ∗ (b ∗ c))

(one_mul : ∀ (a : G), 1 ∗ a = a)

(mul_left_inv : ∀ (a : G), a−1 ∗ a = 1)

The “structural” part of a group (the multiplica-
tion, identity and inverse) is packed into the second
line, and the axioms follow afterwards. Given this
definition, one can now start to prove other basic re-
sults. For example here is something which is proved
very early on in the development of the interface for
groups – the proof that the left identity coming from
the axioms is also a right identity.

theorem mul_one (a : G) : a ∗ 1 = a :=
begin
-- exercise!

end

This exercise now becomes a puzzle. It is my ex-
perience that certain undergraduates enjoy solving
puzzles like this in Lean, developing the basic theory
of groups via completing levels of a computer game.

In 2012 Peter Scholze introduced the concept of a
perfectoid algebra and a perfectoid space into math-
ematics. Slightly later on, Fontaine introduced the
general notion of a perfectoid ring. Here is the defi-
nition of a perfectoid ring in Lean (here p is a prime
number):

structure perfectoid_ring (R : Type)
[Huber_ring R] extends Tate_ring R :
Prop :=

(complete : is_complete_hausdorff R)
(uniform : is_uniform R)
(ramified : ∃ $ : pseudo_uniformizer R,

$^p | p in R◦)
(Frobenius : surjective (Frob R◦/p))

A perfectoid ring is a complete Hausdorff Tate ring
satisfying some technical hypotheses. Experts in the
area will certainly be able to read and understand the
gist of the code above. Perfectoid rings and perfectoid
spaces were formalised in Lean by Johan Commelin,
Patrick Massot and myself: see [BCM20].

3.4 Lean’s mathematics library

The perfectoid ring code snippet above would not
compile in core Lean alone; some imports would be
needed from Lean’s maths library and Lean’s perfec-
toid space library. Lean’s maths library is a rapidly-
growing library containing a lot of undergraduate
level algebra, analysis, number theory, geometry and
topology. At the time of writing (April 2020) it con-
tains theorems from number theory such as quadratic
reciprocity, theorems from algebra such as the Hilbert
basis theorem, theorems from analysis2 concerning
Borel and Lebesgue measure, definitions such as man-
ifolds and topological spaces, smooth functions, and
so on. Undergraduates at my university can (and
do) solve problem sheets and past exam questions in
Lean; I am convinced that it can play a role in making
undergraduate teaching better (see forthcoming work
of Iannone and Thoma, discussing my interventions
so far).

Note however that much work remains to be done
in Lean’s maths library. A notable omission in num-
ber theory is the basic theory of factorization of ideals
into prime ideals in algebraic number fields, a notable
omission in algebra is undergraduate representation
theory, and a notable omission in complex analysis
is Cauchy’s integral formula. It would not surprise
me if all of these gaps were filled in the next twelve
months, such is the pace of development right now.
Enough commutative algebra was developed for un-
dergraduates at my university to define schemes and
to prove that an affine scheme is a scheme (that is,

2TODO: state some recent decent theorems
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that the structure presheaf on an affine scheme is a
sheaf). We have also formalised various tags in the
Stacks Project [Sta18], an encyclopedic reference for
modern algebraic geometry. Homological algebra is
on the horizon, although we have made the design
decision to set up everything within the context of
abelian categories and are currently developing tac-
tics to help with diagram chasing. By “we” I mean
the collection of mathematicians and computer sci-
entists who are collaborating to build Lean’s mathe-
matics library, an open source libary of mathematics
written in Lean which was started in 2017 and now
contains nearly a quarter of a million lines of code.
There are plenty of ways to get started learning the
theory, and plenty of projects to work on. Within
a few years I believe that the library will cover all
of undergraduate pure mathematics. Another of my
visions for the library is that it becomes a 21st cen-
tury version of Bourbaki. Indeed much of Bourbaki’s
Topologie Génerale is now formalised in Lean, thanks
to the heroic efforts of (mathematician) Patrick Mas-
sot, building on earlier work of (computer scientist)
Johannes Hölzl. Much of this was needed to formalise
the definition of a perfectoid space. We are only just
beginning to create a rich interface for the theory of
local fields however, so proving Scholze’s tilting cor-
respondence is still several years away. Later on, we
will ask whether proving profound results like this is
even the right thing to be doing.

3.5 Learning to fly

We have seen that ITP’s, if taught by humans, are
capable of picking up the basics of mathematics, and
are (completely unsurprisingly) capable of checking
proofs which stick close to the axioms of mathemat-
ics, such as most basic results in the first year of a
mathematics degree. We have also seen an exam-
ple of a higher-powered tactic, ring, which solves a
problem for which working axiomatically would be a
chore. How much further away from the axioms can
we move?

The Yoneda lemma is a lemma in category theory
where the idea is, in some sense, in the theorem state-
ment, and the proof is to just chase the diagrams. It
will come as no surprise to hear that Lean can find

the proof by itself; a generic category theory diagram-
chasing tactic has been written by Scott Morrison at
ANU. Morrison, a mathematician, is an expert in de-
signing high-powered tactics in Lean which can dis-
cover proofs of various “follow your nose” arguments
such as these. Morrison is currently concentrating on
category theory, although the tactics he is developing
are slowly being taken up by developers in other areas
of mathematics in Lean. In particular, Lean already
has some kind of primitive intuition for mathemat-
ics, although this intuition currently works better in
some areas than others.

Gabriel Ebner, a computer scientist, is implement-
ing a second approach, where versions of Lean goals
are passed to an external system which specialises
in solving first order logic problems, and the exter-
nal system passes back data which Lean then at-
tempts to turn into a rigorous proof. Such techniques
(calling external solvers which have been designed to
solve certain types of logic problem) are referred to
as “hammers” and they are already in active use in
several other ITP’s – Lean is still playing catch-up
in this area. Indeed the first hammer, Sledgeham-
mer [PB10], developed by a team led by Larry Paul-
son in 2007, was an extremely successful tool for the
Isabelle/HOL proof system. Note however that al-
most all experiments by computer scientists are re-
stricted to the databases of theorems which are cur-
rently available, and because such databases still do
not even cover all of undergraduate mathematics, one
imagines that there is still room for improvement.

3.6 Research level mathematics

Mathematics is growing at a vast rate, and unless
there is some kind of complete cultural change (which
seems unlikely), one cannot imagine humans formal-
ising their proofs in an ITP rather than typing them
up into LATEX any time soon (it would also make pa-
pers around four times longer; four seems to be the
current “de Bruijn factor” representing the length of
a formal proof versus the length of the corresponding
LATEX proof). Similarly it would take an extraordi-
nary breakthrough in machine learning before com-
puters can start to read human-written papers.

There have been some spectacular one-off achieve-
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ments however. The two most obvious examples are
[GAAea13] (a formalisation of the proof of the Feit–
Thompson odd order theorem in Coq) and [HAB+17]
(a formalisation of the Hales–Ferguson proof of the
Kepler conjecture). These two formalisations came
about for two rather different reasons. The Feit–
Thompson work, led by Gonthier, was a demonstra-
tion that ITP’s were capable of understanding a proof
which is of Fields medal standard. The Kepler con-
jecture work, led by Hales, was an attempt to jus-
tify the correctness of the Hales–Ferguson proof, after
the Annals of Mathematics chose to publish the pa-
per proof whilst the referees claimed that they were
only “99% certain” of its correctness. To give an-
other recent example, the 2017 Ellenberg–Gijswijt
proof [EG17] of the cap set conjecture, also published
in the Annals, was formalised [DHL19] in Lean two
years later by Dahmen, Hölzl and Lewis. These ex-
amples show that it is now feasible for modern math-
emtics (or at least some of it) to be formalised in “real
time”. However the problem remains that there is no
currently feasible method to turn the corpus of mod-
ern mathematics into a formally verified state.

3.7 Formal abstracts

But let us go back to the human PhD student, who,
when they start their research, does not need to know
all of the proofs of all of the theorems that they will
be using. The important thing is that they know
the statements. And teaching modern theorem state-
ments to a computer is well within our grasp.

Tom Hales has proposed, in his Formal Abstracts
project [Hal20], that the main theorem statements
and definitions of mathematical papers be formalised
in an ITP. Proofs are not required. Hales has cho-
sen Lean for the system he wants to use, but there
is no reason why other analogous projects cannot use
other systems. One output of such a project would
be a complex graph linking important mathematical
concepts, and which grows over time. Hales imagines
exploration tools enabling humans to analyse this
graph, like a Google Earth for mathematics. Search
for mathematical theorems would suddenly become
much easier – and the machine learning experts would
finally have something to get their teeth into. Math

Reviews and Zentralblatt contain human-written re-
views of modern mathematical papers, and writing a
formal abstract would in many cases be easier than
writing a review, as only the theorem statements
would be required, and once sufficiently many defi-
nitions are in the system, formalising theorem state-
ments becomes easy. As more young mathematicians
learn how to write mathematics in this kind of soft-
ware, the possibility of making such a database seems
to be becoming ever more real. Such a project seems
to be a feasible way of digitising modern mathemat-
ics, and can be integrated into the hammers men-
tioned previously in order to make more powerful
proof search. If PhD students are encouraged to for-
malise the statements of the results they are claiming
to prove, and the statements of some of the theorems
they use, then such a database could begin to grow
very quickly indeed.

The Formal Abstracts project offers a real possibil-
ity of making an entirely new object – a digitisation
of what the modern mathematician believes, and a
chance for machine learning experts to see what they
can make of it in a format which they can easily un-
derstand. If we, the mathematical community, build
this database, then they, the computer scientists, will
come. In fact, they are waiting.

Final thoughts.

I have spoken a lot about Lean, but there are many
other systems available; Coq, and Isabelle/HOL are
also serious systems with a lot of mathematics in,
and there are others too. The debate about which
system is “best” is a complex one, involving techni-
calities about dependent types, strong normalisation
and subject reduction, and is beyond the scope of this
article.

All of the systems could be used for educational
purposes at undergraduate level; I use Lean with my
1st year students and some of them love it. I run a
weekly club, the Xena project, where I teach under-
graduates (and they teach me) how to use Lean to do
undergraduate and MSc level mathematics in Lean. I
would be extremely interested in making one of these
systems more user-friendly whilst keeping it flexible
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enough to do a lot of undergraduate level mathemat-
ics. An interesting related question is how to teach
this topic to undergraduates – a forthcoming project
“Mathematics in Lean” will be a step in this direc-
tion. The Cocalc website [Sag20] enables teams of
people to work on Lean code in a collaborative real
time environment and I have used this environment
for training undergraduates to use Lean.

Whether or not they are used for teaching, ulti-
mately it seems to me inevitable that these systems
will change research. One day we will surely expe-
rience “Appel and Haken II” – where a computer
announces a proof of a conjecture which humans are
interested in, and if the argument is sufficiently deep
then the computer might not be able to explain their
argument using a language that humans can under-
stand. But well before that happens, computers will
become tools which we can use to search for and ver-
ify lemmas in all areas of pure mathematics, and the
sooner an area is taught to one of these systems, the
sooner computers will be able to help. The Lean
chatroom at leanprover.zulipchat.com is one place to
start, if people have questions about what some peo-
ple believe will be the future of mathematics.
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