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• 32 + 42 = 9+ 16 = 25 = 52. Similarly 52 + 122 = 132 and
so on.

• Fermat’s Last Theorem says that there are no solutions in
positive integers x, y, z, n to xn + yn = zn if n ≥ 3.

• 20 years ago, mathematicians proved this theorem. It took
us 350 years to find the proof.

• The proof would be thousands of pages long if written out
in full in pdf format.

• I don’t really see any obstruction to checking the proof
using a computer proof verification system.

• But it would take a long time (many person-decades).

• The funny thing is, if it got formalised, most “proper
mathematicians” would not really care at all.

• Why not?
1 Because Fermat’s Last Theorem is old news.
2 And because formalising it would teach us “proper

mathematicians” nothing that we didn’t already know.
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What does the proof of Fermat’s Last Theorem look like?
• In 1990 Ken Ribet proved that Fermat’s Last Theorem

followed from the semistable Shimura–Taniyama
conjecture.

• The semistable Shimura–Taniyama conjecture is a
conjectural relation between certain things called “elliptic
curves” and certain things called “modular forms”.

• It takes roughly 50 hours of MSc level algebraic number
theory lectures to develop enough theory to state it.

• Wiles and Taylor–Wiles proved it in 1995.
• Their proof used the cohomological interpretation of local

and global class field theory, the deformation theory of
finite flat group schemes, Galois cohomology, etale
cohomology, theory of the mod p reduction of moduli
spaces of elliptic curves, the Langlands–Tunnell theorem,
harmonic analysis, algebraic geometry and arithmetic
geometry from the 1970s and 1980s.

• It would take 50 more hours of PhD level number theory
seminars to define these objects.
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• In 2000 the full Shimura–Taniyama conjecture was proved.

• We can now prove certain higher-dimensional versions of
the Shimura–Taniyama conjecture using extensions of the
ideas of Wiles and Taylor–Wiles, and some new ideas.
Our new proofs are much longer. And we have profound
conjectural generalisations of the Shimura–Taniyama
conjecture, some still completely inaccessible.

• This is why we care about the proof of Fermat’s Last
Theorem. Because it taught us new proof techniques.
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proof of Fermat’s Last Theorem.

• However, the proof is modular, making it much easier to
judge. My community has accepted the proof. Indeed, we
gave Wiles the Abel prize.

• We have a community of elders, who rule on whether work
is correct.

• The methods of the elders are subtle. They smell new
work. The elders have very sensitive noses, and will
probably spot if something is making a bad smell.

• These methods have worked for hundreds of years, and
continue to work.

• “We don’t need your computer proof checkers, we know
how to check things by ourselves.”
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• The typical methods used by computer scientists to
advertise computer proof systems are not of interest to
mathematicians.

• Automatic theorem provers are giving us incomprehensible
20,000 line proofs of statements about quasi-groups which
no “proper mathematician” is interested in.

• Interactive theorem provers are being used to verify
classical old theorems such as the Prime Number
Theorem or the Odd Order Theorem, following the
blueprint laid out by mathematicians. This work gives
mathematicians no interesting new insights.

• Let me stress that I am extremely interested personally in
this sort of work mentioned above. But most of my
colleagues are not.

• I have seen the tools that are coming out of this area and I
am convinced that one day they will change mathematics.

• But for the change to occur, mathematicians must become
involved. So how are we going to make this happen?
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Number one thing: an announcement of a proof of a famous
conjecture.

Why? Because if a conjecture is famous, it is probably hard.

So a proof of it will almost always involve at least one beautiful
new idea.

This idea will probably be in raw primitive form, but we can
attempt to “understand the technique”, generalise it, and then
use it to prove even harder things.

Indeed, mathematicians excel at knowing how far all currently
known ideas will take us, and an elder can often see a new
idea and then, mere minutes later, have a clear vision as to
how much further the idea will be able to take us.
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Mathematics can be viewed as a series of challenges. A series
of mountains to climb.

The elders know which ones have been climbed, and they also
know why we cannot climb certain other mountains. Their
understanding of the landscape is very profound.

Mathematicians fashion new tools out of thin air, and pass
them around in pdf or lecture format. The tools are simply
ideas. We use new tools to scale the mountains.

Sometimes mathematicians make new definitions. Whole new
mountain ranges can then appear in an instant.

Sometimes the experts get it wrong. An unconquered
mountain once became strategically important. I effortlessly
walked to the top of it, using only tools other people had made.
I wrote an extremely short paper which probably nobody ever
read. And then a second paper with the application, which lots
of people read.
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A second thing mathematicians get excited about: the
statement of a profound conjecture – even if if it has not been
proved. Because conjectures provide guidance.

Here are The Clay Mathematics Institute’s “Millennium Prize
Problems”, announced in 2000:

1 Poincaré conjecture;
2 P vs NP;
3 Hodge Conjecture;
4 Riemann Hypothesis;
5 Navier-Stokes existence and smoothness;
6 Birch and Swinnerton-Dyer conjecture;
7 Yang–Mills existence and mass gap.

Of these, the Poincaré conjecture is proved, Yang–Mills is not a
precise question, and the other five are open problems.

As far as I know, the statement of the Riemann Hypothesis has
been formalised in Isabelle/HOL, but several of the others have
not been formalised in any other theorem prover at all.
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Here is a special case of the Birch and Swinnerton-Dyer
conjecture.

Say A ,B are fixed rational numbers.
Let E denote the equation y2 = x3 + Ax + B.
Now let’s attach some data to E.

• Let L(s) denote the L -function of E (here s ∈ C);

• let X denote the Tate–Shafarevich group of E;

• let C denote the real number which is the product of the
Tamagawa factors for E at all places;

• let S be the set of solutions to E with x and y rational
numbers.

Conjecture: if S is finite, then

L(1) =
|X| × C
(1 + |S |)2

,

and if S is infinite then L(1) = 0.
[NB here |X | denotes the size of X .]
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OK so let’s imagine formalising the statement of BSD!

L(1) =
|X| × C
(1 + |S |)2

.

Definition of the function L(s): it is an infinite sum. A tricky
theorem of Hasse shows that the infinite sum converges for
Re(s) > 11

2 . The conjecture is about the value at s = 1. How
do we extend the function to s = 1? The only known way is to
use the proof of the Shimura–Taniyama conjecture, which is
thousands of pages long. So basically we have to formalise a
proof of Fermat’s Last Theorem to make the left hand side
make sense.

The right hand side still is not known to make sense. The
definition of X is early PhD level mathematics – maybe ten
hours of material? The group X is conjectured, but not known,
to be finite.

Computers are a million miles from proving any of this. Asking
when they will prove it is the wrong question.
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Here’s an idea, coming from Microsoft Research.

The International Mathematical Olympiad is a yearly
competition where the best high school kids from 100+
countries try to solve six tricky maths puzzles.

“Proper mathematicians” might turn their noses up at these
puzzles (even though some of us were good at them when we
were kids. . . ). However they are difficult, so it would be some
sort of achievement if a computer were to solve one of these
puzzles.

Lean is a theorem prover being developed at Microsoft
Research. MSR have proposed the IMO Grand Challenge.
They want to write a tactic in Lean which solves IMO problems.

I think this is a great idea because it is (a) an interesting
approach, (b) it might well work, and (c) it will show the world
that “computers can solve hard maths problems”.
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Here is an idea, coming from Tom Hales.

Before a computer can find a proof of Birch–Swinnerton-Dyer,
it has to be able to understand the statement.

So it needs to understand the following definitions: elliptic
curves, modular forms, the statement of the
Taniyama–Shimura conjecture, group cohomology, Galois
cohomology, the Galois theory of local and global fields,
analytic and algebraic ranks of elliptic curves, unramified
cocycles, and the L -function of a modular form.

This is MSc and early PhD level mathematics. A post-doc
working with me could formalise all that stuff in Lean within a
couple of years.

And what would the pay-off be? Stating one conjecture? We
would be able to state 20 conjectures and also 20 deep
theorems. This is the sort of stuff that Wiles and Taylor needed.
We would be able to begin to tell computers the statements of
what we know and believe to be true. We’d be able to tell the
computers which mountains we believe we can scale.
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definitions in theorem provers, and statements of modern
conjectures/theorems instead of their proofs, then before long
we would have a completely new kind of database.

If teams of people started popping up and formalising basic
modern mathematical definitions, we could have this database
within a few years.

We would have some sort of a record of what humans claim to
have achieved in mathematics. Could a computer AI learn from
this? Maybe.

Could humans use this database for search? Surely!

Are computer proof systems up to this task? Johan Commelin,
Patrick Massot and myself have proved this.
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In 2018 the Fields Medallists were announced: Peter Scholze,
Alessio Figalli, Akshay Venkatesh, and Caucher Birkar.

Each of these people proved at least one brilliant theorem in
the last few years.

None of our computer proof systems can, in their current
states, easily formalise the statements of any of these
theorems. The definitions of the objects are all missing.

This is because mathematicians understand the definitions but
don’t use the provers, and computer scientists use the provers
but don’t know the maths.
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Peter Scholze’s work involved defining a new geometric object
called a perfectoid space. In May this year, Patrick Massot,
Johan Commelin and myself (all mathematicians, all Lean
users) formalised the definition of a perfectoid space in Lean. A
definition! Our work is a proof that Lean can handle a towering
modern mathematical definition.

A perfectoid space is a geometric object with prescribed local
behaviour. Let me explain a simpler example first.

A topological space is a general geometric math object. A
2-dimensional manifold is a topological space which “looks
2-dimensional everywhere”. What does this mean?

Well, mathematicians are happy with the idea that a disc in the
plane is 2-dimensional. A 2-dimensional manifold M is a
topological space which can be written as a union M =

⋃
i∈I Mi ,

where each Mi is isomorphic to a disc in the plane.

M is a topological space, so the Mi are topological spaces,
isomorphic (as topological spaces) to discs. In particular, we
need that a disc is a topological space. This is not hard.
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A perfectoid space is also geometric object which locally looks
like a model space.

A perfectoid space is a topological space with a lot of extra
structure (e.g. a presheaf of complete topological rings
satisfying a bunch of axioms), which can be covered by
subspaces, each of which is isomorphic to the spectrum of a
Huber pair.

For this definition to even typecheck, we need to check that the
spectrum of a Huber pair has all this structure and satisfies
these axioms. [Analogous to the result that a disc is a
topological space.]

Defining the structure and checking the axioms is around
10,000 lines of code.

We finished formalising the definition in May. We are writing the
API for this definition. Our goals: (1) give more examples of
perfectoid spaces. (2) State Scholze’s Tilting Correspondence
(a theorem about perfectoid spaces).
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Why are we doing this? Because one last thing that gets
mathematicians excited is sexy complicated new definitions
which can be used to prove new theorems.

Right now, a number theory PhD student can download Lean
and then download a perfectoid space onto their computer, and
play with that perfectoid space.

Within a year, a number theory PhD student will be able to
download lots of examples of perfectoid spaces, and do far
more stuff with them.

It’s not new proofs of theorems. But it’s a new way of learning
about mathematical objects. And because we can’t do proofs
yet, why don’t we try it?
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