Question 1.

- (a) Let S be a set, and let \sim be a binary relation on S. What does it mean to say that \sim is:
 - i) reflexive;
 - ii) symmetric;
 - iii) transitive;
 - iv) an equivalence relation?
- (b) In this question there are going to be two binary relations, one on a set S and one on a different set T, and I don't want to use \sim for both of them, so I need to use a new symbol, and it's going to be \bowtie .

So say S and T are sets, and $f: S \to T$ is a function, and \bowtie is an equivalence relation on T (so if $t_1, t_2 \in T$ then $t_1 \bowtie t_2$ is either true or false, and \bowtie satisfies all the axioms for an equivalence relation). Define a binary relation \sim on S by, for all $s_1, s_2 \in S$,

$$s_1 \sim s_2 \iff f(s_1) \bowtie f(s_2).$$

Prove that \sim is an equivalence relation on S.

(c) How many binary relations are there on a set with two elements? How many of these binary relations are reflexive?

Answer.

- (a) These are all definitions so it's traditional to write "if", but I'm of course not bothered if people write "iff".
 - i) \sim is reflexive if $\forall s \in S \ s \sim s$. (1 mark)
 - ii) \sim is symmetric if $\forall s, t \in S$, if $s \sim t$ then $t \sim s$. (1 mark)
 - iii) \sim is transitive if for all $s, t, u \in S$, if $s \sim t$ and $t \sim u$ then $s \sim u$. (1 mark)
 - iv) \sim is an equivalence relation if it's reflexive, symmetric and transitive. (1 mark)
- (b) Certainly \sim is a binary relation, because \bowtie is. Now let's check the axioms.

If $s \in S$ then f(s) = f(s), and \bowtie is reflexive, so $f(s) \bowtie f(s)$, so $s \sim s$. Hence \sim is reflexive. (1 mark)

If $s, t \in S$ and $s \sim t$, then by definition $f(s) \bowtie f(t)$. But \bowtie is symmetric, hence $f(t) \bowtie f(s)$, and hence $t \sim s$. Hence \sim is symmetric. (1 mark)

Finally, If $s, t, u \in S$ and $s \sim t$ and $t \sim u$, then by definition $f(s) \bowtie f(t)$ and $f(t) \bowtie f(u)$. But \bowtie is transitive, hence $f(s) \bowtie f(u)$, and hence by definition $s \sim u$. Hence \sim is transitive. (1 mark)

So \sim is reflexive, symmetric and transitive, and thus it's an equivalence relation.

1

- (c) A binary relation can be thought of as a subset of $S \times S$, and $S \times S$ has four elements; each of these elements is either in a subset or not, giving two choices for each element, so there are a total of $2^4 = 16$ binary relations on S. (1 mark)
 - Let's say $S = \{s, t\}$. For a general binary relation we would have to decide whether the following four things are true or false: $s \sim s$, $s \sim t$, $t \sim s$ and $t \sim t$. But if we know that \sim is reflexive then we know that $s \sim s$ and $t \sim t$ must be true, so we only need to decide about whether $s \sim t$ and whether $t \sim s$. This is two true/false choices and we can hance make those decisions in $2 \times 2 = 4$ ways, so there are four reflexive binary relations on a set with two elements. (2 marks)