Question 1.

Let us say that a function $f:(0,1) \to \mathbb{R}$ is increasing if for all $t_1, t_2 \in (0,1), t_1 < t_2$ implies $f(t_1) < f(t_2)$.

Let $f:(0,1)\to\mathbb{R}$ be an increasing function, and fix $t_0\in(0,1)$. Define subsets S, $T\subset\mathbb{R}$ as follows:

$$S = \{f(t) \mid t < t_0\}, \text{ and } T = \{f(t) \mid t > t_0\}$$

Show that S is nonempty and bounded above; that T is nonempty and bounded below, and that

$$\sup S \leq \inf T$$

but that neither is necessarily equal to $f(t_0)$.

Answer.

It is clear that S and T are nonempty: if $t^{\dagger} < t_0$ then $f(t^{\dagger}) \in S$ and if $t^{\star} > t_0$ then $f(t^{\star}) \in T$.

S is bounded above by $f(t^*)$: if $s \in S$ then s = f(t') for some $t' < t_0$ but then also $t' < t^*$ so $s = f(t') < f(t^*)$.

Similarly, T is bounded below by $f(t^{\dagger})$. (3 marks)

Let $a = \inf T$. Fix $\varepsilon > 0$. From the Lemma proved in the lectures, we know that there is some $t_0 < t_+$ with $f(t_+) < a + \varepsilon$. Then for all $t' < t_0$ we have $f(t') < f(t_+) < a + \varepsilon$. Thus we see that for all $\varepsilon > 0$, $a + \varepsilon$ is an upper bound for S.

So for all $\varepsilon > 0$, sup $S \le a + \varepsilon$. This implies sup $S \le a$. (3 marks)

Let now $f:(0,1)\to\mathbb{R}$ be defined as follows:

$$f(t) = \begin{cases} t & \text{if } t \le \frac{1}{2} \\ t + \frac{1}{2} & \text{if } t > \frac{1}{2} \end{cases}$$

then f is increasing. If we set $t_0 = \frac{1}{2}$, then $\sup S = \frac{1}{2}$ and $\inf T = 1$. (4 marks)