Name (IN CAPITAL LETTERS!):	
CID: Personal tutor:	

Question 4.

In this question a, b, m, n are all in $\mathbb{N} \setminus \{0\}$. For each of the following statements, give a proof or exhibit a counterexample.

- (a) If $a^n|b^n$, then a|b.
- (b) If $n^n | m^m$, then n | m.
- (c) If $a^n|2b^n$ and n>1 then a|b.

Answer.

- (a) The statement is true. Let $a = \prod p_i^{r_i}$, $b = \prod p_i^{s_i}$ be the prime decompositions of a, b. If $nr_i \leq ns_i$ for all i, then $r_i \leq s_i$ for all i. (2 marks)
- (b) The statement is false. For a counterexample consider n=4, m=10. It is clear that $4^4=2^8|10^{10}=2^{10}5^{10}$. (4 marks)
 - (c) The statement is true. Let

$$a = 2^r \prod p_i^{r_i}, \quad b = 2^s \prod p_i^{s_i}$$

be the prime decompositions of a, b (where it is understood that all $p_i \neq 2$). The assumptions mean $nr_i \leq ns_i$ for all i, and $nr \leq ns + 1$. It is clear that $r_i \leq s_i$, but also $r \leq s + \frac{1}{n}$ implies (for n > 1) that $r \leq s$. (4 marks)