M1F Foundations of Analysis

Problem Sheet 8

- 1. Consider functions $f, g: \mathbb{R} \to \mathbb{R}$ such that $f \circ g(x) = (x-1)^2$.
 - (a) If $g(x) = x^2$ show that there is no solution for f. (Before you think of this you may go back to Q4 of sheet 6b.)
 - (b) If $g(x) = x^2$, you have just shown that there are no solutions for f. So what is wrong with $f(x) := \begin{cases} x 2\sqrt{x} + 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$ (where \sqrt{x} denotes the positive square root)?
 - (c) If $f(x) = x^2$, then what are the possibilities for g? How many are there?
 - (d) If $f(x) = x^2 + 2x 1$, then what are the possibilities for g? (Before you think about this go back to Q2 of sheet 6b.) How many are there?
 - (a) Since $g(x)=x^2$ then g(x)=g(-x) so in particular f(g(1))=f(g(-1)). But we are told that $f\circ g(1)=0\neq 4=f\circ g(-1)$.
 - (b) If we set $f(x):=\left\{ egin{array}{ll} x-2\sqrt{x}+1 & x\geq 0 \\ 0 & x<0 \end{array} \right.$ then we find that $f(g(x))=f(x^2)=x^2-2|x|+1=(|x|-1)^2$, which gives the wrong answer for x<0.
 - (c) The possibilities are those g such that $(g(x))^2 = (x-1)^2$ for all $x \in \mathbb{R}$. So we know that for each x, g(x) is either x-1 or 1-x. Therefore there are an *INFINITE* number of such g, with two different choices of g(x) for every $x \neq 1$ (and g(1) = 0).
 - (d) The possibilities are those g such that $(g(x))^2+2g(x)-1-(x-1)^2=0$ for all $x\in\mathbb{R}$. Therefore $g(x)=-1\pm\sqrt{2+(x-1)^2}$, which is two different real numbers (since $2+(x-1)^2>0$). Therefore there are an *INFINITE* number of such g, with two different choices of g(x) for every $x\in\mathbb{R}$.
- 2. * Fix $S \subset \mathbb{R}$ with an upper bound, and suppose that $S \neq \emptyset$ and $S \neq \mathbb{R}$. Give proofs or counterexamples to the following statements.
 - (a) If $S \subset \mathbb{Q}$ then $\sup S \in \mathbb{Q}$.
 - (b) If $S \subset \mathbb{R} \setminus \mathbb{Q}$ then $\sup S \in \mathbb{R} \setminus \mathbb{Q}$.
 - (c) If $S \subset \mathbb{Z}$ then $\sup S \in \mathbb{Z}$.
 - (d) There exists a max S if and only if $\sup S \in S$.
 - (e) $\sup S = \inf(\mathbb{R} \backslash S)$.
 - (f) $\sup S = \inf(\mathbb{R}\backslash S)$ if and only if S is an interval of the form $(-\infty, a)$ or $(-\infty, a]$.
 - (a) False, eg $S = \{x \in \mathbb{Q} : x < \sqrt{2}\}$ with $\sup S = \sqrt{2}$.
 - (b) False, eg $S = \{x \in \mathbb{R} \setminus \mathbb{Q} : x < 0\}$ with $\sup S = 0$.
 - (c) True. Pick $s_0 \in S$ and an integer N larger than a given upper bound for S. Then $[s_0, N] \cap \mathbb{Z}$ is a finite set, so $[s_0, N] \cap S$ is also finite and nonempty set of integers so has a maximum $m \in \mathbb{Z}$. By (d) this is also $\sup S$.
 - (d) True. If $\sup S \in S$ then it is the maximum element because it is an upper bound, so $\sup S \ge s$ for all $s \in S$.

Conversely if there exists $m = \max S$ then m is an upper bound, and given any other upper bound $M,\ M \geq m$ by definition of upper bound because $m \in S$. Therefore m is the least upper bound, i.e. $\sup S = m \in S$.

- (e) False. E.g. $S = \{0\}$ has $\sup S = 0$ but $\mathbb{R} \setminus S$ is not even bounded below so has no infimum.
- (f) True. If $S=(-\infty,a)$ then $\sup S=a$ while $\mathbb{R}\backslash S=[a,\infty)$ so $\inf S^c=a$ also.

If $S = (-\infty, a]$ then $\sup S = a$ while $\mathbb{R} \setminus S = (a, \infty)$ so $\inf S^c = a$ also.

Conversely, if $\sup S = \inf S^c$ then call this number a. Any x < a must be in S: if not then $x \in S^c$ but $x < \inf S^c$, a contradiction. Similarly any x > a must be in S^c : if not then $x \in S$ but $x > \sup S$, a contradiction.

Therefore $(-\infty, a) \subseteq S$ and $(a, \infty) \subseteq S^c$. Finally either $a \in S$ or $a \in S^c$, making S equal to $(-\infty, a]$ or $(-\infty, a)$ respectively.

3. † Special long bonus question. Construction of \mathbb{R} from \mathbb{Q} .

Slightly abusing the original notation, say that a subset $S \subset \mathbb{Q}$ is a Dedekind cut if it satisfies (i) and (ii) below.

- (i) If $s \in S$ and $s > t \in \mathbb{Q}$ then $t \in S$ (i.e. S is a semi-infinite interval to the left).
- (ii) S has no maximum.

(So once we have the reals we'll see that the Dedekind cuts are all of the form $S_r := (-\infty, r) \cap \mathbb{Q}$ for some (any) real number r. But we don't know what the reals are in this question!)

Then we let \mathbb{R} be the set of Dedekind cuts. (I.e. think of identifying S_r with $r \in \mathbb{R}$.)

Check that we can identify $\mathbb{Q} \subset \mathbb{R}$ by taking $q \in \mathbb{Q}$ to the Dedekind cut $S_q := \{s \in \mathbb{Q} : s < q\}$.

Define < on \mathbb{R} and show that \mathbb{R} has the completeness property: that any bounded nonempty subset has a least upper bound.

If you're feeling enthusiastic: for two Dedekind cuts S_1, S_2 define their sum $S_1 + S_2 := \{s_1 + s_2 \in \mathbb{Q} : s_1 \in S_1, s_2 \in S_2\}$. Show that this is also a Dedekind cut. Show that this operation + on \mathbb{R} agrees with the usual + on $\mathbb{Q} \subset \mathbb{R}$.

Similarly define \times on \mathbb{R} and / on $\mathbb{R}\setminus\{0\}$ and show they agree with their standard definitions on \mathbb{Q} . Show that +, \times satisfy the usual rules of arithmetic (associative, \times distributes over +, 0 + x = x and $1 \times x = x$, etc.).

This is a long exercise for your entertainment and self-improvement. You may want to think about it over the Christmas break. I am too lazy to write out a full solution but you should know enough by now to know whether or not you're doing it right.

The key part is the completeness property. Suppose $A \subset \mathbb{R}$ is our bounded nonempty subset of $\mathbb{R} := \{ \text{Dedekind cuts} \}$. Then the elements S of A are Dedekind cuts - i.e. subsets of \mathbb{Q} satisfying (i) and (ii). The supremum we want to define is the Dedekind cut given by taking the union of all of these Dedekind cuts:

$$\sup(A):=\bigcup_{S\in A}S\subset\mathbb{Q}.$$

Since A is bounded above this set still satisfies (i) so is indeed a Dedekind cut, i.e. $\sup(A) \in \mathbb{R}$.

For full details see for example W. Rudin, "Principles of mathematical analysis", or the webpage http://tinyurl.com/yjt5olv

- 4. † In this question we show that for all $n \in \mathbb{N}$, every positive real number has a unique positive n-th root: $\forall n \in \mathbb{N}$, for all $x \in \mathbb{R}, x \geq 0$, there is a unique $y \in \mathbb{R}$, $y \geq 0$, such that $y^n = x$. Prove this in the following steps:
 - (i) Prove uniqueness.
 - (ii) Prove by elementary means that for all real numbers a,b with 0 < a < b < a + 1:

$$na^{n-1}(b-a) < b^n - a^n < n(a+1)^{n-1}(b-a)$$

(Hint: $b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1})$).

- (iii) Use (ii) to prove the following for real numbers x, y both ≥ 0 : If $x^n < y$ then there is x < x' with $x'^n < y$; If $x^n > y$ then there is x > x' with $x'^n > y$.
- (iv) Now let y be real and ≥ 0 . Show that the set

$$S = \{ a \in \mathbb{R} \mid a^n \le y \}$$

is nonempty and bounded above, hence $x = \sup S$ exists.

(v) Using (iii) and the Lemma about sup proved in the lectures, show that $x^n = y$. (This follows closely the proof given in the lectures for the case n = 2 so you should start by reminding yourselves how that works.)

I am too lazy to write this out in complete detail so I just sketch half of the key steps (ii), (iii). Everything else follows pretty closely what we did in the lectures for the case n=2.

For (ii) we have, for example:

$$b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1}) < n(b - a)(a + 1)^{n-1}$$

and this is half of (ii) (I leave the other half to you).

For (iii), suppose that $x^n < y$ and write $x' = x + \varepsilon$; by (ii) we have, if $0 < \varepsilon < 1$:

$$x'^{n} - x^{n} < n(x+1)^{n-1}\varepsilon$$

so, by choosing

$$0<\varepsilon<\min\biggl\{1,\frac{y-x^n}{n(x+1)^{n-1}}\biggr\}$$

we make sure that $x'^n < y$. This is half of (iii) and I leave the other half to you.

- 5. Prove that if x, y, z are real numbers such that x+y+z=0, then $xy+yz+zx\leq 0$. Expand $0=(x+y+z)^2$.
- 6. Show that any positive periodic decimal expansion is rational, and in fact can be written as

$$p/99...9900...00$$
 (*m* 9s and *n* 0s)

for some integers $p, m, n \geq 0$.

Deduce that any integer divides some number of the form 99...9900...00.

$$x = \frac{a_0 a_1 \dots a_n}{10^n} + \frac{b_1 \dots b_m}{10^n} (10^{-m} + 10^{-2m} + 10^{-3m} + \dots)$$

$$= \frac{a_0 a_1 \dots a_n}{10^n} + \frac{b_1 \dots b_m}{10^n} \frac{1}{10^m - 1}$$

$$= \frac{(10^m - 1)a_0 a_1 \dots a_n + b_1 \dots b_m}{(10^m - 1)10^n},$$

which is of the form claimed, with $p = (10^m - 1)a_0a_1 \dots a_n + b_1 \dots b_m$.

As proved in lectures, x=1/q has periodic decimal expansion since it is rational. Therefore we get $1/q=p/99\dots9900\dots00$ for some intreger p, and thus $99\dots9900\dots00/q=p$ as required.

7. Show by using decimal expansions that between any two distinct real numbers there exists a rational number and an irrational number. (Last week you showed this by a different method.)

Write the smaller number as $A=a.a_1a_2\ldots a_ka_{k+1}\ldots$ and the bigger as $B=a.a_1a_2\ldots b_kb_{k+1}\ldots$, differing for the first time in the kth place.

As in lectures can assume that neither ends in an infinite string of 9s. Choose the first digit a_{k+i} , i > 0 after a_k that is not a 9; setting it to 9 and all later digits a_{k+j} , j > i to zero gives a rational number C between A and B. Now find an irrational number C between A and B.

You should prepare starred questions * to discuss with your personal tutor.

Questions marked † are slightly harder (closer to exam standard), but good for you.