M1F Foundations of Analysis

Problem Sheet 7

1. How many monomials in x, y are there of degree $\leq k$? (Justify your answer.)

(The monomials of degree k are the polynomials with one term x^iy^j with i+j=k and coefficient 1. Here i,j,k are positive but can be 0.)

The number of monomials in x,y of degree $\leq k$ is $(k^2+3k+2)/2$. You can prove this by induction on k:

True for k = 0: the only monomial is 1 and the formula gives 2/2 = 1.

Suppose true for k. Then the monomials of degree $\leq k+1$ are the monomials of degree $\leq k$ plus $x^{k+1}, x^k y, \ldots, xy^k, y^{k+1}$. There are k+2 of these so we find the total $(k^2+3k+2)/2+k+2=(k^2+5k+6)/2=((k+1)^2+3(k+1)+2)/2$ as required.

2. What is the smallest number in the set $\{x \colon x > 0\}$? Justify your answer. What about $\{x \in \mathbb{Q} \colon x \geq \sqrt{2}\}$?

There is no smallest number in $\{x\colon x>0\}$. The number 0 is not in the set, and any number x>0 cannot be the smallest number because there is always a smaller number in the set, such as x/2.

Similarly there is no smallest number in $\{x \in \mathbb{Q} : x \ge \sqrt{2}\}$. $\sqrt{2}$ is not in the set. So any smallest number x is $> \sqrt{2}$, so there is a rational number between x and $\sqrt{2}$ by Q5.

3. * Write down a careful proof that for any two *positive* numbers x, y, their mean (or average, or "arithmetic mean") $\frac{1}{2}(x+y)$ is greater than or equal to their "geometric mean" \sqrt{xy} :

$$\frac{x+y}{2} \ge \sqrt{xy}.$$

When are they equal?

BE VERY CAREFUL WITH THIS PROOF: ARE YOUR IMPLICATIONS IN THE CORRECT DIRECTION ?!

Suppose for a contradiction that it is not true, i.e. $x + y < 2\sqrt{xy}$.

Squaring both sides, $x^2 + 2xy + y^2 < 4xy \implies x^2 - 2xy + y^2 < 0 \implies (x-y)^2 < 0$. Contradiction.

Equality holds iff it holds at every step of the above calculation, iff $(x - y)^2 = 0$. That is, if and only if x = y.

4. Prove that for every positive integer $n \neq 3$, the number $\sqrt{n} - \sqrt{3}$ is irrational.

Suppose $\sqrt{n} - \sqrt{3} = r$ is rational.

Write as $\sqrt{n} = r + \sqrt{3}$ and square to give $n = r^2 + 2r\sqrt{3} + 3$.

So either r=0 (impossible; $n \neq 3$) or $\sqrt{3} = \frac{n-r^2-3}{2r}$. But this is rational, a contradiction.

5. Let a be a real number. Prove carefully that for all real numbers $\varepsilon > 0$ there is a rational number r such that $a < r < a + \varepsilon$. (Hint: use the Archimedean Axiom.)

First choose an integer q>0 such that $q\varepsilon>2$. Then let $p=\lceil qa\rceil+1$. (If $\alpha\in\mathbb{R}$, $\lceil \alpha\rceil$ is the round up of α , that is $\lceil \alpha\rceil=\min\{k\in\mathbb{N}\mid k\geq\alpha\}$. It follows that $\alpha\leq\lceil\alpha\lceil<\alpha+1$.) Then

$$qa$$

6. Show that between any two distinct real numbers there exists a rational number and an irrational number.

The first part of the question is Q5. For the second part, let a < b be real numbers. We look for an irrational number of the form $r\sqrt{2}$, with $r \in \mathbb{Q}$, such that

$$a < r\sqrt{2} < b$$

but this is the same as finding a rational number r such that $\frac{a}{\sqrt{2}} < r < \frac{b}{\sqrt{2}}$ and this is Q5 again.

7. † In this question we construct \mathbb{Z} from \mathbb{N} .

Let $S = \mathbb{N} \times \mathbb{N}$ and define a relation \sim on S by declaring $(m_1, n_1) \sim (m_2, n_2)$ if and only if $m_1 + n_2 = m_2 + n_1$. (Intuitively, (m, n) "is" m - n.)

- (i) Prove that \sim is an equivalence relation.
- (ii) Show that $(m_1, n_1) \sim (m_2, n_2)$ if and only if: $\forall p \in \mathbb{N}$, $(m_1 + p, n_1 + p) = (m_2 + p, n_2 + p)$.
- (iii) Show that, $\forall p \in \mathbb{N}$, if $(m_1, p) \sim (m_2, p)$ then $m_1 = m_2$. Similarly, $\forall p \in \mathbb{N}$, if $(p, n_1) \sim (p, n_2)$, then $n_1 = n_2$.

Denote by $X = S/\sim$ the quotient set.

Define an operation \oplus on S by declaring $(m,n) \oplus (p,q) = (m+p,n+q)$. Show that

(iv) If $(m_1, n_1) \sim (m_2, n_2)$ and $(p_1, q_1) \sim (p_2, q_2)$, then $(m_1, n_1) \oplus (p_1, q_1) \sim (m_2, n_2) \oplus (p_2, q_2)$,

and hence conclude that \oplus defines an operation, denoted +, on the quotient set $X = S/\sim$.

- (v) Define a function $i: \mathbb{N} \to X$ by declaring, for all $m \in \mathbb{N}$, i(m) = (m, 0). Show that i is injective. By means of i we think of \mathbb{N} as a subset of X. Show that i(m+p) = i(m) + i(p).
- (vi) Write $0 = [(0,0)] \in X$ (where as usual [a] denotes the equivalence class of a). Show that for all $x \in X$, x + 0 = x.
- (vii) Show that for all $x \in X$ there is $y \in X$ such that x + y = 0. We write y = -x.
- (viii) Show that for all $x \in X$, either $x \in \mathbb{N}$ or $-x \in \mathbb{N}$, and both are true if and only if x = 0.
- (ix) Define a bijective function $f: \mathbb{Z} \to X$ and show that for all $a, b \in \mathbb{Z}$, f(a + b) = f(a) + f(b).

Most of the question is a "routine" verification that I omit.

For (vii) note that $(n,m) \oplus (m,n) = (n+m,m+n) \sim (0,0)$ hence [(m,n)] + [(n,m)] = 0.

For (viii), either $n \le m$, in which case (m,n) = (m-n,0) and [(m,n)] = i(m-n), or $n \ge m$, in which case (m,n) = (0,n-m) and -[(m,n)] = [(n,m)] = i(n-m). Both are true if and only if m=n, in which case $(m,n) \sim (0,0)$, that is, [(m,n)] = 0.

For (ix) you want to define

$$f(a) = \begin{cases} (a,0) & \text{if } a \ge 0, \\ (0,-a) & \text{if } a \le 0 \end{cases}$$

and prove the statement by a division in four cases: a > 0, b > 0; a > 0, b < 0, a < 0, b > 0, a, b < 0.

You should prepare starred questions * to discuss with your personal tutor. Questions marked † are slightly harder (closer to exam standard), but good for you.