M1F Foundations of Analysis

Problem Sheet 1

- 1. Let A be the set $\{1, 3, -6, \{1, -6\}, Doncaster, \{1\}, X\}$. Which of the following statements are true and which are false? (Just write T or F in each case.)
 - (a) $X \in A$ (T)
 - (b) $\{X\} \in A$ (F)
 - (c) $\{X\} \not\subseteq A$ (F)
 - (d) $\{1, -6\} \in A$ (T)
 - (e) $\{1,3\} \notin A$ (T)
 - (f) $\{\{1, -6\}\} \subseteq A$ (T)
 - (g) $\{Doncaster\} \subseteq A$ (T)
 - (h) $\{1, -6\} \not\subseteq A$ (F)
 - (i) $\emptyset \subseteq A$ (T)
- 2. * Describe the following sets. Prove your answers carefully, except in (d) (which we'll cover later).
 - (a) $\bigcup_{n=1}^{\infty} (1/n, \infty)$
 - (b) $\bigcap_{n=1}^{\infty} (0, 1/n)$
 - (c) $\bigcup_{n=1}^{\infty} \{ x \in \mathbb{R} : -n < x < n \}$
 - (d) $\bigcap_{n=1}^{\infty} \{x \in \mathbb{Q}: 2 \frac{1}{n} < x^2 < 2 + \frac{1}{n} \}$
 - (a) $\bigcup_{n=1}^{\infty} (1/n, \infty) = (0, \infty)$ because $x \in \mathbf{LHS} \iff x > 1/n$ for some $n \ge 1 \iff x > 0 \iff x \in \mathbf{RHS}$.
 - (b) $\bigcap_{n=1}^{\infty} (0,1/n) = \emptyset$ because if $x \in (0,1/n) \ \forall n \ \text{then} \ x < 1/n \ \forall n \Rightarrow x \leq 0 \ \text{but} \ x > 0 \ \text{which is a contradiction.}$
 - (c) $\bigcup_{n=1}^{\infty} (-n,n) = \mathbb{R}$ because $\forall x \in \mathbb{R}, \exists n \in \mathbb{R} \text{ such that } n > |x|, \text{ so } x \in (-n,n).$
 - (d) $\bigcap_{n=1}^{\infty} \{x \in \mathbb{Q}: 2 \frac{1}{n} < x^2 < 2 + \frac{1}{n}\} = \emptyset$.

Proof: $\sqrt{2} \notin \mathbb{Q}$ so if $x \in \mathbb{Q}$ then $x^2 \neq 2$.

So either (i) $x^2 > 2$ or (ii) $x^2 < 2$. In case (i), find n such that $1/n < x^2 - 2$ (i.e. pick $n > 1/(x^2 - 2)$). Then $x^2 > 2 + 1/n$ so $x \notin \{x \in \mathbb{Q}: 2 - \frac{1}{n} < x^2 < 2 + \frac{1}{n}\}$ So $x \notin \bigcap_{n=1}^{\infty}$. Similarly for case (ii).

Therefore there are no rational numbers in $\bigcap_{n=1}^{\infty}$. Since $\bigcap_{n=1}^{\infty} \subset \mathbb{Q}$ it must be empty.

- 3. Which of the following statements are true and which are false?
 - (a) $x^2 5x + 6 = 0 \implies x = 2$ (F, x might be 3)
 - (b) $x^2 5x + 6 = 0 \iff x = 3$ (T)
 - (c) $x^2 5x + 6 = 0 \iff (x = 2 \text{ or } x = 3)$ (T)
 - (d) For $x^2 5x + 6$ to be zero it is necessary that x = 3 (F, x = 2 is ok)
 - (e) If $x^2 5x + 6 = 0$ then x = 3 (F, x might be 2)
 - (f) x = 3 if $x^2 5x + 6 = 0$ (F, x might be 2)
 - (g) x = 3 only if $x^2 5x + 6 = 0$ (T)
 - (h) x=1 if $x^2-2x+1=0$ (T, but only because this equation has just one (double) root)
- 4. † Suppose we know that the statement P holds unless Q holds. Which of the following statements follow and which do not ?

- (a) *P*
- (b) $Q \Rightarrow P$
- (c) $\overline{Q} \Rightarrow P$
- (d) $Q \Rightarrow \overline{P}$

The given statement tells us that P holds if Q does not. It tells us *nothing* when Q holds (i.e. P may or may not be true in this case). If you dispute this, think about the example "I will fail the exam unless I do some work". This does not guarantee that I will pass if I do do some work!

So it is precisely the statement $\overline{Q} \Rightarrow P$. So (c) is true, the rest do not follow from what we're told (even though in a given case they might be true).

You should prepare starred questions * to discuss with your personal tutor. Questions marked † are slightly harder (closer to exam standard), but good for you.