M1F Foundations of Analysis

Problem Sheet 10

1. * Write $x^{2n+1} - 1$ as a product of *real* linear and quadratic factors.

Write $x^{2n} + x^{2n-1} + \ldots + x + 1$ as a product of quadratic real factors.

Suppose that $n \ge 1$. Let $\omega = e^{2\pi i/(2n+1)}$. Why is $\sum \omega^{i+j} = 0$, where the sum is over all i and j from 1 to 2n+1 such that i < j?

Roots of $x^{2n+1}=1$ come in conjugate pairs $e^{2k\pi i/(2n+1)}$ and $e^{-2k\pi i/(2n+1)}$ for $k=1,\ldots,n$, plus there is the real root 1 (when k=0).

Therefore $x^{2n+1} - 1 = (x - \omega)(x - \bar{\omega}) \dots (x - \omega^n)(x - \bar{\omega}^n)(x - 1)$ where $\omega = e^{2\pi i/(2n+1)}$.

That is, $x^{2n+1}-1$ factors as $(x^2-2\cos(\frac{2\pi}{2n+1})x+1)\dots(x^2-2\cos(\frac{2n\pi}{2n+1})x+1)(x-1)$.

Now $x^{2n+1}-1=(x-1)(x^{2n}+x^{2n-1}+\ldots+x+1)$ so from the above factorisation we find that $x^{2n}+x^{2n-1}+\ldots+x+1=(x^2-2\cos(\frac{2\pi}{2n+1})x+1)\ldots(x^2-2\cos(\frac{2n\pi}{2n+1})x+1)$.

The sum of the products of pairs of roots ω^i , ω^j of the equation $x^{2n+1}-1=0$ equals the coefficient of x^{2n-1} in $x^{2n+1}-1=0$, which is zero.

2. † Suppose that

$$a + b + c = 3,$$

$$a^2 + b^2 + c^2 = 3,$$

$$a^3 + b^3 + c^3 = 3.$$

Find a cubic equation whose roots are a, b, c and hence solve these equations.

 $(a+b+c)^2 = (a^2+b^2+c^2) + 2(ab+ac+bc)$, so ab+ac+bc = 3.

$$(a+b+c)^3 = (a^3+b^3+c^3) + 3(a^2b+a^2c+ab^2+b^2c+ac^2+bc^2) + 6abc, \ \text{and} \ (a^2+b^2+c^2)(a+b+c) = (a^3+b^3+c^3) + (a^2b+a^2c+ab^2+b^2c+ac^2+bc^2). \ \text{Putting this all together shows that} \ abc = 1.$$

Therefore the cubic with these roots $x^3 - (a+b+c)x^2 + (ab+ac+bc)x - (abc) = 0$ is $x^3 - 3x^2 + 3x - 1 = 0$.

Either notice that this has a root x = 1 and so factorise as $(x-1)(x^2-2x+1) = 0$, or notice straight away that it is $(x-1)^3 = 0$.

Therefore all 3 roots are 1; therefore a, b, c are all 1.

3. Find an exact value for $\cos \frac{\pi}{24}$. Hence explicitly factorise the polynomial $x^{48} - 1$ in $\mathbb{R}[x]$.

I am too lazy to do all of this. For the first part of the question consider that $\cos\frac{x}{2}=\sqrt{\frac{1+\cos x}{2}}$, which then you can use to show that $\cos\frac{\pi}{24}=\frac{\sqrt{2+\sqrt{2+\sqrt{3}}}}{2}$. For the second part of the question you should implelment Q1.

4. Show that $\cos \frac{2\pi}{9}$ is a root of the cubic equation

$$8x^3 - 6x + 1 = 0$$

Thinking about the other roots, deduce that

$$\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9} = 0$$

and

$$\cos\frac{2\pi}{9}\cos\frac{4\pi}{9}\cos\frac{8\pi}{9} = -\frac{1}{8}$$

I will do this in class on the last day, hopefully.

5. Find a degree 3 polynomial equation with rational coefficients having $x = \cos \frac{2\pi}{7}$ as a root. Use the cubic formula to write down a formula for $\cos \frac{2\pi}{7}$. Stare at your formula and see what you can learn from it.

Again, I am too lazy to do this. You should get the equation $8x^3 + 4x^2 - 4x - 1 = 0$ for $x = \cos x$. When you write the final formula you will be stuck with the cubic root of a complex number. From here no further progress is possible.

6. Find the highest common factor of the polynomials $A(x) = x^4 + x + 1$, $B(x) = x^3 + 2x^2 + 2x + 1$ in $\mathbb{Q}[x]$. If C(x) is this highest common factor, find polynomials P(x), Q(x) in $\mathbb{Q}[x]$ such that A(x)P(x) + B(x)Q(x) = C(x).

Hind: use long division for polynomials and imitate what you do in \mathbb{Z} .

You should prepare starred questions * to discuss with your personal tutor.

Questions marked † are slightly harder (closer to exam standard), but good for you.