M1F Foundations of Analysis—Problem Sheet 11, hints and solutions.

- 1)
- (i) Say $a, b \in X$ and f(a) = f(b). Then g(f(a)) = g(f(b)) so $(g \circ f)(a) = (g \circ f)(b)$ and hence a = b, and because a and b were arbitrary we deduce that f is injective.
- (ii) [typo in the question—should say "surjective".] Say $y \in Y$. Define x = g(y). Then $f(x) = f(g(y)) = (f \circ g)(y) = y$ and because y was arbitrary we see that f is surjective.
 - (iii) This is immediate from (i) and (ii).
 - $2\dagger$
- a) A is countable so let's assume $A = \mathbb{N}$. Say $f : \mathbb{N} \to B$ is a surjection. Define a map $g : B \to \mathbb{N}$ by letting g(b) be the smallest $n \in \mathbb{N}$ such that f(n) = b. Note that by surjectivity such b must exist. Then g is easily checked to be an injection, so we can regard B as a subset of \mathbb{N} . If B is not finite then we can count it as $B = \{b_1, b_2, b_3, \ldots\}$ where b_1 is the smallest element of B, b_2 is the second smallest, and so on. So B is countable.
- b) Fix bijections $f_n: N \to A_n$. Then there's a surjection $f: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n$ defined by $f(m,n) = f_n(m)$. Hence by a) we see that the union is either finite or countable. But the union contains A_1 which is countable and hence infinite, and so the union must be countable.
- c) Fix $n \in \mathbb{N}$ and let A_n be the set of subsets of \mathbb{N} of size at most n. There's a surjection $\mathbb{N}^n \to A_n$ defined by $f(a_1, a_2, \ldots, a_n) = \{a_1, a_2, \ldots, a_n\}$. Hence A_n is countable and so by b) we see that the set of finite subsets of \mathbb{N} is also countable. Alternatively define an injection from the finite subsets of \mathbb{N} to \mathbb{N} sending $\{a_1, a_2, \ldots, a_n\}$ (assumed to be in increasing order) to $2^{a_1}3^{a_2}5^{a_3}\ldots p_n^{a_n}$, where p_i is the ith prime.
- d) If the set of infinite subsets of \mathbb{N} were also countable, then the set of all subsets of \mathbb{N} would be countable by c), and this contradicts Cantor's diagonal argument: the power set of \mathbb{N} is not countable.
- e) The set of all subsets of $\mathbb N$ is uncountable. If T is any such subset, then consider the following equivalence relation on $\mathbb N$: If n=2r-1 is odd then $n\sim n$, and if $r\in T$ then also $n\sim n+1$. But n is not related to any other natural number. Similarly, if n=2r is even, then $n\sim n$, and if $r\in T$ then also $n\sim n-1$, but n is related to no other natural number. Hence the equivalence classes look like $\{2r-1\},\{2r\}$ if $r\not\in T$ and $\{2r-1,2r\}$ if $r\in T$, as r runs through $\mathbb N$. The resulting equivalence relations are all distinct and so because there are uncountably many choices for T, there are also uncountably many equivalence relations on $\mathbb N$.
- f) The set of functions $f: \mathbb{N} \to \{0,1\}$ is uncountable, as it is naturally in bijection with the set of subsets of \mathbb{N} . Hence the set of functions $f: \mathbb{N} \to \mathbb{N}$ is also uncountable.
 - 3)
- (i) $\binom{p}{a} = \frac{p!}{a!(p-a)!}$ and the LHS is an integer, so the RHS must be too, after cancelling. But after all the cancelling has finished on the RHS, the prime p

will still be left in the numerator because both a and p-a are strictly smaller than p. So p must divide the RHS so p divides the LHS.

- (ii) This follows instantly from the binomial theorem and the definition of "mod".
- (iii) It's true for n = 0 and n = 1. For general n > 0 one can easily prove $n^p \equiv n \mod p$ by induction on n, and for n < 0 one can either do induction on -n or deal with p=2 explicitly and then for general p use the fact that $(-m)^p = -m^p$ to deduce the negative case from the positive case.
- (iv) If n is prime to p then there is λ and μ such that $\lambda n + \mu p = 1$. We know $n^p \equiv n \mod p$ and now multiplying both sides by λ , we deduce that $n^{p-1} \equiv 1 \mod p$.

- (i) By the binomial theorem it's $\binom{17}{15} = \frac{17.16}{2} = 17.8 = 136$. (ii) It's $\binom{4}{0}(2x)^4 + \binom{4}{1}(2x)^3y + \binom{4}{2}(2x)^2y^2 + \binom{4}{3}(2x)y^3 + \binom{4}{4}y^4 = 16x^4 + 32x^3y + 24x^2y^2 + 8xy^3 + y^4$.

- (i) By the multinomial theorem it's $\binom{7}{2.2.3} = \frac{7!}{2!2!3!} = \frac{7!}{2.2.6} = 1.2.3.5.7 =$
- (ii) By the multinomial theorem the product is a sum of things of the form $\binom{5}{a,b,c}1^ax^b(x^3)^c$ and we want the degree of this to be 11 so b+3c=11 and a+b+c=5. Subtracting, we see 2c-a=6 and hence $2c\geq 6$ meaning that c=3,4,5. Then 2c-a=6 gives a=0,1,2 and only c=3 and a=0 gives a nonnegative value of b, namely b=2. So the answer is $\binom{5}{0,2,3}=\frac{5!}{2!3!}=4.5/2=10$.