M1F Foundations of analysis—Problem Sheet 11.

- 1) Let $f: X \to Y$ be a function, and let $g: Y \to X$ be a function.
- (i) If $g \circ f = id_X$ then prove that f is injective.
- (ii) If $f \circ g = id_Y$ then prove that f is surjective.
- (iii) Deduce that if g is an inverse function for f (that is, if both $g \circ f$ and $f \circ g$ are the identity function), then f is a bijection. Remark: this is frequently the easiest way to prove that a function is a bijection—just write down an inverse.
 - 2†) For the experts! Prove the following.
- a) If A is countable and there's a surjection $A \to B$ then B is either finite or countable.
 - b) If $A_1, A_2, A_3...$ are countable, then so is $\bigcup_{n \in \mathbb{N}} A_n$.
 - c) The set of finite subsets of \mathbb{N} is countable.
 - d) The set of infinite subsets of \mathbb{N} is uncountable.
 - e) The number of equivalence relations on $\mathbb N$ is uncountable.
 - f) The set of functions $f: \mathbb{N} \to \mathbb{N}$ is uncountable.
- 3) Here is the proof of Proposition 6.14 in the course, a.k.a. Fermat's Little Theorem.
 - (i) Prove that if p is prime and $1 \le a \le p-1$ then $\binom{p}{a}$ is a multiple of p.
 - (ii) Deduce that if $n \in \mathbb{Z}$ then $(1+n)^p \equiv 1 + n^p \mod p$.
 - (iii) Prove that if $n \in \mathbb{Z}$ then $n^p \equiv n \mod p$.
 - (iv) Prove that if $n \in \mathbb{Z}$ is prime to p then $n^{p-1} \equiv 1 \mod p$.
 - 4
 - (i) Find the coefficient of x^{15} in $(1+x)^{17}$.
 - (ii) Expand $(2x+y)^4$.
 - 5)
 - (i) Find the coefficient of $x^2y^2z^3$ in $(x+y+z)^7$.
 - (ii) Find the coefficient of x^{11} in $(1+x+x^3)^5$.