M1F Foundations of analysis—Problem Sheet 10.

- 1) Let A, B, C be sets. Proofs or counterexamples required for the following:
- (i) $A \cap (B C) = (A \cap B) (A \cap C)$.
- (ii) $A (B C) = (A B) \cup C$.
- (iii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. Note that this one is the "opposite" of Proposition 8.1.
- 2) For $n \in \mathbb{N}$ define A_n to be the set $\{x \in \mathbb{R} : -1/n < x < 1/n\}$. Work out $A_1 \cap A_2$. Work out $\bigcap_{n=1}^{10} A_n$. Work out $\bigcap_{n=1}^{\infty} A_n$.
- 3) For each of the functions $f: S \to T$ below, establish (with proof) whether or not f is injective and whether or not f is surjective.
 - a) $S = T = \mathbb{R}, f(x) = 3 2x$
 - b) $S = T = \mathbb{R}, f(x) = x^4$
 - c) $S = T = \{x \in \mathbb{R} : x > 0\}, f(x) = x^4$
 - d) $S = \mathbb{Z}, T = \mathbb{R}, f(x) = 3 2x$
 - e) $S = \mathbb{Q}, T = \mathbb{R}, f(x) = (x + \sqrt{2})^2$.
 - 4) Let $A,\,B,\,C$ be sets, and $f:A\to B$ and $g:B\to C$ be functions.
 - a) Prove that if f and g are injective, then $g \circ f$ is injective.
 - b) Prove that if f and g are surjective, then $g \circ f$ is surjective.
 - c) Prove that if f and g are bijective, then $g \circ f$ is bijective.
- 5) Prove that the inverse of a bijection $f: S \to T$ is unique. That is, if $f: S \to T$ is a bijection, and we have two functions $g: T \to S$ and $h: T \to S$ such that both g and h are inverses of f, then g(t) = h(t) for all $t \in T$.
 - 6)
 - (i) Prove that if A and B are countable sets, then $A \times B$ is also countable.
 - (ii) Prove that for any $n \in \mathbb{N}$, the set \mathbb{Z}^n is countable.