M1F Foundations of Analysis—Problem Sheet 7, hints and solutions.

1*)
(i)

37 = 1.21 + 16, 21 = 1.16 + 5,16 = 3.5 + 1,

5 = 5.1 + 0.

So we terminate, and deduce that the highest common factor is d=1 (one mark). Now to find λ and μ we see

$$16 = 37 - 21,$$

 $5 = 21 - 16 = 21 - (37 - 21) = 2.21 - 37,$
 $1 = 16 - 3.5 = (37 - 21) - 3(2.21 - 37) = 4.37 - 7.21.$

We finally check (this is not mathematically essential, but it's very wise!) and note that 4.37 = 148 and 7.21 = 147 so indeed we have not made a mistake and our answer is $\lambda = -7$ and $\mu = 4$. Two more marks for this, but lose a mark if you get them the wrong way around, or if you miss a sign or two. Note that there are other *correct* choices for λ and μ , for example $\lambda = 30$ and $\mu = -17$, and of course you won't lose a mark if you write down one of these other correct answers

- (ii) Working all on one line to save space, 437 = 247 + 190, 247 = 190 + 57, 190 = 3.57 + 19 and 57 = 3.19 + 0 so d = 19 (one mark) and 190 = 437 247, 57 = 247 (437 247) = 2.247 437, 19 = 190 3.57 = (437 247) 3.(2.247 437) = 4.437 7.247 (now check this!) and so $\lambda = -7$ and $\mu = 4$ (or any of the other infinitely many correct solutions) (two marks for getting a correct λ and μ , lose one if you slip up with a sign or the order).
 - 2)
- (i) By Proposition 6.4 there are integers λ and μ such that $\lambda a + \mu b = 1$. So one can set $s = n\lambda$ and $t = n\mu$; then $sa + tb = n(\lambda a + \mu b) = n$ for an easy two marks.
- (ii) Certainly $\lambda=-2$ and $\mu=1$ gives us $3\lambda+7\mu=1$, but unfortunately this λ is too small. But by the trick in lectures, let's add, say, 7,000,000 to λ and subtract 3,000,000 from μ ; this keeps $3\lambda+7\mu$ constant at 1, and we get $\lambda=6,999,998$ and $\mu=-2,999,999$ as a solution that satisfies the inequality. A measly two marks (well, I told you how to do it in lectures!)
- 3^{\dagger}) As I said in lectures, I forgot to write hcf(a,b)=1 on the question sheet. If a=1 or b=1 then clearly one can buy any number of McNuggets. So the interesting case is when a,b>1. Some messing around with specific examples will convince you now that the largest number one cannot buy is t=ab-a-b (note that $t+1=(a-1)(b-1)\geq 1$ so $t\geq 0$). To prove this, one needs to be

able firstly to show that one cannot buy t McNuggets, and secondly that one can buy any integer that is greater than t.

I'll firstly explain how to buy n > t McNuggets. By Q2(i) for any integer n > t we can find integers λ and μ such that $\lambda a + \mu b = n$. By the trick in Q2(ii) we can assume $\lambda > 0$. Divide λ by b and let r be the remainder, with $0 \le r < b$. We know that $n - \lambda a$ is a multiple of b, and so n - ra is also a multiple of b. If s = (n - ra)/b then s is an integer. Furthermore, $s = (n - ra)/b > (t - ra)/b \ge (t - (b - 1)a)/b \ge -1$ and hence s > -1, so $s \ge 0$ and n = ra + sb McNuggets can be bought.

Next I'll explain why we can't buy t. Say ab-a-b=ra+sb with $r,s\geq 0$. We then see that (s+1)b=a(b-1-r) and hence a divides (s+1)b. But $\mathrm{hcf}(a,b)=1$ and so by Corollary 6.5, a divides s+1 and because s+1>0 we have $s+1\geq a$. So $s\geq a-1$. Hence $t=ra+sb\geq ra+ab-b\geq ab-b>ab-a-b=t$, a contradiction.

- 4^*) We must find the smallest positive integer N such that N is a multiple of both 28 and 35. We could either invoke the uniqueness of prime factorization theorem, and deduce that N must be a multiple of 4, 5, and 7, and hence $N \geq 140$, and hence N = 140 (which clearly works) will be the minimum, or alternatively we could try and solve 28a = 35b by more low-level methods: we see that $28a = 35b \implies 4a = 5b$, so 4a is a multiple of 5, and by Corollary 6.5 we deduce that 5 divides a, so $a \geq 5$, and so the solution a = 5 and b = 4 is the smallest, again giving the answer as 140 minutes past midday, that is, 2:20pm, or 1420 if you come from a country where they have the sense to use the 24 hour clock. One final method would just be trial and error, perhaps I should have made the numbers larger to make this approach harder. Four marks for all this, because I didn't really do anything like it in the lectures.
 - 5*)
- (i) It is true. The simple proof is that if g is any integer dividing a and b then by Lemma 6.2 g divides sa + tb too, so g divides 1, so $g = \pm 1$. So hcf(a, b) = 1. Three marks.
 - (ii) It is not true—for example a = b = s = t = 1. Three generous marks.
- 7) If hcf(a, b) = hcf(a, c) = 1 then there are integers α , β , γ , δ such that $\alpha a + \beta b = 1$ and $\gamma a + \delta c = 1$. Multiplying these equations gives $(\alpha \gamma a + \beta \gamma b + \alpha \delta c)a + (\beta \delta)(bc) = 1$ and so sa + tbc = 1 for some integers s and t, so by Q5(i) we have hcf(a, bc) = 1.