M1F Foundations of Analysis—Problem Sheet 6, Hints and Solutions.

- 1) a) LUB = -1, GLB = -3 (not the other way round!)
- b) LUB = -1, no GLB.
- c) LUB = $\sqrt{2}$, GLB = $-\sqrt{2}$.
- d) No LUB or GLB.
- e) LUB = $\sqrt{2}$, GLB = $-\sqrt{2}$.
- 2) (Of course there are many many answers to these questions.)
- a) $\{1, 1.4, 1.41, 1.414, 1.4142, \ldots\}$, the set of "decimal approximations" to $\sqrt{2}$, has LUB equal to $\sqrt{2}$ (as long as you remember to always round down).
- b) $\{-\sqrt{2}, -\sqrt{2}/2, -\sqrt{2}/3, -\sqrt{2}/4, \ldots\}$ is a set of negative irrationals, most of which are very small, and the LUB is 0.
 - c) $\{-1, -1.4, -1.41, -1.414, -1.4142, \ldots\}$ works.
 - 3)
- a) If x is a lower bound for B, then for all a in A, we have $a \in B$, so $x \le a$. Hence x is a lower bound for A.
- b) We know that y is a lower bound for B. Hence by (a), y is a lower bound for A. But x is the greatest lower bound for A. So $x \ge y$.
 - 4)
- a) Let y = x + c. We have to show that y is a GLB for T. First let's check that y is a lower bound! If $t \in T$, then $t c \in S$, so $x \le t c$ (as x is a lower bound for S), so $y = x + c \le t$. Hence y is a lower bound.

Now let's check that y is at least as big as any other lower bound. To do this, let z be any lower bound for T. By a similar argument to the above, one can check that z-c is a lower bound for S. But x is the GLB of S, so $z-c \le x$. So $z \le x+c=y$.

Hence, by definition of GLB, y is the greatest lower bound for S.

b) Again, one has to check both the parts of the definition for a LUB. Firstly, -x is an upper bound, because if $-s \in T$, then $s \in S$, so $x \le s$, so $-x \ge -s$.

And secondly, if u is an upper bound for T, then for all t in T we have $u \ge t$, so for all s in S we have $-u \le s$. Hence -u is a lower bound for S, and so $-u \le x$. Hence $u \ge -x$ and so -x is the least upper bound for T.

5) Certainly all of the T_i are non-empty, because $x_i \in T_i$. Hence it suffices to show that all of the T_n have lower bounds. But $T_n \subseteq T_1$, so by Q4(a), any lower bound for T_1 is a lower bound for all the T_n . So they all have GLBs.

Next note that $T_{n+1} \subseteq T_n$ for all $n \ge 1$, so by Q4(b), $b_{n+1} \ge b_n$ for all $n \ge 1$.

- a) $b_n = n$ and so the set of all b_i has no upper bound.
- b) $b_n = 0$ for all n and so the upper bound is 0.
- c) $b_n = 1$ for all n and so the upper bound is 1.
- d) $b_n = 1$ for $n \le 100$ and $b_n = 2$ for n > 100, and so $\{b_1, b_2, b_3, \ldots\} = \{1, 2\}$ and the upper bound is 2.

Remark: In general, if the set T_1 is bounded above and below, then the b_i will always be bounded above, and so their LUB will exist, so the liminf always exists. Guess what a limsup is and check that this exists too.