M1F Foundations of analysis—Problem Sheet 6.

- 1) Write down (no explanation necessary) the least upper bounds and greatest lower bounds of the sets below, or say "none" if they don't exist.
- a) $\{-1, -2, -3\}$
- c) $\{x \in \mathbb{Q} : x^2 < 2\}$
- b) $\{-1, -2, -3, \ldots\}$ d) $\{x \in \mathbb{Q} : x^2 > 2\}$
- e) $\{x \in \mathbb{R} : x \text{ is irrational, and } x^2 < 2\}$
 - 2) Give examples of:
 - a) A set of rationals with a least upper bound that is irrational.
 - b) A set of irrationals with a least upper bound that is rational.
- c) A set of rationals with a rational upper bound but an irrational lower bound.
- 3) Write down proofs of the following. Both proofs should be only a few lines long.
- a) If $A \subseteq B$ are sets of reals, then a lower bound for B is also a lower bound for A.
- b) If $A \subseteq B$ are sets of reals, and the greatest lower bound of A is x, and the greatest lower bound of B is y, then $y \leq x$.
- 4) Give proofs of the following two steps that I skipped during the proof of the least upper bound theorem:
- a) Let c be a real number. Let S be a set of reals, with greatest lower bound x. Let T be the set that you get by "shifting everything in S up by c". That is, $T = \{x \in \mathbb{R} : x - c \in S\}$. Prove that x + c is a greatest lower bound for T. [Don't just say "it's obvious"—but actually check that x + c satisfies the definition of a greatest lower bound for T.
- b) Let S be a set of reals, and let T denote the set "-S". More formally, set $T = \{x \in \mathbb{R} : -x \in S\}$. Prove that if S has a greatest lower bound, x, then -xis a least upper bound for T.
- 5) Let x_1, x_2, x_3, \ldots be a sequence of real numbers. For any integer $n \geq 1$, define the set T_n to be the set $\{x_n, x_{n+1}, x_{n+2}, \dots\}$. So for example,

$$T_1 = \{x_1, x_2, x_3, x_4, \dots\}$$

and

$$T_2 = \{x_2, x_3, x_4, \dots\},\$$

and so on.

Assume that T_1 has a lower bound. Deduce that T_n has a greatest lower bound for all $n \geq 1$. Call this lower bound b_n . Show that $b_1 \leq b_2 \leq b_3 \ldots$

Sometimes the set $\{b_1, b_2, b_3 \dots\}$ has an upper bound. For the sequences (x_m) below, work out b_n and also the upper bound B of the set $\{b_1, b_2, b_3 \dots\}$, when it exists. The number B is called the *liminf* of the sequence x_1, x_2, \ldots

- a) $x_1 = 1$, $x_2 = 2$, $x_3 = 3$..., and in general $x_n = n$.
- b) $x_1 = 1$, $x_2 = 1/2$, $x_3 = 1/3$..., and in general $x_n = 1/n$.
- c) $x_1 = 1$, $x_2 = 2$, $x_3 = 1$, $x_4 = 2$, $x_5 = 1$ and so on, alternating between 1
 - d) $x_1 = x_2 = \ldots = x_{100} = 1$ and $x_n = 2$ for all n > 100.