M1F Foundations of Analysis—Problem Sheet 2

Questions marked with a † might be harder than the rest.

- 1) Decide whether the following statements are true or false, and write down a proof or a counterexample as appropriate.
 - (a) $\sqrt{3}$ is irrational.
 - (b) The product of a rational and an irrational number is always irrational.
- 2) Are the following numbers rational or irrational? Proofs required.
 - (a) $\sqrt{2} + \sqrt{3/2}$ (hint: if it were rational then its square would be too).
 - (b) $1 + \sqrt{2} + \sqrt{3/2}$.
 - (c) $2\sqrt{18} 3\sqrt{8} + \sqrt{4}$.
- (d)[†] $\sqrt{2} + \sqrt{3} + \sqrt{5}$ (hint: use the fact that if $n \ge 0$ is an integer, and \sqrt{n} is not an integer, then \sqrt{n} is irrational.)

3)

- (a) Write the recurring decimal $1.\overline{234}$ as a rational.
- (b) Let $a = 10^{-1} + 10^{-2} + 10^{-4} + 10^{-8} + 10^{-16} + \dots$ (the exponent doubles each time). Is a rational or irrational? Proof required!
- (c) Let the decimal $x = 0.a_1a_2a_3a_4...$ be defined by letting a_n be the remainder when n is divided by 4. Is x rational or irrational?
- 4) Proof or counterexample: every positive integer is the sum of three squares.
- 5) The Fibonacci sequence starts with the terms 1,1 and then proceeds by letting the next term be the sum of the two previous terms. So the series starts $1,1,2,3,5,8,13,21,34,\ldots$ With this in mind, consider the decimal expansion of $x=\frac{100}{9899}$; it is $0.010102030508132134\ldots$ Note how the Fibonacci sequence is living inside this decimal expansion! Can you explain this phenomenon? Do you think it continues forever?

[Hint: check that 100 + x + 100x = 10000x, and write down the decimal expansion of this equation.]