UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSC/MSCI EXAMINATION (MATHEMATICS) MAY-JUNE 2001

This paper is also taken for the relevant examination for the Associateship.

M1F FOUNDATIONS OF ANALYSIS

DATE: Tuesday 22 May 2001 TIME: 10am - 12 noon

Credit will be given for all questions attempted, but extra credit will be given for complete, or nearly complete, answers.

Calculators may not be used.

- 1. (a) Prove that if n is an integer, then n is even if and only if n^3 is even.
 - (b) Prove that $\sqrt[3]{2}$ and $\sqrt[3]{4}$ are irrational.
 - (c) Prove that $\sqrt[3]{2} + \sqrt[3]{4}$ is irrational.

Hint for Part (c): If $t = \sqrt[3]{2} + \sqrt[3]{4}$ then consider $t^2 - t$.

- 2. Sketch the proof that if a convex polyhedron has F faces, E edges and V vertices, then F E + V = 2.
- 3. In this question, standard facts about inequalities may be assumed.
 - (a) If S is a set of reals, what does it mean to say that a real number x is a *least upper bound* for S?
 - (b) If $S = \{s_1, s_2, \dots, s_n\}$ has only finitely many elements, with $s_1 < s_2 < \dots < s_n$, then prove that s_n is the least upper bound for S.
 - (c) If X is a set of reals, we write LUB(X) for its least upper bound. Does there exist a set S such that

$$LUB(\{x^2: x \in S\}) = 4$$

and $LUB(\{x^3: x \in S\}) = 1$? Justify your answer.

(d) Does there exist a set T such that

$$LUB(\{x^2:x\in T\}) = 4$$

and $LUB(\{x^3: x \in T\}) = 27$? Justify your answer.

- 4. (a) What does it mean for a binary relation on a set X to be
 - (i) reflexive;
 - (ii) symmetric;
 - (iii) transitive;
 - (iv) an equivalence relation?

 - (c) How many binary relations are there on the set {1,2}? And how many are equivalence relations?

- 5. (a) What does it mean for a set to be countable?
 - (b) Prove that Q is countable.
 - (c) Prove that the set of all subsets of $\mathbb Q$ is not countable.