I M P E R I A L C O L L E G E O F S C I E N C E T E C H N O L O G Y & M E D I C I N E

DEPARTMENT OF MATHEMATICS

First Year Test Paper - January 2001
M1F FOUNDATIONS OF ANALYSIS

Date: Monday 8 January 2001

Time: 10.15am - 11.45am

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers. The question in Section A will be worth 1½ times as many marks as either question in Section B. Answer each question in a separate book. Write your name and the question number prominently on the front of each book.

SECTION A

In each part of this question, just write down your answers. justification is required.

PART I

Say whether the following statements are true or false:

- If x is rational and y is irrational, then x + y must be (i) irrational.
- The set $\left\{x \in \mathbb{R}: \frac{x+1}{x^2+1} \le 3\right\}$ is bounded below. (ii)
- The decimal expansion of $\frac{1}{7}$ is recurring, with a period of (iii) length 6.
- $f: \mathbb{N} \to \mathbb{Z}$ defined by $f(n) = n^2$, is an injection. (iv)
- $10^{2001} 3^{2001}$ is a multiple of 7.
- (vi) If A and B are infinite sets, then $A \cap B$ is also infinite.

PART II

- The real part of $(\sqrt{3} + i)^{2000}$ is (i)

 - (a) -2^{1999} ; (b) -2^{1000} ; (c) 2^{1000} ;

- (d) 2^{1999} ; (e) something else.
- (ii) Which is bigger, $2^{1/2}$ or $3^{1/3}$?
- (a) $2^{1/2}$; (b) $3^{1/3}$; (c) they are equal.

- (iii) The binary relation \sim on $\mathbb R$ is defined by $a \sim b$ if a+b < 0. Which of the following describes the properties of this relation?
 - (a) ~ is not symmetric, transitive or reflexive;
 - (b) ~ is symmetric but not transitive or reflexive;
 - (c) ~ is symmetric and transitive, but not reflexive;
 - (d) ~ is symmetric, transitive and reflexive.
- (iv) My child has 20 toys. Of these, 6 need new batteries and 8 have fallen behind the sofa. If 10 toys neither need new batteries nor are behind the sofa, how many toys behind the sofa need new batteries?
 - (a) 2; (b) 4; (c) 6; (d) 8; (e) 10.
- (v) One of the toys mentioned above is a convex polyhedron with 90 edges and 60 vertices. How many faces does it have?
 - (a) 28; (b) 30; (c) 32; (d) some other number.
- (vi) The number of surjective functions from a set of size 3 to itself is
 - (a) 0; (b) 1; (c) 2; (d) 6;
 - (e) some other number.
- (vii) The coefficient of $x^2y^2z^2$ in $(x+y+z)^6$ is
 - (a) 20; (b) 30; (c) 90; (d) 100;
 - (e) some other number.

SECTION B

- 2. (a) Prove that if n is an integer, and n^2 is a multiple of 3, then n is a multiple of 3.
 - (b) Prove that $\sqrt{3}$ is irrational.
 - (c) Prove that $\cos(5\pi/12)$ is irrational. Hint: Consider the complex number $(1+i)(\sqrt{3}+i)$.
- 3. Let S be a set of real numbers. Define what it means for S to be bounded above. Define what it means for a real number u to be
 - (i) an upper bound for S;
 - (ii) a least upper bound for S.

If $S = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ then prove that S has a least upper bound, and find this bound.

Prove that if S is a set of reals with a least upper bound u, then the set $T = \{s+1: s \in S\}$ has a least upper bound, and find this bound.

If S is a set of reals which is bounded above, is the set $U = \{s^2 : s \in S\}$ also bounded above? Justify your answer.