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L-functions.

TCC course, Oct–Dec 2008.

Kevin Buzzard

Chapter 0: Introduction.
http://tcc.maths.ox.ac.uk/syllabi/L-Functions.shtml
(or just google TCC Oxford) for books. Syllabus is mildly inaccurate (my

fault): Tate didn’t give a “new proof” of the functional equation of the Riemann
zeta function—he conceptually explained an older one.

Basic definitions.
If r > 0 is real and s is complex, define rs := exp(s. log(r)). Note that

|rs| = rRe(s).
The Riemann zeta function is a holomorphic function of a variable s, whose

definition for Re(s) > 1 is
ζ(s) :=

∑
n≥1

n−s.

ζ(s) :=
∑
n≥1

n−s.

It’s easily checked to converge to a holomorphic function (the convergence
is absolute and locally uniform). The first big fact is that it has a meromorphic
continuation to s ∈ C with a simple pole at s = 1 and no other poles. We’ll see
a proof of this in Lecture 2.

To explain the functional equation (relating ζ(s) to ζ(1− s) I’ll need the Γ
function

Γ(z) :=
∫ ∞

0

tz−1e−tdt

which converges (absolutely and locally uniformly) for Re(z) > 0 and hence
defines a holomorphic function there; we’ll see that this also has a meromorphic
continuation to z ∈ C but I want to state the functional equation before we get
onto proofs.

The theorem (due to Riemann) is

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s).

This is an equality of meromorphic functions; one has to be a bit careful. For
example if s is a positive even integer then the simple zero of sin(πs/2) cancels
the simple pole of Γ(1 − s) on the RHS (when we get off the introduction and
onto the details we’ll see that Γ has some simple poles).

Here’s a nicer (more symmetric) way of writing the functional equation: this
is crucial. If we set

ξ(s) := π−s/2Γ
(s

2

)
ζ(s)

ξ(s) := π−s/2Γ
(s

2

)
ζ(s)
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then the functional equation can be rewritten

ξ(s) = ξ(1− s)

We’ll prove this before we do anything else because it’s kind of important to
us. And then we’ll look at the proof and spend the rest of the course trying to
generalise it to a conceptual proof of meromorphic continuation of a huge class
of functions.

Remarks.
1) ξ is truly a “product of local factors”; one can check that ζ(s) =

∏
p(1−

p−s)−1 (where the product is over all prime numbers; this is because every
positive integer is uniquely the product of primes). The factor (1 − p−s)−1 is
“the local factor at p”. The stuff that was in ξ but not in ζ is the “local factor
at ∞”. We’ll make this rigorous later. It was one of Tate’s many insights that
this could be formalised and massively generalised.

2) Why do we care about ζ(s), either for Re(s) > 1, or for all s ∈ C?
It’s a well-observed phenomenon that the zeta function (and its generalisations)
encode arithmetic information, especially where ζ doesn’t converge. Indeed, the
general idea is that given an arithmetic object, it could have a zeta function,
which will converge for Re(s) sufficiently large, and then it might be a tough
theorem (or, more likely, a profound open conjecture) that this zeta function has
a meromorphic continuation to the complex numbers, and then “special values”
of this function (i.e. its values at certain carefully-chosen points) might tell you
information about the original arithmetic object.

Examples of this phenomenon: ζ(2) = π2/6 and ζ(4) = π4/90 and

ζ(12) = 691π12/638512875

(denominator is 36537211.13) and ζ(−11) = 691/32760 (denominator is 2332.5.7.13;
numerator is prime). These numbers are related to Bernoulli numbers—for ex-
ample B12 = −691/2730. All this was known to Euler (1700s), in some sense.
Bernoulli numbers tell us information about unramified extensions of cyclotomic
fields: so in some sense the zeta function really is telling us that the class number
of Q(µ691) is a multiple of 691.

The Riemann zeta function has a simple pole at 1 (with residue 1). Hence
there are infinitely many primes! (think about the representation of ζ(s) as
a product). Dirichlet’s theorem (about 150 years ago) pushed this idea a lot
further: mild generalisations of the zeta function plus their behaviour at s = 1
give his famous theorem that there are “infinitely many primes in an AP”.

The Riemann Hypothesis is that all the zeros of the Riemann zeta function,
other than those at s = −2,−4,−6, . . ., lie on the line Re(s) = 1/2. This is a
deep open problem which, were it to be true, would have lots of applications
(it and its generalisations to other zeta functions give you all sorts of results
about the error term in the prime number theorem, or the smallest quadratic
non-residue mod p, and so on).

Generalisations of the Riemann zeta function: I’ve already mentioned Dirich-
let’s “L-functions”: Also, a number fieldK has a zeta function ζK(s), with ζQ(s)
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being the classical Riemann zeta function. The function ζK(s) has a simple pole
at s = 1 and the residue is

lim
s→1

(s− 1)ζK(s) =
2r1 · (2π)r2 · hK ·RK

wK ·
√
| DK |

lim
s→1

(s− 1)ζK(s) =
2r1 · (2π)r2 · hK ·RK

wK ·
√
| DK |

where, as usual, r1 is the number of real embeddings K → R, r2 is half the
number of non-real embeddings K → C, hK is the size of the class group of K,
RK is the regulator (this is to do with the logarithms of the fundamental units),
wK is the number of roots of unity in K and DK is the discriminant of K.

Using the functional equation (this zeta function also has a functional equa-
tion) we can recast this statement as a statement about ζK near s = 0, and it
turns out to say that ζK(s) has a zero of order r1 + r2 − 1 at s = 0 (the rank of
the class group) and the power series expansion near s = 0 looks like

(−hK .RK/wK)sr1+r2−1 + . . . .

ζK(s) = (−hK .RK/wK)sr1+r2−1 + . . . .

So in some sense the reason ζ(0) = −1/2 is because the rational integers are a
PID and the only units are the two roots of unity (and hence the regulator is 1).

Zeta functions hold profound arithmetic secrets. More general zeta functions
are also called L-functions. Putting Dirichlet’s ideas together with the general-
isations to number fields gives the “correct” analogue and proof of Dirichlet’s
theorem for the integers of a number field.

Other things with zeta functions: automorphic forms, elliptic curves, alge-
braic varieties,. . . . Special values of L-functions and analogues of the class
number formula above give profound conjectures. For example the Birch–
Swinnerton-Dyer conjecture is just the analogue of the above theorem about
ζK(s) near s = 0, but for the L-function of an elliptic curve.

Hecke proved Tate’s theorem first; but Tate’s proof was amenable to vast
generalisations and has run and run.

Chapter 1: Meromorphic continuation and functional equation of
the Riemann ζ function.

1.1 The Γ function.
Definition:

Γ(z) =
∫ ∞

0

tz−1e−tdt.

Converges for Re(z) > 0 [integrand blowing up at zero if Re(z) < 1 but not
too badly: integral converges] to a holomorphic function.

Integrate by parts: for Re(z) > 0 we have
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Γ(z + 1) =
∫ ∞

0

tze−tdt

= [−tze−t]∞0 +
∫ ∞

0

ztz−1e−tdt

= zΓ(z).

Hence for Re(z) > 0 and n ∈ Z≥1 we have

Γ(z + n) = (z + n− 1)Γ(z + n− 1)
= (z + n− 1)(z + n− 2) . . . (z + 1)zΓ(z)

and hence Γ(z) = Γ(z + n)/[(z + n − 1)(z + n − 2) . . . (z + 1)(z)], and the
right hand side is meromorphic for Re(z) > −n, with (at worst) simple poles at
z = 0,−1,−2, . . . , 1−n. So we can now regard Γ as a meromorphic function on
the entire complex plane, satisfying zΓ(z) = Γ(z + 1).

Easy: Γ(1) = 1 (just compute the integral), and now it’s an easy exercise
from zΓ(z) = Γ(z + 1) to check that

• Γ(n+ 1) = n! for n ∈ Z≥0

• Γ(z) has a simple pole at z = 0,−1,−2, . . . and no other poles. (exercise:
compute the residue at these poles).

To check the two versions of the functional equation that I gave in the first
lecture are the same, one has to check

2sπ−1/2 sin(πs/2)Γ(1− s)Γ(s/2) = Γ((1− s)/2).

but I won’t use this because we’ll never use the asymmetric functional equation.
[It follows easily if you can prove

• Euler’s reflection formula

Γ(1− z)Γ(z) = π/ sin(πz)

• and Legendre’s duplication formula

Γ(z) Γ
(
z +

1
2

)
= 21−2z

√
π Γ(2z).

]

1.2: Poisson summation.
Define

θ(t) =
∑
n∈Z

e−πn2t2
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(a function on the positive reals); it’s easily checked to converge, and tends to
one (very rapidly) as t→∞. Our goal here is to show the fundamental fact

θ(1/t) = tθ(t).

This is not at all obvious (to me)—for example e16π ∼ 1020 so it’s not surprising
(looking at the definition) that

θ(4) = 1.0000000000000000000002958 . . .

but it is surprising (to me) that

θ(1/4) = 4.00000000000000000000118322 . . .

(or equivalently, why, if r = e−π/16 = 0.821724958 . . . then r + r4 + r9 + r16 +
r25 + r36 + r49 = 1.49999 . . ..

The fundamental fact
θ(1/t) = tθ(t)

follows from the Poisson Summation formula, which follows from the general
theory of Fourier series. Here’s how a proof goes.

First let me remind you of a crucial integral:∫ ∞

−∞
e−πx2

dx = 1

because if I denotes the integral then I2 =
∫
R2 e

−π(x2+y2)dxdy which is (recall-
ing dxdy = rdrdθ) ∫

r≥0

∫
0≤θ≤2π

e−πr2
rdrdθ

which is 2π[−e−πr2
/2π]∞0 = 1. As a consequence we deduce∫ ∞

−∞
e−πy2+2πirydy = e−πr2

(∗)

for r > 0 real (complete the square with x = y− ir and use Cauchy’s theorem).
As another consequence we deduce Γ(1/2) =

√
π (Exercise: comes straight from

the definition after a simple substitution).

Now let’s get back to θ. Fix t > 0 and define (for x ∈ R) a function
f(x) = e−πt2x2

, and then define

F (x) =
∑
n∈Z

f(x+ n)

=
∑
n∈Z

e−πt2(x+n)2 .

Note that F (0) = θ(t). But note also that F is continuous and periodic with
F (x) = F (x + 1) so by the theory of Fourier series [which we’ll do in some
generality later on, but let me just assume the classical theory now] we must
have F (x) =

∑
m∈Z ame

2πimx and we can compute

am =
∫ 1

0

F (x)e−2πimxdx.
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am =
∫ 1

0

F (x)e−2πimxdx

and this comes out to be ∑
n∈Z

∫ 1

0

f(x+ n)e2πimxdx

=
∑
n∈Z

∫ 1

0

f(x+ n)e2πim(x+n)dx

because changing x to x+n changes things by e2πimn which is 1. And now this
is just ∫ ∞

−∞
f(x)e2πimxdx

so we have proved that

am =
∫ ∞

−∞
e−πt2x2+2πimxdx.

am =
∫ ∞

−∞
e−πt2x2+2πimxdx.

Now setting y = tx and r = m/t we get

am = t−1e−πm2/t2

from (∗) above. So that’s am and now (from the definitions)

θ(t) = F (0)

=
∑
m∈Z

am

= t−1θ(1/t)

so we’re done.
Corollary: θ(t) ∼ 1/t for t > 0 small.

1.3: Meromorphic continuation of ξ(s) and ζ(s).
Define, for Re(s) > 1,

ξ(s) :=
∫ ∞

t=0

(θ(t)− 1)ts−1dt.

Note: this was not the definition of ξ we saw in the first lecture; but we’ll
prove it’s the same. This function ξ is the Mellin Transform of θ(t) − 1, and
we’ll now see that the relation between θ(t) and θ(1/t) translates into proof of
meromorphic continuation and functional equation for ξ(s).

If Re(s) > 1 then this integral converges. Indeed the integral from 1 onwards
is fine, because θ(t)− 1 is decaying exponentially, and the integral from 0 to 1
is OK because θ(t) is like 1/t so we’re just OK.
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Now breaking up the integral at the point t = 1 we see

ξ(s) =
∫ ∞

t=1

(θ(t)− 1)ts−1dt+
∫ 1

t=0

(θ(t)− 1)ts−1dt.

The first integral converges for all s ∈ C, and using the fact that θ(t) = θ(1/t)/t
and subbing u = 1/t we get that the second is∫ ∞

u=1

(uθ(u)− 1)u−1−sdu

and we can break this up into two pieces as∫ ∞

u=1

θ(u)u−sdu−
∫ ∞

u=1

u−1−sds

(noting that both integrals converge in the region Re(s) > 1). The second piece
is just −1/s. Changing that θ back to θ − 1 in the first piece by adding and
subtracting

∫∞
1
u−sdu = −1/(1− s), and putting everything together, gives us

ξ(s) =
∫ ∞

t=1

(θ(t)− 1)ts−1dt

+
∫ ∞

u=1

(θ(u)− 1)u−sdu− 1/(1− s)− 1/s

so

ξ(s) =
∫ ∞

t=1

(θ(t)− 1)(ts−1 + t−s)dt

− 1/(1− s)− 1/s

Now that integral converges for all s ∈ C to a holomorphic function which is
visibly invariant under s 7→ 1− s. We deduce that ξ has simple poles at s = 0
and s = 1 with residues −1 and +1 respectively, and no other poles, and satisfies
ξ(s) = ξ(1− s).

So what’s left is to check that ξ(s) has got something to do with the zeta
function! And we do this by now assuming Re(s) > 1 again, and writing

ξ(s) = 2
∫ ∞

t=0

∑
n≥1

e−πn2t2ts−1dt

and interchanging the sum and the integral, and observing that we can then do
the inner integral: it’s ∫ ∞

t=0

e−πn2t2ts−1dt

∫ ∞

t=0

e−πn2t2ts−1dt

and now setting u = nt we get

n−s

∫ ∞

u=0

e−πu2
us−1du
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and now setting v = πu2 so 2πudu = dv we get

n−s

∫ ∞

v=0

e−v(v/π)s/2−1(2π)−1dv

which is
n−s2−1π−s/2Γ(s/2)

so ξ(s) = π−s/2Γ(s/2)ζ(s) for Re(s) > 1 and that was what we wanted!

Finally, let’s think about poles. We saw ξ(s) had simple poles at s = 0 and
s = 1, with residues −1 and +1 respectively, and no other poles. So

ζ(s) = ξ(s).πs/2/Γ(s/2)

(an equation which now gives us the meromorphic continuation of the Riemann
zeta function!) will have a simple pole at s = 1 with residue π1/2/Γ(1/2) = 1,
and will be holomorphic at s = 0 because Γ has a simple pole at s = 0. Further-
more, the only other poles of ζ(s) will come from zeros of the Γ function—but if
the Γ function had a zero then zΓ(z) = Γ(z+1) implies it would have zeros with
arbitrarily large real part and hence ζ(s) would have poles with arbitrarily large
real part—but this is impossible because ζ(s) is holomorphic for Re(s) > 1.

What Tate did was he managed to understand the above argument to such
an extent that he could generalise it. Perhaps you can’t see the wood from the
trees at the minute, but somehow the ingredients are: clever definition of ξ,
and two ways of evaluating it: one by “brute force” and one by viewing it as a
Mellin transform of a theta function, breaking up the integral into two pieces,
and using Poisson summation. This is the strategy that we shall generalise,
once we have spent at least half of the course creating the necessary machinery.

Chapter 2: Local fields.
Let k be a field. A norm on k is |.| : k → R with
(i) |x| ≥ 0 with equality iff x = 0
(ii) |xy| = |x||y|
and some version of the triangle inequality, which varies from book to book.

Let me use the following variant:
(iii) There’s some constant C ≥ 1 such that |x| ≤ 1 implies |1 + x| ≤ C.
We say that a pair (k, |.|) consisting of a field k and a function |.| : k → R

satisfying the above axioms is a normed field.

(i) |x| ≥ 0 with equality iff x = 0
(ii) |xy| = |x||y|
(iii) There’s some constant C ≥ 1 such that |x| ≤ 1 implies |1 + x| ≤ C.
There’s now lots of things to do and no (for me) clear order in which to do

them. We need comments about the axioms, basic properties deducible from
the axioms, and elementary examples.

Let me first make a comment about the axioms: Why not the triangle in-
equality? Why not |x + y| ≤ |x| + |y| instead of (iii)? In fact (iii) is slightly
weaker than the triangle inequality, as can be easily seen: if |x + y| ≤ |x| + |y|
for all x and y then (iii) is satisfied with C = 2.
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(i) |x| ≥ 0 with equality iff x = 0
(ii) |xy| = |x||y|
(iii) There’s some constant C ≥ 1 such that |x| ≤ 1 implies |1 + x| ≤ C.
The “problem” with the triangle equality if you take a norm on a field which

satisfies the triangle inequality, and then cube it, it might not satisfy the triangle
inequality any more. On the other hand, one can easily check that |.| is a norm
in the sense above iff |.|r is for any r > 0 (easy exercise: replace C by Cr).

Definition We say that two norms |.| and |.|′ on a field k are equivalent if
there’s some r > 0 such that |x|r = |x|′ for all x ∈ k.

We only really care about norms up to equivalence.

(i) |x| ≥ 0 with equality iff x = 0
(ii) |xy| = |x||y|
(iii) There’s some constant C ≥ 1 such that |x| ≤ 1 implies |1 + x| ≤ C.
Basic properties of a normed field: |0| = 0, and |1| = |1|2 and hence |1| = 1

so | − 1|2 = 1 and hence | − 1| = 1 and | − a| = |a|.
Examples: k = R (or any subfield, for example Q), and |x| is the usual

norm: |x| = x for x ≥ 0 and −x for x < 0.
Trivial example: the “trivial norm” on a field: |0| = 0 and |x| = 1 for all

x 6= 0.

Back to the triangle inequality. I’ve already mentioned that if a function |.|
on a field k satisfies (i) and (ii) and |x + y| ≤ |x| + |y| for all x and y, then it
clearly satisfies (iii) with C = 2.

Conversely,
Lemma. if (k, |.|) is a normed field and if |x| ≤ 1 implies |1+x| ≤ 2 (that is,

if we can take C = 2 in the definition of the norm), then |.| satisfies the triangle
inequality.

I’ll sketch a proof of this because the proof is slightly tricky and we use
corollaries of this result quite a bit. Let me mention some corollaries first.

Corollary 1. Any norm is equivalent to a norm satisfying the triangle in-
equality.

Proof: Cr ≤ 2 for some appropriate r.

Corollary 2. A norm defines a topology on k: if we say that a subset U of k
is open iff for all u ∈ U there’s ε > 0 such that |u− v| < ε implies v ∈ U , then
the open sets satisfy the axioms for a topology.

Proof: equivalent norms define the same open sets, and if the norm satisfies
the triangle inequality then d(x, y) = |x− y| is a metric and the open sets for a
metric form a topology.

OK, now onto the proof of the lemma.

Lemma. if (k, |.|) is a normed field and if |x| ≤ 1 implies |1+x| ≤ 2 (that is,
if we can take C = 2 in the definition of the norm), then |.| satisfies the triangle
inequality.

Proof (sketch).
(a) The definition implies |x+ y| ≤ 2 max{|x|, |y|}.
(b) Hence (induction) |x1 + x2 + . . .+ x2n | ≤ 2n max{|x1|, |x2|, . . .}
(c) Hence

|x1 + x2 + . . .+ xN | ≤ 2N max{|x1|, |x2|, . . . , |xN |}
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(choose n with 2n−1 < N ≤ 2n and use (b) with xN+1 = . . . = 0).

(c)
|x1 + x2 + . . .+ xN | ≤ 2N max{|x1|, |x2|, . . . , |xN |}

(d) Hence |N | ≤ 2N for all N ∈ Z≥0.
(e) Now use the binomial theorem, (c) and (d) to check that

|(x+ y)m| ≤ 4(m+ 1)(|x|+ |y|)m

for all m ∈ Z≥1.
(f) Now let m→∞ and take mth roots to get the result.

There’s a dichotomy: if we can take C = 1 in (iii) then C = 1 will also do
for any equivalent norm. But if we need C > 1 in (iii) then by replacing |.| with
|.|N for some N >> 0 we can make C as large as we like (and equivalently as
small as we like, subject to it being bigger than 1, by letting N → 0+).

Definition: a norm is non-archimedean if we can take C = 1 in (iii) above.
A norm is archimedean if it’s not non-archimedean. This definition is good
on equivalence classes. Note that a norm is non-archimedean iff |x + y| ≤
max{|x|, |y|} for all x, y ∈ k (easy check). This is much stronger than the
triangle inequality!

The usual norm on R is archimedean. The trivial norm is non-archimedean.
Other examples: k = C and |x + iy| =

√
x2 + y2, or even |x + iy| = x2 + y2:

these are archimedean.

A less trivial example of a norm: k = Q, choose a prime p, and define
|p| = p−1 (or indeed |p| = r for any 0 < r < 1) and |q| = 1 for any other prime
q, and extend multiplicatively (and set |0| = 0). So we have∣∣∣pn · u

v

∣∣∣ = p−n

for n ∈ Z and u, v integers prime to p.
I claim that this is a non-archimedean norm (it’s called the “p-adic norm”

on Q). This is such an important norm for us that I’ll check the axioms.

Definition: |0| = 0 and ∣∣∣pn · u
v

∣∣∣ = p−n

for n ∈ Z and u, v integers prime to p.
Check it’s a norm: (i) and (ii) are obvious. So it suffices to check that for

all x and y we have |x+ y| ≤ max{|x|, |y|}; then (iii) will follow with C = 1.
Now |x + y| ≤ max{|x|, |y|} is clear if any of x, y or x + y is zero. In the

general case we may assume |x| ≥ |y|, so x = pn u
v and y = pm s

t with n ≤ m,
and we see that

x+ y = pn

(
u

v
+
pm−ns

t

)
= pnut+ pm−nsv

vt

= pn′ u
′

v′
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with v′ = vt and n′ ≥ n, so |x+ y| = p−n′ ≤ p−n = |x| = max{|x|, |y|}.

Easy exercise: check (by beefing up the proof) that in fact the p-adic norm
on Q satisfies |x+ y| = max{|x|, |y|} if |x| 6= |y|.

More fun: check that if |.| is any non-arch norm on any field k then |x| 6= |y|
implies |x+ y| = max{|x|, |y|}. There’s a one-line proof from the axioms which
I sometimes struggle to find.

Natural generalisation of the p-adic norm: if K is any number field with
integers R, and if P is a non-zero prime ideal of R, then there’s a P -adic norm
on K, defined by |0| = 0 and, for 0 6= x ∈ K, if we factor the fractional ideal
(x) as (x) = xR = P e ·

∏
i P

ei
i with the product finite and only involving prime

ideals other than P , then we can define |x| = re for any r with 0 < r < 1;
traditionally we take r = 1/N(P ) where N(P ) is the size of the finite field R/P .
Again one checks that this is a norm, and indeed it’s non-archimedean. These
norms generalise the p-adic norm on Q.

Note that if p factors into more than one prime in R, then there is more
than one P -adic norm on K that induces a norm equivalent to the p-adic norm
on Q. For example, the (2 + i)-adic norm on Q(i) is certainly not equivalent to
the (2− i)-adic norm [because |2 + i| = 1/5 for one of them and |2 + i| = 1 for
the other].

There are also natural generalisation of the usual archimedean norm on Q to
a number field: if K is a number field then for any field homomorphism K → C
(C the complexes), the usual norm on C induces (by restriction) a norm on K.
There is a subtlety here: if τ : K → C is a field homomorphism then τ , defined
by τ(x) = τ(x), is also a field homomorphism, and τ may or may not be equal
to τ , but τ and τ induce the same norm on K, because |z| = |z| on C. So
in fact we’re led to the following equivalence relation on field homomorphisms
τ : K → C defined by: τ ∼ τ and τ ∼ τ , and nothing else. The equivalence
classes are easily described: the maps K → R each give one equivalence class
(the standard notation is that there are r1 of these) and the maps K → C
which don’t land in R come in pairs {τ, τ} of equivalence classes: there are r2
equivalence classes (and hence 2r2 embeddings). Let’s stick with this notation
throughout the course.

If K = Q(α) and P (X) ∈ Q[X] is the minimal polynomial of α, then r1
is the number of real roots of α, and r2 is half the number of non-real roots.
This shows that r1 + 2r2 is the degree of P . This leads us easily to a proof that
r1 + 2r2 = [K : Q].

We won’t logically need the following result so I won’t prove it:
Theorem. If K is a number field, then any non-trivial norm on K is either

equivalent to a P -adic norm for a unique P (this is iff it’s non-archimedean),
or equivalent to the valuation induced by an embedding K → C, for a unique
equivalence class {τ, τ} of embeddings as above (this is iff it’s archimedean).

The case K = Q is due to Ostrowski (an explicit elementary calculation),
and the general case can be deduced from this case (after a little work).

Now here’s a crucial property of norms. Given a normed field (and you
can assume C ≤ 2 if you like, because what we do here only depends on the
equivalence class of the norm) there are obvious notions of a Cauchy sequence
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and a convergent sequence:
A sequence (an)n≥1 is Cauchy if for all ε > 0 there is M > 0 such that

m,n ≥M implies |am − an| < ε.
A sequence (an)n≥1 is convergent if there exists b ∈ k such that for all ε > 0

there’s M > 0 with n > M implies |an − b| < ε.
Both notions only depend on the equivalence class of the norm. Every con-

vergent sequence is Cauchy (easy). We say a normed field is complete if every
Cauchy sequence is convergent.

Examples: R with the usual norm is complete. Q with the usual norm isn’t.

In fact, if we’re defining mathematics from the ground up we would build R
by “completing” Q. This is a process that works in much more generality!

Theorem. Given a normed field (k, |.|) it has (up to unique isomorphism)
a completion (K, ||.||), by which I mean:

(i) a complete normed field (K, ||.||), and
(ii) an inclusion k → K which preserves the norm (so if you’re thinking of

K as containing k then I’m just saying that for x ∈ k we have |x| = ||x||),
such that
(iii) if we endow K with the topology induced by ||.||, then the closure of k

is K.
Note that (iii) is absolutely crucial: we want R to be the completion of Q,

whereas Q ⊂ C satisfies (i) and (ii).

Proof. Let’s do existence first. WLOG |.| satisfies the triangle inequality.
Let R denote the set of all Cauchy sequences in k; it’s a ring with respect to
pointwise addition and multiplication; the constant sequences give a map k → R
of rings (so 1 ∈ R is the sequence (1, 1, 1, . . .)).

One checks that if (an)n≥1 is a Cauchy sequence in k then (|an|)n≥1 is a
Cauchy sequence of real numbers, so it’s convergent. Say `((an)) is its limit.

Let I denote the ideal in R of sequences which tend to zero; this is easily
checked to be an ideal. Let K denote the quotient R/I. It’s easily checked that
if (an)− (bn) ∈ I then `((an)) = `((bn)). So ` induces a map ||.|| : K → R.

The claim is that this works. Let’s see why.

To check thatK is a field one needs to check that I is maximal; this is because
if (an) is Cauchy but doesn’t tend to zero then an 6= 0 for all n sufficiently large
and one can check that the sequence bn defined by bn = 1/an (unless an = 0 in
which case set bn = 59) satisfies (an)(bn)− (1) ∈ I; this is enough to prove that
I is maximal.

It’s clear that the obvious map k → K is a map of rings, and hence it’s an
injection because k is a field. The first two axioms for a norm are easily checked
to be satisfied by ||.||. We’re assuming that |.| satisfies the triangle inequality,
and we deduce that ||.|| does too. Hence (iii) is satisfied.

To check denseness of k in K we need to check that for any (an) ∈ K and
ε > 0 we can find a ∈ K with ||(an−a)|| < ε, but this is easy from the definition
of Cauchy.

Finally, to check completeness of K we use the fact that Cauchy sequences
in k converge in K, and that any Cauchy sequence in K can be approximated
by a Cauchy sequence in k in a sufficiently sensible way to ensure that the limits
coincide.
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So we’ve done existence. For uniqueness we need to check that if (K1, ||.||1)
and (K2, ||.||2) both work then there’s a norm-preserving isomorphism of fields
K1 = K2 which is the identity on k. The reason for this is that the map
k → K2 can be extended to a map K1 → K2 thus: write λ ∈ K1 as the limit
of a sequence in k; this sequence converges in K2; send λ to this element. Now
check that this gives a well-defined bijection—just follow your nose. �

The only complete archimedean fields we care about in this course are the
reals and the complexes (in fact Ostrowski proved that any field complete with
respect to an archimedean norm was equivalent to (R, |.|) or (C, |.|), with |.|
denoting the usual norm, but we won’t need this: see Chapter 3 of Cassels’
“Local Fields”).

So now we press on with the (arguably more subtle) theory of the structure
of complete non-archimedean fields. It’s easy to give examples of such things:
for example let’s define the p-adic numbers to be the completion of Q with
respect to the p-adic norm—the usual notation for the p-adic numbers is Qp

(note: we haven’t yet proved that Q with its p-adic norm isn’t complete, or
equivalently that Qp 6= Q. But this will come out in the wash later).

It turns out that if k is a number field and P is a non-zero prime ideal of its
integer ring, and if P contains the rational prime number p, then the completion
of k with respect to the P -adic norm is naturally a finite extension of Qp (I’ll
prove this later but it shouldn’t surprise you because k is a finite extension of
Q), so in some sense the basic example of a complete non-archimedean field is
the p-adic numbers, and the most general example we’ll ever use in this course
is a finite field extension of the p-adic numbers.

Before we start on the general structure theory, let me observe that the
norm on Qp or more generally kP is “discrete”, in the following sense: the P -
adic norm on a number field k has the property that there’s a real number q > 1
(the way I normalised it we have q = N(P ), the norm of P ), such that every
element of k had norm either equal to zero, or to an integer power of q. What
does this imply about the norm on kP ?

Recall that in the definition of the completion of a field, the norm of a
Cauchy sequence was the limit of the norms of the elements, and hence (easy
calculation) we see that |.| : kP → R is also taking values in the set {0} ∪
{. . . , q−2, q−1, 1, q, q2, q3, . . .}.

We say that a norm on a field K is discrete if there’s some ε > 0 such that
a ∈ K and 1 − ε < |a| < 1 + ε implies |a| = 1. In fact, because |K×| := {|a| :
a ∈ K×} is a subgroup of R>0 it’s easy to check that if a norm on a field K
is discrete then either |K×| = {1} (the trivial norm) or there’s some q ∈ R>1

with |K×| = {qn : n ∈ Z}.

The usual norm on the reals or complexes is of course not discrete, but the
P -adic norm on a number field k is, and we’ve just seen that even the comple-
tion kP of k with respect to this norm is a discretely-normed field. Don’t get
confused though—there are blah non-archimedean norms that aren’t discrete—
for example if kn is the field Q(p1/2n

) (so we “keep square rooting p”) and k∞ is
the union of the fields kn (note that kn is naturally a subfield of kn+1) then the
p-adic norm on Qp extends to a non-discrete, non-archimedean norm on k∞.
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Note that k∞ isn’t a number field though, it’s an infinite extension of Q.

Ok so let’s letK now denote an arbitrary field equipped with a non-archimedean
norm |.| (so |x+y| ≤ max{|x|, |y|} and so at least the triangle inequality holds).
Let’s set

R = {x ∈ K : |x| ≤ 1}

and
I = {x ∈ R : |x| < 1}.

It’s easy to check that R is a ring: the surprising part is that if x, y ∈ R then
x + y ∈ R, and this is because |x + y| ≤ max{|x|, |y|} ≤ 1. We say R is
the integers of K. Note that in the archimedean case this part already fails:
the closed unit disc is not a subring of the complex numbers. The fact that
R is a ring in the non-archimedean case is, perhaps initially at least, a little
psychologically disturbing: for example it implies that the integers are bounded
within K.

Once we have re-adjusted, it’s easy to check from the axioms that I is an
ideal of R, and in fact I is the unique maximal ideal of R because if r ∈ R and
r 6∈ I then |r| = 1 so r 6= 0 and s := 1/r ∈ K has |s| = 1/|r| = 1 so s ∈ R, and
we see that r is a unit (exercise: this is enough).

We say that the field R/I is the residue field of K.
Example: K = Q with the p-adic norm. Then (writing a general rational as

a/b in lowest terms)
R = {a/b : a, b ∈ Z, p - b}

and
I = {a/b ∈ R : p | a} = pR.

R = {a/b : a, b ∈ Z, p - b}

and
I = {a/b ∈ R : p | a} = pR.

I claim that R/I = Z/pZ, and to check this all I have to do is to check that
{0, 1, 2, . . . , p − 1} meets every coset r + I exactly once, which follows easily
from the statement that given a, b ∈ Z with p - b there’s a unique blah blah
t ∈ {0, 1, 2, . . . , p − 1} with a ≡ bt mod p. So the residue field of Q with its
p-adic norm is Z/pZ.

My aim now is to basically prove a structure theorem for characteristic zero
blah non-archimedean fields K which are complete with respect to a discrete
valuation; this will easily give us enough to show that if K is the completion of
a number field at a non-zero prime ideal then K and K× are “locally compact
abelian groups”, which is the buzz-word we’ll need to do the abstract Fourier
analysis we’ll need for Tate’s thesis later on.

Structure of complete discrete non-arch fields.
The first (and main) goal of this lecture is to explain “what a complete

discretely-valued non-arch field looks like”—we’ll end up with some kind of
“structure theorem”, analogous to the theorem that every real has an essentially
unique decimal expansion, but with 0.1 replaced by a small number in the field—
for example the role of 0.1 is played by p in Qp. This structure theorem (plus
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the associated exercises on the example sheet) will hopefully greatly clarify what
fields like the p-adic numbers (and their finite extensions) look like. Hopefully,
by the end of the lecture, we’ll begin to have a concrete feeling about how to
compute with Qp, just as we have a concrete feeling about how to compute with
real numbers.

Let K be a field complete with respect to a non-arch norm (we don’t need
discreteness for the next few slides). I’m going to do some “abstract analysis”
now—things which will be familiar from basic analysis classes, but which will
work just as well in K because they work for any complete field, not just the
reals or complexes.

Definition. If x1, x2, x3, . . . ∈ K then we say that
∑

n≥1 xn converges if the
partial sums tend to a limit `: we write

∑
n≥1 xn = `. Because we’re assuming

K is complete, the sum converges iff the partial sums sm =
∑m

i=1 xi are Cauchy,
and the standard argument shows that if the sum converges then xn = sn−sn−1

had better tend to zero (Cauchyness implies sn − sn−1 gets arbitrarily small).

[
∑
xn converges implies xn → 0].

The weird thing is that, in the non-arch world, the converse is true. Let
x1, x2, x3, . . . be a sequence in a complete non-arch field K.

Lemma. If xn → 0 as n→∞ then
∑

n≥1 xn converges! Furthermore, if B
is real and |xn| ≤ B for all n then

∑
xn = s with |s| ≤ B too.

Proof. By an easy induction on n, using the definition of a non-archimedean
norm, we see that if |xi| ≤ B for 1 ≤ i ≤ n then |

∑n
i=1 xi| ≤ B (note that this

is a finite sum). It’s easy (but crucial) to deduce from this that a sequence (an)
is Cauchy if and only if an−an−1 tends to zero as n→∞. Now apply this with
an =

∑n
i=1 xi to deduce that xn → 0 implies that the the an form a Cauchy

sequence, and hence converge. One way of doing the second part is to prove
that if an → ` as n→∞ then |an| → |`| in R—this is true in any normed field
(hint: WLOG triangle inequality holds; now use it judiciously).

Before we go any further, let me explain why the residue field of a non-
archimedean normed field is the same as the residue field of the completion. This
is easy. Let k be a non-archimedean normed field with completion k̂. Let R, I
be the integers and maximal ideal for k, and let R̂, Î denote the corresponding
things for k̂. There’s a natural map k → k̂ sending R to R̂ and I to Î, and
hence sending κ = R/I to κ̂ = R̂/Î. We’ll see a bit later that k̂ can be “much
bigger than k” (analogous to R being much bigger than Q). But. . .

Lemma. The map κ→ κ̂ is an isomorphism of fields.
Proof. Injectivity is clear (k → k̂ is norm-preserving, so R ∩ Î = I). To get

surjectivity, for r̂ ∈ R̂ simply choose r ∈ k with |r − r̂| < 1 (this is possible by
denseness) and observe that this implies |r| ≤ 1 and hence r ∈ R. Moreover
r − r̂ ∈ Î, so R̂ = Î +R which shows that κ→ κ̂ is surjective.

Corollary. The residue field of Qp is Z/pZ. For this is the residue field of
Q with the p-adic norm.

Exercise: let k be a number field and let P denote a non-zero prime ideal
of its integer ring A. Show that the residue field of k equipped with the P -adic
norm is canonically isomorphic to A/P (hint: if R and I are the usual things
then construct a natural surjective ring homomorphism R → A/P with kernel
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equal to I). Deduce that the residue field of kP is A/P .
Clarification: A is the integers of k (so, for example, Z is the integers of Q)

but we also referred to R = {x ∈ k : |x| ≤ 1} as the “integers of k”—this notion
of course depends on the choice of a norm on k. Sorry. If k = Q above then
A = Z and if P = (p) then R = {a/b : p - b} and I’m saying that there’s a
natural map R→ Z/pZ.

As a consequence, we see that if kP is the completion of a number field at
a non-zero prime ideal then the residue field of kP is finite—such fields have a
much more arithmetic flavour than general complete normed fields (for example
you can do analysis in any complete normed field, but if the norm is discrete and
the residue field is finite then you can do local class field theory (i.e., arithmetic)
too).

Exercise: consider the ring C[[T ]] of power series
∑

n≥0 anT
n with complex

coefficients (and no convergence conditions—just abstract power series) (NB this
exercise would work if you replaced C by any field at all). Let k := C((T )) de-
note its field of fractions. Check that a general element of C((T )) is

∑
n≥M anT

n

with M a possibly negative integer. Define a norm on C((t)) by |0| = 0 and, for
f =

∑
n≥M anT

n with aM 6= 0, set |f | = e−M (where e could really be replaced
by any real number greater than 1). Check that this is a non-arch norm on k,
that the integers R are C[[T ]], that the maximal ideal I is TC[[T ]] and that the
residue field is C again. So “we can do analysis in k but not arithmetic”.

Before we go on to prove the structure theorem, let’s play about a bit with
Cauchy sequences in Q with the p-adic norm, and see if any of them converge.

Example 1: Consider the sequence

3, 33, 333, 3333, . . .

in Q with the 5-adic norm.
(a) It’s Cauchy! Because if an is “n threes” then for n ≤ m we have 10n |

(am − an) so |am − an| ≤ 5−n.
(b) In fact it’s even convergent! Because 3an + 1 = 10n+1 which tends to

zero in the 5-adic norm, so an → − 1
3 .

Example 2: Let’s put the 3-adic norm on Q. Set a1 = 1 and a2 = 4 and
note that 32 | (a2

2 − 7). Let’s try and find an integer a3 with 33 | (a2
3 − 7).

Let’s try a3 = 4 + 9n; then a2
3 = 16 + 72n mod 27 so a2

3 − 7 ≡ 0 mod 27 iff
1 + 8n ≡ 0 mod 3 so let’s set n = 1 and a3 = 13; this works.

Can we pull this trick off in general? Say m ≥ 1 and am ≡ 1 mod 3 and

a2
m ≡ 7 mod 3m.

Can we find am+1 with a2
m+1 ≡ 7 mod 3m+1? Let’s try setting am+1 = am+3mn

for some n to be determined. Then we see that

a2
m+1 ≡ a2

m + 2n.3m (mod 3m+1)

≡ 7 + tm.3m + 2n.3m (mod 3m+1)

and we can solve 2n + tm ≡ 0 mod 3 for n, so we can indeed find am+1 whose
square is 3-adically close to 7, and by letting m go to infinity we can get as close
as we want.
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Upshot: we have a sequence a1, a2, a3, . . . of elements of Z, with an+1 − an

a multiple of 3n, and a2
n tending to 7 in Q with the 3-adic norm.

Because am+1 − am is a multiple of 3m we see that the am are a Cauchy
sequence, and their limit ` in Q3 is visibly going to satisfy `2 = 7. Hence Q is
not complete with respect to the 3-adic norm!

Exercise: check that −7 is a square in Q2 and 1 − p < 0 is a square in Qp

for any p > 2. Hence Q is not complete with respect to the p-adic norm, for
any p.

Remark: I’ve collected up these exercises and put them on an example sheet.
See the course web page.

Now let’s assume that F is a field with a non-trivial non-archimedean discrete
norm. In this case we have seen that |F×| := {|a| : a ∈ F×} is {qn : n ∈ Z} for
some q > 1; set ρ = 1/q < 1 and let’s choose π ∈ F with |π| = ρ. We call π a
uniformiser in F . As an example, if F = Q or Qp with the p-adic norm then
we can set ρ = 1/p and π = p, and more generally if F is a number field k or a
completion kP at a prime ideal then ρ = 1/N(P ) and, even though P may not
be principal, we can find x ∈ k an algebraic integer with (x) = PJ and P - J
(for example, by uniqueness of factorization we have P 2 6= P and any x ∈ P
with x 6∈ P 2 will do), and then |x| = 1/N(P ) = ρ so x is a uniformiser for both
k and kP with their P -adic norms.

Now let R be the integers of K, and let I denote the maximal ideal of R.
If π is a uniformiser, then y ∈ I implies |y| < 1 and hence |y| ≤ |π|, so y = zπ
with |z| ≤ 1 and we have proved that I = (π) is a principal ideal.

Now here we go with the structure theorem. Let K be complete with respect
to a non-trivial non-arch norm. Let R be the integers, I the maximal ideal of
R, let π be a uniformiser (so I = (π)) and let κ denote the residue field R/I.
Let S denote a subset of R, containing 0, such that the reduction map S → R/I
is a bijection (so S is a set of representatives for R/I).

Theorem.
(a) If a0, a1, a2,. . . is an arbitrary infinite sequence of elements of S, then

the infinite sum
∑

n≥0 anπ
n converges in R, and furthermore for every element

r of R it’s possible to write r =
∑

n≥0 anπ
n with the an as above, in a unique

way.
(b) If 0 6= r ∈ R then r =

∑
n≥0 anπ

n with at least one an 6= 0 and in fact
|r| = |π|m, where m ≥ 0 is the smallest non-negative integer such that am 6= 0.

(c) A general non-zero element α of K can be written uniquely as α =∑
n≥M anπ

n with aM 6= 0, an ∈ S for all n, and we have |α| = |π|M .
Before we go on, let’s observe the consequences for Qp. Let Zp denote

{x ∈ Qp : |x| ≤ 1}.
Corollary. A general element of Zp can be written uniquely as

∑
n≥0 anp

n

with each an ∈ {0, 1, 2, . . . , p − 1}. A general non-zero element of Qp can be
written

∑
n≥M anp

n with M ∈ Z, 0 ≤ an ≤ p− 1 and aM 6= 0.
Note that we now see why π is called a blah uniformiser—it’s playing some

kind of analogue to the role of a local uniformiser in the theory of complex ana-
lytic functions of one variable, with the theorem giving a power series expansion
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near a point.

Corollary. Q 6= Qp. Indeed we see that Qp is uncountable.
Exercise: if α ∈ Q× and we write α =

∑
n≥M anp

n with 0 ≤ an < p then
check that the sequence an is ultimately periodic. Hence a number like

∑
n≥1 p

n!

is an explicit example of an element in Qp but not Q.

Let’s state the theorem again because it’s a new lecture.
Let K be complete with respect to a non-trivial non-arch norm. Let R be

the integers, I the maximal ideal of R, and let π be a uniformiser (so |π| = ρ
with 0 < ρ < 1 and |K×| = ρZ, and I = (π)). Let κ denote the residue field
R/I. Let S denote a subset of R, containing 0, such that the reduction map
S → R/I = κ is a bijection (so S is a set of representatives for κ).

Theorem.
(a) If a0, a1, a2,. . . is an arbitrary infinite sequence of elements of S, then

the infinite sum
∑

n≥0 anπ
n converges in R, and furthermore for every element

r of R it’s possible to write r =
∑

n≥0 anπ
n with the an as above, in a unique

way.
(b) If 0 6= r ∈ R then r =

∑
n≥0 anπ

n with at least one an 6= 0 and in fact
|r| = |π|m, where m ≥ 0 is the smallest non-negative integer such that am 6= 0.

(c) A general non-zero element α of K can be written uniquely as α =∑
n≥M anπ

n with aM 6= 0, an ∈ S for all n, and we have |α| = |π|M .

Proof of theorem.
If a0, a1, a2, . . . are arbitrary elements of R then |an| ≤ 1 so |anπ

n| ≤ ρn → 0,
where 0 < ρ < 1 is the real number which generates the norm group |K×| as
above. So the sequence (anπ

n) tends to zero, so the sum
∑

n≥0 anπ
n converges,

and furthermore |anπ
n| ≤ 1 for all n ≥ 0 and hence the sum converges in R.

That’s done the first part of (a), because S ⊆ R by definition.
Next note that again by definition a ∈ S implies that either a = 0 or |a| = 1.

So now if r =
∑

n≥0 anπ
n with an ∈ S and not all of the an equal to zero, and

if m ≥ 0 is the smallest non-negative integer with am 6= 0, then

r =
∑
n≥0

anπ
n

= amπ
m +

∑
n≥m+1

anπ
n

and |amπ
m| = ρm whereas each term in blah

∑
n≥m+1 anπ

n has norm at most
ρm+1 < ρm,

so the sum converges to something with norm at most ρm+1, so |amπ
m| >

|
∑

n≥m+1 anπ
n| and we see |r| = |amπ

m| = ρm. This does (b).
Now the uniqueness in (a) is easy: if r =

∑
n≥0 anπ

n =
∑

n≥0 bnπ
n with the

ai and bi in S then 0 =
∑

n≥0(an− bn)πn. But it’s easily checked that for a, b ∈
S, either a− b = 0 or |a− b| = 1. So the argument above shows that if an 6= bn
for some n then |

∑
(an − bn)πn| > 0, contradicting

∑
n≥0 anπ

n =
∑

n≥0 bnπ
n.

Hence “π-adic expansions” are unique, if they exist.
To finish (a) we need a construction proof: given r ∈ R we need to find

an ∈ S with r =
∑

n≥0 anπ
n. There’s a natural way to do this. Given r ∈ R we
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consider the image r of r in κ, the residue field. Choose a0 ∈ S whose reduction
is r. Now r − a0 reduces to zero in κ, so |r − a0| < 1 and hence |r − a0| ≤ ρ.

Hence r1 := (r− a0)/π satisfies |r1| ≤ 1 and we can apply the same trick to
find a1 with |r1 − a1| ≤ ρ. Hence |πr1 − πa1| ≤ ρ2 and we deduce

|r − a0 − πa1| ≤ ρ2.

Set r2 = (r − a0 − πa1)/pi2 and continue in this way. At the Nth step we find

|r −
N∑

i=0

aiπ
i| ≤ ρN+1

so, by definition,
∑

n≥0 anπ
n = r.

That’s done (a) and (b). For (c) we just observe that any α ∈ K with α 6= 0
we have |α| = ρM for some integer M , and hence π−Mα ∈ R (with norm 1). So

π−Mα =
∑
n≥0

bnπ
n

with bn ∈ S and b0 equal to a lift of the reduction of π−Mα in κ, so b0 6= 0. So

α =
∑

n≥M

anπ
n

with an = bn−M .
We’re done with our structure theorem; now go and do some exercises on

the example sheet.

A corollary whose importance will become clear later is:
Corollary. If K is complete with respect to a non-trivial non-arch discrete

norm, and K has integer ring R with maximal ideal I and residue field κ, then
R (with the topology induced from the metric d(x, y) = |x − y|) is compact iff
κ is finite.

Proof. Because R is a metric space, compactness is equivalent to sequential
compactness, which I’ll remind you means that given a sequence (rm)m≥1 with
rm ∈ R we can always find a convergent subsequence, that is m0 < m1 < m2 <
m3 < . . . such that (rmj )j≥0 converges. Let’s firstly assume κ is finite and prove
that R is sequentially compact.

By the structure theorem we can write

rm =
∑
n≥0

am,nπ
n

with am,n ∈ S (a set of coset representatives for κ).

Now κ is finite so S is finite, so we can apply the usual trick: König’s Lemma
(which according to Wikipedia is due to Kőnig). Explicitly, we know that am,0

assumes at least one value in S infinitely often; call it a0, and let m0 be any m
such that am,0 = a0. Now, amongst the infinitely many m > m0 with am,0 = a0,
we know that am,1 takes on a value infinitely often—call it a1. Let m1 be one of

19



the infinitely many m with m > m0, am,0 = a0 and am,1 = a1. Continue in this
way and we see easily that

∑
n≥0 anπ

n is the limit of the infinite subsequence
rm0 , rm1 , rm2 , . . ..

Conversely, if κ is infinite, then here’s an infinite open cover of R with no
finite subcover: for any s ∈ S the open disc centre s and radius 1 is everything
of the form s + α with |α| < 1, so it’s s + I. Because S is a set of coset
representatives for κ we see that R is the disjoint union of the open sets s + I
for s ∈ S, and this is an infinite disjoint cover of R by open sets, which visibly
has no finite subcover.

Corollary. If k is a number field equipped with a P -adic norm, and if R is
the integers of kP , then R is compact.

Indeed, the residue field of kP is A/P , where A is the integers of k in the
sense of algebraic number theory.

That corollary is very important for Tate’s thesis, as we’ll see later on. I
want to finish local fields today, so, rather than developing the theory in some
kind of logical way (for example Hensel’s Lemma would be a natural thing to
do next) I am just going to prove the other main thing we’ll need, which is that
if kP is the completion of a number field at a prime ideal then kP is naturally a
finite extension of Qp, and I’ll say a little about the structure of such extensions.

Let k be a number field, and P a non-zero prime ideal of its integer ring. We
can think of k as a finite-dimensional vector space over Q. Now let’s say that P
contains the rational prime p. The restriction of the P -adic norm |.|P on k, to
Q, is easily checked to satisfy |`|P = 1 for ` a prime with ` 6= p, and |p|P = p−m

for some positive integer m, so |.|P on k induces a norm equivalent to the p-adic
norm on Q (in fact it’s just the mth power of the p-adic norm, where m is easily
checked to be ef , where the size of kP is pf and where (p) = P e.J with J and
ideal coprime to P .

Now there are inclusions of fields Q → k → kP , and kP is complete. Of
course kP might not be the completion of Q, because there’s no reason to
expect that Q is dense in kP [the archimedean analogue of what’s going on is
that C is an archimedean completion of Q(i) with i2 = −1 but the resulting
map Q → C doesn’t have dense image].

[Q → k → kP ]
But we can certainly take the closure of Q in kP . A closed subspace of a

complete metric space is complete, and it’s easy to check that the closure of Q in
kP is a field (limit of sum is sum of limits, limit of product is product of limits,
limit of reciprocals is reciprocal of limits when this makes sense), and hence
a normed field (the norm is induced from kP hence the axioms are satisfied).
Hence this closure must be the completion of Q with respect to the mth power
of the p-adic norm (because it’s a completion, we showed that completions are
unique up to unique isomorphism).

We deduce that kP contains a copy of Qp (although, as already mentioned,
the norm on kP restricts on Qp to a norm which is in general a non-trivial power
of the usual p-adic norm). Now k/Q was a finite extension,

so it won’t surprise you to learn that kP /Qp will also be a finite extension.
Perhaps what will surprise you is that the degree of kP /Qp might be smaller
than that of k/Q. In fact let me prove something stronger, which will clarify
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what’s going on.
Let me start with some abstract algebra.
Let L be a field and let K be a subfield of L. Then L is naturally a vector

space over K. The dimension of L as a K-vector space might be finite (for
example C has dimension 2 over R, Q(i) has dimension 2 over Q, Q(21/57)
has dimension 57 over Q) or infinite (for example C has infinite dimension as
a Q-vector space). Recall that by definition a number field is a field k that
contains a copy of Q and such that the Q-dimension of k is finite.

Let’s go back to the general case K ⊆ L and let’s assume that the dimension
of L as K-vector space is a finite number n. We say “L is finite over K”, and
“L has degree n over K” or even “L/K has degree n”. Note that L/K isn’t a
quotient, it’s just notation.

Now for λ ∈ L, multiplication by λ is a map L → L which is L-linear and
hence K-linear, so we can regard it as a linear map on an n-dimensional vector
space, and as such it has a trace and a determinant.

We define the trace of λ, written Tr(λ) or sometimes TrL/K(λ), to be the
trace of this linear map, and we define the norm of λ to be the determinant of
that linear map and write N(λ) or NL/K(λ).

Note that the trace and the norm of an element of L is an element of K.
Moreover Tr(α+ β) = Tr(α) + Tr(β) and N(αβ) = N(α)N(β).

Example: Multiplication by x + iy ∈ C is, when you think of C as R2

with basis 1, i, represented by the matrix
(

x −y
y x

)
and hence has trace 2x and

determinant x2 + y2. So TrC/R(x+ iy) = 2x and NC/R(x+ iy) = x2 + y2.
Example: if K ⊆ L and L is finite over K of degree n, and α ∈ K then

TrL/K(α) = nα, and NL/K(α) = αn (proof: the matrix representing multipli-
cation by α is scalar).

Because the norm N is multiplicative, it should be no surprise that it can
be used to extend norms (i.e. maps of the form |.|).

Lemma. Let K ⊆ L with L finite over K, of degree n. Assume furthermore
that K is equipped with a non-archimedean norm |.| that makes K complete.

Then there is a unique norm ||.|| on L which restricts to |.| on K. It’s non-
archimedean, it makes L into a complete normed field, and it is given by the
formula

||λ|| = |NL/K(λ)|1/n

Proof. Omitted. On example sheet. Elementary but a little long.

Note that the uniqueness statement needs K to be complete. For example
Q(i) is finite over Q but if A = Z[i] then in A we have (5) = (2+ i)(2− i) = PQ
and the P -adic norm and the Q-adic norm on Q(i) both extend the 5-adic
norm on Q. So in fact the lemma gives another proof that Q isn’t complete
with respect to the 5-adic norm (and it’s not much trouble to deduce that it’s
not complete with respect to any p-adic norm this way).

Using this lemma let’s deduce its analogue in the “incomplete” case (al-
though I’m really only interested in the case of number fields). So now say
L/K is a finite extension of fields of characteristic zero (or more generally, a
finite separable extension of fields, if you know what that means). As we’ve just
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seen, it is now no longer true that a non-arch norm on K extends uniquely to a
non-arch norm on L. Indeed, if L and K are number fields and if P is a prime
ideal of the algebraic integers of K, and P factors in L as Qe1

1 Q
e2
2 . . . Qer

r in L,
then we have at least r norms on L extending the P -adic norm on K (namely
the appropriate powers of the Qi-adic norms for each i). But it turns out to
be true that in the general case there are only finitely many norms on L that
extend a given non-arch norm on K.

Let’s fix a norm |.| on K. We’re asking how to extend it to L. The key
construction is the following. Let K̂ denote the completion of K with respect to
|.|. Then L and K̂ both contain copies of K, so we can form the tensor product
L⊗K K̂. I can write down what this is explicitly:

We know that L can be written as K(α), for some α ∈ L (that is, L is the
smallest field containing K and α). Hence we can write L = K[X]/(P (X))
where P (X) is the minimal polynomial of α, that is the monic polynomial of
smallest positive degree with coefficients in K and having α as a root. For
example C = R(i) = R[X]/(X2 + 1). Now if you’re not completely certain
about the tensor product, you can simply define L⊗K K̂ to be the ring

K̂[X]/(P (X)).

Now, considered as a polynomial with coefficients in K, P (X) was irreducible,
and hence (P (X)) was a maximal ideal of K[X] (and thus L was a field!).
However, P (X) might not be irreducible in K̂[X]. One thing is for sure though,
and that’s that P (X) has no repeated roots (because if it did then it would have a
factor in common with its derivative, contradicting the fact that it’s irreducible).
So, in K̂[X], if P (X) factors, it will factor as Q1(X)Q2(X) . . . Qr(X) with the
Qi(X) ∈ K̂[X] irreducible and pairwise coprime.

So by the Chinese Remainder Theorem we see that

L⊗K K̂ = K̂[X]/(P (X))

= K̂[X]/(
r∏

i=1

Qi(X))

= ⊕r
i=1K̂[X]/(Qi(X))

= ⊕r
i=1L̂i

(this last line is a definition) where L̂i = K̂[X]/(Qi(X)) is a field with a name
that is currently only suggestive of what is to come rather than being any
kind of completion of L. Note that there’s a completely canonical natural map
L→ L⊗K K̂, sending α to X, and hence a map L→ ⊕r

i=1L̂i so, by projection,
maps L→ L̂i for each i.

Theorem. L/K finite as above, and |.| a norm on K. Then there are only
r extensions ||.||i (1 ≤ i ≤ r) of |.| to L, and if Li denotes L equipped with
the ith extension then the completion of Li is (after re-ordering if necessary)
isomorphic to L̂i.

Proof. Let ||.|| be any norm of L extending |.| on K. Let L̂ denote the
completion of L with respect to this norm. Then the closure of K in L̂ is
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isomorphic to K̂ (we saw this argument once today already). Now consider the
subfield K̂(α) of L̂. Clearly K̂(α) is a finite extension of K̂. Moreover K̂(α)
inherits a norm from L̂. So by the lemma-to-be-proved-on-the-example-sheet,
K̂(α) is complete! In particular it’s a closed subspace of L̂ that contains L and
hence it is L̂. Let Q(X) denote the minimal polynomial of α over K̂. Then
Q(X) divides P (X) (because P (α) = 0) and hence Q(X) is one of the Qi(X)
above and

L̂ = K̂[X]/(Q(X))

= K̂[X]/(Qi(X))

= L̂i

for some i.
Conversely, each L̂i is visibly a finite extension of K̂ and hence inherits a

unique norm extending that on K̂, and the inclusion L → L̂i induces a norm
on L.

All that remains is to show that distinct i’s induce non-equivalent norms on
L. But this is clear—if the norms corresponding to two distinct is were equiv-
alent, then the completions would be isomorphic as L-algebras, but Qi(α) = 0
in L̂i whereas Qj(α) 6= 0 in L̂i if i 6= j.

I’ll remind you that I stated earlier in the course, without proof, a theorem
saying that the only non-arch norms on a number field k were the P -adic norms;
it’s not hard to use the above argument to reduce this statement to the case
of k = Q, which can be checked directly using a brute force argument due to
Ostrowski.

As a final remark, we can now deduce that kP is a finite extension of Qp if
p ∈ P . For we’ve just shown that kP is a direct summand of the ring k ⊗Q Qp

and hence the dimension of kP /Qp is at most the dimension of k/Q.

[Remark: people who want to see more of the theory of fields with norms have
two excellent choices for books—Cassels’ “Local fields”, which does everything
I did here but which is also completely stuffed with beautiful applications of the
theory to number fields and Diophantine equations and lots of other things, and
Serre’s “Local Fields” which is more highbrow in nature and which goes much
further than Cassels, going as far as proofs of the main theorems of local Class
Field Theory.]

Chapter 3: Haar measure and abstract Fourier theory.
3.1: Introduction.
If f is a continuous function R → C such that

∫∞
−∞ |f(x)|dx converges, then

f has a Fourier transform f̂ : R → C, defined by

f̂(y) =
∫ ∞

−∞
f(x)e−iyxdx.

f̂(y) =
∫ ∞

−∞
f(x)e−iyxdx.

In general f̂ bears little resemblance to f . Let’s do an example to stress this:
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let’s say f(x) = 1/(1 + x2). Then

f̂(y) =
∫ ∞

−∞

e−iyx

1 + x2
dx.

We do this integral via closing up the contour and getting back from +∞ to
−∞ via a big arc |z| = R. We have a choice of two arcs—upper half plane and
lower half plane—and which one we choose turns out to depend on the sign of y.

Let’s imagine closing up via the upper half plane. So y is always real, but
now we’re thinking of x as a complex number with big positive imaginary part.
If we want the integral along the big arc to be small then we’d better make
sure that the integrand is small. So closing up along the top will work if y < 0
(because then we’re integrating something whose value is at most c/R2 along
an arc whose length is O(R)).

And so, for y < 0,

f̂(y) =
∫ ∞

−∞

e−iyx

1 + x2
dx

= lim
D

∫
D

e−iyx

1 + x2
dx

where D is a contour that looks like a D lying on its back, and is getting bigger
and bigger. Now this integral is just going to be 2πi times the sum of the
residues at the poles of e−iyx/(1 + x2) for x in the upper half plane. The only
pole is at x = i, the residue is ey/(2i) and we deduce

f̂(y) = πey

for y < 0.
A similar argument shows f̂(y) = πe−y if y > 0 (now using the lower half

plane). Finally f̂(0) = [tan−1(x)]∞−∞ = π so we conclude

f̂(y) = πe−|y|.

The purpose of this was just to show that f̂ is of an entirely different nature to
f .

Summary: if f(x) = 1/(1 + x2) then f̂(u) = πe−|y|. So in this case f̂

is “rapidly decreasing” (this means f̂(y).P (y) tends to zero as |y| → ∞, for
any polynomial P ∈ C[X]) but not differentiable, whereas f was infinitely
differentiable but decreasing not particularly quickly.

Two very elementary exercises about Fourier transform:
(1) If g(x) = f(x+ r) (r real) then ĝ(y) = f̂(y)eiry.
(2) If g(x) = f(x)eiλx then ĝ(y) = f̂(y − λ).
[Proof: change of variables]
This also indicates that f̂ is very much “not like f”: it’s transforming in a

different way.

But here’s a nice thing: sometimes f̂ also has a Fourier transform (for ex-
ample the f̂ we just saw is certainly continuous and integrable). So we can take
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the Fourier transform again! And (1) and (2) together imply that ˆ̂
f behaves in

a similar way to f (for example if g(x) = f(x+ r) then ˆ̂g(z) = ˆ̂
f(z − r)).

Now let’s try our toy example f(x) = 1/(1 + x2), so f̂(y) = πe−|y|. Then

ˆ̂
f(z) = π

∫ ∞

−∞
e−|y|e−izydy

and this integral can be done easily because the integrand has an indefinite
integral. Split the integral into

∫ 0

−∞ +
∫∞
0

; the first integral is

π

∫ 0

−∞
ey−izydy

= π[ey(1−iz)/(1− iz)]0−∞
= π/(1− iz)

and the second one is π/(1 + iz) so the sum is 2π/(1 + z2) and ˆ̂
f is looking

remarkably similar to f . In fact, for this f , we have ˆ̂
f(x) = 2πf(x) = 2πf(−x)

because f was even.

But the general theorem is that if f is now an arbitrary function which
is, say, infinitely differentiable and rapidly decreasing (much weaker conditions
will do, but these will suffice for us), then f̂ is also infinitely differentiable and

rapidly decreasing, so ˆ̂
f makes sense and

Theorem (Fourier Inversion Theorem)

ˆ̂
f(x) = 2πf(−x).

Now not only will I freely confess that I have no idea (yet) how to prove the
above statement, but also, more importantly, before I had read Tate’s thesis, I
would never have believed that there would or could be some “abstract” version
of this theorem which would, say, work over the p-adic numbers (what would
play the role of 2π, for example??

So now I know better. In fact the Fourier transform should be thought of as
some sort of “duality” sending functions on one R to functions on “a dual R”,
and the Fourier inversion theorem is some form of the statement that the dual
of the dual is the function you started with (up to some fudge factors).

A good analogy is with finite abelian groups G. Say G is finite abelian,
and let Ĝ be the set of (1-dimensional) characters of G. Then Ĝ is a group
non-canonically isomorphic to G. Now for f : G→ C, define f̂ : Ĝ→ C by

f̂(χ) =
1
|G|

∑
g∈G

f(g)χ(g).

Exercise: if ̂̂G is identified with G in the following STRANGE way: let g ∈ G
define a group homomorphism Ĝ → C× by sending χ to χ(g−1) [NOT χ(g)],

then ˆ̂
f(g) = (1/|G|).f(g).
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[ ˆ̂f(g) = (1/|G|).f(g).]
Note the minus sign in the Fourier inversion theorem corresponds to the

strange identification of G with its double dual, and the fudge factor 2π corre-
sponds to the fudge factor 1/|G|. The analogy in fact is more than an analogy—
our goal in this chapter is to formulate and prove an “abstract” Fourier inversion
theorem and both the above things will be special cases. We need to start by
coming up with an integration theory that works in much more generality than
blah Riemann/Lesbesgue integration. Before we do that, I need to introduce the
objects we’ll be integrating on: locally compact Hausdorff topological groups.

3.2: Locally compact Hausdorff topological groups.
So on the real numbers we have the Riemann Integral. I’m going to explain

in this lecture and the next a far more general integration theory that will work
on an arbitrary locally compact Hausdorff topological group. So I have to start
by explaining what a locally compact Hausdorff topological group is.

A topological group is a group G equipped with a topology on G such that
m : G × G → G and i : G → G defined by m(x, y) = xy and i(x) = x−1, are
continuous (where G × G is equipped with the product topology). Examples:
any group, with the discrete topology. The real numbers with its usual topology.
The non-zero real numbers with its usual topology. If K is any normed field
then K with the topology coming from the norm.

[One might ask whether continuity of m implies continuity of i. It doesn’t:
for example if G is the integers with the order topology (so the open sets are the
empty set, the whole thing, and all sets of the form {n, n+ 1, n+ 2, n+ 3, . . .}
then multiplication is continuous but inverse isn’t).]

Here’s a slightly more subtle example: if K is a normed field, then K×,
with the topology induced from K, is a topological group. The reason one
has to be careful here is that one has to check that inverse is continuous—
but it is (exercise), because the topology is coming from a metric. I’ll perhaps
make the cryptic remark that if R is an arbitrary topological ring (so + and
− and ∗ are continuous) then its unit group, with the induced topology, is not
always a topological group, because inverse really might not be continuous in this
generality; this can however be fixed by embedding R× into R2 via u 7→ (u, u−1),
and giving it the subspace topology—then R× really is a topological group.

Pedantic exercise: if K is a normed field, then check that the two topologies
I’ve just put on K× (the subspace topology coming from K, and the one coming
from K2) coincide.

Back to examples: If K is a normed field and G is an algebraic group over
K (for example GLn or Spn or something) then G(K) is a topological group (so
for example GLn(R) and GLn(Qp) are topological groups, or E(Qp) for E/Qp

an elliptic curve, and so on). I won’t prove these things because we don’t need
them, but they’re not hard.

If g ∈ G then the map G → G × G sending h ∈ G to (g, h) is continuous
(think about the definition of the product topology, or the universal property)
and hence if we fix g ∈ G then “left multiplication by g”, the function G →
G sending h to gh, is continuous, and similarly right multiplication by g is
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continuous—and even homeomorphisms, because left/right multiplication by
g−1 is a continuous inverse. In particular G is blah “homogeneous”—if a, b ∈ G
then left multiplication by ba−1 is a homeomorphism G→ G sending a to b. In
words, G “looks the same at a and at b”; the group of homeomorphisms of G
acts transitively on G, if you prefer.

A remark on non-Hausdorff groups: It turns out that if G is a topological
group which isn’t Hausdorff, and if e is the identity element, then {e} isn’t
a closed set, and its closure H is a normal subgroup of G such that G/H is
naturally a Hausdorff topological group. Using this argument, questions about
topological groups can frequently be reduced to the Hausdorff case, and we’ll
only be concerned with Hausdorff groups in practice anyway—for example, all
the examples we saw above were Hausdorff; moreover topologies will usually
come from metrics and hence will automatically be Hausdorff.

So let’s get on. Let G be a hausdorff topological group. We want to integrate
a class of continuous functions G → C. Which ones? Well, probably not all of
them—for example if G = R then f(x) = 1 for all x won’t be integrable. So
let’s restrict, at least for the time being, to continuous functions which vanish
outside a compact set—this is a good finiteness condition. Unfortunately, in this
generality, there might not be any such things! For example if G = Q with its
subspace topology coming from R, a continuous function G→ C which vanishes
outside a compact set must be identically zero (exercise). This is unsurprising—
who would do integration on Q?? Here’s a nice condition which will at least
ensure the existence of lots of functions which vanish outside a compact set:

Definition. If X is a topological space and x ∈ X, we say that U ⊆ X is
an open neighbourhood of x ∈ X if U is open and x ∈ U . We say S ⊆ X is a
neighbourhood of X if x is in the interior of S. We say that X is locally compact
if every x ∈ X has a compact neighbourhood.

For the rest of this chapter, we are only interested in locally compact Haus-
dorff topological groups. Let’s call them LCHTGs.

Note that to check that a topological group is locally compact, it suffices to
find a compact neighbourhood of the identity (by homogeneity).

Good examples of LCHTGS: if K is either the real numbers, or the complex
numbers, or kP for k a number field, then K (considered as a group under
addition) is a LCHTG; for the reals and the complexes a compact neighbourhood
of the identity is the closed unit ball, and for kP the ring of integers will work,
once we remember that the residue field is finite in this setting. Moreover, I
claim that K× (with the subspace topology induced from that of K) is also a
LCHTG–ifK = kP then this follows because 1+πR is a compact neighbourhood
of 1, and in the archimedean case consider the closed ball centre 1 radius 1/2.

Now if X is a Hausdorff topological space then for f : X → C continuous,
it’s easily checked that the following are equivalent:

(1) f vanishes outside a compact set (that is, there’s some compact K ⊆ X
such that f(x) = 0 if x 6∈ K), and

(2) the support of f is compact
[recall that the support of a function f : X → C is just the closure of the

set {x ∈ X : f(x) 6= 0}].
So for a LCHTG G, let’s define K(G) to be the continuous functions G→ R
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with compact support. The point is that this space is very rich (and in particular
non-zero!). We’ll see this in a second, using Urysohn’s Lemma. First let me
remark that we’d really like to integrate more functions than those in K(G), but
K(G) is a good start and turns out to be where the work is; we’ll expand our
horizons later by taking limits. First I’ll show K(G) is big. We need a lemma
in order to prove Urysohn’s Lemma.

First let me remind you that if X is compact Hausdorff and C ⊆ U ⊆ X
with C compact and U open, then we can find V open and D compact with
C ⊆ V ⊆ D ⊆ U . For C and K := X\U are compact and disjoint, and by
Hausdorffness it’s easy (and fun!) to find C ⊆ V and K ⊆ W with V and W
open and disjoint.

Definition, for convenience: S ⊆ T ⊆ X are subsets of a topological space,
we say that T is a neighbourhood of S if T is a neighbourhood of s for all s ∈ S.

Lemma. If X is locally compact and Hausdorff and C ⊆ X is compact,
then every neighbourhood of C contains a compact neighbourhood of C.

Proof. It suffices to check that if C ⊆ U ⊆ X with C compact and U open,
then there exists V open and D compact with C ⊆ V ⊆ D ⊆ U . Here’s the
idea; each c ∈ C has a compact neighbourhood Nc, with interior Mc. Now C
is covered by finitely many of the Mc, and the union X ′ of the corresponding
Nc is compact and a neighbourhood of C. Replacing X with X ′ and U with
U ′ = X ′ ∩ U reduces us to the case where X is compact, which we just did.

Lemma (Urysohn’s Lemma): if X is a locally compact Hausdorff topo-
logical space, and C ⊆ U ⊆ X with C compact and U open, then there’s a
continuous function f : X → R such that

(1) f(x) = 1 for x ∈ C
(2) f(x) = 0 for x 6∈ U
(3) 0 ≤ f(x) ≤ 1 for all x ∈ X
(4) Supp(f) is contained in U and is compact.
Proof.
The proof is sort of “constructive” (but does involve infinitely many choices).

We apply the previous lemma infinitely often, basically. Set C(1) = C and define
C(0) to be any compact neighbourhood of C in U .

[C = C(1); C(0) a compact neighbourhood of C(1)]
Now by the previous lemma (applied to C and the interior of C(0)) we get

a compact C(1/2) such that C(0) is a neighbourhood of C(1/2) and C(1/2)
is a neighbourhood of C(1). Applying this trick again we get C(1/4) between
C(1/2) and C(0), and C(3/4) between C(1) and C(1/2). Continuing in this way,
we construct compacts C(i/2n) for all n ≥ 1 and positive odd i with 0 < i < 2n,
such that C(α) is in the interior of C(β) for α < β.

Now here’s the magic: for 0 ≤ r ≤ 1 an arbitrary real, define C(r) =
∩s≤r,s=i/2nC(s). Now we have a decreasing sequence of compact sets; let’s
finish the job by defining C(r) = ∅ for r > 1 and C(r) = X for r < 0.

We define f : X → R by letting f(x) be the supremum of the α with
x ∈ C(α). This sup visibly exists and is at most 1, the support of f is within
C(0), and indeed all properties we require of f are easy to check, the one with
the most work being continuity, which goes like this: f(x) < β if and only if

28



x 6∈ ∩α<βC(α) and the intersection is closed so the complement is open, and
f(x) > γ if and only if x ∈ ∪α>γ Int(C(α)) (with Int meaning interior), which is
also open, and so the x with γ < f(x) < β are an open set, and that’s enough.

Corollary If G is a LCHTG then K(G) separates points and in particular
is non-zero.

3.3: Haar Measure/integral on a LCHTG.
As people probably realise, I’m preparing these lectures on the fly, but I

might actually have to number lemmas in this section because the results are
elementary but sometimes slightly tricky. I’ll sometimes be sketchy with the
easier proofs however, for the following reason: the only groups for which we’ll
actually need Haar integrals/measures are: (i) the reals and complexes (where
the Haar integral is just the Lesbesgue integral), (ii) the p-adics and finite
extensions thereof (where you can define the measure by hand), and (iii) the
adeles (we’ll get to these) (where you can define Haar measure as just a product
of things in (i) and (ii)). My main motivation for going through this stuff really
is that it’s the kind of thing I wish I had been taught as a graduate student.

Let G be a LCHTG. We’ve seen that K(G) is non-zero, and moreover if we
define K+(G) to be the f : G → R in K(G) such that f(x) ≥ 0 for all x and
f(x) > 0 for some x (that is, f isn’t identically zero), then we’ve also see that
K+(G) isn’t zero either. The reason we’re sticking with the reals rather than
the complexes is that we’re after some kind of “integral”

∫
G

which will take
an element of K(G) to a real number and is guaranteed to take an element of
K+(G) to a non-negative real number; if we worked with the complexes then
we couldn’t enforce this sort of “positivity” condition so easily.

It’s easy to define what a Haar integral is—the hard part is existence and
uniqueness. If f : G→ C and x ∈ G then define fx : G→ C by

fx(g) = f(gx−1).

So it’s just f composed with right multiplication by x−1 (don’t read anything
significant into the x−1; it’s easier to TEX fx than xf). Note that f ∈ K(G)
implies fx ∈ K(G) and similarly for K+(G).

Definition. A Haar Integral on G is a non-zero R-linear map

µ : K(G) → R

such that
(1) µ(f) ≥ 0 for f ∈ K+(G)
(2) µ(f) = µ(fx)
Idea: think µ(f) =

∫
G
f .

Remark: as I’ve already mentioned, ideally one would like to integrate more
functions than just those with compact support, but these will come later on
without too much trouble. The hard work is all in

Theorem. If G is a LCHTG then a Haar integral exists on G, and further-
more if µ1 and µ2 are two Haar integrals, then there’s some c > 0 such that
cµ1(f) = µ2(f) for all f ∈ K(G).

As I mentioned before, we will principally be interested in the case G = K
or K× for K a completion of a number field; in the archimedean case we have
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K isomorphic to R or C and we can use Riemann integration or Lesbesgue
integration to produce a Haar measure (don’t forget that it’s “dx/x” in the K×

case to make it invariant under multiplication), and in the non-arch case one can
check that K(G) is generated by step functions so (by linearity and translation-
invariance) we only need to define the measure of the characteristic function of
πnR, which can be q−n, and that does existence in all the cases we need. So
in some sense this lecture and the next are not really logically necessary. So I
might race through the elementary-undergraduate-exercise parts of some proofs
a bit, although I will stress all of the key ideas.

In fact the proof contains several ideas. If you think about how the Riemann
integral works, we first integrate “rectangular” functions (like the characteristic
function of an interval) and then bound more general functions above and below
by rectangular functions. The problem at this level is that such a “rectangular”
function might not be continuous. Moreover, G is only a group, not a field, so
we can’t yet say things like “this open set is twice as big as this one”. We fix this
by, instead of using “rectangular” functions, setting up an “approximate” theory
using an arbitrary element of K+(G)—indeed our first goal is, for F ∈ K+(G),
to define an “approximate integral” µF .

Notation: for f, g : G → R we say f ≤ g if f(x) ≤ g(x) for all x ∈ G, and
we say f < g if f ≤ g and f 6= g. So, for example, K+(G) is the f ∈ K(G) with
f > 0.

Lemma 1. Say f, F ∈ K+(G). Then there exist real numbers α1, . . . , αn ≥ 0
and x1, x2, . . . xn ∈ G such that ∑

1≤i≤n

αiF
xi ≥ f.

Hence if µ is a Haar integral, we have µ(f) ≤ (
∑

i αi)µ(F ).
[think: what does this lemma “mean”?]
Proof. We know F (t) = r > 0 for some t ∈ G, so by continuity there’s some

open neighbourhood U of e ∈ G such that F (ut) > r/2 for all u ∈ U . Now
the support of f is covered by translates Uh of U and hence by finitely many
translates; this gives the xi (if Uh is in the cover then one of the xi will be
t−1h). Finally note that f ∈ K(G) so f is bounded, say by M ; now we can
just let all the αi be M/(r/2). The final statement follows immediately from
positivity, linearity and translation-invariance.

�

[µ(f) ≤ (
∑

i αi)µ(F )]
As a consequence, which will guide us later, we deduce that for any F ∈

K+(G) and for any Haar integral µ we have µ(F ) > 0 [or else taking F with
µ(F ) = 0 shows that µ is identically zero on K+(G); but for f ∈ K(G) we
have 2f = (|f | + f) − (|f | − f) and both bracketed terms on the right are in
K+(G) ∪ {0}, so µ is identically zero, contradiction].

If we pretend that F is one of those “rectangle functions” then this motivates
the following definition: for f, F ∈ K+(G) we set (f : F ) to be the inf of the∑

i αi over all the possibilities for αi in the lemma, that is, the inf over all the
possible ways of choosing αi and xi with f ≤

∑
i αiF

xi .
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Exercise: prove (f : h) ≤ (f : g)(g : h) by observing that if f ≤
∑

i αig
xi

and g ≤
∑
βjh

yj then f ≤
∑

i,j αiβjh
yjxi .

Now (f : F ) looks like a good candidate for the integral of f , at least if “the
support of F is small”, but in fact as well as “rounding errors” caused by F not
being fine enough, there’s a “normalisation” issue: if we replace F by 2F , say,
we see (f : 2F ) = 2(f : F ). So if we want to define the integral of f as some
kind of limit of the (f : F ) as, say, the “support of F tends to zero”, we need
to scale things.

So here’s a crucial remark that shows that scaling is possible. Let f, F be as
above (both in K+(G)). We defined (f : F ) to be the inf of the

∑
i αi such that∑

i αiF
xi ≥ f . Now any function in K+(G) has a positive supremum, which

it attains. Furthermore
∑

i αiF
xi ≥ f implies that (

∑
i αi) sup(F ) ≥ sup(f)

which gives us a lower bound
∑

i αi ≥ (sup(f)/ sup(F )). Hence blah blah blah
blah (f : F ) ≥ sup(f)/ sup(F ) > 0 and we’ve shown that (f : F ) > 0 for all
f, F ∈ K+(G).

So here’s the next good idea:
FIX ONCE AND FOR ALL A FUNCTION η ∈ K+(G) (it doesn’t matter

what it is). We know that if a Haar integral exists, it will take η to something
positive. We want to define “approximate Haar integrals” and tease the ex-
istence of a Haar integral from these approximate ones. For the approximate
Haar integrals to be “compatible” we will simply force each of them to integrate
η to 1.

Definition. For f, F ∈ K+(G) define

µF (f) := (f : F )/(η : F ).

The idea: µF might not be a Haar integral but it’s a good first approximation.
We’ll see that in fact as the support of F gets smaller the µF become better
and better approximations to a Haar integral.

Exercise: Use the previous exercise to check that µF (f) ≤ (f : η).
Now this definition of µF is great because it’s impervious to linear changes

of F . In fact it almost does the job already, at least for functions in K+(G): µF

is positive on K+(G), it’s translation-invariant, and satisfies µF (αf) = αµF (f)
for α > 0. It’s normalised in the sense that µF (η) = 1. Unfortunately it’s not
additive; it’s trivial to check that µF (f1 +f2) ≤ µF (f1)+µF (f2) (easy exercise)
but there’s no reason why equality should hold (and it won’t, in general).

[µF (f) := (f : F )/(η : F ) and µF (f1 + f2) ≤ µF (f1) + µF (f2)]
We need more than subadditivity, we need an “approximate additivity”,

which is given by
Lemma 2. Let G be a LCHTG. Say f1, f2 ∈ K+(G). Say ε > 0. Then

there’s a symmetric open neighbourhood V (that is, V = {v−1 : v ∈ V }) of the
identity in G (depending on f1 and f2 and ε) such that, for any F ∈ K+(G)
with support in V , we have

µF (f1 + f2) ≥ µF (f1) + µF (f2)− ε.

Proof. Let C be the union of the supports of f1 and f2. Choose (Urysohn)
q ∈ K+(G) with q(x) = 1 for x ∈ C. Choose some tiny δ > 0 (we’ll say how tiny
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later—we could take a vote on this issue if the audience is sufficiently offended
by this idea though); I’ll tell you now that δ < 1 though.

Set p = f1 +f2 +δq, so p(x) ≥ δ for x ∈ C. The key construction is to define
(for i = 1, 2) the functions

hi(x) = fi(x)/p(x) (if x ∈ C)
= 0 (if x 6∈ C)

[before you ask—there were overflow vbox issues]

[p = f1 + f2 + δq

hi(x) = fi(x)/p(x) (if x ∈ C)
= 0 (if x 6∈ C)

]
We need δ to ensure that the hi are continuous! The sum of h1 and h2 is

approximately the characteristic function of C. One checks easily that hi ∈
K+(G) (the support of hi is closed in C) and 0 ≤ h1 + h2 ≤ 1. Now continuous
with compact support implies uniformly continuous, by the usual argument, so
we can let W be a sufficiently small open neighbourhood of the identity such
that |hi(x) − hi(y)| < δ/2 whenever xy−1 or x−1y ∈ W . By replacing W with
W ∩ {w−1 : w ∈ W} we may even ensure that W = W−1. Note that V will be
our W when we’ve decided upon a δ.

So now choose any F ∈ K+(G) with support in W . By Lemma 1 we can
find αj and xj with p ≤

∑
j αjF

xj .

[p ≤
∑

j αjF
xj ]

We’ve just bounded p above by translates of F , and now we can bound the
fi above by translates of F too. First note that F xj (t) = 0 if t 6∈Wxj , and for
t ∈Wxj we have |hi(xj)− hi(t)| < δ/2 for 1 ≤ i ≤ 2. So in either case we have

hi(t)F xj (t) ≤ (hi(xj) + δ/2)F xj (t).

Hence

fi = phi ≤
∑

j

αjhiF
xj

≤
∑

j

αj(hi(xj) + δ/2)F xj .

Hence, by definition,

(fi : F ) ≤
∑

j

αj(hi(xj) + δ/2).

And, because h1(xj) + h2(xj) ≤ 1, we deduce

(f1 : F ) + (f2 : F ) ≤
∑

j

αj(1 + δ).
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(f1 : F ) + (f2 : F ) ≤
∑

j

αj(1 + δ).

Now the last thing we chose were the αj and xj with p ≤
∑

j αjF
xj , so by

letting these vary we deduce from the previous equation

(f1 : F ) + (f2 : F ) ≤ (1 + δ)(p : F )

and hence (dividing by (η : F ))

µF (f1) + µF (f2) ≤ (1 + δ)µF (p)

for any F ∈ K+(G) with support in W . You can now presumably see that we’re
on the right track, because p is approximately f1 + f2.

In fact p = f1 + f2 + δq, and we deduce (from subadditivity of µF ) that

µF (f1) + µF (f2) ≤ (1 + δ)(µF (f1 + f2) + δµF (q))
≤ µF (f1 + f2) + δ.R,

with R = µF (f1 + f2) + 2µF (q).

[µF (f1) + µF (f2) ≤ µF (f1 + f2) + δ.R, with R = µF (f1 + f2) + 2µF (q).]
Now unfortunately R depends on F which depends on W which depends on

δ, but fortunately you all did the exercise earlier which showed µF (f) ≤ (f : η),
and hence R ≤ (f1 + f2 : η) + 2(q : η), which were all chosen before δ. So now
choose δ such that δ((f1 +f2 : η)+2(q : η)) < ε, let V denote the corresponding
open set W , and we’re home.

�
Corollary 3. Given f1, f2, . . . , fn ∈ K+(G) and ε > 0 there exists a symmet-

ric open neighbourhood V of the identity in G such that whenever F ∈ K+(G)
has support in V , we have

µF (
∑

i

fi) ≥
∑

i

µF (fi)− ε.

Proof. Induction. �

In the last lecture we proved some lemmas and in this lecture we need one
or two more, but we also need to actually prove existence and uniqueness of the
Haar integral. There are several ways to do this; I’ll use a method that I found in
P. J. Higgins’ book “An introduction to topological groups” because in my view
the uniqueness proof is the least painful out of all the references I’ve seen (it’s
still pretty painful though :-( ). We’re going to deduce existence and uniqueness
of Haar integrals from some Zorn’s Lemma argument applied within the real
vector space K(G) of continuous functions with compact support. Here’s the
abstract linear algebra we’ll need to pull this off.

Let V denote a real vector space. A non-empty subset E of V is called
convex if v, w ∈ E and 0 ≤ λ ≤ 1 implies λv + (1 − λ)w ∈ E. A subset C of
V is called a cone if c ∈ C and λ > 0 implies λc ∈ C. One checks that for E
non-empty, E is a convex cone iff

(i) v ∈ E and λ > 0 implies λv ∈ E
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(ii) v, w ∈ E implies v + w ∈ E.
(examples: (r, 0) ∈ R2 with r > 0 or r ≥ 0). Finally, we say that a convex

cone E is open if w ∈ E and f ∈ V implies that there’s some δ > 0 such that
w + αf ∈ E for all α with |α| < δ. So the (r, 0) examples above aren’t open,
but (r, s) with r, s > 0 would be. Note that the complement of a cone is a cone,
but the complement of a convex cone might not be convex.

A subspace H of V is called a hyperplane if V/H is 1-dimensional.

[convex cone: λE = E for λ > 0, and E + E ⊆ E]
Note that a Haar integral is a non-zero R-linear map K(G) → R and is

hence, up a non-zero constant, determined by its kernel (the functions whose
integral is zero). The kernel will be a hyperplane in K(G) and our existence and
uniqueness proofs of Haar integrals will be done via existence and uniqueness
of hyperplanes with certain properties.

Proposition. (“Haar integral machine”) Say V is a real vector space, E is
an open convex cone in V , and W is a subspace of V that doesn’t meet E.

(i) There’s a hyperplane H ⊇W such that H ∩ E is empty.
(ii) If furthermore V \E (the complement of E) is convex, then H is unique.
Proof. This is elementary, unsurprisingly.

(i) By Zorn’s Lemma one can choose a maximal subspace H containing W
and missing E and the claim is that it’s a hyperplane. Set D = H + E. It’s
easy to check that D is an open convex cone (H and E are convex cones, and
E is open). By assumption H ∩ E is empty, so H ∩D is also empty.

First I claim that V is the disjoint union of H, D and −D. Disjointness is
trivial (if D ∩ −D was non-empty then use convexity to show 0 ∈ D which is
false). The fact that V is the union of H, D and −D follows from maximality:
if v ∈ V with v 6∈ H then H+Rv intersects E and hence Rv meets H+E = D,
but 0 6∈ D so ±v ∈ D for some choice of sign.

Now I claim that H is a hyperplane. Note that H 6= V because E is non-
empty, so V/H has dimension at least 1. Say v, w ∈ V generate a 2-dimensional
subspace of V/H and let’s get a contradiction. Well, w 6∈ H so (after changing
sign if necessary) we may assume w ∈ −D. Similarly (after changing sign of v
if necessary) we may assume v ∈ D.

Now consider the line joining v to w; think about it as the image of [0, 1].
Because D is an open convex cone, one checks easily that the intersection of
D with this line is an open interval containing 0 but not 1. Similarly the
intersection of the line with −D is a open interval containing 1 but not 0. But
D and −D are disjoint, and two disjoint open intervals can’t cover a line, so we
have λv+(1−λ)w ∈ H for some 0 < λ < 1 and there’s a linear relation in V/H
between v and w, the contradiction we seek.

(ii) Let E∗ denote the complement of E in V ; then E∗ is assumed convex
and is hence a convex cone. Now 0 6∈ E so E ∩ (−E) is empty; let X be the
complement of E ∪ (−E). Now X = (E∗) ∩ (−E∗) so it’s a convex cone, and
−X = X, so X is a vector subspace of V . The argument from (i) (with X
replacing H and E replacing D) shows that X is a hyperplane; moreover any
subspace of V disjoint from E will be contained in X, so we’re home. �

The application is of course the following. Let G be a LCHTG, set V =
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K(G), let W be the subspace of V spanned by all functions of the form f − fx

for f ∈ K(G) (so everything in L should integrate to zero), set E = K+(G)+W
(think of E as “everything for which the axioms imply that the integral should
be positive”). I claim that the hypotheses of the “Haar integral machine” are
satisfied. Let’s check these in a second, but let’s first observe that if they are,
then (i) gives us a Haar integral, and (ii) (if it applies, that is, if E∗ is convex)
gives us uniqueness up to a positive scalar. For (i) gives us a hyperplane H; let
µ denote any R-linear isomorphism V/H → R. Then clearly µ is linear and
translation-invariant; furthermore if f, g ∈ K+(G) then the line from f to g lies
within K+(G) so doesn’t meet H, and hence µ(f) and µ(g) have the same sign,
so either µ or −µ is a Haar measure. Conversely any kernel of a Haar integral
will contain W and be disjoint from E, so if (ii) applies then there’s only one
possibility for the kernel.

[W spanned by f − fx; E = K+(G) +W ]
So what is left to do? For existence of a Haar integral, we just need to check

the hypotheses of the proposition (that is, that W ∩ E is empty and that E is
an open convex cone; we’ve done the work to prove these easily though). For
uniqueness up to positive scalar we need to check that the complement of E is
convex (we need another lemma to do this). Let’s do existence first because it
actually helps with uniqueness.

Existence of Haar integral.
To check W ∩E is empty we just have to check W ∩ K+(G) is empty. This

isn’t a surprising result, because everything in W should integrate to zero, and
nothing in K+(G) should. But let’s give the proof. Now W is generated by
things of the form f − fx; furthermore using the 2f = (|f |+ f)− (|f | − f) trick
we can check that W is generated by things of the form f − fx for f ∈ K+(G).
So if W ∩K+(G) is nonempty then we can find f, fi ∈ K+(G) and xi ∈ G with

f =
∑

i

(fi − fxi
i ).

We rewrite as
f +

∑
i

fxi
i =

∑
i

fi

and for any ε > 0 we use Corollary 3 to find an open neighbourhood V of the
identity such that for any F ∈ K+(G) with support in V , we have

µF (f +
∑

i

fxi
i ) ≥ µF (f) +

∑
i

µF (fxi
i )− ε.

Now we easily get a contradiction, for choosing F as above (Urysohn), we
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see ∑
i

µF (fi) ≥ µF (
∑

i

fi)

= µF (f +
∑

i

fxi
i )

≥ µF (f) +
∑

i

µF (fxi
i )− ε

≥ (η : f)−1 +
∑

i

µF (fi)− ε

so if we had chosen ε with 0 < ε < (η : f)−1 then we get a contradiction.

All that’s left for existence is the check that K+(G) +W is an open convex
cone. It’s clearly a convex cone; the issue is openness. If f = p + q is an
arbitrary element of K+(G) +W , and k ∈ K(G) is arbitrary, we need to show
f ± λk ∈ K+(G) +W for 0 < λ small. Here’s how. By Lemma 1 we can bound
|k| above by

∑
i αip

xi and WLOG not all of the αi are zero. So

f ± λk ≥ p+ q − λ
∑

i

αip
xi

= p+ q − λ
∑

i

αip− λ
∑

i

αi(pxi − p)

= p(1− λ
∑

i

αi) + q′

with q′ ∈W , so f ±λk ∈ K+(G)+W if 0 < λ < (
∑

i αi)−1, and we have proved
the existence of the Haar integral.

For uniqueness we need to show that (with the above notation) E∗ is convex.
The reason we don’t yet have enough is that we have “only approximated a
function from above”—we now really need to approximate a function in K(G)
uniformly across G. To do this we need the a standard application of the “bump
functions” that Urysohn’s lemma gives us.

Lemma 4. If G is a LCHTG and f ∈ K+(G) and W is any neighbourhood
of the identity in G, then one can find x1, x2, . . . , xn all in the support of f and
f1, f2, . . . , fn ∈ K+(G) with the support of fi in Wxi, and

∑
i fi = f .

Proof. This is easy. First choose a compact neighbourhood N of the identity
inW , with interior U . Now the support of f is compact so it’s covered by finitely
many Uxi, 1 ≤ i ≤ n, with xi all in the support of f . By Urysohn, there exists
hi ∈ K+(G) which is identically 1 on Nxi and whose support is contained within
Wxi. Now set h =

∑
i hi and fi(x) = f(x)hi(x)/h(x) for x in the support of f ,

and fi(x) = 0 otherwise. It’s an easy check that this works.

Say F : G → C is symmetric if F (x) = F (x−1) for all x. The following
lemma is the last piece of the puzzle.

Lemma 5. (Uniform approximation) If f ∈ K+(G) and ε > 0, then there
exists some neighbourhood V of the identity in G such that for every symmetric
F ∈ K+(G) with support contained in V there are real numbers α1, α2, . . . , αn ≥
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0 and x1, x2, . . . , xn ∈ G such that

|f(x)−
∑

i

αiF
xi(x)| < ε

for all x ∈ G.
Proof. By uniform continuity we can choose a neighbourhood V of the

identity such that |f(x) − f(y)| < ε/2 whenever y ∈ V x and this V is going
to work. Say F ∈ K+(G) is symmetric with support in V . Then of course the
support of F x is within V x, and one deduces easily that |f(x)− f(y)|F x(y) ≤
ε
2F

x(y) for all x, y ∈ G, so by definition we have (as functions of y)

|f(x)F x − f.F x| ≤ ε

2
F x.

|f(x)F x − f.F x| ≤ ε

2
F x (1)

(as functions of y). Now for any δ > 0, by uniform continuity of F , we can find
some neighbourhood W of the identity such that

|F (y)− F (z)| < δ

for all y ∈Wz, and hence, for any x ∈ G, |F x(y)− F x(z)| < δ for all y ∈Wz.
Now by (bump function) Lemma 4, applied to f and W , we write f =

∑
i fi

with fi ∈ K+(G) and the support of fi in Wxi. The same trick as above gives
us

fi(y)|F x(y)− F x(xi)| ≤ δfi(y)

for all x, y ∈ G (check separately for y ∈Wxi and y 6∈Wxi).
A labour-saving observation now is that F is symmetric so F x(xi) = F xi(x),

and summing the last equation over i we get

|f(y)F x(y)−
∑

i

fi(y)F xi(x)| ≤ δf(y).

This latter equation is true for all x, y ∈ G, and hence (by definition)

|f.F x −
∑

i

F xi(x)fi| ≤ δf. (2)

Recall now equation 1:
|f(x)F x − f.F x| ≤ ε

2
F x (1)

and we get
|f(x)F x −

∑
i

F xi(x)fi| ≤ ε/2F x + δf (3)

(an inequality of functions of y) for all x. What we did here was used uniform
continuity of f and uniform continuity of F x to get two good approximations
for f.F x, and we reaped the consequences.

[ |f(x)F x −
∑

i F
xi(x)fi| ≤ ε/2F x + δf (3) ]

A painless way to finish now is to assume the existence of a Haar integral! We
have already proved this so it’s OK. Apply a Haar integral µ to this last equation

37



(observing that if φ ∈ K(G) then φ ≤ |φ| and −φ ≤ |φ|, so |µ(φ)| ≤ µ(|φ|)) and
deduce

|f(x)µ(F )−
∑

i

F xi(x)µ(fi)| ≤ ε/2µ(F ) + δµ(f).

It’s an easy check that µ(f) ≤ (f : F )µ(F ) [look at the definition of (f : F ) and
apply µ] and we deduce

|f(x)µ(F )−
∑

i

F xi(x)µ(fi)| ≤ (ε/2 + δ(f : F ))µ(F ).

Now divide by µ(F ), set αi = µ(fi)/µ(F ), let δ be ε/(3(f : F )) and we get

|f(x)−
∑

i

αiF
xi(x)| < ε

and we have won. �

Corollary 6. Set E = K+(G) + W as before. Then, for any f ∈ K(G),
there exists some h ∈ K+(G) such that for every ε > 0, either f + εh ∈ E or
f − εh ∈ −E.

Proof. Let C be the support of f ; let D be a compact neighbourhood of C.
By Urysohn there’s h ∈ K+(G) with h(x) > 2 for x ∈ D. This h will work. For
we can write f = f1−f2 with fi ∈ K+(G), and by the previous Lemma (uniform
approximation) both f1 and f2 can be uniformly approximated by scalings of
translates of any symmetric function with support in some V , which is WLOG
symmetric and satisfies V C ⊆ D.

The trick now is if F0 ∈ K+(G) has support in V then F (x) = F0(x) +
F0(x−1) is symmetric with support in V , and we can uniformly approximate f1
and f2 using F , and hence we can find α1, . . . , αn ∈ R with |f(x)−

∑
i αiF

xi(x)| <
2ε for all x ∈ G.

We have rigged it so that f and F xi all have support inD, so we can conclude
that

|f −
∑

i

αiF
xi | < εh.

Now if α =
∑

i αi then k := αF −
∑

i αiF
xi ∈W and

f − εh < αF − k < f + εh.

But this implies what we want: if α ≥ 0 then we’ve shown f + εh > −k ∈W so
f + εh ∈ K+(G) +W , and if α ≤ 0 then we’ve shown f − εh < −k and hence
f − εh ∈ −E. �

Uniqueness of Haar integrals.
As usual W is generated by f − fx, E = K+(G) +W and all we need to do

is to prove that the complement of E in V = K(G) is convex. The complement
is certainly a cone, so we need to show it’s a convex cone, so we need to check
that if f1, f2 ∈ E∗ (the complement of E) and f1 + f2 ∈ E then we have a
contradiction. This is now easy. Write f = f1 − f2 and apply the previous
corollary to deduce that there’s some h ∈ K+(G) such that for all ε > 0 either
f + εh ∈ E or f − εh ∈ −E. But E is open and f1 + f2 ∈ E, so there’s some
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ε > 0 such that f1 +f2−εh ∈ E. If f+εh ∈ E then 2f1 ∈ E, and if f−εh ∈ −E
then 2f2 ∈ E, and either one is a contradiction.

We now consider consequences of the existence and uniqueness of Haar inte-
grals, and extend our range of definition somewhat. We established the existence
of a Haar integral which, by definition, was impervious to right translations.
These are sometimes called “right Haar integrals”. We could instead demand
that the integral of f ∈ K(G) was equal to the integral of the function g 7→ f(xg)
[invariance under left translation]. Such a gadget would then be called a “left
Haar integral”. But these exist and are unique too:

Theorem. Left Haar integrals exist and are unique up to a positive con-
stant.

Proof. If f ∈ K(G) then the function f̃ : x 7→ f(x−1) is also in K(G) and
if we define µL(f) = µ(f̃) then µL is a left Haar integral iff µ is a right Haar
integral.

�

Note that the left Haar integral might not be (a positive constant times)
the right Haar integral! The moral reason for this is that it’s not hard to find
a LCHTG G with a subgroup H and g ∈ G with gHg−1 a proper subset of
H. If there were a left and right invariant Haar integral on G then a good
approximation to the characteristic function of H would have the same measure
as a good approximation to the characteristic function of gHg−1 which can’t
happen because gHg−1 is “strictly smaller than H”.

Exercise: Let G be the matrices
(

a b
0 1

)
in GL2(R). Conjugating by g :=

(
2 0
0 1

)
sends

(
a b
0 1

)
to
(

a 2b
0 1

)
so if f is any continuous function on R with compact

support and which is increasing on (−∞, 0), has f(0) > 0, and is decreasing
on (0,∞), then the function F on G defined by F (

(
et b
0 1

)
) = f(t)f(b) (and

F = 0 if a < 0) is continuous with compact support and satisfies x 7→ F (x) −
F (gxg−1) ∈ K+(G), which is enough to show that no bi-invariant measure can
exist (µ(F ) > µ(gFg−1) for any right Haar measure).

If µ is a (right) Haar integral on G then let’s write∫
G

f(x)dµ(x)

for µ(f); it’s a more suggestive notation. Then we have the following result:
Fubini’s Theorem. If G and H are LCHTGs with Haar integrals µ and ν,

and f ∈ K(G×H) then ∫
G

(∫
H

f(x, y)dν(y)
)

dµ(x)

and ∫
H

(∫
G

f(x, y)dµ(x)
)

dν(y)

exist, are equal, and are both right Haar integrals on G×H.
Proof. Existence is easy. First, f has compact support so has support within

a compact set of the form C ×D (projection of a compact set is compact), so
certainly the inner integral

∫
H
f(x, y)dν(y) exists and, as a function of x, has

compact support.
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We need to check
∫

H
f(x, y)dν(y) is continuous as a function of x but this

isn’t hard (big hint: if f is supported within C ×D and we choose k ∈ K+(H)
which equals 1 on D then by uniform continuity we have that x close to x′

implies |f(x, y) − f(x′, y)| ≤ εk(y) so changing x to x′ changes the integral by
at most εν(y) which can be made arbitrarily small). It follows easily that both
integrals are Haar integrals. To check that they’re the same, it suffices to check
that they agree on one positive function! So check it for f(x, y) = p(x)q(y) with
p ∈ K+(G) and q ∈ K+(H), where both integrals are just µ(p)ν(q) 6= 0.

�

Finally let me talk about extending our range of integrable functions. This
is rather formal, really.

Let G be a LCHTG and let U denote all the functions f : G → R ∪ {+∞}
which are pointwise limits of increasing sequences f1 ≤ f2 ≤ f3 ≤ . . . with
fn ∈ K(G). If f ∈ U then one can check that µ(f) := limn µ(fn) ∈ R ∪ {+∞}
is well-defined and independent of the choice of fn. Set −U = {−f : f ∈ U},
define µ on −U by µ(−f) = −µ(f) ∈ R ∪ {−∞}.

Definition. A function f : G → R ∪ {±∞} is summable if there exists
g ∈ −U and h ∈ U with g ≤ f ≤ h and, crucially,

sup
g≤f,g∈−U

µ(g) = inf
h≥f,h∈U

µ(h).

The common value is defined to be µ(f) ∈ R (note: it can’t be infinite).
Note that a summable function certainly doesn’t have to be continuous.

Exercise: if G = R then check that the characteristic function of [0, 1] is
summable, and has integral equal to 1 (if the Haar measure is normalised in
the usual way). Similarly check that the characteristic function of a point is
summable and has integral equal to zero.

If L1(G) denotes all the summable functions, then there’s a natural “norm”
on L1(G), defined by ||f || = µ(|f |) (one can check |f | ∈ L1(G)). Unfortu-
nately there are plenty of functions in L1(G) with ||f || = 0 (for example the
characteristic function of a point, if G = R). Say a function f is null if ||f || = 0.

Definition. L1(G) is defined to be L1(G) modulo the null functions.
One can check that L1(G) is in fact a real Banach space. In fact more

generally, if 1 ≤ p < ∞ one can define Lp(G) to be the functions f : G →
R ∪ {±∞} such that |f |p is summable, one can define a “norm” on Lp(G) by
||f ||p = µ(|f |p)1/p and then let Lp(G) be the quotient of Lp(G) by the subspace
of f with ||f ||p = 0. It turns out that these are all Banach spaces (this needs
a little proof), which are absolutely fundamental to the further development of
the theory. Note also that L2(G) is a real Hilbert space, because one can make
sense of

〈f, g〉 =
∫

G

f(x)g(x)dµ(x)

for f, g ∈ L2(G). One can also tensor all these spaces with the complexes
to get complex Banach spaces and a complex Hilbert space in the usual way.
All these spaces are independent of the explicit choice of Haar measure, but the
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inner product on L2(G) does depend on the choice (it affects things by a scaling
factor).

Convolution (definition below) defines a product on L1(G); this is not hard
to check. To make this work we have to fix a choice of Haar measure µ. Now if
f, g ∈ L1(G) then we define f ∗ g ∈ L1(G) by

(f ∗ g)(z) =
∫

G

f(zy−1)g(y)dµ(y).

One checks that this is defined on L1(G), descends to L1(G), and is associative
and norm-non-increasing (||f ∗ g||1 ≤ ||f ||1||g||1).

One can define a measure on G associated to the integral µ; one says that a
subset A ⊆ G is measurable if its characteristic function χA is summable, and
one defines µ(A) = µ(χA).

3.4: Overview of Pontrjagin duality and Fourier inversion.
I’ve decided/realised that one simply needs to assume too much measure

theory/spectral theory to give a reasonable presentation of this stuff :-( and,
given that I do actually want to spend some lectures talking about Tate’s the-
sis, I’ve decided that it’s impossible to give full proofs here (it would probably
take 6 or so lectures to go through the details) and hence I may as well just give
an overview of results. The original paper by Cartan and Godement (“Théorie
de la dualité et analyse harmonique dans les groupes abéliens localement com-
pacts”) is a good reference, and it seems to me that the 40-page Chapter 3 of
Ramakrishnan–Valenza is, to a large extent, an English translation of this paper
(and chapter 2 of Ramakrishnan-Valenza is 30 pages of spectral theory and so
on which one needs as prerequisites).

If you want to see a complete presentation of this stuff then, these 70 pages
are perhaps one place to look. It is possible to read this stuff, but it would be
helpful if you knew e.g. what a Radon measure was and knew some of the basic
spectral theory of Banach algebras, and a fair bit of functional analysis too (the
Banach–Alaoglu theorem, the Krein–Milman theorem and so on). I don’t know
if there is a simpler way to get to the results in the cases that we’re interested
in. I do know a low-level proof of the Fourier Inversion theorem for p-adic fields
but we also need this result in an “adelic setting”.

I will prove some basic results, and then give precise statements of deeper
theorems.

Let G be a topological group (later on it will be locally compact and Haus-
dorff, of course, but we don’t need that yet). The big new assumption now that
we do need, is that G must be abelian. The non-abelian story is much more
subtle (it occupied much of Harish-Chandra’s mathematical life and there are
still plenty of questions left unanswered). Even the abelian case needs some
work (c.f. those 70 pages I just mentioned).

So let G be an abelian topological group. Define Ĝ, the dual of G, to be the
group of continuous group homomorphisms

χ : G→ S1

with S1 = {z ∈ C : |z| = 1} the circle group (remark that if G isn’t abelian then
Ĝ should probably contain some higher-dimensional unitary representations so
the non-abelian theory diverges at this point).
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[G an abelian topological group; Ĝ = {χ : G→ S1}]
One checks easily that Ĝ is a group (the product of two continuous group

homomorphisms is continuous, and if χ is continuous then so is g 7→ χ(g)−1).
Our first job is to make Ĝ into a topological group. There are subtleties here. In
the analogous linear theory (topological vector spaces) there is more than one
way to topologise the dual space of a topological vector space (look up “Weak
topology” on Wikipedia, for example).

Here’s how we’re going to topologise Ĝ. At the minute all we need to assume
is that G is an abelian topological group. If K is a compact subset of G and V
is a neighbourhood of the identity in S1 then define

W (K,V ) := {χ ∈ Ĝ : χ(K) ⊆ V }.

Note that 1, the identity character (the one sending all g ∈ G to 1 ∈ S1) is in
all W (K,V ). We define a topology on Ĝ by letting the W (K,V ) be a base of
neighbourhoods of 1. Explicitly, a subset U of Ĝ is defined to be open iff for all
ψ ∈ U there is K and V (possibly depending on ψ) such that W (K,V )ψ ⊆ U .

Lemma. Let G be an abelian topological group. Then the construction
above does define a topology on Ĝ, and moreover Ĝ becomes a topological
group with respect to this topology.

[W (K,V ) := {χ ∈ Ĝ : χ(K) ⊆ V }.]
To check that we’ve defined a topology on Ĝ we first need to check firstly that

the empty set and the entire space are open (which just boils down to checking
that at least one set of the form W (K,V ) exists; for example K = {e} for e ∈ G
the identity will do). Next we need to check that an arbitrary union of open sets
is open, which is obvious. Finally we need to check that the intersection of two
open sets is open, which boils down to checking that W (K1, V1) ∩W (K2, V2)
contains some W (K,V ); but this is true because one can set K = K1 ∪K2 and
V = V1 ∩ V2.

To check that multiplication on Ĝ is continuous with respect to this topology,
we need to ensure that if φψ = ρ then, for all W (K,V ) there is W (K1, V1) and
W (K2, V2) with

W (K1, V1)φW (K2, V2)ψ ⊆W (K,V )ρ.

This immediately simplifies to

W (K1, V1)W (K2, V2) ⊆W (K,V )

because G is abelian.

Given K and V , we need Ki, Vi with

W (K1, V1)W (K2, V2) ⊆W (K,V ).

If we set K1 = K2 = K then all that’s left is to check that for all neighbourhoods
V of the identity in S1 there exists V1 and V2 with V1V2 ⊆ V , which is clear
because S1 is itself a topological group! �

Of course we could have done this more explicitly: if V contains eiθ with
−ε < θ < ε then we could let V1 = V2 = {eiθ : |θ| < ε/2}. While we’re at it,
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Notation. If 0 ≤ r <∞ then define N(r) := {eiθ : |θ| < r}.

Exercise. Let G = R be the real numbers, under addition. Prove that the
continuous maps G → S1 are precisely those of the form r 7→ eirt with t ∈ R
(hint: consider a neighbourhood N(ε) in S1 and its pre-image in G; this gives
a map (−δ, δ) → (−ε, ε) which is “additive” whenever this makes sense; draw
some conclusions). Check that that this identification of R̂ with R induces an
isomorphism of topological groups R̂ = R.

Proposition. Say G is an abelian topological group and Ĝ is its dual,
topologised as above.

(i) If G is discrete (that is, if all subsets are open) then Ĝ is compact.
(ii) If G is compact then Ĝ is discrete.
Proof.
(i) Consider Ĝ as a subset of Hom(G,S1), the (arbitrary set-theoretic) maps

from G to S1. This latter space is just
∏

g∈G S
1; give it the product topology

(reminder: a basis for the product topology, when considering an infinite prod-
uct, are the subsets which are products of open sets such that all but finitely
many of the prodands are the entire space).

First I claim that Ĝ is a closed subset of Hom(G,S1); this is because its
complement is clearly open, as if χ(ab) 6= χ(a)χ(b) then one can choose neigh-
bourhoods Vx of χ(x) for x ∈ {a, b, ab} with Vab ∩ VaVb = ∅.

Next I claim that the subspace topology on Ĝ is the compact-open topology.
The compact subsets of G are just the finite subsets, and with this in mind
it’s easy to check that a set is open in one topology iff it’s open in the other
(both topologies give Ĝ the structure of a topological group and this reduces the
question to one about neighbourhoods of the identity, which just follows from
the definitions).

Finally I claim that this does it, and this is because Tychanov’s theorem
says that a product of compact spaces is compact, so

∏
g S

1 is compact, and a
closed subspace of a compact space is compact.

(ii) If G is compact then I claim that subset {1} containing only the trivial
character is an open subset of Ĝ, and because Ĝ is a topological group this
will suffice to prove that Ĝ is discrete. To check that it’s compact we need to
show that W (K,V ) = {1} for some K and V ; take K = G and V = N(ε) for
any ε < π/3. If χ(G) ⊆ N(1) then χ(G) is a subgroup of N(ε), but the only
subgroup of S1 contained in N(ε) is {1}; hence W (G,N(ε)) = {1} and we’re
done. �

I will now start stating things without proof.
Theorem. If G is locally compact Hausdorff, then so is Ĝ.
I have seen a low-level proof of this, and a more abstract one. The low-level

proof (which is long, but completely elementary—it could be a long example
sheet question, with hints) goes as follows.

[Theorem. If G is locally compact Hausdorff, then so is Ĝ.]
One checks firstly that if K is a compact neighbourhood of the identity in

G then blah W (K,N(π/6)) is a compact neighbourhood of the identity in Ĝ (a
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dull check), and secondly that this suffices (which boils down to checking that
as K shrinks, W (K,N(π/6)) gives a basis of neighbourhoods of 1).

The higher-level proof (which one needs later on in the theory anyway)
proceeds by first introducing the Fourier transform of f ∈ L1(G). Notational
note: from now on, Lp(G) will always denote the complex Lp-functions, rather
than the real-valued ones, so it’s the thing I originally called Lp(G), tensored
over R with C.

Fix a Haar measure on G. If f ∈ L1(G) then define f̂ : Ĝ→ C by

f̂(χ) =
∫

G

f(y)χ(y)dy.

Note that f ∈ L1(G), and |f(y)χ(y)| = |f(y)|, and it’s easy to check that
the integrand is also in L1(G) (do it!). In particular the integral makes sense.
We call f̂ the Fourier transform of f .

Example: if G = R and f ∈ L1(G), and if we identify Ĝ with R by asso-
ciating the real number r with the character x 7→ eixr, and if we use the usual
Lesbesgue measure as our Haar measure, then we see that

f̂(r) =
∫
R

f(x)e−irxdx

which is the definition of Fourier transform that I learned as an undergraduate.

[f̂(χ) =
∫

G
f(y)χ(y)dy.]

If however one identifies Ĝ with R by identifying r with the character x 7→
e2πixr then one gets the definition of the Fourier transform which is used at the
top of the Wikipedia page about Fourier transforms. Finally, if one sticks to
x 7→ eixr but uses the Haar measure which is

√
2π times Lesbesgue measure,

then one gets a third way of normalising things, which according to Wikipedia is
another popular choice. Which choice you prefer depends on why you’re taking
Fourier transforms, but the point of this discussion is that all three choices are
covered by our definition.

Back to G locally compact and abelian. For every f ∈ L1(G) we get a
function f̂ : Ĝ → C (pedantic remark that even though f “isn’t a function”
because two functions which differ on a null set are the same element of L1, f̂
really is a function).

Define the transform topology on Ĝ to be the weakest topology that makes
every f̂ continuous. A computation which is basically elementary (if you know
that the continuous functions with compact support are dense in L1(G) and
that L1(G) is a Banach space, something I didn’t prove) but long shows that
the transform topology coincides with the compact-open topology (note that
local compactness here is essential for this strategy even to make sense, as we
used a Haar measure). So we get another proof of G-locally-compact-implies-
Ĝ-locally-compact if we check that the transform topology is locally compact,
which follows from Gelfand’s theory of commutative Banach algebras, applied
to L1(G).

This latter approach (via the Fourier transform) might seem heavy-handed,
but in fact all of these techniques, and more, seem to be needed later on anyway.
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The next step in the theory, at least in the development I’ve seen, is to
consider an arbitrary Radon measure µ̂ on Ĝ with the property that µ̂(Ĝ) ≤ 1
(note: Haar measure may well not have this property! We are not demanding
that µ is invariant under right translations). For such a measure we define its
Fourier transform Tµ̂ to be the function G→ C such that

Tµ̂(y) =
∫

bG χ(y)dµ̂(χ)

and in some sense the crucial result seems to me to be an intrinsic characterisa-
tion of these functions on G; the functions Tµ̂ that arise in this way are precisely
the functions which are are essentially bounded by 1 and are “of positive type”
(see below). The argument needs some graduate-level functional analysis and
measure theory,

in the sense that it needs results which seem to be standard but which
I didn’t see in my undergraduate courses on functional analysis and measure
theory).

Once one has all this, one can prove the first form of the Fourier inversion
formula. Here G is an abelian LCHTG. First a definition. Say that φ : G→ C,
continuous and bounded, is of positive type if for any f ∈ K(G) we have∫

G

∫
G

φ(s−1t)f(s)dsf(t)dt ≥ 0.

Fourier inversion formula (first form).
There exists a Haar integral µ̂ on Ĝ with the following property: If f ∈

L1(G) with Fourier transform f̂ : Ĝ → C, and if f is furthermore a C-linear
combination of functions of positive type, then

f(y) =
∫

bG f̂(χ)χ(y)dµ̂(χ).

f(y) =
∫

bG f̂(χ)χ(y)dµ̂(χ).

This is hard work. If one could interchange the integrals on the right hand side
then it might perhaps be easier, but the problem is that

∫
G
χ(y)χ(t)dy probably

won’t converge. I would almost certainly make a fool of myself were I to try
and summarise the 16-page proof in Ramakrishnan-Valenza.

As a consequence of the Fourier inversion formula, and I know of no simple
proof of this statement, we get

Theorem. If G is an abelian LCHTG and z ∈ G is not the identity charac-
ter, then there exists χ ∈ Ĝ with χ(z) 6= 1.

Proof. If no such χ exists, then for every f ∈ L1(G) we would have f̂ = f̂z.
Hence for every f for which the Fourier inversion formula applies, we would have
f = fz. But by Hausdorffness we can find a neighbourhood U of the identity
with U ∩ Uz empty.

We next find a neighbourhood V with V 2 ⊆ U and V symmetric; finally we
observe that if φ is real-valued supported in V and φ(1) = 1 then f := φ ∗ φ̃
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(with φ̃(g) = φ(g−1)) is of positive type but has support disjoint from that of
fz, a contradiction. �

Corollary. If G is an abelian LCHTG then the obvious map G → ˆ̂
G is

injective. �

It will of course turn out that if G is an abelian LCHTG then G → ˆ̂
G is

an isomorphism. But we have used analysis (rather than topology) to prove
injectivity, and in particular we used that G was locally compact. If G is an
arbitrary abelian topological group then one can still make sense of ˆ̂

G but I
don’t know, and very much doubt, if G → ˆ̂

G is bijective (or even injective) in
this generality; consider the case of double-duality of a vector space for some
analogue of this—V = V ∗∗ iff V is finite-dimensional.]

So from now on let’s say G is an abelian LCHTC. I’ll explain how the theory
can be developed.

Next one checks that G → ˆ̂
G has the property that the induced map from

G to its image (with the subspace topology) is a homeomorphism onto a closed
subspace (this argument is elementary).

Now one checks that for f, g ∈ L1(G) we have f̂ ∗ g = f̂ ĝ. This is just
an unravelling of things (once one has realised that ∗ maps L1(G) × L1(G) to
L1(G), which can be proved using Fubini: in fact ||f ∗ g||1 ≤ ||f ||1||g||1.

If f ∈ L2(G) then set f̃(x) = f(x−1), so f̃ ∈ L2(G), and define h = f ∗ f̃
(so h is integrable and of positive type: this is some analogue of the fact that
if A is a real matrix then AtA is positive semidefinite). Now unravelling the
definitions we see that if µ and µ̂ are Haar measures normalised so that the first
form of Fourier inversion holds, then∫

G

|f(x)|2dµ(x) = h(1)

=
∫

bG ĥ(χ)dµ̂(χ)

=
∫

bG |f̂(χ)|2dµ̂(χ)

(the second = is Fourier inversion, the other two are elementary). So the inte-
grals of |f |2 and |f̂ |2 coincide. This is the first form of the Plancherel theorem.
But in fact, by a density argument one can now conclude

Plancherel Theorem.
For G an abelian LCHTG one can extend the Fourier transform uniquely to

an isometric isomorphism

ˆ : L2(G) → L2(Ĝ).

One has to be careful here: I am not asserting that if f ∈ L2(G) then the
original definition of f̂ that I gave makes sense. All I’m saying is that the map,
which we defined using an integral, extends to give a map on all of L2(G) in
some way.

From this one gets, without too much trouble,
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Pontrjagin duality.

If G is an abelian LCHTG then the obvious map G→ ˆ̂
G is a group-theoretic

isomorphism and a topological homeomorphism.
And then finally this leads us to a cleaner version of the Fourier Inversion

theorem:

Fourier Inversion Theorem (final form).
Fix Haar measures on G and Ĝ. Then there exists a positive real constant

c > 0 such that if f ∈ L1(G) is continuous, and f̂ ∈ L1(Ĝ), and if we identify

G with ˆ̂
G, then

ˆ̂
f(x) = cf(x−1)

for all x ∈ G. Furthermore, for any choice of Haar measure on G there’s a unique
Haar measure on Ĝ which ensures c = 1.

We haven’t given a complete proof of this. I do know complete proofs in
certain explicit cases. I currently don’t know whether the proofs I know suffice
to cover the instances needed for Tate’s thesis, but I’ll probably find out within
a few weeks.

Case studies.
1) G = R. Here it’s not so hard to give a proof. The trick is to introduce

the following rapidly-decreasing functions: for t > 0 and x ∈ R fixed, consider
φ(y) = eiyx−t2y2

. One explicitly computes the Fourier transform of this (good
clean fun) and now, instead of integrating f̂(y)eiyx with respect to y, one in-
tegrates f̂(y)φ(y). The trick is that this is easily shown to be the integral of
f(r)φ̂(r). Now one lets t tend to zero from above, and uses the dominated con-
vergence theorem (and the fact that the Fourier transform is continuous, which
also needs to be checked, and which also follows from the dominated convergence
theorem).

2) G = S1 with its usual topology, so Ĝ = Z with the discrete topology. In
this case, the Fourier inversion theorem simply says that for a periodic function f
on R (that is, a function on S1), the Fourier series of f converges to f . This
just boils down to the statement that if z is the inclusion S1 → C then the
functions zn : n ∈ Z is an orthonormal basis for the Hilbert space L2(S1).
Orthonormality is easy, and checking that the functions give a basis is just
a standard application of the Stone-Weierstrass theorem (polynomials in z and
1/z separate points, and z = 1/z on S1). Orthonormality also gives Plancherel’s
theorem (which is called Parseval’s theorem in this context; Parseval was 1799
and thinking about Fourier series, Plancherel was 1910).

3)G = Qp or kP : we’ll come back to these. In some sense they’re much easier
(in the sense that you don’t have to remember what the dominated convergence
theorem or the Stone-Weierstrass theorem are!). I’ll treat these cases carefully
in the next chapter.

Chapter 4. Local zeta functions.
The reference for this is chapter 2 of Tate’s thesis. Throughout this section

K will be a field which is either the reals, an algebraic closure of the reals (you
can think “the complexes” but perhaps a more pedantic way of thinking about
it is “the complexes except that there is no way of distinguishing between the
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two square roots of −1”), or a finite extension of Qp for some p. In the global
applications, K will be the completion of a number field k with respect to a
norm. There is another case where everything in this section applies, and that
is the “equicharacteristic case”, that is, K = Fq((t)), where Fq is a finite field
with q elements and Fq((t)) is the field obtained by adjoining 1/t to the integral
domain Fq[[t]] of power series. Personal preferences mean that I will stick to the
number field case, rather than the function field case, later on, but one might
want to bear in mind that there are no obstructions to making this sort of thing
work in the function field case.

In all cases (K = R, K ∼= C, K = kP finite) we have got a canonical equiva-
lence class of norms on K, and we have seen that K is a locally compact abelian
group under addition (in the p-adic case the crucial observation was that the
residue class field was compact). Now here’s a completely wacky construction:
we are going to single out a canonical norm in each equivalence class. Here’s
the idea. Choose a random Haar integral µ on K. For α ∈ K× consider the
function µα : K+(K) → R defined by

µα(f) = µ(x 7→ f(αx)).

In words, µα is Haar measure, “stretched” by multiplication by α. One checks
easily that µα is well-defined and is also a Haar measure, and hence cµα = µ,
where c = c(α) is a positive real number. One checks easily that c(α) does not
depend on the choice of µ—it is truly intrinsic. The reason we didn’t see this
structure before is that we’re not just thinking of K as an additive group, we’re
using its ring structure.

Let’s write |α| := c(α), and define |0| = 0.

[c(α)µα = µ]
This choice is a canonical choice of norm on K. One does need to check

it’s a norm—but this is easy by a brute force calculation, which I’ll now do: in
each case we see that we’re reconstructing the norm I’ve already put on these
fields—but now we see that the norm I put on them is “the natural norm”.

1) If K = R then (think about a good approximation to the characteristic
function of [0, 1]) |α| is just the usual absolute value of α.

2) If K = C then (think about the characteristic function of a square) we
see |x + iy| = x2 + y2, so our canonical norm is the square of the usual norm
(and hence doesn’t satisfy the triangle inequality, which is the unique reason
that I didn’t make the triangle inequality an axiom earlier).

3) If K = Qp then let’s compute |p|. Well, if χ is the characteristic function
of Zp, the integers of Qp, then χ really is continuous with compact support.
Now Zp is the disjoint union of a + pZp for a = 0, 1, 2, . . . , p − 1, so by finite
additivity and translation-invariance of Haar measure we see that if ψ is the
characteristic function of pZp then pµ(ψ) = µ(χ), so µp(ψ) = µ(χ) = pµ(ψ)
and hence that |p| = p−1. So in fact the canonical norm on Qp is just the usual
p-adic norm, normalised the way I normalised it.

4) More generally (easy check) if π ∈ kP is a uniformiser and q is the size
of the residue field A/P (A the global integers of the number field k), then we
showed that the residue field of kP has size q (residue fields don’t change under
completion) and one checks easily that the canonical norm sends π to 1/q.
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5) [optional extra] K = Fq((t)). Then again we see that the index of tFq[[t]]
in Fq[[t]] is q, so multiplication by t is making things q times smaller, so |t| =
q−1—again the norm of a uniformiser is the reciprocal of the size of the residue
field.

4.1: the dual of (K,+).
The next thing we’ll do is to compute Ĝ, where G = (K,+). As ever in this

section, K is either the reals, the complexes, a completion of a number field at
a prime ideal, or, if we’re feeling adventurous, a the field of fractions of a power
series ring over a finite field. Let’s call these things “local fields” for simplicity,
and let’s always endow them with their canonical norms.

Theorem. If G = (K,+) is a local field, considered as a group under
addition, then Ĝ is isomorphic to (K,+) (not in a particularly canonical way,
mind).

Remark. The case K = R was an exercise earlier.

Theorem. If G = (K,+) is a local field, considered as a group under
addition, then Ĝ is isomorphic to (K,+).

Remark. I am going to be lazy and give Tate’s proof, which appears to me to
assume (a consequence of) Pontrjagin duality, but which works for an arbitrary
locally compact complete normed field (so, for example, it works for a power
series field over a finite field). On the example sheet I’ll give an explicit proof
when K/Qp is finite.

Proof. First let me assume that K̂ 6= 0 (of course here K is considered as a
group under addition). We’ll check this later in a case-by-case way, although if
you believe Pontrjagin duality then it’s obvious because K̂ 6= 0 implies K = 0.
Anyway, let’s fix once and for all a non-zero element χ of K̂, and later on I’ll
write one down explicitly just to prove one exists.

Now consider the map i : K → K̂ (which depends on χ), defined by letting
i(λ) be the character x 7→ χ(λx) (so again we’re crucially using both the additive
and multiplicative structure of K). It’s easily checked that i(λ) ∈ K̂ and that
the induced map i : K → K̂ is a group homomorphism. Injectivity is also easy:
if (i(λ))(x) = 1 for all x ∈ K then χ is trivial on λK which is impossible if
λK = K, because χ is non-trivial, so λ had better not have an inverse.

It’s slightly more delicate to finish the job. We’ll follow Tate and again
assume Pontrjagin duality. A consequence of this duality is that one can show
that the “annihilator” construction, sending a subgroupX of an abelian LCHTG
G to the subgroup of Ĝ consisting of characters which vanish on X, induces an
order-reversing bijection between the closed subgroups of G and of Ĝ.

Apply this to the closure of i(K) ⊆ K̂ and we observe that the corresponding
closed subgroup X of K must be be contained in the set {x ∈ K : (i(λ))(x) =
1∀λ ∈ K} but this set is easily checked to be {1}. Hence the image of K is
dense in K̂.

Next I claim that the map i : K → K̂ is a homeomorphism onto its image.
To check this we need to remember the definition of the topology on K̂: a general
neighbourhood of the origin was given by W (L, V ) with L ⊆ K compact and V
a neighbourhood of the identity in S1. So what we have to do is to first check
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that each W (L, V ) contains an i(B(0, ε)) (the open ball centre zero radius ε
in K), and conversely that each i(B(0, ε)) contains i(K) ∩W (L, V ) for some
L, V . Both of these are easy; I’ll do the slightly harder of the two, which is the
latter one. Given ε > 0 we need to come up with with L and V such that if
λ ∈ K and χ(λL) ⊆ V then |λ| < ε, and we do this thus. Choose k ∈ K with
χ(k) 6= 1. Let L be a huge closed disc centre 0 radius M (these are compact,
as is easily checked), with the property that |k| < εM , and let V be any open
neighbourhood of the identity in S1 such that χ(k) 6∈ V . Then for λ ∈ K, if
|λ| ≥ ε then k ∈ λL so i(λ) 6∈W (L, V ) which is what we want.

Finally let’s show that i(K) is a closed subspace of K̂; this will do us because
we already know that it’s dense. Because any compact set in K is bounded, it’s
easy to check that the identity in K̂ has a countable basis of neighbourhoods
(this isn’t logically necessary, I don’t think, but it’s psychologically satisfying
for what follows). For example if CM denotes the closed disc centre zero radius
M and VM is {eiθ : |θ| < 1/M} then NM := W (CM , VM ) will do. So now
choose an arbitrary ψ ∈ K̂. For each integer M ≥ 1 choose xM ∈ K with
i(xM ) ∈ ψNM (we can do this by density of the image of i). It’s easily checked
(it’s an argument similar to the one showing i was a homeo onto its image, but
it seems to me to be not quite a formal consequence of what we already have)
that the xM form a Cauchy sequence, so xM → x ∈ K, and we have i(xM ) → ψ
and i(xM ) → i(x), so by Hausdorffness we have ψ = i(x) and we’re home. �

Actually that’s not really the end of the proof because I still need to exhibit
a non-zero χ ∈ K̂. Let’s do this on a case-by-case basis.

1) K = R. Then define χ(x) = e−2πix.
2) K = Qp. Then, by the structure theorem for elements of Qp we can

write any k ∈ K as k =
∑∞

n=−N anp
n with an ∈ {0, 1, 2, . . . , p − 1}. Set

q(k) =
∑−1

n=−N anp
n ∈ Q (so q(k) = 0 iff k ∈ Zp). It’s an easy check that q is a

group homomorphism Qp/Zp → Q/Z and hence that χ(k) = e2πiq(k) will work.
3) K a finite extension of K0 := Qp or R; then the trace map TK/K0 is

an additive map K → K0 and it’s surjective (it’s multiplication by [K : K0]
on K0), so we take this map and then just compose it with the relevant map
coming from (1) or (2).

Note that if we write χ(y) = e2πiΛ(y) with Λ : K → R/Z then our map i is
just (i(x))(y) = e2πiΛ(xy).

4) K = Fq((t)). Then “coefficient of t−1” is a surjection K → Fq, and Fq is
just a finite-dimensional vector space over Fp, so choose a non-zero linear map
Fq → Fp (if we want to fix one then we should use the trace map—but if you
don’t know about separable extensions it might not be immediately clear to you
that this is non-zero), and finally x 7→ e2πix̃/p gets you from Fp to S1, where
x 7→ x̃ is a lifting Z/pZ → Z.

It’s convenient, but not essential, to fix a non-zero character of K once and
for all; in cases (1)–(3) above I’ve written down precisely one character, so let’s
always use this one. Note that this is not a canonical choice however; it seems
to me that K and K̂ are not canonically isomorphic.

While we’re here, let’s fix a choice of Haar integral on K. If K = R then
let’s choose the obvious one—the one such that the integral of the characteristic
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function of [0, 1] is 1. If K = C then let’s choose twice the obvious

one—the one such that the integral of the characteristic function of [0, 1]×
[0, 1] is 2 (unsurprisingly, this 2 is related to the fact that our norm on C is the
square of the usual norm).

If K is a finite extension of Qp then we do something perhaps a bit more
surprising. If K has degree n over Qp then the integers R of K are isomorphic
to (Zp)n as a Zp-module (this is elementary if you know that finitely-generated
torsion-free modules over a PID are free) and one can define the discriminant
in the usual way: choose a Zp-basis {e1, e2, . . . , en} for R, and define an n× n
matrix Aij whose (i, j)th entry is the trace of eiej . The determinant of this
matrix is in Zp (easy) and generates an ideal called the discriminant ideal of
K/Qp; it is a non-zero ideal (this is a standard fact from field theory, coming
from separability) and is well-defined independent of all choices (easy). Say the
discriminant ideal is pmZp. Let’s define our Haar integral on K by letting the
integral of the characteristic function of R be p−m/2 ∈ R. [One can check that

if k/Q is a number field then the discriminant of kP /Qp will be Zp if P is
unramified in k, and in particular if you regard k as fixed then all but finitely
many of its P -adic completions will have the property that their discriminant
ideals will be Zp.]

Why are we labouring over these choices? Well, we have fixed a choice
of Haar measure on K, and we have fixed an isomorphism K → K̂, so we
get an induced Haar measure on K̂, and we’re now in a position to apply
Fourier transforms twice. Recall that if f is continuous and f ∈ L1(K) with

f̂ ∈ L1(K̂) = L1(K) then we know that ˆ̂
f(x) = cf(−x) where c is some constant

depending only on our choices of Haar measure.

Proposition. With the choices we made, c = 1.
Non-proof. It suffices to check for just one function, and we’ll have to com-

pute loads of Fourier transforms quite soon, so I’ll postpone this. We don’t need
this result at all, it’s just psychologically satisfying.

4.2: The dual of (K×,×).
Let K be as usual. Actually not really interested in the Pontrjagin dual

of K×, we’re much more interested in the continuous group homomorphisms
K× → C×, that is we are dropping the unitary assumption on our characters
in this section. Let me call a continuous map G → C× a quasi-character of
G. The main results we need here are rather easy to prove. Let U denote
{x ∈ K× : |x| = 1}—the units of K. Say that a quasi-character is unramified if
it’s trivial on U .

Lemma. The unramified quasi-characters c : K× → C× are all of the form
λ 7→ |λ|s for s complex. If K = R or C then s is uniquely determined, but if
K is p-adic or Fq((t)) then s is only determined modulo 2πi

log(q)Z with q the size
of the residue field. In either case, however, the unramified quasi-characters are
naturally a 1-dimensional complex manifold.

Proof. Recall |λ|s means es. log(|λ|). Everything is immediate once we observe
that K×/U can be explicitly computed as the image |K×| of the norm map in
R>0. If K = R or C then |.| gives an isomorphism K×/U → R>0, and if
K is non-arch then |.| : K×/U → qZ is an isomorphism. Assuming that you
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know that the continuous group homomorphisms R>0 → C× are all of the form
x 7→ xs then we’re home. �

For simplicity we now fix a continuous splitting of the map |.| : K× → |K×|,
that is, we choose a subgroup V of K× with the property that every element of
K× is uniquely of the form uv with u ∈ U and v ∈ V . Again it’s impossible, in
general, to do this naturally.

If K = R or C then we can just let V be the positive reals. If K is non-arch
then let’s choose a uniformiser π ∈ K and let V be πZ; this is easily checked to
work. Now K× = U × V so Hom(K×,C×) = Hom(U,C×)×Hom(V,C×).

Notation: for α ∈ K×, write α = α̃v for α̃ ∈ U and v ∈ V . This clearly
depends on our choice of V but we’ll only use this notation temporarily.

Corollary. The quasi-characters c : K× → C× are all of the form α 7→
ψ(α̃).|α|s with s ∈ C and ψ a character of U .

Proof. This is just an explicit rephrasing of the statement Hom(K×,C×) =
Hom(U,C×)×Hom(V,C×). �

Note that that corollary gives the group of all quasicharacters the structure
of a 1-dimensional complex manifold (again given by the s variable; U is compact
and we regard Hom(U,C×) = Hom(U, S1) = Û as discrete). Pedants might like
to check that this

complex structure is independent of the choice of V . In fact ψ is well-defined
independent of the choice of V (it’s just c|U) and s is well-defined up to the
2πi/ log(q) ambiguity mentioned earlier.

Explicitly, what is happening is that if Û is the set of characters of U , then
the quasi-characters of K× are just one copy of either C or C/ 2πi

log(q)Z for each

element of Û , the dictionary being that if ψ is any character of U and c is any
quasi-character of K× which restricts to ψ, then the connected component of c
in the manifold of quasi-characters is just c.|.|s for s ∈ C.

Let’s do examples to see what these manifolds look like.

[ c : K× → C× are all of the form α 7→ ψ(α̃).|α|s with s ∈ C and ψ a
character of U .]

The easiest example to think about is K = R; then K× = ±R>0, U = {±1},
and a quasicharacter of K× is just a sign (where we send −1) and a complex
number (where we send the positive reals), and the complex structure is given
by the complex number; the space is just two copies of the complexes. If K = C
then K× = S1 × R>0, U = S1, and the characters of S1 are just Z, so here
the quasicharacters are countably infinitely many copies of the complex plane,
indexed by the integers. If K is an algebraic closure of R then we get the same
thing, but where Z is replaced by an infinite cyclic group.

If K = Qp then we get a cylinder C/( 2πi
log(p)Z) for each primitive Dirichlet

character (Z/pnZ)× → C× and in the general non-arch case the picture is a
generalisation of this.

Let me make two definitions before we go any further: using the corollary
above one sees that if we have a quasi-character of K× as in the corollary, then
|c| := |.| ◦ c : K× → R>0 (note that the target C× always has the usual norm
|x + iy| =

√
x2 + y2) must just be the map α 7→ |α|σ with σ = Re(s) (note

that this is well-defined even in the non-arch case). This real number σ is called
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the exponent of c, and “quasi-character of exponent at least σ” is going to be
our analogue of “complex number with real part at least σ” later on. Also,
let’s say that two quasi-characters are equivalent if their ratio is unramified—
this is just the same as demanding that they are in the same component of the
quasi-character manifold.

We need now to fix a Haar integral on K×. If f ∈ K(K×) then the function
x 7→ f(x)/|x| is a function on K\{0} and (by compactness of support) its
extension to K (send 0 to 0) is continuous with compact support, so we can
integrate it using our fixed choice of Haar measure onK; the resulting functional
is easily checked to be a Haar integral µ1 on K×. If K is archimedean then this
will be our fixed choice of Haar integral on K×. If however K is p-adic then
we’re going to do something else.

Let’s compute µ1(χU ) (the characteristic function of the units) in the p-adic
case. Because |.| is trivial on U , we see µ1(χU ) = µ(χU ) and we normalised µ on
K so that the integers R had measure p−m/2, where pmZp is the discriminant
ideal of K. So, because U = R\$R, we see µ(χU ) = (1 − 1/q)µ(χR) = (1 −
1/q)p−m/2. It will be convenient to choose a Haar measure µ∗ on K× such that
U has measure 1 for almost all P , as P runs through the primes of a number
field k and K = kP , so we define µ∗ on K× by µ∗ = q

q−1µ1 in the P -adic case.
Then µ∗(χU ) = p−m/2 if K has discriminant pm, and in particular if K = kP

then µ∗(χU ) = 1 for all but finitely many P (a number field has a discriminant
and if P is coprime to this discriminant then the discriminant of kP is just Zp).

4.3: Local analytic continuation and functional equations.
In some sense we’ve done nothing much in this chapter so far—apart from

the check that K is isomorphic to K̂, all we’ve done is made explicit choices of
things. Here’s the first hint that something magic is happening though. Fix K
as usual, and say f : K → C is continuous, with f ∈ L1(K), and such that f̂ is
also continuous and in L1(K̂) = L1(K) (recall we have fixed an identification of
K with K̂). Assume furthermore that x 7→ f(x)|x|σ and x 7→ f̂(x)|x|σ are both
in L1(K×) for any σ > 0. One might ask whether any non-zero such functions
exist, but we’ll see plenty of examples later on, and in fact it’s an easy exercise
to come up with some examples. Let Z = Z(K) be the set of such functions.
In words these conditions imply that f is racing to zero more quickly than any
polynomial in |x| as |x| gets big (that’s the L1(K×) condition), and that f is
bounded near zero (that’s the L1(K) condition) and furthermore that f̂ has the
same properties.

Easy exercise: why would asking f ∈ L1(K×) be asking a bit too much?
[Hint: remember Haar measure on K× isn’t the same as that on K; consider
what’s happening near the origin].

Let Q denote the set of quasi-characters of K×. If c ∈ Q then let’s write
Re(c) for the exponent of c. Given f as above, define a function ζ(f,−) on
{c ∈ Q : Re(c) > 0} by

ζ(f, c) =
∫

K×
f(t)c(t)dµ∗(t).

So we’re using the multiplicative Haar measure on K× defined above.
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Lemma. The function ζ(f,−) (converges and) is holomorphic on the com-
plex manifold {c ∈ Q : Re(c) > 0}.

Proof. This rather fancy-sounding lemma is actually elementary to prove.
Convergence is not an issue because our assumptions on f imply that the in-
tegrand defining this local zeta function is in L1(K×)—we have |f(x)c(x)| =
|f(x)||x|Re(c) which is in L1(K×) by definition.

The complex structure near c ∈ Q is given by c.|.|s for s ∈ C small, so all we
have to do is to check that ζ(f, c.|.|s) is holomorphic in s, for s small enough.
So we have to differentiate ζ(f, c.|.|s) with respect to s, and if you write out the
definition of “differentiation”, and remember all the boundedness assumptions
we’ve made on f , you see that you can differentiate under the integral sign! This
reduces us to checking that

∫
K× f(t)c(t)|t|s log(|t|)dµ∗(t) converges, but it does

because for |t| big, |t| beats log(|t|) and the integral converges for all sufficiently
large exponents, and for |t| small, |t|−δ beats | log(|t|)| (where |t| is chosen so
small that δ < Re(s) works, which makes the integral converge by assumption).
�

But that’s not the big local insight; the big insight is that ζ(f,−) has a
meromorphic continuation to all of Q! The “global” zeta functions coming later
will be products of local zeta functions for Re(c) sufficiently large. It is however
important to note that this local analytic continuation result certainly does not
give the meromorphic continuation of the global zeta functions that are coming
later—an infinite product of meromorphic things might not be meromorphic (it
might not even converge). Let me illustrate this by remarking that we’ll shortly
see that an example of this local meromorphic continuation statement is the
statement that the function

∑
i≥0 p

−is, which converges for Re(s) > 0, can be
rewritten as 1/(1− p−s), which is meromorphic for all s ∈ C. This observation
is clearly not enough to meromorphically continue blah

∏
p(1− p−s)−1 = ζ(s).

So let’s prove this local meromorphic continuation, and even a local func-
tional equation. We need an analogue of s 7→ 1− s for the functional equation;
it’s c 7→ ĉ, where ĉ is defined by ĉ(x) = |x|/c(x)). Note that this hat has noth-
ing to do with Fourier transforms, it’s just an elementary definition. Note also
that Re(ĉ) = 1− Re(c). But also note that in general ĉ won’t be equivalent to
c—they could well lie on different components of Q.

Note that we haven’t used any of our boundedness assumptions on f̂ so far,
we’ve only used the L1ness of f . We’ll use L1ness of f̂ now though.

Lemma. If 0 < Re(c) < 1 and f, g ∈ Z then

ζ(f, c)ζ(ĝ, ĉ) = ζ(g, c)ζ(f̂ , ĉ).

[note that all integrals obviously converge.]

[ζ(f, c)ζ(ĝ, ĉ) = ζ(g, c)ζ(f̂ , ĉ).]
Perhaps I should remark that I have very little “true understanding” of this

equation. I can prove it though, in fact it’s dead easy to prove, it just follows
from unravelling and Fubini. Let’s see the proof.

First note that what we have to do, to prove the lemma, is to prove that if
left hand side is L(f, g), then L(f, g) = L(g, f).
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If we substitute in the definition of ζ(−,−) twice on the left hand side, we
get ∫

K××K×
f(α)ĝ(β)c(α/β)|β|dµ∗(α)dµ∗(β)

and by Fubini we can integrate in whatever order we want as long as 0 < Re(c) <
1 (I only proved Fubini for K(G × H) but it extends to L1). If I think about
doing the integral over β first, for fixed α, then I can use invariance of µ∗(β)
under multiplication to change β to γ = β/α, and making this substitution
shows that the integral equals∫

K××K×
f(α)ĝ(αγ)c(γ−1)|αγ|dµ∗(α)dµ∗(γ).

∫
K××K×

f(α)ĝ(αγ)c(γ−1)|αγ|dµ∗(α)dµ∗(γ).

Now let’s give a name to the “α” integral

Hf,g(γ) :=
∫

K×
f(α)ĝ(αγ)|α|dµ∗α;

then the integral we’re trying to prove something about is∫
K×

Hf,g(γ)c(γ−1)|γ|dµ∗(γ).

Now if Hf,g(γ) = Hg,f (γ) then visibly this latter integral (which has no other
fs and gs in) will also be unchanged if we switch f and g, which is exactly what
we wanted to prove. So we’re now reduced to showing Hf,g = Hg,f . But recall
that µ∗ was, up to a constant κ which depended only on K, just µ(x)/|x|, so

Hf,g(γ) = κ

∫
K

f(α)ĝ(αγ)dµ(α)

where note now the integral is over K, and now by definition of ĝ we see

Hf,g(γ) = κ

∫
K×K

f(α)g(δ)e−2πiΛ(αγδ)dµ(α)dµ(δ)

recalling that our identification of K with K̂ sent x to the character y 7→
e2πiΛ(xy). But now of course we’re home, because switching f and g is just
the same as changing notation (α, δ) → (δ, α). �

Reminder: we’ve just proved that if 0 < Re(c) < 1 and f, g ∈ Z then

ζ(f, c)ζ(ĝ, ĉ) = ζ(g, c)ζ(f̂ , ĉ).

Corollary. If, for each component C of Q, we can find one explicit function
f = fC ∈ Z such that ζ(f̂ , ĉ) doesn’t vanish identically on {c ∈ C : 0 < Re(c) <
1} and such that ρ(c) := ζ(f, c)/ζ(f̂ , ĉ) has a meromorphic continuation to all
c ∈ C, then for any g ∈ Z, the function ζ(g, c) has meromorphic continuation
to all of Q, and satisfies the functional equation

ζ(g, c) = ρ(c)ζ(ĝ, ĉ)
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for c ∈ C.

Proof. Trivial. The left hand side is holomorphic for Re(c) > 0, our assump-
tions on ρ show that the right hand side is meromorphic for Re(c) < 1, and the
lemma we just proved shows that the two sides agree on the overlap.

4.4: Tidying up.
Here I’ll give explicit examples of fC as promised above, check that the

corresponding ρ(c) has meromorphic continuation, and also check the assertions
about our choice of Haar measure being “self-dual”, which will of course come
out in the wash.

I have to start somewhere so let’s start withK = Qp, the simplest case where
we haven’t done any explicit integrals yet. Recall that if Zp is {k ∈ K : |k| ≤ 1},
the integers of K, then Zp is a ring, and the invertible elements Z×p of this ring
are easily seen to be just {k ∈ K : |k| = 1} = U .

What we have to do to perform the local meromorphic continuation is, for
each character χ : Z×p → S1, we need to find a function f = fχ ∈ Z with
ζ(f̂ , ĉ) not identically zero on the region 0 < Re(c) < 1 of the component of
Q corresponding to χ, and such that we can meromorphically continue ρ(c) :=
ζ(f, c)/ζ(f̂ , ĉ) to all of this component.

A reminder of normalisations: additive Haar measure µ on Qp is normalised
so that the characteristic function χZp of Zp has integral 1. Note that χZp ∈
K+(Qp) and by additivity of Haar measure we have µ(χa+pnZp

) = p−n for
all n ∈ Z. In particular locally constant functions with compact support are
easy to integrate—but these things are easily checked to uniformly approximate
anything in K(Qp), so integration on Qp is in fact easy. One last reminder:
multiplicative Haar measure µ∗ on Q×

p is p
p−1 times “dz/|z|”, the usual trick to

turn additive Haar measure into multiplicative Haar measure.

First let’s do the component of Q corresponding to the trivial character of
Z×p . Let f be the characteristic function of Zp. Now let’s get it straight in our
heads what we have to do.

First we need to check f ∈ Z, which involves checking some boundedness
conditions on f , computing f̂ and checking the boundedness conditions on this
function too.

Next we need to compute ζ(f, c) and ζ(f̂ , ĉ) for c in the component of Q =
Hom(Q×

p ,C
×) corresponding to the trivial character of U (that is, for c : Q×

p →
C× such that c|Z×p is trivial).

Finally we need to check that ζ(f̂ , ĉ) is not identically zero for such c, and
that ζ(f, c)/ζ(f̂ , ĉ) has a meromorphic continuation to the entire component.

To do all of this we just need to unwind the definitions and then figure out
the integrals.

To check f ∈ Z we first need that f is continuous (easy), that f is integrable
(it’s even in K+(Qp) so it’s certainly integrable), and that f(x)|x|σ is in L1(Q×

p )
for σ > 0. This needs checking, not least because f(x) is not in K+(Q×

p )—f is
non-zero arbitrarily close to zero, and (think about the automorphism x 7→ 1/x
of Q×

p ) this means f doesn’t have compact support on Q×
p . But f is visibly

a pointwise increasing limit of functions with compact support (consider the
characteristic functions fn of Zp\pnZp for n large) so we had better compute
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the integrals of fn(x)|x|σ on Q×
p and check they converge; if they do then we

will have proved f(x)|x|σ is summable and hence in L1(Q×
p ).

Well ∫
Q×

p

fn(x)|x|σdµ∗(x)

=
∫
Zp\pnZp

|x|σdµ∗(x)

=
n−1∑
i=0

∫
piZ∗p

|x|σ p

p− 1
|x|−1dµ(x)

=
p

p− 1

n−1∑
i=0

µ(piZ×p )p−i(σ−1)

=
p

p− 1

n−1∑
i=0

p− 1
p

p−iσ

=
n−1∑
i=0

p−iσ

→
∞∑

i=0

p−iσ =
1

1− p−σ

as n → ∞, if σ > 0. So the boundedness properties of f are satsified. Note: I
am being lazy and writing µ(X) for µ(χX), the characteristic function of X.

Now we need to compute f̂ . Well, by definition

f̂(x) =
∫
Qp

f(y)e−2πiq(xy)dµ(y)

where q is that function Qp/Zp → Q/Z defined by “take the fractional part”.
This is just ∫

Zp

e−2πiq(xy)dµ(y)

so let’s do this integral. We always have y ∈ Zp so if x ∈ Zp then q(xy) = 0
and we just get µ(Zp) = 1.

On the other hand, if x 6∈ Zp and e−2πiq(x) = ζ 6= 1 and |x| = pn, n ≥ 1 (so
ζ is a primitive pnth root of unity), then e−2πiq(xy) only depends on y mod pn

and
∫
Zp
e−2πiq(xy)dµ(y) =

∑pn−1
i=0 ζi = 0. Hence f̂ = f .

But this is great—firstly we have proved that c = 1 in the Fourier Inversion
theorem, as claimed earlier ( ˆ̂

f = f(x) = f(−x)), and secondly we have proved
f ∈ Z, because f̂ = f has all the same boundedness properties as f .

Next we need to compute ζ(f, c) and ζ(f̂ , ĉ) on the region 0 < Re(c) < 1 of
the component corresponding to the trivial character of U , the general element
of which is x 7→ |x|s for s ∈ C = C/ 2πi

log(p)Z. We stick to 0 < Re(s) < 1. Now
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(being much lazier about the difference between L1 and K(Q×
p ) this time)

ζ(f, c) =
∫
Q×

p

f(x)|x|sdµ∗(x)

=
p

p− 1

∫
Zp\{0}

|x|s−1dµ(x)

=
p

p− 1

∞∑
j=0

∫
pjZ×p

p−j(s−1)dµ(x)

=
∞∑

j=0

p−js = (1− p−s)−1

(which looks surprisingly familiar!). Note the last line is OK because Re(s) >
0 so |p−s| < 1.

Similarly ζ(f̂ , ĉ) =
∫
Q×

p
f(x)|x|1−sdµ∗(x) which (recalling that we’re assum-

ing 0 < Re(s) < 1), by exactly the same calculation but with 1 − s replacing
s, comes out to be (1 − p−(1−s))−1. Hence ζ(f̂ , ĉ) is not identically zero on
the component we’re interested in, and ρ(c) = ζ(f, c)/ζ(f̂ , ĉ) = 1−ps−1

1−p−s , which
looks less familiar, but later on you’ll see why you’re not expected to recog-
nise this function—these ρ(c) will only show up explicitly at the “bad primes”.
The crucial observation that we need, however, is that ρ(c) has a meromorphic
continuation to all s ∈ C, which is clear, and so our job is done.

Let me sketch the ramified case in this setting, because there ρ(c) is quite
different. Let χ denote a Dirichlet character of conductor pn, n ≥ 1, that
is, a map χ : (Z/pnZ)× → C× (note that the image lands in S1) that doesn’t
factor through (Z/pn−1Z)×. The natural map Zp → Z/pnZ induces a map U →
(Z/pnZ)× and hence a character of U , so we get a component ofQ parameterised
by s ∈ C/ 2πi

log(p)Z whose typical element sends x = pnu to χ(u)p−ns = χ(x̃)|x|s

[we’re setting V = {pZ} with notation as above].
We need an f = fC for this component. Let’s set f(x) = 0 if |x| > pn,

and f(x) = e2πiq(x) for |x| ≤ pn (note |x| ≤ pn implies q(x) = a/pn for some
integer a). So again f is locally constant (indeed it’s constant on cosets of Zp in
p−nZp) and takes values in the pnth roots of unity. It’s clear that f ∈ L1(Qp),
and we can write f = χZp + f ′ with f ′ ∈ K(Q×

p ) ⊗C, and we already showed
χZp

.|.|σ ∈ L1(Q×
p ) for σ > 0, which implies f.|.|σ ∈ L1(Q×

p ) for σ > 0.

[f(x) = e2πiq(x) for |x| ≤ pn.] Next we need to compute the Fourier trans-
form of f . We can do this by brute force or by a trick. Here’s the brute force
method:

f̂(x) =
∫
Qp

f(y)e−2πiq(xy)dµ(y)

=
∫

p−nZp

e2πiq(y−xy)dµ(y)

=
∫

p−nZp

e2πiq(y(1−x))dµ(y).
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The same “cancelling” phenomenon (adding roots of unity) hence shows f̂(x) =
0 if |1 − x| > p−n (we’re adding roots of unity), but if |1 − x| ≤ p−n then
|y(1 − x)| ≤ 1 for y ∈ p−nZp and the integrand is just 1, showing that the
integral is just µ(p−nZp) = pn times the characteristic function of 1 + pnZp.
Note that this integral is bounded away from zero (as n ≥ 1) so f̂ ∈ K+(Qp)
and K+(Q×

p ), and hence f ∈ Z.

[The trick way to do this last computation is to observe that the f here is just
χZp rescaled and multiplied by a character, and so we can compute the Fourier
transform of our f from the Fourier transform of χZp using basic properties of
Fourier transforms.]

Next we need to compute ζ(f, c) and ζ(f̂ , ĉ) for c of the form pnu 7→ χ(u)p−ns

for 0 < Re(s) < 1. These calculations are very similar to the ones we have
already done (although perhaps slightly tougher, because in some cases it’s
trickier to check that certain sums of roots of unity are zero). I’ll stick them on
the example sheet and just tell you the answers: if I got it right then

ζ(f, χ(x̃)|x|s) =
pns+1−n

p− 1

pn−1∑
j=1

χ(j)e2πij/pn

(the inner sum is called a Gauss sum) and ζ(f̂ , χ(x̃)−1|x|1−s) just turns out to
be p/(p− 1), a constant!

So the ratio ζ(f, c)/ζ(f̂/ĉ) is of the form A.Bs with A a constant involving a
Gauss sum, and B a positive real constant (a power of p in fact), which means
that the ratio has meromorphic continuation to the component C and again
we’re done.

More precisely, the ratio is pn(s−1)
∑pn−1

j=1 χ(j)ζj with ζ = e2πi/pn

. The
following observation is now surely worth remarking on. The Dirichlet character
χ we were just considering—we were doing local calculations with it, but we can
also consider the global ζ function (or L-function, as it’s more commonly known)
attached to this character, which is (for Re(s) > 1)∑

m≥1

χ(m)/ms =
∏

`

(1− χ(`)`s)−1,

the latter product being over all primes `. This L-function has a meromorphic
continuation to all of C, which turns out to be holomorphic in this case, because
we assumed the conductor was pn for n ≥ 1.

We have χ(−1) = ±1 for some choice of sign. If χ(−1) = 1 and if we
multiply this L-function by the usual “fudge factor” π−s/2Γ(s/2), then we get
a new function ξ(χ, s) satisfying

ξ(χ, s) =

p−ns

pn−1∑
j=1

χ(j)ζj

 ξ(χ, 1− s).

A similar sort of thing is true if χ(−1) = −1 but then the fudge factors and the
functional equation are slightly different. The moral is that this time the local
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integrals aren’t showing up as components of the L-function, but the ratio ρ(c)
is showing up in the functional equation.

I am not going to plough through all the other cases. The computations
are a little long but completely elementary and prime example sheet fodder.
The crib is Tate’s thesis, end of chapter 2. Here’s the answers. If K is a
finite extension of Qp then the only extra subtlety is that we used the trace
map to define K → K̂, and when doing the calculations one needs to compute
{α ∈ K : TrK/Qp

(αv) ∈ Zp∀v ∈ R} where R is the integers of K. Clearly
this set contains R, and is not all of K (because it doesn’t contain p−n for
n large),so it’s a fractional ideal of K, but what you may not know is that
if we write it as π−rR then the norm to Qp of πr generates the discriminant
ideal, which simplifies some constants a bit. The answers are “the same as
in the K = Qp case”: for the unramified quasi-characters one lets f be the
characteristic function of {α ∈ K : TrK/Qp

(αv) ∈ Zp∀v ∈ R} and one checks
ζ(f, |.|s) = pm(s−1/2)/(1−q−s) and ζ(f̂ , |.|1−s) = (1−qs−1), and in the ramified
case one makes a sensible choice of f and ρ turns out to be of the form A.Bs

with A involving a Gauss sum.

If K = R then there are two components: on the component x 7→ |x|s use
f(x) = e−πx2

, and on the component x 7→ sgn(x)|x|s, with sgn(x) the sign
of x, use f(x) = xe−πx2

, and now use your 1337 Fourier Transform sk1llz to
check that in the first case, when c(x) = |x|s we have ζ(f, c) = π−s/2Γ(s/2) and
ζ(f̂ , ĉ) = π−(1−s)/2Γ((1−s)/2), so the ratio is meromorphic and furthermore we
have seen the ratio before! The ratio shows up when writing ζ(1− s)/ζ(s) as a
product of simpler functions (i.e. the “fudge factors” in the functional equation).
So now you’re beginning to see some of the insights here—the “fudge factors” in
the functional equation may have local explanations—for example the Γ factor
is coming from the archimedean valuation on Q. If you look at the functional
equation for the zeta function for a number field, you will see several Γ factors,
coming from the real and complex norms on the field, and one can check that
they are the same factors that come up in these calculations.

The answer on the sgn(x)|x|s component is similar, but one ends up with
π−

s+1
2 Γ( s+1

2 ), which is precisely the “fudge factor” that one has to use in the
functional equation for the Dirichlet L-function when χ(−1) = −1.

If K = C then the components are parametrized by the integers. Let’s
say the nth component is the quasicharacters whose restriction to S1 ⊆ C is
z 7→ zn. For n ≥ 0 Tate chooses the function fn(x+ iy) = (x− iy)ne−2π(x2+y2),
and for n ≤ 0 he chooses fn(x + iy) = (x + iy)−ne−2π(x2+y2). It turns out
that f̂n = cnf−n where cn is an explicit root of unity (proof by basic integrals
and induction on n) and the local zeta values are again just powers of π and Γ
functions, for example if n ≥ 0 then ζ(fn, re

iθ 7→ rseinθ) = (2π)1−s+ n
2 Γ(s+ n

2 )
and the other answers are similar. For an explicit list of the answers, look at
the end of chapter 2 of Tate’s thesis or the new example sheet.

Summary of what I just breezed through:
All local zeta functions have meromorphic continuations. The local zeta

functions attached to our favourite functions (the fs we used) looked like (1−
p−s) on the unramified non-arch components and involved the Γ function and πs
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in the real and complex cases. These local factors are precisely what one multi-
plies together to get the function ξ(s) (the Riemann zeta function multiplied by
the “fudge factors at infinity”). The local zeta functions on the ramified com-
ponents in the non-arch case are messier, but the ratio ζ(f, c)/ζ(f̂ , ĉ) involves
Gauss sums.

And let me stress once more that these local calculations do not even come
close to analytically continuing the usual zeta function; we need more to do this.

Chapter 5. The adeles and ideles.
The Pontrjagin dual of Z (with the discrete topology) is R/Z. But the

Pontrjagin dual of Q (with the discrete topology) turns out to be an absolutely
huge uncountable compact topological group, rather surprisingly! The dual
turns out to be related to some kind of infinite product of all the completions
of Q at once, as we will see later on. But we have to be careful here: if I have
infinitely many non-empty locally compact topological spaces Xi, their product
turns out not to be locally compact in general (because the definition of the
product topology has, as basic open sets, products of open sets Ui, but all but
finitely many of the Ui have to be equal to Xi and this makes it hard to find
a compact neighbourhood of such a product). So we have to be careful—the
product over all p of Qp isn’t locally compact and hence we can’t do Haar
integration on it.

Here’s a partial fix:
Lemma. If we have a collection Xi of locally compact Hausdorff topological

groups, and furthermore if all but finitely many of them are compact, then the
product of the Xi is a locally compact Hausdorff topological group.

Proof. Given a basic open neighbourhood
∏

i Ui of a point (xi) in the prod-
uct, all but finitely many of the Ui are equal to Xi by definition, and are hence
compact, so we leave them alone, and the rest of the Ui we can shrink to Vi,
a compact neighbourhood of xi, and the product of the Vi is a compact neigh-
bourhood of (xi) in

∏
i Ui. So the product (with its product topology) is locally

compact, and the rest is easy (checking hausdorffness, and that multiplication
and inverse are continuous).

The problem we now face is that the completions of Q with the p-adic and
real norms are all locally compact, but none of them are compact. Here is the
abstract construction that gets around this.

5.1: The restricted direct product.
Here’s the set-up. We have a set I (typically infinite), a locally compact

Haudsorff topological group Gi for all i ∈ I, and, for all but finitely many i, a
given fixed subgroup Hi of Gi which is both open and compact. Say S0 is the
finite subset of I for which no Hi is given. Say S is any finite set containing S0.
Then we can form GS :=

∏
i∈S Gi ×

∏
i 6∈S Hi; this is locally compact (with the

product topology) and, as a set, sits naturally inside
∏

iGi. But no one finite
set S is better than any other, so we now take the union (within

∏
iGi), as S

gets bigger, of the GS . Call this union G.

Then G is clearly a group (it’s a directed union of groups; GS∪GT ⊆ SS∪T ).
To make it a topological group we just have to give a basis for the topology near
the identity, and we can do this by choosing any S ⊇ S0 and saying that a basis
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of neighbourhoods of the identity in G is just a basis of neighbourhoods of the
identity in the subgroup GS . It’s an elementary exercise to check that this
independent of S (check that a basis of neighbourhoods is given by

∏
iNi with

1 ∈ Ni ⊆ Gi and Ni = Hi for all but finitely many i) and that this construction
makes G into a locally compact topological group.

If all the Gi are furthermore abelian then we have

0 →
∏
i 6∈S0

Hi → G→ (⊕i 6∈S0Gi/Hi)⊕ (⊕i∈S0Gi)

so G is a sort of mixture of a direct product with a direct sum.

Note that each Gi is naturally a subgroup of G. An element of G can be
thought of as an element (gi) of

∏
iGi with the property that gi ∈ Hi for all

but finitely many i.
Notation:

G =
∏

i

′Gi.

Not very good notation, because it doesn’t say what the Hi are. Rotten luck.
From now on, assume that all the Gi are abelian.
The following things are all elementary to check and I will only hint at proofs.

[Reminder: G ⊆
∏

iGi is the (gi) with gi ∈ Hi for all but finitely many i]
1) If c : G → C× is continuous, then ci := c|Gi is trivial on Hi for all

but finitely many i, and hence one can make sense of the character
∏

i ci on G
(because it’s a finite product) and one can check that

∏
i ci = c. [Proof: because

c is continuous, if V is a small neighbourhood of 1 then c−1(V ) is open in G
and hence contains a subgroup of the form

∏
i 6∈S Hi; but c(

∏
i 6∈S Hi) is now a

subgroup of V and for V small enough the only subgroup is {1}].
2) If Hi is a compact open subgroup of Gi (note that open implies closed,

because Hi is the complement of the open set ∪g 6∈HigHi) and if we define H∗
i

to be the annihiliator of Hi in Ĝi, then H∗
i is also compact and open. [Proof:

the dual of Hi is Ĝi/H
∗
i so compactness of Hi implies discreteness of Ĝi/H

∗
i

implies openness of H∗
i etc].

3) The Pontrjagin dual of G =
∏′

iGi (restricted product with respect to the
Hi) is Ĝ =

∏′
i Ĝi (restricted product with respect to the H∗

i ). [Proof: we’ve
seen that a unitary character c of G is a product of its components, and that
conversely given a bunch of ci all but finitely many of which are trivial on Hi

we can multiply them together to get a c, and now one just unravels this.]
4) Say S ⊇ S0, so GS =

∏
i∈S Gi ×

∏
i 6∈S Hi makes sense and is a LCHTG.

If we choose a Haar integral µi on each Gi (i ∈ S) and on each Hi (i 6∈ S) and
we normalise the Hi ones such that µ(1) = 1 (where 1 is the constant function
on Hi, which is in K(Hi)), then there’s a unique natural Haar measure

∏
i µi

on GS , with the property that if Ni is a subset of Gi for all i with the property
that Ni = Hi for all but finitely many i and that

∏
iNi ⊆ GS , and if χNi is

summable for all i, then µ(χN ) =
∏

i µi(χNi) [this is only a finite product of
course].

5) Hence if we fix Haar measures µi on each Gi with the property that
µi(χHi) = 1 for all but finitely many i, we get a natural Haar integral µ on G,
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given by
µ(f) = lim

S
µ(f |GS

)

for any f ∈ K(G), the limit being taken over all S ⊇ S0, and this limit will exist
(because the support of f will be contained within one of the GS , so in fact the
sequence is ultimately constant).

6) (extension of 5 to summable functions). Say, for each i, we have a
summable function fi on Gi with the property that fi|Hi = 1 for all but finitely
many i. Define a function f on G by f((gi)) =

∏
i fi(gi) (a finite product!).

Then the integral of f |GS is just
∏

i 6∈S µi(fi) and if the infinite product con-
verges absolutely (for example if f = χHi for all but finitely many i), we will
have µ(f) =

∏
i µi(fi).

7) If for each i we have a continuous summable fi : Gi → C with the property
that f̂i : Ĝi → C is also continuous and summable, and if furthermore fi = χHi

for all but finitely many i, then f =
∏

i fi makes sense (and is a finite product
wherever it is evaluated), it’s continuous and summable, and f̂ : Ĝ→ C is just∏

i f̂i, which is also continuous and summable.
8) Finally, if we fix Haar integrals on Gi and Ĝi for all i with the property

that the integrals are self-dual (that is ˆ̂
f(x) = f(−x), so the positive constant

that may be involved is in fact 1 for each i) and if µi(Hi) = 1 = µ̂(H∗
i ) for all

but finitely many i, then the product Haar integrals are also self-dual.

Recall last time: we had a collection Gi (i ∈ I) of locally compact Hausdorff
topological groups, a finite set S0 ⊆ I, and, for all i 6∈ S0 (so, for all but finitely
many i), we had a compact open subgroup Hi of Gi.

Given this data we can form G :=
∏′

iGi, the restricted product of the Gi

with respect to the Hi. As a group it’s the elements (gi) ∈
∏

iGi such that gi ∈
Hi for all but finitely many i (where this finite set is allowed to vary). The easiest
way to think about the topology is to realise that GS0 :=

∏
i 6∈S0

Hi ×
∏

i∈S0
Gi

is an open subgroup, with the usual product topology on it. It turns out that
G is also locally compact and Hausdorff, its Haar measure can be thought of as
“the product of the Haar measures on Gi” as long as these are normalised such
that µ(Hi) = 1 for all but finitely many Hi, and the Pontrjagin dual of G is
just the restricted product of the Ĝi with respect to H∗

i , the annihiliator of Hi

in Ĝi.

In fact we only need two examples for Tate’s thesis and in both cases the Gi

(and hence G) will be abelian.
5.2: The adeles and ideles.
Let k be a number field, so a finite extension of Q. [The theory works just

as well for function fields—that is, finite extensions of Fp(T ), but I’d like to
emphasize the number field case, especially as I was too lazy to finish the proof
of the meromorphic continuation of the local zeta functions in the function field
case!]

Let I be the following set: there’s an element of I for each non-zero prime
ideal P of R, the algebraic integers in k, and there’s also an element of I for
each equivalence class of field homomorphisms τ : k → C, with τ ∼ τ .
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Recall from ages ago that each element of I gives us an equivalence class of
norms on k; the prime ideals P give us P -adic norms, and the maps k → C give
us norms induced from the standard norm on C.

The elements of I are called places of k, and a typical element of I is tradi-
tionally denoted v (for valuation, I guess, which is another word for norm). For
each v ∈ I let Gv denote the completion kv of k with respect to the norm in-
duced by v. Let S0 denote the norms coming from k → C—these are called “the
infinite places” [this set is empty in the function field case, and finite but non-
empty in the number field case]. For v 6∈ S0 (a “finite place”) the completion
kv = kP of k has a ring of integers Rv; let this be Hv.

Define the adeles of k, written Ak, to be the restricted product of the kv

with respect to the Rv.

Let’s write this out explicitly in the case k = Q: we have AQ is the subgroup
(in fact it’s easily checked to be a subring) of

Q2 ×Q3 ×Q5 × . . .×R

consisting of (g2, g3, g5, . . . , g∞) with the property that gp ∈ Qp for all p, and
g∞ ∈ R, and, crucially, that gp ∈ Zp for all but finitely many p.

Indeed in the general case one can easily check that the topological group Ak

has a natural ring structure induced by componentwise multiplication (because
Hi is a subring of Gi for all finite places i).

That’s the first construction we will use. As you can see, the finite and the
infinite places are behaving quite differently (the infinite places have no Hv) and
it’s common to write

Ak = Af
k × k∞

with Af
k the “finite adeles”, namely

∏′
P kP , the restricted product over all

the finite places, and k∞ the “infinite adeles”, namely the finite product
∏

[τ ] kτ ,
with [τ ] = {τ, τ} the equivalence class of τ , and where kτ = R if τ : k → R and
kτ
∼= C if [τ ] = {τ, τ} with τ : k → C with image not landing in R.
An absolutely crucial observation is that the “diagonal map” k →

∏
v kv

sending λ to (λ, λ, λ, . . .) has image landing in Ak; this is because any λ ∈ k
can be written λ = a/b with a, b ∈ R, the integers of k, and b 6= 0, and the
factorization of (b) into prime ideals only involves finitely many prime ideals of
R, and if S is S0 union this finite set then λ ∈ Hv = Rv for all v 6∈ S.

That’s the first construction we will use. The second is the ideles of k, which
I’ll denote A×

k , and which is the restricted product of the k×v with respect to
the R×v . This is a topological group. As the name indicates,

Lemma. The ideles are the units in the ring of adeles.
Remark. Note that this is an algebraic statement; it says nothing about the

toplogies of the adeles or ideles.
Proof. If (gv) ∈ Ak has an inverse, then certainly all of the gv are non-

zero and the inverse is (g−1
v ). For both (gv) and (g−1

v ) to be in Ak we need
gv ∈ Rv for almost all v (n.b. “almost all” means “for all but finitely many”)
and g−1

v ∈ Rv for almost all v. This means gv ∈ R×v for almost all v, which is
precisely the assertion that (gv) is an idele. �
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Historical note: ideles were invented/discovered before adeles. Ideles were
introduced by Chevalley, and he actually called them “ideal elements”, which
he abbreviated “id.ele.” which became “idele”. It was later realised that they
were the units of a ring, which Tate calls the “ring of valuation vectors” in his
thesis.

It was Weil that introduced the terminology “adele”, for “additive idele”. If
you look at Serre’s CV (for example at the beginning of Vol. 1 of his collected
works) you’ll see that his mother’s name was Adele, but Serre once told me
that he had nothing to do with the introduction of the terminology, and merely
found it ironic that his mother’s name ended up being used in mathematics.

Pedantic/irrelevant remark (which we won’t use later). The inclusion A×
k →

Ak is continuous (because a basic open neighbourhood of the element (1, 1, 1, 1, . . .)
in Ak is

∏
v Nv with Nv = Rv for all but finitely many v, and hence its pullback

to A×
k will contain

∏
v Mv with Mv = R×v for all but finitely many v). How-

ever the inclusion is not a homeomorphism onto its image; the problem is that∏
v<∞R×v ×

∏
v|∞K×

v is open in the ideles but not in the subspace topology
(because any neighbourhood of 1 in the adeles will contain elements of the form
(1, 1, 1, 1, . . . , 1, π, 1, . . . , 1)

(with π in the vth place and a uniformiser in kv), for all but finitely many
v. The way to fix this up turns out to be the trick I mentioned earlier: give
Ak ×Ak the product topology and embed A×

k into this product by sending u
to (u, 1/u); now the restricted product topology on A×

k is indeed the subspace
topology.

An absolutely crucial function on the ideles of a number field is the norm
function. For any completion kv of a number field we have written down a
canonical norm (the one where the norm of α is how much an additive Haar
measure is “stretched” under multiplication by α). Let’s call this norm |.|v now.
Note that for v finite and uv ∈ R×v we have |uv|v = 1. Hence there is a function

|.| : A×
k → R>0

defined by
|(gv)| =

∏
v

|gv|v

with the usual remark that, for any given v, this is a finite product. I’ll
refer to this function as “the global norm” but note that it’s a continuous group
homomorphism rather than a norm on a field in the sense we talked about
earlier.

Unsurprisingly, given that a Haar integral on Ak can be thought of as a
product of local Haar integrals, it turns out that this norm on A×

k is just the
factor by which multipliaction by an idele is stretching the additive Haar integral
on the adeles.

Our goal, of course, is to develop some machinery to work with the following
sort of idea. Let me just stick to the case k = Q. Let’s define a function on the
ideles A×

Q thus: for p a prime number, define fp on Qp to be the characteristic
function of Zp. Define f∞ on R to be e−πx2

. Define f : A×
Q → C by f((gv)) =
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∏
v(fv(gv)) (a finite sum). Now consider the function

s 7→
∫
A×

Q

f(x)|x|sdµ∗(x) (1)

where µ∗ denotes the Haar measure on the ideles which is the product of the
local Haar measures µ∗ on Q×

p and R×. This integral will not converge for a
general s ∈ C; the integrand isn’t L1. A sufficient condition for the integrand to
be L1 is that all the local integrands are L1 and furthermore that the product of
the local integrals is absolutely convergent. But we already worked these local
integrals out, at least at the finite places: at the finite places we have∫

Q×
p

fp(x)|x|spdµ∗(x)

and when we were meromorphically continuing local zeta functions we checked
that this was L1 for Re(s) > 0 and that its value was

∑
j≥0 p

−js = (1− p−s)−1.
At the infinite place, I skipped the calculation so let’s do it now: we need to
compute ∫

R×
e−πx2

|x|s(dx/|x|)

= 2
∫ ∞

0

e−πx2
xs−1dx

and setting y = πx2 this is

π−1

∫ ∞

0

e−y(y/π)
s−2
2 dy

= π−s/2Γ(s/2)

by definition of the Γ function, if Re(s) > 0 (and the integral doesn’t converge
absolutely at zero if Re(s) ≤ 0). Hence a necessary and sufficient condition for
the adelic integral (1) to converge is that

∏
p(1 − p−s)−1 converges absolutely,

and for Re(s) > 1 this will be the case because the product is just
∑

n≥1 n
−s =

ζ(s). So for Re(s) > 1 the adelic integral (1) will converge, and it will converge
to

ξ(s) := π−s/2Γ(s/2)ζ(s).

I proved in the second lecture that ξ(s) had a meromorphic continuation to
s ∈ C and satisfied ξ(s) = ξ(1 − s). We now have an adelic interpretation of
the statement.

If we can also give an adelic proof of ξ(s) = ξ(1 − s), by interpreting our
original proof adelically, one might hope that the idea will generalise to all
number fields. Indeed, our main theorem will be the meromorphic continuation
of a wide class of integrals on idele groups, and we will recover a theorem of
Hecke whose original proof was a real tour de force.

We have chosen Haar measures on kv and isomorphisms kv = k̂v in such
a way that the Fourier inversion theorem on kv is true on the nose (the fudge
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factor constant is 1). For each v our map kv → k̂v was of the form x 7→ (y 7→
e2πiΛv(xy)) where Λv, which we called Λ at the time, was some explicitly given
map kv → R/Z. For Qp it was Qp → Qp/Zp → Q/Z → R/Z, the middle map
being called q. For kP /Qp finite it was the trace map kP → Qp followed by
the above map. For the reals it was x 7→ −x sending R to R/Z and for the
complexes it sent (x+ iy) to −2x.

Note that for all finite v, we see that Rv is in the kernel of Λv. So, by the
usual trick, we get a map

Λ : Ak → R/Z

defined by
Λ((gv)) =

∑
v

Λv(gv)

which is, as usual, a finite sum. I could now “cheat” and say that there was an
induced map

Ak → Âk

sending x to y 7→ e2πiΛ(xy), which was a restricted product of isomorphisms, and
is hence an isomorphism. But let me make a very pedantic remark: this last
statement is true, but not completely formal: something needs to be checked.
The problem is that Âk is the restricted product of the k̂v with respect to the
R∗v, the annihiliators of Rv. [Reminder: for G an abelian LCHTG and H a
closed subgroup, H∗ ⊆ Ĝ is the characters of G which are trivial on H.]

Hence to make sure that we really do get a continuous map Ak → Âk this
way, it would suffice to check that our fixed local isomorphisms kv = k̂v sent
Rv to R∗v for all v. But they don’t! By definition, R∗v is the characters of kv

that vanish on Rv, whereas our local isomorphism sends r ∈ Rv to the function
y 7→ e2πiΛv(ry), so maps Rv to the functions which vanish on {x ∈ kv : Λv(xy) =
0∀y ∈ Rv} and this is the “inverse different” of kv, which is not always equal
to Rv. However, an explicit calculation shows that if v is unramified in the
extension k/Q then this inverse different is Rv again (this calculation would
take me too far afield at this point, unfortunately), and hence Rv becomes
identified with R∗v for all but finitely many v, which is good enough to ensure
that we get an isomorphism Ak → Âk this way.

Hence for f ∈ L1(Ak) we can (using our fixed choice of normalisations of
Haar integrals and our fixed map Ak → Âk) consider its Fourier transform as
a function on Ak again. Explicitly

f̂(x) =
∫
f(y)e−2πiΛ(xy)dµ(y).

And because our local Fourier transforms satisfied Fourier inversion on the nose,
we check (by using a non-zero test function which is a product of L1 functions
on the factors) that

ˆ̂
f(x) = f(−x)

for f ∈ L1(Ak).
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Let me finish this chapter with some comments on the relationship between
the adeles of a number field and the adeles of a finite extension of this field. I’ll
stick to the case of k/Q but what I say is true for general extensions.

We showed, when analysing extensions of norms to finite field extensions,
that a given norm |.| on the bottom extends in at least one, but at most finitely
many ways to a norm on the top. We showed something more precise, in fact—
we showed that if L/K was a finite extension of fields of characteristic zero (or
more generally a finite separable extension), and |.| was a norm on K, and K̂
was its completion (note: this hat has nothing to do with Pontrjagin duality),
then L ⊗K K̂ was a finite sum of fields, and these fields were precisely the
completions of L at the norms on L which extend |.|.

Applying this to the extension k/Q, we find that k⊗QQp will be isomorphic
to the direct sum of all the completions of k at all the norms extending the p-
adic norm on Q, and one can re-interpret the classical result “Σieifi = [k : Q]”
(with (p) =

∏
i P

ei) as simply saying that these extensions must just be the
P -adic norms for p ∈ P .

[Alternatively one can prove this directly, as is done in Cassels’ book, and
then derive this formula

∑
i eifi = [k : Q] from it; there is a little work to be

done here though, which I won’t do]. The upshot is that

k ⊗Q Qp = ⊕p∈P kP

and the analogous result at infinity is that

k ⊗Q R = ⊕[τ ]kτ .

Now the closure of R, the integers of k, in ⊕p∈P kP , is just its completion in
each component, which is

∏
P RP , and from this it follows that

Ak = AQ ⊗Z R = AQ ⊗Q k.

More generally one checks that for L/k a finite extension of number fields, the
same proof gives that AL = Ak ⊗k L.

One can also deduce from these decompositions that traces and norms “can
be computed locally”. For example

Trk/Q(λ) = Trk⊗QQp/Qp
(λ) =

∑
p∈P

TrkP /Qp
(λ)

and similar results for norms, and similar results at the infinite places too.
Chapter 6: The main theorem.
As you have surely realised by now, our strategy is as follows. We’re going

to define “global zeta integrals” as integrals of f(x).|x|s on the ideles, for f
carefully-chosen functions. We are going to use things we’ve proved in the
course to meromorphically continue these functions to all s ∈ C. In the local
case these meromorphic continuation proofs were of the form “check it for one f
and deduce it for all f by some trick involving Fubini’s theorem”. In the global
setting the result is deeper and we will obtain our meromorphic continuation
from some adelic version of Poisson summation.
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Recall that the crucial fact in the proof of the meromorphic continuation of
the Riemann zeta function was that θ(1/t) = tθ(t) for some function θ, and the
proof of that latter fact came from some concrete form of the Fourier inversion
theorem, which was just the statement that the Fourier series of a periodic
function F (x) did in fact converge to F (x).

Tate’s insight, which has run and run, is that in this adelic setting, the
correct analogue of the set R/Z is the set Ak/k. Let me run off a few things we
know about the inclusion Z → R. Firstly, Z is discrete, R is locally compact, R̂
(the Pontrjagin dual) is isomorphic to R again, and if we use the isomorphism
x 7→ (y 7→ e−2πixy) to identify R with R̂ then we see that the annihilator Z∗ of
Z (that is, the elements r ∈ R such that e−2πirn = 1 for all integers n) is just
Z again.

Hence the Pontrjagin dual of the discrete group Z is the compact group
R/Z, and the dual of the exact sequence

0 → Z → R → R/Z → 0

is itself. Finally the action of Z on R admits a natural “fundamental domain”
(that is, a subset D of R, namely [0, 1), with the property that the induced map
D → R/Z is a bijection), and the measure of D, with respect to the standard
Haar measure on R, is 1.

We’re going to prove analogues of all of these things today, with Z replaced
by a number field k, and R replaced by Ak. For example we’ll soon see that
k embeds into Ak as a discrete subgroup. So what will be the analogue of our
proof of the functional equation of the theta function?

When thinking about the θ function, we obtained our function F (x) orig-
inally as F (x) =

∑
n∈Z f(x + n), with f(x) = e−πt2x2

a function on R. The
analogue of f in this setting will be a carefully-chosen function on Ak which
is sufficiently “rapidly decreasing”, and such that for all adeles x, the sum∑

λ∈k f(x + λ) converges absolutely. We then apply Fourier inversion to get
some fact, and show that this fact is precisely what is needed to give us the
meromorphic continuation and functional equation of the Riemann zeta func-
tion and a gazillion other functions too, all of which come out in the wash.

Historical interlude (non-examinable).
The theory of automorphic forms was really getting off the ground in the

1950s, when Tate’s thesis was written, but the classical theory tended to revolve
around considering functions on groups like GLn(R) which were invariant, or
transformed in some simple way, under the subgroup GLn(Z). In the 1950s
there was a move away from this setting to the adelic setting of functions on
GLn(Ak) which were invariant under the discrete subgroup GLn(k), and this
insight enabled one to reformulate various notions such as Hecke operators in a
purely local form. Indeed, Hecke operators could now be interpreted as operators
in a purely local setting coming from the representation theory of GLn(kv),
giving a huge new impetus to the representation theory of p-adic groups.

There were practical consequences too in that the theory of Hecke operators
for Hilbert modular forms was very difficult to set up globally, if the integers of
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the base field were not a PID, because no natural analogue at P of the matrix(
p 0
0 1

)
∈ GL2(Q) existed if P was a non-principal prime. The adelic reformula-

tion of the theory removes all of these problems because even though P is not
a principal ideal, the element (1, 1, 1, 1, . . . , π 1, 1, . . .) (with π a uniformiser at
P ) is still a perfectly good idele (indeed this was one of Chevalley’s motivations
for introducing these things).

6.1. The additive theory, and the adelic Poisson summation for-
mula.

Let’s prove that Z is to R as k is to Ak. Here’s the first big reason for
believing this:

Proposition. The subspace topology on k coming from the embedding
k → Ak is the discrete topology (all sets are open). And the quotient Ak/k is
a compact topological space.

We’ll prove this soon; first we’ll construct a fundamental domain for k in
Ak, analogous to [0, 1) in R. Let’s do this by trying to understand how k fits
into Ak “at the finite places”, and then thinking about the infinite places.

Consider the group that I called GS0 when setting up the general theory of
restricted products: this is just∏

v<∞
Rv ×

∏
v|∞

kv.

The intersection of k (embedded diagonally) with this group is the elements
of k which are integers at all finite places. If 0 6= λ ∈ k and we write the
fractional ideal (λ) as

∏
i P

ei
i , and if one of the ei is negative, then we have

λ 6∈ RPi , by definition. Hence the intersection

k ∩

∏
v<∞

Rv ×
∏
v|∞

kv


is just the elements of k which generate integral ideals, which is just another
way of saying the (global) integers R of k.

Now let’s think about what’s going on in
∏

[τ ] kτ , the infinite adeles. Note
that this space just looks like R⊕R⊕ . . .⊕R⊕C⊕C⊕ . . .⊕C, where there
are, say, r copies of R, and s copies of C, and we also note that the number
of field homomorphisms k → C is just r + 2s (recalling that we only get one
completion for each pair of complex conjugate maps k → C).

Now if e1, e2, . . . , en is a Z-basis for the ring of integers R in k, then the defi-
nition of the discriminant of k is just (up to sign) the square of the determinant
of the square matrix (σi(ej))i,j , where σi runs through the field maps k → C.
Let us write |d| for the absolute value of the discriminant of k/Q. For later use
it will be helpful to know

Lemma. The image of R in k∞ =
∏

[τ ] kτ (embedded diagonally) is a lattice,
and, with respect to our choices of Haar integrals on the kτ , the measure of a
fundamental domain for this lattice is just

√
|d|, with d the discriminant of k.

Remark. A fundamental domain for a lattice Λ ⊆ Rn is just a connected
set S with non-empty interior such that every element of Rn can uniquely be
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written λ+ s with λ ∈ Λ and s ∈ S. One way of constructing such a thing is to
write down a basis e1, e2, . . . , en for Λ and let S be {

∑
i λiei} with 0 ≤ λi < 1

for all i—a “fundamental parallelogram” for Λ.

Proof of lemma. If k is totally real (that is, all k → C land in R) then the
result is immediate: the volume of the fundamental domain of a lattice in Rn is
just the absolute value of the matrix whose entries form a basis for the lattice.
But if k has complex places then we have to be a little careful.

The problem is that if σ is a map k → C whose image does not land in R,
and if σ(ej) = x+ iy, then in the usual discriminant calculation (which uses all
embeddings, both σ and σ) we will see a contribution from x + iy and x − iy.
But in the infinite adele computation we only see σ, taking values in something
we can thinking of as R2, giving us coordinates of x and y. Now we have(

x+ iy
x− iy

)
=
(

1 i
1 −i

)(
x
y

)
and the absolute value of the determinant of

(
1 i
1 −i

)
is 2.

So with respect to the naive measure on the infinite adeles, (which is dxdy
at the complex places) the volume of a fundamental domain for the lattice R
will be

√
|d|.2−s, because we lose a factor of 2 at each complex place. However

the normalisation of Haar measure that we chose for the complex infinite places
was not the naive one—we inserted a factor of 2! Hence with our fixed choice
of Haar measure the volume is again

√
|d|. �

Now it’s convenient to make the following definition. Define D∞ to be the
following fundamental parallelogram for the lattice R in k∞ =

∏
v|∞ kv: choose

a Z-basis (ej)1≤j≤n for R and consider the ej as elements of k∞; they form a
lattice (because the discriminant of a number field is non-zero!). Define D∞ to
be the “box” whose typical element is

∑n
j=1 λjej with 0 ≤ λj < 1. Note that

the closure D∞ of D∞ is obtained by letting the λj range through [0, 1], and
the interior Do

∞ is obtained by restricting to λj in (0, 1). In particular D∞ has
compact closure and non-empty interior.

Now let’s define D ⊆ Ak to be the product Df × D∞, with Df ⊆ Ak,f

simply being
∏

v Rv. Note that Df is an open subgroup, and hence a closed
subgroup, of Ak,f , and hence the closure of D in Ak is simply Df ×D∞, which
is compact, and the interior is Df ×Do

∞. I now claim that D is a fundamental
domain for the action of k on Ak. More precisely,

Lemma. Any element of Ak can be written uniquely as d + λ with d ∈ D
and λ ∈ k.

Proof. Given an adele (gv) of k, it is in RP at all but finitely many finite
places P , by definition. Choose some 0 6= b ∈ R whose prime factorization
contains a sufficiently high power of each of the P for which gP isn’t integral
to ensure bgP ∈ RP for all P . Now for each prime ideal P dividing (b), say P e

exactly divides b and consider the equation a ≡ bgP modulo P e. By the Chinese
Remainder Theorem these equations can all be solved at once within R, and we
set λ0 = a/b ∈ k. Now gP − λ0 ∈ RP for all P |(b) and hence for all P , because
gP and a/b are integral at all other finite places.
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We have now rigged it so that (gv)−λ0 has finite part in Df , but its infinite
part might not be in D∞; however this can be fixed by subtracting an appro-
priate λ1 ∈ R (because D∞ is visibly a fundamental domain for R acting on
k∞).

We see that we have written Ak = D+k now, and all that is left is to prove
that this decomposition is unique. But this is easy: if d1 + λ1 = d2 + λ2 then
t := d1 − d2 = λ2 − λ1 ∈ (D −D) ∩ k, and looking at the finite places we see
t ∈ k is in Df −Df = Df is integral at all finite places, so t ∈ R, and looking
at the infinite places we see t = 0 because 0 is the only element of R =

∑
i Zei

in D∞ −D∞ = {
∑n

i=1 λiei : −1 < λi < 1}. �
We can now prove something promised earlier:

Proposition. k ⊆ Ak is discrete and the quotient is compact.
Proof. Discreteness follows because D has a non-empty interior. More pre-

cisely, if d is any adele in the (non-empty) interior Do of D then Do − d is an
open set in Ak containing 0, and conversely if λ ∈ k is in Do − d then we have
d′ − d = λ for d, d′ ∈ D and hence d′ = d + λ, so λ = 0. Hence Do − d is an
open set in Ak whose intersection with k is just {0} and hence for any α ∈ k,
Do − d+ α is an open set in Ak whose intersection with k is {α}.

Compactness follows because Ak/k is a continuous image of D; the lemma
implies that the map is surjective. �

Now let’s prove Ak/k-analogues of the other R/Z-results we mentioned ear-
lier.

Proposition. The measure of (the characteristic function of) D (with re-
spect to our fixed choice of Haar measuse on Ak) is 1.

Proof. D = Df ×D∞. We computed the measure of D∞ as
√
|d|. The way

we normalised our local Haar measures at the P -adic places was such that if RP

is the integers of kP then µ(RP ) = p−m/2, where pm was the (absolute value
of the) discriminant of kP /Qp. But the global discriminant of k/Q is just the
product of the local discriminants, and hence the measure of Df with respect to
our choices is |d|−1/2. Hence the measure of D is the product of the measures
of Df and D∞, which is 1! �

Proposition. Our fixed isomorphism Ak → Âk (defined by x 7→ (y 7→
e2πiΛ(xy))) sends the closed subgroup k isomorphically onto the closed subgroup
k∗ of characters of Âk which are trivial on k.

Reminder. Our fixed map R → R̂ sends x to y 7→ e−2πixy, so sends Z to
the characters y 7→ e−2πiny for n ∈ Z. The R/Z analogue of this proposition
is the statement that the intersection of the kernels of all of these characters is
precisely Z again.

Proof of proposition. We need to check that the set of characters y 7→
e2πiΛ(ry), for r ∈ k, is precisely the set of characters that vanish on k. So we
need to check

(i) If α ∈ k then Λ(α) = 0
(ii) If y ∈ Ak and Λ(αy) = 0 for all α ∈ k then y ∈ k.
Recall Λ((gv)) =

∑
v Λv(gv), a finite sum, and the Λv are “trace down to

Qp or R, and then use q : Qp/Zp → Q/Z or x 7→ −x : R → R/Z”.
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(i) is true because Λ is a sum of local traces, and if α ∈ k then Trk/Q(α) ∈ Q,
and this reduces (i) to the case k = Q. It’s clearly true that Λ(n) = 0 for n ∈ Z
(because all the Λp are zero), so by additivity it suffices to check that Λ(1/pe)
vanishes for all p prime and e ≥ 1. Now finally I realise why Tate inserted the
minus sign in his definition of his local Λ for the reals: we have Λq(1/pe) = 0
for all q 6= p, we have Λp(1/pe) = 1/pe and we have Λ∞(1/pe) = −1/pe, and
the sum in R/Z is zero. So (i) is proved.

For (ii) we use a trick. We have proved Ak/k is compact, so if k∗ denotes the
annihilator of k in Âk, and if we identify Âk with Ak via our fixed isomorphism,
then we know k ⊆ k∗ from (i). Now k∗ is the annihilator of k and hence the
Pontrjagin dual of Ak/k which we’ve seen is compact. Hence k∗ is discrete, and
a closed subgroup of Ak. So k∗/k is discrete in Ak/k, and closed too, so it’s
compact, so it’s finite.

So for α ∈ k∗ there’s some positive integer n such that nα = β ∈ k. But
β/n ∈ k and β/n−α is now a torsion element of Ak, which contains no torsion
other than zero. So α = β/n ∈ k. �

So now we really see that the inclusion k ⊂ Ak is very formally similar to
the inclusion Z ⊂ R. In particular we see that the Pontrjagin dual of Ak/k
is k∗ = k (with the discrete topology), and hence the Pontrjagin dual of k as
Ak/k (analogous to the Pontrjagin dual of Z being R/Z). But in some sense
the advantage of the adeles over the reals is that the adeles “can be broken
into local factors”, and the arithmetic of k is easier than the arithmetic of its
integers.

Now we prove the analogue of the transformation property of the θ function.
Instead of working with (the analogue of) f(x) = e−πt2x2

we set things up, for
the time being at least, in more generality: we’ll use a general function f for
which we’ll just assume everything converges.

First we observe that we have a natural Haar measure on the compact group
Ak/k: a function on Ak/k can be thought of as a “periodic” function on Ak

(that is, one satisfying f(x+α) = f(x) for α ∈ k) and, for a continuous function
of this type, one checks easily that defining µ(f) =

∫
D
f(x)dµ(x) where µ is our

fixed Haar measure on the adeles but the integral is only over our fundamental
domain D, gives us a Haar measure on Ak/k.

On the other side, if we endow k with the discrete topology then a natural
Haar measure is just counting measure: a continuous function with compact
support is just a function f : k → C which vanishes away from a finite set, and
we can define µ(f) =

∑
α∈k f(α). With these choices of Haar measure on k and

Ak/k, what is the constant in the Fourier inversion theorem? In other words,
if we invert F : k → C twice, we’ll get x 7→ cF (−x). What is c?

Lemma. c = 1.
Proof. We just need to check this for one non-zero function. So let’s let

F be the characteristic function of {0}. Then F̂ is the function on k̂ = Ak/k
which sends a character χ : k → S1 to

∑
α∈k F (α)χ(α) = χ(0) = 1. Hence F̂ is

the constant function on Ak/k, sending everything to 1. Now we don’t have to

evaluate ˆ̂
F everywhere, we only need to evaluate it at 0, regarded as the trivial
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character of Ak/k. By the choice of our Haar measure on Ak/k, we see

ˆ̂
F (0) =

∫
D

1dµ(x)

and we computed the integral of D as being 1, so ˆ̂
F (0) = F (0), and hence c = 1.

(new lecture) Summary of where we are:
1) k a number field. We have fixed an identification of Ak with its Pontrja-

gin dual Âk. We checked that this isomorphism sends the closed (and discrete)
subgroup k of Ak isomorphically onto its annihiliator k∗ (recall that the anni-
hilator of k is just by definition the elements of Âk which vanish on k). We
deduce from this that the Pontrjagin dual of Ak/k is isomorphic to k (because
it’s canonically isomorphic to k∗). We checked that k was a discrete subgroup of
Ak and that the quotient Ak/k was compact. I remarked (and indeed stressed)
that this was very much analogous to Z ⊂ R being discrete and R/Z being
compact, the identification of R with its dual sending Z to its own annihilator,
and Z hence being the dual of R/Z.

2) We fixed a choice of Haar measure on Ak/k, namely
∫

D
, where D is

our fundamental domain for the action of k on Ak (analogous to [0, 1) in R).
This choice has the nice property that the integral of the constant function is 1
(because µ(D) = 1). We fixed a choice of Haar measure on k with the discrete
topology, namely the “counting measure”. We computed enough of the Fourier
transform of the Fourier transform of the characteristic function of {0} on k to
deduce that the Fourier inversion theorem holds in this situation with constant
term equal to 1. I remarked that, much to my annoyance, I did not know the
full proof of the Fourier inversion theorem in this generality (but that it was
certainly true, because it was true for all locally compact abelian groups, it’s
just that the proof involves too much analysis for me.)

Now a reminder of something from long ago. The Fourier inversion the-
orem on R/Z, when unravelled, just tells us the classical fact that if F is
a continuous function on R/Z, viewed as a periodic function on R, and if
am =

∫
D
F (x)e−2πimxdx is its mth Fourier coefficient, where m ∈ Z and

D = [0, 1), and if
∑

m |am| converges, then F (x) =
∑

m∈Z ame
2πimx. We ap-

plied this very early on to a function F (x) of the form F (x) =
∑

n∈Z f(x+ n)
where f was a function which was rapidly decreasing, and we deduced∑

n∈Z

f(n) = F (0) =
∑
m∈Z

am.

And we computed am using this trick:

am =
∫ 1

0

∑
n

f(x+ n)e−2πimxdx

=
∫ 1

0

∑
n

f(x+ n)e−2πim(x+n)dx

=
∫
R

f(x)e−2πimxdx = f̂(m)
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and so
∑

n∈Z f(n) =
∑

m∈Z f̂(m) as long as everything converges—this is the
classical Poisson summation fomula.

Let’s now do exactly the same thing, but on Ak/k instead of R/Z.
If F ∈ L1(Ak/k) (that is, F is a function on the adeles and F (x+α) = F (x)

for α ∈ k, and furthermore if
∫

D
F (x)dµ(x) < ∞), then let’s define F̂ : k → C

by

F̂ (α) =
∫

D

F (x)e−2πiΛ(xα)dµ(x).

Lemma. With notation as above, if
∑

α∈k |F̂ (α)| converges, then

F (x) =
∑
α∈k

F̂ (α)e2πiΛ(αx).

Proof. This is just the Fourier inversion theorem spelt out, together with
the fact that c = 1, which we proved last time. �

Corollary. F (0) =
∑

α∈k F̂ (α). �

Remark. As I’ve mentioned already, I’m slightly “bothered” by the fact that
I’ve not actually proved the Fourier inversion theorem. However the proof for
R/Z is not hard, and the proof for Qp can be done by hand, and it looks to me
like Ak/k is built up from things that look like this, and so I wonder whether one
would be able to give a “hands-on” proof, avoiding all the functional analysis
which I had to assume.

One last explicit definition: if f ∈ L1(Ak) then, surprise surprise, define
f̂ : Ak → C by f̂(y) =

∫
Ak

f(x)e−2πiΛ(xy)dµ(x), the usual Fourier transform,
once we have identified Ak with its dual.

Theorem (Poisson summation, revisited.) If f ∈ L1(Ak) is continu-
ous, if

∑
α∈k f(x + α) converges absolutely and uniformly for x ∈ Ak, and if∑

α∈k |f̂(α)| also converges, then∑
β∈k

f(β) =
∑
α∈k

f̂(α).

Proof. (c.f. section 1.2.) Define F : Ak → C by F (x) =
∑

β∈k f(x + β).
Now by assumption the sum converges uniformly on Ak, so F is continuous
and periodic. Hence F , considered as a function on Ak/k, is continuous with
compact support and is hence L1. Moreover, for α ∈ k we have (c.f. formula for
am in 1.2)
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F̂ (α) =
∫

D

F (x)e−2πiΛ(αx)dµ(x)

=
∫

D

∑
β∈k

f(x+ β)e−2πiΛ(αx)dµ(x)

=
∑
β∈k

∫
D

f(x+ β)e−2πiΛ(αx)dµ(x)

=
∑
β∈k

∫
D

f(x+ β)e−2πiΛ(α(x+β))dµ(x)

=
∫
Ak

f(x)e−2πiΛ(αx)dµ(x)

= f̂(α)

[where the interchange of sum and integral is OK because the sum converges
uniformly on D, which has finite measure, and I’ve also used the fact (proved
earlier) that k ⊂ ker(Λ), which I proved when showing k = k∗.] Hence∑

β∈k

f(β) = F (0)

=
∑
α∈k

F̂ (α)

=
∑
α∈k

f̂(α)

�

6.2 The multiplicative theory.
We just showed that k ⊆ Ak was discrete, with compact quotient. We’ll now

show that k× ⊆ A×
k is discrete, but perhaps one doesn’t expect the quotient to

be compact, because R×/Z× ∼= R>0 isn’t compact.
In fact here’s a proof that A×

k /k
× isn’t compact. Recall that we have a norm

function |.| : A×
k → R>0, defined as a product of local norms.

Lemma. If α ∈ k× then |α| = 1.
Proof. Lazy proof: Ak = AQ ⊗Q k and |.| factors through the norm map

Ak → AQ (if you believe that the P -adic norms are the only norms on k
extending the p-adic norm on Q, which is true and not hard and in Cassels,
but I didn’t prove it). This reduces us to the case k = Q. In this case, by
multiplicativity of the norm, we need only check the cases α = −1 and α = p
prime.

Now α = −1 is a global unit so has local norm equal to 1 everywhere, and
α = p also has global norm 1 because |α|q = 1 for all q 6= p, |α|p = p−1 and
|α|∞ = p, so the product of the local norms is 1. �

Remark. It’s not hard to give a direct computational proof for general k.
Tate also notes that there’s a “pure thought” proof which goes as follows: |α| is
the factor by which additive Haar measure on the adeles is scaled, and because
µ(D) = 1 we will have |α| = µ(αD). But αD is a fundamental domain for
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αk = k and it’s not hard to check now that µ(αD) must then be µ(D) [consider
αD = ∪β∈k(αD ∩ (D+ β)) etc to see that fundamental domains have the same
measure.]

Now it’s clear that |.| : A×
k → R>0 is surjective (it’s even surjective when

you restrict to one infinite place), so certainly one can’t hope that A×
k /k

× is
compact (because it has R>0 as a homomorphic image).

Definition. Let J be the kernel of |.|, with the subspace topology coming
from A×

k . We have “dropped one factor of R>0” going from A×
k to J . But it’s

enough, because
Proposition. k× is a discrete subgroup of J and J/k× is compact.
Proof. We follow the same strategy for showing k is discrete in Ak, but we’ll

need some standard facts about class groups and unit groups of number fields,
which of course I’ll assume. In fact the proposition is equivalent to the union of
the following statements: the rank of the unit group of k is r+ s−1 (with r the
number of real and s the number of complex places), the regulator is non-zero
(which comes out of the standard proof of the unit group rank statement), the
number of roots of unity in k is finite, and the class number of k is finite.

Don’t take the following proof too seriously: we don’t really need the precise
volumes that come out. Just believe that the proof is “the same as in the
additive case, but messier.”

So here’s how the argument goes (c.f. the construction of D). Define Ẽf =∏
v<∞R×v ⊂ (Af

k)×. (I’m putting tildes on because the Ẽ I’m about to build
won’t quite be a fundamental domain). Then k× ∩ Ẽf is the elements of k×

that are units at all finite places, and hence when written a/b have (a) = (b);
this is just the units R× of R ⊂ k. Our choices of Haar measure imply that
µ∗(Ẽf ) = |d|−1/2.

At the infinite places we take logs: the product of the maps log(|.|) : k×τ → R
give us a map R× → Rr+s whose image lands in the hyperplane consisting
of vectors the sum of whose entries is zero. Now it’s a standard result that
the image of R× is a lattice in this hyperplane, and the kernel is the roots of
unity. Let L̃∞ be a fundamental domain for this lattice, and we let Ẽ∞ be the
pre-image of L̃∞ in ker(|.|) : k×∞ → R>0; then Ẽ := Ẽf × Ẽ∞ has measure
|d|−1/2.2r(2π)s Regk.

Explanation: the discriminant factor comes from the finite places, the 2r

and (2π)s coming from the units at the infinite places, which were killed by the
logs, and Regk is, by definition, the volume of the fundamental domain of L̃∞,
which is by definition the regulator of the number field and is known to be non-
zero and finite. Moreover, Ẽ is almost a fundamental domain for k× ⊆ J . The
problems are firstly that we lost track of the roots of unity (so Ẽ is too big by a
factor of the number of roots of unity) and secondly that we cannot multiply any
finite idele by some element of k× to put us in Ẽf (the “multiplicative” version
of the CRT argument fails), so Ẽ is too small by a factor of k×\(Af

k)×/Ẽf , and
(Af

k)×/Ẽf = ⊕v<∞Zv is the group of fractional ideals, so its quotient by k× is
the class group of k, which is known to be finite. One now checks that Ẽ can
be modified “a finite amount” to ensure that it becomes a fundamental domain
E for k× in J , with measure |d|−1/2.2r(2π)s Regk h/w with h the class number
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and w the number of roots of unity.

As I say, don’t take all those delicate numbers too seriously, but do note
that E has compact closure and non-empty interior, and that J = ∪α∈k×αE a
disjoint union, so k× is discrete in J with compact quotient. �

Here’s a nice consequence of compactness. Note that just as in the local case
we consider quasicharacters of multiplicative groups, rather than just characters.

Corollary. If c : k×\A×
k → R>0 is a continuous group homomorphism,

then c = |.|σ for some real number σ.
Proof. c(k×\J) is a compact subgroup of R>0 and is hence {1}. So c factors

through A×
k /J which, via the norm map, is R>0, and now taking logs we’re

done, because the only continuous group homomorphisms R → R are x 7→ σx.

6.3: Statement and proof of the main theorem.
Definitions. If c : k×\A×

k → C× is a continuous group homomorphism
then we say it’s a quasi-character of k×\A×

k . We’ve just seen that |c| : k×\A×
k →

R>0 is of the form x 7→ |x|σ; define Re(c) = σ. We let the set of quasi-characters
of k×\A×

k be a Riemann surface as in the local case, by letting the component
of c : k×\A×

k → C× be {c.|.|s : s ∈ C}. Note that in this case the Riemann
surface is just an infinite union of copies of the complex numbers, indexed by
the group Ĵ of characters of J . If c is a quasi-character of k×\A×

k then let ĉ be
the character x 7→ |x|/c(x); note that Re(ĉ) = 1− Re(c).

Remark. I know very little about Ĵ .
Recall that in the local setting we had a set Z consisting of “functions for

which everything converged”, and defined ζ(f, c) for f ∈ Z and c a quasi-
character with positive real part, as some sort of integral. Here’s the analogy of
this construction in the global setting.

Let Z denote the set of functions f : Ak → C satisfying the following
“boundedness” conditions:

Firstly, we demand f is continuous and in L1(Ak), and also that f̂ : Ak → C
is continuous and in L1(Ak).

Secondly (a condition that wasn’t present in the local setting), we demand
that for every y ∈ A×

k , the sums
∑

α∈k f(y(x + α)) and
∑

α∈k f̂(y(x + α))
converge absolutely, and moreover the convergence is “locally uniform” in the
sense that it’s uniform for (x, y) ∈ D×C for D our additive fundamental domain
and C an arbitrary compact subset of A×

k .
Thirdly, we demand that f(y).|y|σ : A×

k → C× and f̂(y).|y|σ are in L1(A×
k )

for all σ > 1 (note: this was σ > 0 in the local setting).

What are the reasons for these conditions? The first two mean that we
can apply Poisson summation to f and indeed to the map x 7→ f(yx) for any
y ∈ A×

k . The local uniform convergence in the second condition is so that we
can interchange a sum and an integral at a crucial moment. The third condition
means that our global “multiplicative zeta integral” will converge for Re(s) > 1.

Definition. If f ∈ Z and c : k×\A×
k → C× is a quasi-character with

Re(c) > 1, define

ζ(f, c) =
∫
A×

k

f(y)c(y)dµ∗(y)
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(the Haar measure on A×
k being, of course, the product of our fixed Haar mea-

sures µ∗v on k×v ).
The last condition in the definition of Z ensures the integral converges. Our

main goal is:

Theorem. If f ∈ Z then the function ζ(f, .) is holomorphic on the Riemann
surface of quasi-characters c with Re(c) > 1, and has a meromorphic continua-
tion to all quasi-characters. Assume furthermore that f(0) 6= 0 and f̂(0) 6= 0.
Then ζ(f, .) has simple poles at the quasi-characters c(x) = 1 and c(x) = |x|,
and no other poles (and $1,000,000 attached to its zeros). Finally it satisfies
the (very elegant!) functional equation

ζ(f, c) = ζ(f̂ , ĉ).

We’ll now start the proof of this, which of course is going to be a not-
too-tough application of everything we have. But what else do we need to
do in this course? Well the only other thing to do is to check that the theo-
rem has some content—that is, that Z contains some non-zero functions and
that, as special cases of the theorem, we are proving the meromorphic continu-
ation of Dirichlet L-functions, zeta functions of number fields, zeta functions of
Grössencharacters,. . . .

[extra f̂ L1 condition.] Before we prove the theorem let me make some
definitions and prove some lemmas. We have J ⊆ A×

k , the kernel of the norm
function. Just as in the local case let’s split this by finding I ⊂ A×

k isomorphic
to R>0 such that A×

k = I×J . We do this by just choosing an infinite place [τ0]
of k and letting I be the copy of the positive reals in k×τ0

. We identify I with
R>0 so that the norm map induces the identity R>0 → R>0, so if τ0 happens
to be a complex place then, because our complex norms aren’t standard, what
we’re doing here is letting I be the positive reals in C× but letting the map
R>0 → I be t 7→

√
t.

For f ∈ Z and Re(c) > 1, we firstly break off this factor of I in the definition
of the zeta integral: we write

ζ(f, c) =
∫

I×J

f(y)c(y)dµ∗(y)

=
∫ ∞

t=0

∫
b∈J

f(tb)c(tb)dµ∗(b)dt/t

=
∫ ∞

t=0

ζt(f, c)dt/t

where our measure on J is the one such that its product with dt/t on I gives
us µ∗ on A×

k , and the last line is the definition of ζt(f, c) :=
∫

J
f(tb)c(tb)dµ∗(b).

Let’s think a little about

ζt(f, c) =
∫

J

f(tb)c(tb)dµ∗(b).

We know that the integral defining ζ(f, c) converges, by assumption, for Re(c) >
1, and hence the integrals defining ζt(f, c) will converge (at least for all t away
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from a set of measure zero). But these integrals are very docile: for b ∈ J we
have |b| = 1 by definition, so if Re(c) = σ then |c(tb)| = |tb|σ = tσ is constant on
J , and hence if the integral defining ζt(f, c) converges for one quasi-character c
(which it almost always does) then it converges for all of them.

[ζt(f, c) =
∫

J
f(tb)c(tb)dµ∗(b).]

The problem, of course, is not in the convergence of the individual ζt(f, c);
it’s that as t goes to zero then f(tb) will be approaching f(0) and if this is non-
zero, which it typically will be, then the integral of this function over the non-
compact J might be getting very big, so

∫ 1

t=0
ζt(f, c)dt/t will probably diverge

if, say, σ < 0 (because then tσ is also getting big). This is the problem we have
to solve.

Note also that we’ve written

ζ(f, c) =
∫ ∞

t=0

ζt(f, c)dt/t

and that this is one of the crucial tricks. If f =
∏

v fv with fv on kv then
we could compute the global integral as a product of local integrals—but in
applications this would just tell us that our global zeta function is a product
of local zeta functions, which will not help with the meromorphic continuation.
The insight is to compute the integral in this second way. Note that Iwasawa
independently had this insight in 1952.

In case you’ve not realised, let me stress that ζ(f, c) isn’t a generalisation
of the zeta function, it’s a generalisation of ξ(s), that is, the zeta function
multiplied by the fudge factor at infinity, and the t in the integral above is
precisely the t that we had at the beginning of section 1.3 right at the beginning
of the course. The strategy is now clear: we break the integral over t up into
two parts, one of which will converge for all c, and the other of which we will
manipulate and, by making the substitution u = 1/t and applying Poisson
summation, turn into a form which also converges.

Recall that the closure of the fundamental domain E for k× in J is compact,
so the integrals below are finite (as the integrands are continuous). Using J =
k×.E we get

ζt(f, c) =
∑

α∈k×

∫
αE

f(tb)c(tb)dµ∗(b)

=
∑

α∈k×

∫
E

f(tαb)c(tb)dµ∗(b)

=
∫

E

(∑
α∈k×

f(tαb)

)
c(tb)dµ∗(b)

where the first equality is the definition, the second uses the fact that µ∗ is a
multiplicative Haar measure on J and that c is trivial on k×, and the third is
an interchange of a sum and an integral which is justified by our rather strong
uniform convergence assumptions on f ∈ Z and the observation that the closure
of E is a compact subset of A×

k .
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Exactly the same argument (changing f to f̂ ∈ Z, c to ĉ and t to 1/t) shows
that blah ζ1/t(f̂ , ĉ) =

∫
E

(∑
α∈k× f̂(αb/t)

)
ĉ(b/t)dµ∗(b).

[ζt(f, c) =
∫

E

(∑
α∈k× f(tαb)

)
c(tb)dµ∗(b)]

Now that sum over k× looks almost like a sum over k, but firstly the term
α = 0 is missing (so we’ll have to add it in) and secondly we’re not summing f(α)
but f(tαb). So we’ll have to work out what the Fourier transform of x 7→ f(txb)
is. In other words, we need to see how the additive Fourier transform scales
under multiplication. In the application of the lemma below we’ll have ρ = tb.

Lemma. If f : Ak → C is continuous and in L1(Ak), if ρ ∈ A×
k is fixed

and if g(x) := f(xρ) then ĝ(y) = 1
|ρ| f̂(y/ρ).

Proof. An elementary computation. We have

ĝ(y) =
∫
Ak

f(xρ)e−2πiΛ(xy)dµ(x)

and setting x′ = xρ we have dµ(x′) = |ρ|dµ(x) and hence

ĝ(y) =
∫
Ak

f(x′)e−2πiΛ(x′y/ρ)dµ(x′)/|ρ|

=
1
|ρ|
f̂(y/ρ)

as required. �
So now let’s add in the missing α = 0 term to ζt(f, c), apply Poisson

summation, and see what happens. Recall we just showed that ζt(f, c) =∫
E

(∑
α∈k× f(tαb)

)
c(tb)dµ∗(b) and that ζ1/t(f̂ , ĉ) =

∫
E

(∑
α∈k× f̂(αb/t)

)
ĉ(b/t)dµ∗(b).

Key Lemma. For an arbitrary t > 0 and c we have

ζt(f, c) + f(0)
∫

E

c(tb)dµ∗(b)

= ζ1/t(f̂ , ĉ) + f̂(0)
∫

E

ĉ(b/t)dµ∗(b).

Proof. As we’ve already remarked, the formulas we have just derived for
ζt(f, c) and ζt(f̂ , ĉ) involve sums of α ∈ k×.

The LHS of the lemma is hence what you get when you add the missing
α = 0 term: it’s ∫

E

(∑
α∈k

f(tαb)

)
c(tb)dµ∗(b) (1).

Similarly the RHS is ∫
E

(∑
α∈k

f̂(αb/t)

)
ĉ(b/t)dµ∗(b) (2).

So we need to show (1) = (2). The internal sum over k screams out for an
application of Poisson summation, which, when applied to the function x 7→

81



f(txb) (we’re allowed to apply Poisson summation because of our assumptions
on f) gives ∑

α∈k

f(tαb) =
∑
α∈k

̂(x 7→ f(txb))(α) =
∑
α∈k

1
|tb|

f̂(α/tb).

Hence formula (1) is equal to∫
E

(∑
α∈k

f̂(α/tb)

)
c(tb)/|tb|dµ∗(b)

and now making the substitution b 7→ 1/b, which doesn’t change Haar measure,
this becomes ∫

E

(∑
α∈k

f̂(αb/t)

)
c(t/b)|b|/|t|dµ∗(b)

=
∫

E

(∑
α∈k

f̂(αb/t)

)
ĉ(b/t)dµ∗(b)

which is (2)! This proves the lemma. �

We’re finally ready to meromorphically continue our global zeta integrals.
But before we do, let’s try and figure out exactly what that fudge factor was
that we had to add to ζt(f, c) to make that argument work in that last lemma:
we added f(0) times ∫

E

c(tb)dµ∗(b).

What is this? Well if c(x) = |x|s is trivial on J then c(tb) = ts is constant
for b ∈ E (indeed, for b ∈ J), so the integral is just tsµ∗(E) and we computed
the measure of E earlier to be 2r(2π)shR/(w

√
|d|)—it’s some finite non-zero

number, anyway. But if c is non-trivial on J then, because it’s always trivial
on k×, it descends to a non-trivial character on the compact group J/k×”=”E
and the integral will hence be zero (distinct characters are orthogonal). So in
fact we have

Corollary. If c is non-trivial on J and f ∈ Z and t > 0 then ζt(f, c) =
ζ1/t(f̂ , ĉ).

We’re finally ready to prove the main theorem! I’ll re-state it.

Theorem. If f ∈ Z then the function ζ(f, .) is holomorphic on the Riemann
surface of quasi-characters c with Re(c) > 1, and has a meromorphic continua-
tion to all quasi-characters. Assume furthermore that f(0) 6= 0 and f̂(0) 6= 0.
Then ζ(f, .) has simple poles at the quasi-characters c(x) = 1 and c(x) = |x|,
and no other poles, (and $1,000,000 attached to its zeros). Finally it satisfies
the functional equation

ζ(f, c) = ζ(f̂ , ĉ).

Proof. For Re(c) > 1 the LHS zeta integral converges (by assumption on
f) and is holomorphic in the c variable (differentiate under the integral). By
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definition, ζ(f, c) =
∫∞

t=0
ζt(f, c)dt/t, which converges by assumption for Re(c) >

1, and now we break the integral up into two parts:

ζ(f, c) =
∫ ∞

t=1

ζt(f, c)dt/t+
∫ 1

t=0

ζt(f, c)dt/t.

Now just as in the argument for the classical zeta function, I claim that
the integral for t ≥ 1 converges for all c, because the ideles tb showing up in
the integral all have |tb| = |t||b| = |t| ≥ 1 so if the integral converges for e.g.
Re(c) = 2 (which it does, by assumption, as 2 > 1) then it converges for any c
with Re(c) < 2 (because the integrand is getting smaller).

That term isn’t the problem. The problem term is the integral from 0 to
1, which typically only converges for Re(c) > 1. So let’s use the previous
lemma, which has some content (Poisson summation) and see what happens.
The simplest case is if c(x) 6= |x|s for any s (that is, c is non-trivial on J). In
this case those extra fudge factors in the previous lemma disappear, and we see∫ 1

t=0

ζt(f, c)dt/t =
∫ 1

t=0

ζ1/t(f̂ , ĉ)dt/t

=
∫ ∞

u=1

ζu(f̂ , ĉ)du/u

and this last integral also converges for all quasi-characters k×\A×
k → C×

because u ≥ 1 so convergence again gets better as Re(c) gets smaller. Moreover
our new expression for ζ(f, c), namely

ζ(f, c) =
∫ ∞

t=1

ζt(f, c)dt/t+
∫ ∞

u=1

ζu(f̂ , ĉ)du/u

converges for all c and makes it clear that ζ(f, c) = ζ(f̂ , ĉ) (and that it’s holo-
morphic for all c not in the component |.|s). The proof is complete in this
case!

We’re not quite finished though: we need to deal with the component
c(x) = |x|s, where the argument is slightly messier because we pick up fac-
tors of f(0)

∫
E
c(tb)dµ∗(b) = f(0)tsµ∗(E) and f̂(0)

∫
E
ĉ( 1

t b)dµ
∗(b). In this case

(writing c(x) = |x|s now), the extra factors we’ll see in the calculation will be
(for Re(s) > 1)

f(0)µ∗(E)
∫ 1

t=0

tsdt/t

= f(0)µ∗(E)[ts/s]10 = f(0)µ∗(E)/s

and ∫ 1

t=0

(f̂(0)
∫

E

|b/t|1−sdµ∗(b))dt/t

= f̂(0)µ∗(E)
∫ 1

t=0

ts−2

= f̂(0)µ∗(E)[ts−1/(s− 1)]10 = f̂(0)µ∗(E)/(s− 1).
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These functions (cst /s and cst /(s−1)) clearly have a meromorphic continuation
to s ∈ C! So we have, for c(x) = |x|s with Re(s) > 1,

ζ(f, c) =
∫ ∞

t=1

ζt(f, c)dt/t+
∫ 1

t=0

ζt(f, c)dt/t

=
∫ ∞

t=1

ζt(f, c)dt/t+
∫ ∞

u=1

ζu(f̂ , ĉ)du/u

+ µ∗(E)(−f(0)/s+ f̂(0)/(s− 1))

and now we really have proved the theorem because this latter expression makes
sense as a meromorphic function for all s ∈ C, the integrals are all holomorphic
for all s ∈ C, and the expression is invariant under (f, c) 7→ (f̂ , ĉ). �

We’ve even computed the residues of ζ(f, |.|s) at s = 0 and s = 1; they’ve
come out in the wash.

They are −f(0)µ∗(E) and f̂(0)µ∗(E) respectively. Recall that we computed
µ∗(E) = 2r(2π)s Regk h/w

√
|d|.

Short chapter 7: Applications!
We have left open the logical possibility that Z = {0}, in which case our

theory is empty. Let’s check it isn’t!
Example of a non-zero f ∈ Z: let’s build f : Ak → C as a product of fv. If

v is finite let’s just let fv be the characteristic function of Rv. If v is infinite and
real set fv(x) = e−πx2

and if v is complex set fv(x+ iy) = e−2π(x2+y2). At the
infinite places we’ve rigged it so f̂v = f̂ . At the finite places, f̂v is p−m/2 times
the characteristic function of the inverse different of f , where pm generates the
discriminant ideal of kv, so f̂v = fv at the unramified places but not at the
ramified places.

We now have a problem in analysis: we need to check f ∈ Z. First let’s check
f and f̂ are in L1(Ak). Well, locally they are integrable, and at all but finitely
many places the local integral is 1, so the infinite product trivially converges
and gives the global integral.

Next let’s check the third condition; we need to check that f(y).|y|σ is in
L1(A×

f ) for σ > 1, and similarly for f̂ . Well the local factors are certainly
in L1—indeed, they are in L1 for σ > 0, because we checked this when we
were doing our local zeta integrals. But this isn’t enough to check that the
product is L1: we need to check that the infinite product of the local integrals
converges. We evaluated the local integrals at the finite places, when doing our
local calculations, and they were (1 − p−σ)−1 for k = Q (I did these in class)
and more generally p−m/2(1 − q−σ)−1 if k is a finite extension of Q and we’re
doing the computation at a P -adic place,

with residue field of size q and discriminant ideal (pm) (I mentioned these
on the example sheet; the proof is no more difficult). So we need to check
that

∏
P (1 − N(P )−σ)−1 converges for σ > 1—and it does; this is precisely

the statement that the zeta function of a number field converges for Re(s) > 1,
which is proved by reducing to k = Q and then using standard estimates. This
argument applies to both f and f̂ , which are the same away from a finite set of
places.
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Finally we have to check the second condition (the one that let us apply
Poisson summation and interchange a sum and an integral). Let y be a fixed
idele, let x be a fixed adele, and let’s first consider∑

α∈k

f(y(x+ α)).

First I claim that this sum converges absolutely. Because look at the support of
f : at the finite places it’s supported only on “integral ideles” Af

k ∩
∏

v<∞Rv,
so,

whatever y and x are, f(y(x + α)) will actually equal zero if, at any place,
the denominator of αy beats the denominator of xy. So this sum, ostensibly
over all of k×, is really only over a fractional ideal in k, and now convergence is
trivial because at the infinite places (and there is at least one infinite place) f
is exponentially decreasing, and there are only finitely many lattice points with
norm at most a given constant.

Now why is the convergence locally uniform? It’s for the same reason. If
y and x vary in a compact then the fractional ideal above might move but for
compactness reasons the lattice won’t get arbitrarily small (it’s not difficult to
write down a formal proof) and it’s hence easy to uniformly bound the sums
involved.

So the main theorem applies! What does it say in this case?

Well, ζ(f, |.|s) and ζ(f̂ , |.|1−s) are closely related to, but not quite, the zeta
function of k. Indeed if we write S∞ for the infinite places of k and Sf for the
finite places which are ramified in k/Q then ζ(f, |.|s) =

∏
v ζ(fv, |.|s) (the right

hand integrals are local zeta integrals), which expands to∏
v∈S∞

ζ(fv, |.|s)
∏

v∈Sf

(Nv)−mv/2
∏
P

(1−N(P )−s)−1

and
∏

v|∞ ζv(fv, |.|s) is a load of gamma factors—exactly the fudge factors
which you multiply ζk(s) =

∏
P (1 − N(P )−s)−1 by to get (definition) ξk(s).

So ζ(f, |.|s) = ξk(s)|d|−1/2 with d the discriminant of k. Now ζ(f̂ , |.|1−s) is
almost the same, except that f̂ 6= f at the finite ramified places: the local in-
tegral of fv at the finite place is easily checked to be p−ms/(1 − qs−1), so for
Re(1− s) > 1 we have ζ(f̂ , |.|1−s) = ξk(1− s)|d|−s and we deduce

ξk(1− s) = |d|s−1/2ξk(s).

Slightly better: if we set

Zk(s) = ξk(s).|d|s/2 = ζk(s).
∏
v|∞

ζ(fv, s).|d|s/2

then we get
Zk(1− s) = Zk(s).

This is the functional equation for the “Dedekind zeta function”, that is, the
zeta function of a number field.
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Moreover, we know that the pole at s = 1 of ζ(f, |.|s) is simple with residue
f̂(0)µ∗(E) = f̂(0)2r(2π)s Regk .h/(w

√
|d|), and f̂(0) = |d|−1/2, so the pole at

s = 1 of ξk(s) = ζ(f, |.|s)|d|1/2 has residue 2r(2π)s Regk .h/(w
√
|d|). Moreover

the local zeta factors at the real infinite places are π−s/2Γ(s/2) which equals 1
at s = 1, and at the complex infinite places are (2π)1−sΓ(s) which is again 1 at
s = 1, so we deduce

lim
s→1

(s− 1)ζk(s) = 2r(2π)s Regk .h/(w
√
|d|)

which is called the analytic class number formula and which is used crucially
in both analytic arguments about densities of primes and in algebraic arguments
in Iwasawa theory.

Remark. Iwasawa noted that applying the theory to the function above,
without assuming the classical facts about class groups and unit groups that we
needed when analysing J/k×, in fact showed that

∫
J/k×

1 <∞, and hence that
one could deduce the finiteness of the class group and finite-generation of the
unit group of a number field via this calculation.

Let’s do one more example, if we have time: Dirichlet L-functions.

Let N ≥ 1 be an integer, and χ : (Z/NZ)× → C× be a character. By
CRT we can write χ =

∏
p|N χp with χp : (Z/peZ)× → C×, where pe||N . Our

calculations for a fundamental domain of k× in J , when applied to k = Q, show
that A×

Q = Q××
∏

p Z×p ×R>0, with the first factor embedded diagonally. Hence
χ naturally gives rise to a character of

∏
p Z×p (use χp if p|N and 1 otherwise)

and hence to a character c : Q×\A×
Q → C× (make c trivial on R>0). We write

c =
∏

v cv. If p - N then cp : Q×
p → C× is trivial on Z×p and cp(p) = χ(p)−1.

Let’s now choose f so that ζ(f, c|.|s) is not identically zero and let’s see what
the resulting function of s is. If p - N then we just let fp be the characteristic
function of Zp. If p|N then we let fp be the function we used on the example
sheet when computing ρ on the component corresponding to χp. Note that we
don’t care what fp is!

At infinity we let f∞(x) = e−πx2
if χ(−1) = 1 and f∞(x) = xe−πx2

if
χ(−1) = −1; these are the function we used in our local calculations in the R
case.

We set f =
∏

v fv. The same arguments as above show f ∈ Z. We have

ζ(f, c.|.|s) = ζ(f∞, c∞.|.|s)
∏
p|N

ζ(fp, cp.|.|s).L(χ−1, s)

because if p - N then one easily computes ζ(fp, cp.|.|s) = (1− χ(p)−1p−s)−1.
Similarly

ζ(f̂ , ĉ.|.|s) = ζ(f̂∞, ĉ∞.|.|s)
∏
p|N

ζ(f̂p, ĉp.|.|s)L(χ, 1− s)

and the trick here is not to attempt to work out ζ(fp, cp, |.|s) or ζ(f̂p, ĉp.|.|s)
but to remember that these local zeta integrals both converge for 0 < Re(s) < 1
and that we worked out their ratio ρ(cp.|.|s) when doing the local calculations!
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The ratio was just pe(s−1)
∑pe−1

j=1 χ(j)ζj
pe , the Gauss sum. [Note in passing

that in particular we never used the local meromorphic continuation results to
prove the global ones, we merely use the local ones to see the explicit form of
the functional equation.] If ξ(χ, s) denotes L(χ, s) times the factor at infinity,
we deduce

ξ(χ−1, s)NsW = ξ(χ, 1− s)

where W is an explicit algebraic number that depends only on χ and N and is
basically a sum of roots of unity.

Finally I’ll remark that there are more general quasi-characters k×\A×
k →

C× than those above. The general such thing is usually called a Hecke character
or a Grössencharacter. If ψ is such a gadget, then ψ is unramified at all but
finitely many finite places, and defining fv at these unramified places to be
just the characteristic function of Rv, and fv at the other places to be the fv

we used when analysing the local ψv, the equation ζ(f, ψ.|.|s) = ζ(f̂ , ψ̂.|.|s)
unravels to become the meromorphic continuation and functional equation for
the L-function of the Grössencharacter that Hecke discovered in his original tour
de force!

THE END
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