
Last time.
We saw some local examples. We saw how integrating the product of the

characteristic function of Zp and the character | · |s over the group Q×p gave us

(for Re(s) > 0) the function 1/(1 − p−s). And we saw that integrating e−πx
2

times |x|s on R× gave us π−s/2Γ(s/2).
We saw that some relatively simple local calculation showed that for f and

g well-behaved functions on K, ζ(f, c)ζ(ĝ, ĉ) = ζ(g, c)ζ(f̂ , ĉ) for 0 < Re(c) < 1,
and hence that ζ(f, c) had a meromorphic continuation to all of C.

We finished by seeing the construction of the restricted product of topological
groups – if Gi are locally compact topological groups and, for all but finitely
many i, Hi is a compact open subgroup of Gi, then the restricted product

∏′
iGi

of the Gi is also locally compact. Recall that this product is elements (gi) such
that gi ∈ Hi for all but finitely many i.

The adeles and ideles.
Let k be a number field. If P is a (non-zero) prime ideal of the integers of

k then completing k with respect to the P -adic norm gives us a field kP with
open compact ring of integers RP . For example, completing Q with respect to
the p-adic norm gives us Qp with open compact subring Zp. Completing with
respect to an infinite place τ : k → C gives us an archimedean completion,
isomorphic to either the reals or the complexes. There are only finitely many of
these!

Hence we are in a situation where we can apply the restricted product sit-
uation. We can consider the restricted product of all the kv with respect to
their subrings Rv, giving us the ring Ak of adeles of k, or we can consider the
restricted product of all the k×v with respect to the open compact unit groups
R×v , giving us the ideles A×k , the units in Ak.

Example: AQ is the subring of Q2 ×Q3 ×Q5 ×Q7 × · · · ×R consisting of
elements (xv) such that xp ∈ Zp for all but finitely many p.

More definitions: Ak naturally splits up as a product Af
k × Ak,∞, where

Af
k , the finite adeles, are the restricted product over the non-archimedean fac-

tors, and Ak,∞, the infinite adeles, are the product over the finitely many
archimedean completions of k.

Relationship with k.
Note that there is a natural map from k to Ak! Because an element of k only

has finitely many primes occurring in its denominator, and so is integral at all
but finitely many of the finite places. Not only that, but actually the induced
(subspace) topology on k is actually the discrete topology. Indeed

∏
P RP is an

open subgroup of the finite adeles of k, and the intersection of k with this open
subgroup in Af

k is equal to the element of k which have no primes at all in their
denominator, and hence equals R, the integers of k. It is well-known that R
is a lattice in Ak,∞ = k ⊗Q R, so we can choose a sufficiently small open ball
around 0 in the infinite adeles that contains no other integer, and the product
of this open ball and

∏
P RP is an open set in Ak whose intersection with k is

just {0}. Becuase Ak is a topological group under addition, this is enough.
Moreover, we can also see that the quotient Ak/k is compact. Indeed, given

an adele a, a trick involving the Chinese Remainder Theorem shows that there
is some λ ∈ k such that a − λ is integral at every place, giving us a natural
surjection from Ak/k to the compact space Ak,∞/R whose kernel is

∏
P RP

and compactness follows.
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Similarly there is a map k× → A×k and again the image of k× is discrete,
although this time you need the proof of Dirichlet’s Unit Theorem to show that
the units are a lattice in (k ⊗Q R)×. The quotient is not compact though,
because of some issue involving norms, which I will come to now.

Global norm.
Now recall this slightly disconcerting way of defining functions on restricted

products. If we have a restricted product
∏′
iGi of abelian groups, and group

homomorphisms ci → Γ for some abelian group Γ, such that Hi is in the kernel
of ci for all but finitely many i, then (even if Γ has no topology!) we can
consider c :=

∏
i ci, something which looks like an infinite product, but which

makes sense as a function on
∏′
iGi because for any element of the product, all

but finitely many of the ci will evaluate to 1 so it’s actually a finite product!
For example, if K is a finite extension of Qp then the local norm | · | : K× →

R>0 is trivial on the units of K, and hence for k a number field we can consider
the product of these local norms on A×k , giving us the global norm

| · | : A×k → R>0

sending (xv) to the finite product
∏
v |xv|. Unsurprisingly, the norm of an

idele is the factor by which multiplication by the idele scales the additive Haar
measure on the adeles (because this was true locally). Unsurprisingly also, the
restriction of | · | to k× is trivial (because it is a canonical norm so it can’t be
any of the interesting ones!).

The multiplicative analogue of Ak/k being compact is the fact that the image
of k× in A×k is in the kernel J of the global norm map, and the quotient J/k×

is compact. In contrast to the additive result, which just uses basic facts about
rings of integers, this really uses something: it is equivalent to the finiteness of
the class group and the fact that the unit group has the rank it is supposed to
have.

Self-duality.
Here’s something else we saw in the local setting which translates to the

global setting. If K is a finite extension of Qp or R then we defined a map
Λ : K → R/Z, a non-trivial additive group homomorphism, and noted that
the resulting pairing K ×K → S1 sending (x, y) to e2πiΛ(xy) identified K with

K̂. We even carefully chose a Haar measure on K such that
ˆ̂
f(x) = cf(−x)

with c = 1. Unsurprisingly, if K is non-archimedean and x and y are both in
RK , the integers of K, then Λ(xy) = 0. This means that the infinite-looking
sum Λ((xv), (yv)) :=

∑
v Λv(xvyv) is actually finite, and a well-defined function

on Ak, giving us a non-trivial map Ak → Âk which can be checked to be an
algebraic and topological isomorphism.

The zeta function is back!
Let’s define a function on the ideles A×Q thus: for p a prime number, define

fp on Qp to be the characteristic function of Zp. Define f∞ on R to be e−πx
2

.
Define f : A×Q → C by f((gv)) =

∏
v(fv(gv)) (a finite sum). Now consider the

function

s 7→
∫
A×Q

f(x)|x|sdµ∗(x) (1)

where µ∗ denotes the Haar measure on the ideles which is the product of the
local Haar measures µ∗ on Q×p and R×. This integral will not converge for a
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general s ∈ C; the integrand isn’t L1. A sufficient condition for the integrand to
be L1 is that all the local integrands are L1 and furthermore that the product of
the local integrals is absolutely convergent. But we already worked these local
integrals out! At the finite places we have∫

Q×p

fp(x)|x|spdµ∗(x)

which was 1/(1−p−s) for Re(s) > 0, and at the infinite place we get π−s/2Γ(s/2)
again for Re(s) > 0.

It’s a relatively straightforward check that if
∏
p(1 − p−s)−1 converges ab-

solutely then this adelic integral converges, and for Re(s) > 1 this will be the
case because the product is just

∑
n≥1 n

−s = ζ(s). So for Re(s) > 1 the adelic
integral above will converge, and it will converge to

ξ(s) := π−s/2Γ(s/2)ζ(s).

This is exactly the function such that ξ(s) = ξ(1 − s) that we saw in the
first lecture! Furthermore, replacing Q by more general number fields gives us
Dedekind zeta functions of general number fields, and replacing some of the local
factors with things like locally constant additive characters gives us Dirichlet
L-functions and so on – all of them are adelic integrals like this and you can see
some examples on the example sheets.

All we have to do now then, is to generalise the proof we gave of meromorphic
continuation of ξ, and ξ(s) = ξ(1 − s), and we’re done! The original proof I
gave used Poisson Summation for Z in R (which followed from the classical
Fourier inversion theorem) to prove a functional equation for the classical θ

function θ(t) =
∑
n∈Z e

−πn2t2 , namely θ(1/t) = tθ(t). We then showed ξ(s) =∫∞
t=0

(θ(t)− 1)ts−1dt. We split this up as the sum of two integals:

ξ(s) =

∫ ∞
t=1

(θ(t)− 1)ts−1dt+

∫ 1

t=0

(θ(t)− 1)ts−1dt

and substituted u = 1/t into the second integral to get

ξ(s) =

∫ ∞
t=1

(θ(t)− 1)ts−1dt

+

∫ ∞
u=1

(θ(1/u)− 1)u−s−1du.

Poisson summation applied to the second term gives θ(1/u) = uθ(u) and tidying
up shows that for Re(s) > 1 we have

ξ(s) =

∫ ∞
t=1

(θ(t)− 1)ts−1dt

+

∫ ∞
u=1

(θ(u)− 1)u−sdu− 1/(1− s)− 1/s

and we were home and dry.
Let’s now do all this adelically.
Chapter 6: The main theorem.
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One of Tate’s insights is that the correct analogue of the set R/Z in this
adelic context is the set Ak/k. Let me run off a few things we know about the

inclusion Z→ R. Firstly, Z is discrete, R is locally compact, R̂ (the Pontrjagin
dual) is isomorphic to R again, and if we use the isomorphism x 7→ (y 7→
e−2πixy) to identify R with R̂ then we see that the annihilator Z∗ of Z (that
is, the elements r ∈ R such that e−2πirn = 1 for all integers n) is just Z again.
Hence the Pontrjagin dual of the discrete group Z is the compact group R/Z,
and the dual of the exact sequence

0→ Z→ R→ R/Z→ 0

is itself. Finally the action of Z on R admits a natural “fundamental domain”
(that is, a subset D of R, namely [0, 1), with the property that the induced map
D → R/Z is a bijection), and the measure of D, with respect to the standard
Haar measure on R, is 1.

You can guess what the analogue of most of these things are. The analogous
short exact sequence is

0→ k → Ak → Ak/k → 0.

We have already seen that k is discrete in Ak and the quotient Ak/k is compact.
It’s not hard to check that the annihilator of k under the pairing Ak×Ak → R/Z
given by the sum of the Λs is again k, which shows that the Pontrjagin dual
of the discrete group k is the compact group Ak/k. We can even build D, an
analogue of the fundamental domain above – it is just the product of RP at
all finite places, and a fundamental parallelopiped for the integers of k in Ak,∞
at the infinite places. The reason a D is useful in practice is that instead of
integrating on Ak/k we can integrate on D instead. Amazingly, the additive
measure of D is 1, because its value at the infinite place (the discriminant of k)
is cancelled out by our choices of Haar measure at the finite places. The details
of this calculation are in Tate’s thesis, and the key input is that the discriminant
can be calculated as a product of local terms.

Now we prove the analogue of the transformation property of the θ function.
Instead of working with (the analogue of) f(x) = e−πt

2x2

we set things up, for
the time being at least, in more generality: we’ll use a general function f for
which we’ll just assume everything converges.

First we observe that we have a natural Haar measure on the compact group
Ak/k: a function on Ak/k can be thought of as a “periodic” function on Ak

(that is, one satisfying f(x+α) = f(x) for α ∈ k) and, for a continuous function
of this type, one checks easily that defining µ(f) =

∫
D
f(x)dµ(x) where µ is our

fixed Haar measure on the adeles but the integral is only over our fundamental
domain D, gives us a Haar measure on Ak/k.

On the other side, if we endow k with the discrete topology then a natural
Haar measure is just counting measure: a continuous function with compact
support is just a function f : k → C which vanishes away from a finite set, and
we can define µ(f) =

∑
α∈k f(α). With these choices of Haar measure on k and

Ak/k, what is the constant in the Fourier inversion theorem? In other words, if
we invert F : k → C twice, we’ll get x 7→ cF (−x). What is c? Unsurprisingly,
it’s 1 (as one can check by evaluating the transform of the transform of the
characteristic function of {0}).
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Reminder of Poisson Summation.
The Fourier inversion theorem on R/Z, when unravelled, just tells us the

classical fact that if F is a continuous function on R/Z, viewed as a peri-
odic function on R, and if am =

∫
D
F (x)e−2πimxdx is its mth Fourier coeffi-

cient, where m ∈ Z and D = [0, 1), and if
∑
m |am| converges, then F (x) =∑

m∈Z ame
2πimx. We applied this very early on to a function F (x) of the form

F (x) =
∑
n∈Z f(x+n) where f was a function which was rapidly decreasing (it

sent x to e−πx
2t2), and we deduced∑

n∈Z

f(n) = F (0) =
∑
m∈Z

am.

And we computed am using this trick:

am =

∫ 1

0

∑
n

f(x+ n)e−2πimxdx

=

∫ 1

0

∑
n

f(x+ n)e−2πim(x+n)dx

=

∫
R

f(x)e−2πimxdx = f̂(m)

and so
∑
n∈Z f(n) =

∑
m∈Z f̂(m) as long as everything converges—this is the

classical Poisson summation fomula.

Let’s now do exactly the same thing, but on Ak/k instead of R/Z.
If F ∈ L1(Ak/k) (that is, F is a function on the adeles and F (x+α) = F (x)

for α ∈ k, and furthermore if
∫
D
F (x)dµ(x) < ∞), then let’s define F̂ : k → C

by

F̂ (α) =

∫
D

F (x)e−2πiΛ(xα)dµ(x).

Lemma. With notation as above, if
∑
α∈k |F̂ (α)| converges, then

F (x) =
∑
α∈k

F̂ (α)e2πiΛ(αx).

Proof. This is just the Fourier inversion theorem spelt out, together with
the fact that c = 1. �

Corollary. F (0) =
∑
α∈k F̂ (α). �

One last explicit definition: if f ∈ L1(Ak) then, surprise surprise, define

f̂ : Ak → C by f̂(y) =
∫
Ak

f(x)e−2πiΛ(xy)dµ(x), the usual Fourier transform,
once we have identified Ak with its dual.

Theorem (Poisson summation, revisited.) If f ∈ L1(Ak) is continu-
ous, if

∑
α∈k f(x + α) converges absolutely and uniformly for x ∈ Ak, and if∑

α∈k |f̂(α)| also converges, then∑
β∈k

f(β) =
∑
α∈k

f̂(α).

Proof. (c.f. section 1.2.) Define F : Ak → C by F (x) =
∑
β∈k f(x + β).

Now by assumption the sum converges uniformly on Ak, so F is continuous
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and periodic. Hence F , considered as a function on Ak/k, is continuous with
compact support and is hence L1. Moreover, for α ∈ k we have (c.f. formula for
am in 1.2)

F̂ (α) =

∫
D

F (x)e−2πiΛ(αx)dµ(x)

=

∫
D

∑
β∈k

f(x+ β)e−2πiΛ(αx)dµ(x)

=
∑
β∈k

∫
D

f(x+ β)e−2πiΛ(αx)dµ(x)

=
∑
β∈k

∫
D

f(x+ β)e−2πiΛ(α(x+β))dµ(x)

=

∫
Ak

f(x)e−2πiΛ(αx)dµ(x)

= f̂(α)

[where the interchange of sum and integral is OK because the sum converges
uniformly on D, which has finite measure, and I’ve also used the fact (proved
earlier) that k ⊂ ker(Λ), which I proved when showing k = k∗.] Hence∑

β∈k

f(β) = F (0)

=
∑
α∈k

F̂ (α)

=
∑
α∈k

f̂(α)

�
Next let’s establish a global version of the “Re” function that we had on

local quasi-characters.
Lemma. If c : k×\A×k → R>0 is a continuous group homomorphism, then

c = |.|σ for some real number σ.
Proof. If J is the kernel of the global norm map, then c(k×\J) is a compact

subgroup of R>0 and is hence {1}. So c factors through A×k /J which, via the
norm map, is R>0, and now taking logs we’re done, because the only continuous
group homomorphisms R→ R are x 7→ σx.

Statement and proof of the main theorem.
Definitions. If c : k×\A×k → C× is a continuous group homomorphism

then we say it’s a quasi-character of k×\A×k . We’ve just seen that |c| : k×\A×k →
R>0 is of the form x 7→ |x|σ; define Re(c) = σ. We let the set of quasi-characters
of k×\A×k be a Riemann surface as in the local case, by letting the component
of c : k×\A×k → C× be {c.|.|s : s ∈ C}. Note that in this case the Riemann
surface is just an infinite union of copies of the complex numbers, indexed by
the group Ĵ of characters of J . If c is a quasi-character of k×\A×k then let ĉ be
the character x 7→ |x|/c(x); note that Re(ĉ) = 1− Re(c).

Remark. I know very little about Ĵ .
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Recall that in the local setting we had a set Z consisting of “functions for
which everything converged”, and defined ζ(f, c) for f ∈ Z and c a quasi-
character with positive real part, as some sort of integral. Here’s the analogy of
this construction in the global setting.

Let Z denote the set of functions f : Ak → C satisfying the following
“boundedness” conditions:

Firstly, we demand f is continuous and in L1(Ak), and also that f̂ : Ak → C
is continuous and in L1(Ak).

Secondly (a condition that wasn’t present in the local setting), we demand

that for every y ∈ A×k , the sums
∑
α∈k f(y(x + α)) and

∑
α∈k f̂(y(x + α))

converge absolutely, and moreover the convergence is “locally uniform” in the
sense that it’s uniform for (x, y) ∈ D×C for D our additive fundamental domain
and C an arbitrary compact subset of A×k .

Thirdly, we demand that f(y).|y|σ : A×k → C× and f̂(y).|y|σ are in L1(A×k )
for all σ > 1 (note: this was σ > 0 in the local setting).

What are the reasons for these conditions? The first two mean that we
can apply Poisson summation to f and indeed to the map x 7→ f(yx) for any
y ∈ A×k . The local uniform convergence in the second condition is so that we
can interchange a sum and an integral at a crucial moment. The third condition
means that our global “multiplicative zeta integral” will converge for Re(s) > 1.

Definition. If f ∈ Z and c : k×\A×k → C× is a quasi-character with
Re(c) > 1, define

ζ(f, c) =

∫
A×k

f(y)c(y)dµ∗(y)

(the Haar measure on A×k being, of course, the product of our fixed Haar mea-
sures µ∗v on k×v ).

The last condition in the definition of Z ensures the integral converges. Our
main goal is:

Theorem. If f ∈ Z then the function ζ(f, .) is holomorphic on the Riemann
surface of quasi-characters c with Re(c) > 1, and has a meromorphic continua-

tion to all quasi-characters. Assume furthermore that f(0) 6= 0 and f̂(0) 6= 0.
Then ζ(f, .) has simple poles at the quasi-characters c(x) = 1 and c(x) = |x|,
and no other poles (and $1,000,000 attached to its zeros). Finally it satisfies
the (very elegant!) functional equation

ζ(f, c) = ζ(f̂ , ĉ).

We’ll now start the proof of this, which of course is going to be a not-too-
tough application of everything we have.

Before we prove the theorem let me make some definitions and prove some
lemmas. We have J ⊆ A×k , the kernel of the norm function. Just as in the local
case let’s split this by finding I ⊂ A×k isomorphic to R>0 such that A×k = I×J .
We do this by just choosing an infinite place [τ0] of k and letting I be the copy of
the positive reals in k×τ0 . We identify I with R>0 so that the norm map induces
the identity R>0 → R>0, so if τ0 happens to be a complex place then, because
our complex norms aren’t standard, what we’re doing here is letting I be the
positive reals in C× but letting the map R>0 → I be t 7→

√
t.
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For f ∈ Z and Re(c) > 1, we firstly break off this factor of I in the definition
of the zeta integral: we write

ζ(f, c) =

∫
I×J

f(y)c(y)dµ∗(y)

=

∫ ∞
t=0

∫
b∈J

f(tb)c(tb)dµ∗(b)dt/t

=

∫ ∞
t=0

ζt(f, c)dt/t

where our measure on J is the one such that its product with dt/t on I gives
us µ∗ on A×k , and the last line is the definition of ζt(f, c) :=

∫
J
f(tb)c(tb)dµ∗(b).

This is the analogue of ξ(s) =
∫∞
t=0

(θ(t)− 1)ts−1dt.
Let’s think a little about

ζt(f, c) =

∫
J

f(tb)c(tb)dµ∗(b).

We know that the integral defining ζ(f, c) converges, by assumption, for Re(c) >
1, and hence the integrals defining ζt(f, c) will converge (at least for all t away
from a set of measure zero). But these integrals are very docile: for b ∈ J we
have |b| = 1 by definition, so if Re(c) = σ then |c(tb)| = |tb|σ = tσ is constant on
J , and hence if the integral defining ζt(f, c) converges for one quasi-character c
(which it almost always does) then it converges for all of them.

[ζt(f, c) =
∫
J
f(tb)c(tb)dµ∗(b).]

The problem, of course, is not in the convergence of the individual ζt(f, c);
it’s that as t goes to zero then f(tb) will be approaching f(0) and if this is non-
zero, which it typically will be, then the integral of this function over the non-

compact J might be getting very big, so
∫ 1

t=0
ζt(f, c)dt/t will probably diverge

if, say, σ < 0 (because then tσ is also getting big). This is the problem we have
to solve.

Note also that we’ve written

ζ(f, c) =

∫ ∞
t=0

ζt(f, c)dt/t

and that this is one of the crucial tricks. If f =
∏
v fv with fv on kv then

we could compute the global integral as a product of local integrals—but in
applications this would just tell us that our global zeta function is a product
of local zeta functions, which will not help with the meromorphic continuation.
The insight is to compute the integral in this second way. Note that Iwasawa
independently had this insight in 1952.

Let’s now see why ζt looks a bit like a theta function. Lets choose a fun-
damental domain E for k× in J ; then E is compact so has finite measure (the
measure of E is related to the class number and regulator of k) and the integrals
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below are finite. Using J = k×.E we get

ζt(f, c) =
∑
α∈k×

∫
αE

f(tb)c(tb)dµ∗(b)

=
∑
α∈k×

∫
E

f(tαb)c(tb)dµ∗(b)

=

∫
E

(∑
α∈k×

f(tαb)

)
c(tb)dµ∗(b)

where the first equality is the definition, the second uses the fact that µ∗ is a
multiplicative Haar measure on J and that c is trivial on k×, and the third is
an interchange of a sum and an integral which is justified by our rather strong
uniform convergence assumptions on f ∈ Z and the observation that the closure
of E is a compact subset of A×k .

Exactly the same argument (changing f to f̂ ∈ Z, c to ĉ and t to 1/t) shows

that blah ζ1/t(f̂ , ĉ) =
∫
E

(∑
α∈k× f̂(αb/t)

)
ĉ(b/t)dµ∗(b).

[ζt(f, c) =
∫
E

(∑
α∈k× f(tαb)

)
c(tb)dµ∗(b)]

Now that sum over k× looks almost like a sum over k, but firstly the term
α = 0 is missing (so we’ll have to add it in) and secondly we’re not summing f(α)
but f(tαb). So we’ll have to work out what the Fourier transform of x 7→ f(txb)
is. In other words, we need to see how the additive Fourier transform scales
under multiplication. In the application of the lemma below we’ll have ρ = tb.

Lemma. If f : Ak → C is continuous and in L1(Ak), if ρ ∈ A×k is fixed

and if g(x) := f(xρ) then ĝ(y) = 1
|ρ| f̂(y/ρ).

Proof. An elementary computation. We have

ĝ(y) =

∫
Ak

f(xρ)e−2πiΛ(xy)dµ(x)

and setting x′ = xρ we have dµ(x′) = |ρ|dµ(x) and hence

ĝ(y) =

∫
Ak

f(x′)e−2πiΛ(x′y/ρ)dµ(x′)/|ρ|

=
1

|ρ|
f̂(y/ρ)

as required. �
So now let’s add in the missing α = 0 term to ζt(f, c), apply Poisson

summation, and see what happens. Recall we just showed that ζt(f, c) =∫
E

(∑
α∈k× f(tαb)

)
c(tb)dµ∗(b) and that ζ1/t(f̂ , ĉ) =

∫
E

(∑
α∈k× f̂(αb/t)

)
ĉ(b/t)dµ∗(b).

Key Lemma. For an arbitrary t > 0 and c we have

ζt(f, c) + f(0)

∫
E

c(tb)dµ∗(b)

= ζ1/t(f̂ , ĉ) + f̂(0)

∫
E

ĉ(b/t)dµ∗(b).
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Proof. As we’ve already remarked, the formulas we have just derived for
ζt(f, c) and ζt(f̂ , ĉ) involve sums of α ∈ k×.

The LHS of the lemma is hence what you get when you add the missing
α = 0 term: it’s ∫

E

(∑
α∈k

f(tαb)

)
c(tb)dµ∗(b) (1).

Similarly the RHS is ∫
E

(∑
α∈k

f̂(αb/t)

)
ĉ(b/t)dµ∗(b) (2).

So we need to show (1) = (2). The internal sum over k screams out for an
application of Poisson summation, which, when applied to the function x 7→
f(txb) (we’re allowed to apply Poisson summation because of our assumptions
on f) gives ∑

α∈k

f(tαb) =
∑
α∈k

̂(x 7→ f(txb))(α) =
∑
α∈k

1

|tb|
f̂(α/tb).

Hence formula (1) is equal to∫
E

(∑
α∈k

f̂(α/tb)

)
c(tb)/|tb|dµ∗(b)

and now making the substitution b 7→ 1/b, which doesn’t change Haar measure,
this becomes ∫

E

(∑
α∈k

f̂(αb/t)

)
c(t/b)|b|/|t|dµ∗(b)

=

∫
E

(∑
α∈k

f̂(αb/t)

)
ĉ(b/t)dµ∗(b)

which is (2)! This proves the lemma. �

We’re finally ready to meromorphically continue our global zeta integrals.
But before we do, let’s try and figure out exactly what that fudge factor was
that we had to add to ζt(f, c) to make that argument work in that last lemma:
we added f(0) times ∫

E

c(tb)dµ∗(b).

What is this? Well if c(x) = |x|s is trivial on J then c(tb) = ts is constant for
b ∈ E (indeed, for b ∈ J), so the integral is just tsµ∗(E), and one can check
that the measure of E is 2r(2π)shR/(w

√
|d|)—it’s some finite non-zero number,

anyway. But if c is non-trivial on J then, because it’s always trivial on k×, it
descends to a non-trivial character on the compact group J/k×”=”E and the
integral will hence be zero (distinct characters are orthogonal). So in fact we
have
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Corollary. If c is non-trivial on J and f ∈ Z and t > 0 then ζt(f, c) =

ζ1/t(f̂ , ĉ).
We’re finally ready to prove the main theorem! I’ll re-state it.

Theorem. If f ∈ Z then the function ζ(f, .) is holomorphic on the Riemann
surface of quasi-characters c with Re(c) > 1, and has a meromorphic continua-

tion to all quasi-characters. Assume furthermore that f(0) 6= 0 and f̂(0) 6= 0.
Then ζ(f, .) has simple poles at the quasi-characters c(x) = 1 and c(x) = |x|,
and no other poles, (and $1,000,000 attached to its zeros). Finally it satisfies
the functional equation

ζ(f, c) = ζ(f̂ , ĉ).

Proof. For Re(c) > 1 the LHS zeta integral converges (by assumption on
f) and is holomorphic in the c variable (differentiate under the integral). By
definition, ζ(f, c) =

∫∞
t=0

ζt(f, c)dt/t, which converges by assumption for Re(c) >
1, and now we break the integral up into two parts:

ζ(f, c) =

∫ ∞
t=1

ζt(f, c)dt/t+

∫ 1

t=0

ζt(f, c)dt/t.

Now just as in the argument for the classical zeta function, I claim that
the integral for t ≥ 1 converges for all c, because the ideles tb showing up in
the integral all have |tb| = |t||b| = |t| ≥ 1 so if the integral converges for e.g.
Re(c) = 2 (which it does, by assumption, as 2 > 1) then it converges for any c
with Re(c) < 2 (because the integrand is getting smaller).

That term isn’t the problem. The problem term is the integral from 0 to
1, which typically only converges for Re(c) > 1. So let’s use the previous
lemma, which has some content (Poisson summation) and see what happens.
The simplest case is if c(x) 6= |x|s for any s (that is, c is non-trivial on J). In
this case those extra fudge factors in the previous lemma disappear, and we see∫ 1

t=0

ζt(f, c)dt/t =

∫ 1

t=0

ζ1/t(f̂ , ĉ)dt/t

=

∫ ∞
u=1

ζu(f̂ , ĉ)du/u

and this last integral also converges for all quasi-characters k×\A×k → C×

because u ≥ 1 so convergence again gets better as Re(c) gets smaller. Moreover
our new expression for ζ(f, c), namely

ζ(f, c) =

∫ ∞
t=1

ζt(f, c)dt/t+

∫ ∞
u=1

ζu(f̂ , ĉ)du/u

converges for all c and makes it clear that ζ(f, c) = ζ(f̂ , ĉ) (and that it’s holo-
morphic for all c not in the component |.|s). The proof is complete in this
case!

We’re not quite finished though: we need to deal with the component
c(x) = |x|s, where the argument is slightly messier because we pick up fac-

tors of f(0)
∫
E
c(tb)dµ∗(b) = f(0)tsµ∗(E) and f̂(0)

∫
E
ĉ( 1
t b)dµ

∗(b). In this case
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(writing c(x) = |x|s now), the extra factors we’ll see in the calculation will be
(for Re(s) > 1)

f(0)µ∗(E)

∫ 1

t=0

tsdt/t

= f(0)µ∗(E)[ts/s]10 = f(0)µ∗(E)/s

and ∫ 1

t=0

(f̂(0)

∫
E

|b/t|1−sdµ∗(b))dt/t

= f̂(0)µ∗(E)

∫ 1

t=0

ts−2

= f̂(0)µ∗(E)[ts−1/(s− 1)]10 = f̂(0)µ∗(E)/(s− 1).

These functions (cst /s and cst /(s−1)) clearly have a meromorphic continuation
to s ∈ C! So we have, for c(x) = |x|s with Re(s) > 1,

ζ(f, c) =

∫ ∞
t=1

ζt(f, c)dt/t+

∫ 1

t=0

ζt(f, c)dt/t

=

∫ ∞
t=1

ζt(f, c)dt/t+

∫ ∞
u=1

ζu(f̂ , ĉ)du/u

+ µ∗(E)(−f(0)/s+ f̂(0)/(s− 1))

and now we really have proved the theorem because this latter expression makes
sense as a meromorphic function for all s ∈ C, the integrals are all holomorphic
for all s ∈ C, and the expression is invariant under (f, c) 7→ (f̂ , ĉ). �

We’ve even computed the residues of ζ(f, |.|s) at s = 0 and s = 1; they’ve
come out in the wash.

They are −f(0)µ∗(E) and f̂(0)µ∗(E) respectively. Recall that we computed
µ∗(E) = 2r(2π)s Regk h/w

√
|d|.

Examples.
We have left open the logical possibility that Z = {0}, in which case our

theory is empty. Let’s check it isn’t!
Example of a non-zero f ∈ Z: let’s build f : Ak → C as a product of fv. If

v is finite let’s just let fv be the characteristic function of Rv. If v is infinite and
real set fv(x) = e−πx

2

and if v is complex set fv(x+ iy) = e−2π(x2+y2). At the

infinite places we’ve rigged it so f̂v = f̂ . At the finite places, f̂v is p−m/2 times
the characteristic function of the inverse different of f , where pm generates the
discriminant ideal of kv, so f̂v = fv at the unramified places but not at the
ramified places.

We now have a problem in analysis: we need to check f ∈ Z. First let’s check
f and f̂ are in L1(Ak). Well, locally they are integrable, and at all but finitely
many places the local integral is 1, so the infinite product trivially converges
and gives the global integral.

Next let’s check the third condition; we need to check that f(y).|y|σ is in

L1(A×f ) for σ > 1, and similarly for f̂ . Well the local factors are certainly
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in L1—indeed, they are in L1 for σ > 0, because we checked this when we
were doing our local zeta integrals. But this isn’t enough to check that the
product is L1: we need to check that the infinite product of the local integrals
converges. We evaluated the local integrals at the finite places, when doing our
local calculations, and they were (1 − p−σ)−1 for k = Q (I did these in class)
and more generally p−m/2(1 − q−σ)−1 if k is a finite extension of Q and we’re
doing the computation at a P -adic place,

with residue field of size q and discriminant ideal (pm) (I mentioned these
on the example sheet; the proof is no more difficult). So we need to check
that

∏
P (1 − N(P )−σ)−1 converges for σ > 1—and it does; this is precisely

the statement that the zeta function of a number field converges for Re(s) > 1,
which is proved by reducing to k = Q and then using standard estimates. This
argument applies to both f and f̂ , which are the same away from a finite set of
places.

Finally we have to check the second condition (the one that let us apply
Poisson summation and interchange a sum and an integral). Let y be a fixed
idele, let x be a fixed adele, and let’s first consider∑

α∈k

f(y(x+ α)).

First I claim that this sum converges absolutely. Because look at the support of
f : at the finite places it’s supported only on “integral ideles” Af

k ∩
∏
v<∞Rv,

so,

whatever y and x are, f(y(x + α)) will actually equal zero if, at any place,
the denominator of αy beats the denominator of xy. So this sum, ostensibly
over all of k×, is really only over a fractional ideal in k, and now convergence is
trivial because at the infinite places (and there is at least one infinite place) f
is exponentially decreasing, and there are only finitely many lattice points with
norm at most a given constant.

Now why is the convergence locally uniform? It’s for the same reason. If
y and x vary in a compact then the fractional ideal above might move but for
compactness reasons the lattice won’t get arbitrarily small (it’s not difficult to
write down a formal proof) and it’s hence easy to uniformly bound the sums
involved.

So the main theorem applies! What does it say in this case?

Well, ζ(f, |.|s) and ζ(f̂ , |.|1−s) are closely related to, but not quite, the zeta
function of k. Indeed if we write S∞ for the infinite places of k and Sf for the
finite places which are ramified in k/Q then ζ(f, |.|s) =

∏
v ζ(fv, |.|s) (the right

hand integrals are local zeta integrals), which expands to∏
v∈S∞

ζ(fv, |.|s)
∏
v∈Sf

(Nv)−mv/2
∏
P

(1−N(P )−s)−1

and
∏
v|∞ ζv(fv, |.|s) is a load of gamma factors—exactly the fudge factors

which you multiply ζk(s) =
∏
P (1 − N(P )−s)−1 by to get (definition) ξk(s).

So ζ(f, |.|s) = ξk(s)|d|−1/2 with d the discriminant of k. Now ζ(f̂ , |.|1−s) is
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almost the same, except that f̂ 6= f at the finite ramified places: the local in-
tegral of fv at the finite place is easily checked to be p−ms/(1 − qs−1), so for

Re(1− s) > 1 we have ζ(f̂ , |.|1−s) = ξk(1− s)|d|−s and we deduce

ξk(1− s) = |d|s−1/2ξk(s).

Slightly better: if we set

Zk(s) = ξk(s).|d|s/2 = ζk(s).
∏
v|∞

ζ(fv, s).|d|s/2

then we get
Zk(1− s) = Zk(s).

This is the functional equation for the “Dedekind zeta function”, that is, the
zeta function of a number field.

Moreover, we know that the pole at s = 1 of ζ(f, |.|s) is simple with residue

f̂(0)µ∗(E) = f̂(0)2r(2π)s Regk .h/(w
√
|d|), and f̂(0) = |d|−1/2, so the pole at

s = 1 of ξk(s) = ζ(f, |.|s)|d|1/2 has residue 2r(2π)s Regk .h/(w
√
|d|). Moreover

the local zeta factors at the real infinite places are π−s/2Γ(s/2) which equals 1
at s = 1, and at the complex infinite places are (2π)1−sΓ(s) which is again 1 at
s = 1, so we deduce

lim
s→1

(s− 1)ζk(s) = 2r(2π)s Regk .h/(w
√
|d|)

which is called the analytic class number formula and which is used crucially
in both analytic arguments about densities of primes and in algebraic arguments
in Iwasawa theory.

THE END
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