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M1F Foundations of Analysis, Problem Sheet 3 Solutions.

1. If 0 < x then adding y to both sides and using (A1) we deduce that y < x + y. We also know
that 0 < y, so 0 < y < x + y and applying (A2) we deduce 0 < x + y.

2†.
a) Say c is positive and y is negative. Then 0 > y so setting x = 0 in the fact we proved in

lectures we deduce c× 0 > cy. But c× 0 = 0, so 0 > cy and hence cy is negative.
b) Say x < 0 and y < 0. Then we know −x > 0 and −y > 0, so by (A4) we deduce

(−x)(−y) > 0. Hence (−1)x(−1)y > 0, so (−1)2xy > 0. But (−1)2 = 1 so 1× xy > 0 and hence
xy > 0.

c) Let’s prove this by contradiction. Suppose for a contradiction that x 6= 0 and y 6= 0. Then
by (A3) we must have that x is either positive or negative, and y is either positive or negative.
So xy is either the product of two positive numbers, the product of two negative numbers, or the
product of one positive and one negative number. In all three cases the product cannot be zero!
Indeed, all cases are covered by (A4) and (a) and (b) above, and the observation that positive and
negative numbers are non-zero. There is our contradiction, which finishes the proof.

d) Let y > 0 satisfy y2 = x. We need to find all real solutions to z2 = x, or equivalently to
z2 = y2. Rewrite as z2 − y2 = 0 and then factor as (z + y)(z − y) = 0. By part (c) we deduce
that either z + y = 0 or z − y = 0, leaving the two possibilities z = −y and z = +y. Note that
these solutions are definitely different, because +y > 0 and −y < 0. Finally note that both work,
because y2 = x by definition, and (−y)2 = (−1)2y2 = 1x = x.

Alternatively you can just observe that 02 = x can’t be true as x > 0, and that (−y)2 = y2 so
there’s also a unique negative number whose square is x, making two square roots in general from
axiom A3. 3.

a) Say x3000000000000 = 3 and y2000000000000 = 2. Then x6000000000000 = 32 = 9 and y6000000000000 =
23 = 8. In particular we must have x > y, as x < y would imply 9 = x6000000000000 <
y6000000000000 = 8 and x = y would imply 9 = 8.

b) 10000100 =
(
1002

)100
= 100200, which is much less than 10010000.

c) The square root of 222 is 211 (check by squaring) ands the square root of 22
22

is 22
21

(again
check by squaring).

4∗. Rewrite as 3x2+1
x < 4 and then as 3x2−4x+1

x < 0. Factorise the top to get (3x−1)(x−1)
x < 0.

Note that all of these steps are reversible, so 3x + 1
x < 4 if and only if (3x−1)(x−1)

x < 0.
Now the left hand side changes sign at x = 0, x − 1 = 0 and 3x − 1 = 0, that is, at x = 0,

x = 1 and x = 1/3 (and note that x = 0 is not allowed, and x = 1, x = 1/3 don’t work because
the left hand side is zero). So we consider the four regions x < 0, 0 < x < 1/3, 1/3 < x < 1 and
x > 1 separately, and see that x < 0 and 1/3 < x < 1 work, and the other two regions do not.
Hence the set of solutions is

{x ∈ R : x < 0 or 1/3 < x < 1}.

5.
a) Say t > 0 and |x| < t. Let’s deal with the cases x ≥ 0 and x < 0 separately.
(i) x ≥ 0. Then |x| = x so the equation becomes x < t, and the solutions in this range are

[0, t), that is, the reals x with 0 ≤ x < t.
(ii) x < 0. Then |x| = −x, so the equation becomes −x < t, or equivalently −t < x. Hence

the solutions in this range are −t < x < 0, or the open interval (−t, 0).
The full set of solutions is hence (−t, 0) ∪ [0, t) = (−t, t), the reals x with −t < x < t.
b) Set y = x+1. Then |y| < 3, or equivalently −3 < y < 3, and so −3 < x+1 < 3. Subtracting

1 we see that this is equivalent to −4 < x < 2.
c) This is a little trickier. There are a couple of ways to do it. We could first prove the lemma

that |x|2 = x2 for all real numbers x (by checking the two cases) and then noting that if a, b ≥ 0



then a < b if and only if a2 < b2. Using this line of argument we can deduce that the question
is equivalent to asking for all real numbers x such that (x − 2)2 < (x − 4)2, and multiplying out
and simplifying we see that this equation is equivalent to −4x+ 4 < −8x+ 16 and hence 4x < 12,
giving x < 3 as the answer.

A different approach, more low-level but more tedious, would be to observe that the definition
of |x − 2| depends on whether x ≥ 2 or x < 2, and the definition of |x − 4| depends on whether
x ≥ 4 or x < 4, so we could deal with the three cases:

i) x < 2
ii) 2 ≤ x < 4
iii) x ≥ 4
separately. In case (i) we get 2 − x < 4 − x which is always true, so x < 2 always works. In

case (ii) we get x− 2 < 4− x, which is true if and only if 2x < 6, that is x < 3, so 2 ≤ x < 3 also
works. In case (iii) we get x − 2 < x − 4, which is never true. So the answer is the union of the
sets {x ∈ R : x < 2} and {x ∈ R : 2 ≤ x < 3}, which is just the set (−∞, 3) of real numbers less
than 3.

There is a more geometric approach to this question though. We could regard |x − 2| as the
distance from x to the real number 2, and |x − 4| as the distance from x to the real number 4.
Hence the question is asking for the real numbers which are nearer to 2 than to 4, and if you draw
the number line you can see that clearly the answer is x < 3. However in my mind this answer is
less “formal” than the other two; my instinct would be to use this as a guide and then to use one
of the first two approaches. Whether this geometric argument would be appropriate depends on
the context, I guess.

6. Say p = a + ib and q = c + id and r = e + if are complex numbers.
a) First (p + q) + r = ((a + ib) + (c + id)) + (e + if) (by definition of p, q, r).
This equals ((a + c) + i(b + d)) + (e + if) (by definition of addition of complex numbers).
This equals ((a+ c) + e) + i((b+ d) + f) (again by definition of addition of complex numbers).
Similarly, p + (q + r) works out as (a + (c + e)) + i(b + (d + f)).
But we know that (a + c) + e = a + (c + e) and (b + d) + f = b + (d + f), because these are

real numbers, so we can assume associativity of addition for these.
Hence (p + q) + r = ((a + c) + e) + i((b + d) + f) = (a + (c + e)) + i(b + (d + f)) = p + (q + r)

and we’re done.
b) pq = (a + ib)(c + id) = (ac− bd) + i(ad + bc), and qp = (ca− db) + i(da + cb). But ac = ca,

and bd = db, and ad = da and bc = cb because a, b, c, d are real. Hence (ac− bd) = (ca− db) and
(ad + bc) = (da + cb), so pq = qp.

c) If p = a + ib and q = c + id then p = a − ib and q = c − id, so p q = (a − ib)(c − id) =
(ac− bd) + i(−ad− bc) = (ac− bd)− i(ad+ bc). On the other hand pq = (ac− bd) + i(ad+ bc) so
pq = (ac− bd)− i(ad + bc) and we are done.

7. We know z2 = −1 so (x2 − y2, 2xy) = (−1, 0) as elements of R2. This means x2 − y2 = −1
and 2xy = 0. Now 2xy = 0 implies xy = 0 (multiply both sides by 1/2) and by Q2(c) we deduce
that either x = 0 or y = 0. We now need to deal with these two cases separately.

(i) y = 0. Then 2xy = 0 which is great, but x2−y2 = −1 implies x2 = −1, which is impossible
because we proved in lectures that if x is real then x2 ≥ 0, and −1 < 0. So this can’t happen.

(ii) x = 0. Then 2xy = 0 and −1 = x2 − y2 = 0− y2, so y2 = 1. We know 12 = 1, so by Q2(d)
the only possibilities are y = 1 and y = −1, giving x + iy = i or x + iy = −i.

Conversely both i and −i square to −1 as is easily seen from the definition, so there are our
two answers.
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