
KMB, 7/12/17

M1F Foundations of Analysis, Problem Sheet 9, solutions.

1∗ Some of this stuff is only a mild extension of what I did in lectures, but rather than referring
you to the proofs in lectures I’m just going to do everything in full again.

(i) Note that a ∼ b if and only if a ≡ b mod 2 does define an equivalence relation (by 6.12).
If a ∈ Z then cl(a) means all the b ∈ Z such that a ≡ b mod 2, which is the integers b such that
b − a is even (by definition). If a is even then b − a is even iff b is even, so cl(a) is all the even
integers. Conversely if a is odd then b− a is even iff b is odd, so cl(a) is all the odd integers. So
every equivalence class is either the set of all even integers, or the set of all odd integers, and in
particular there are only two choices.

(ii) Sure this is possible. For example cl(1) = cl(3) (both of these sets are all the odd integers).
(iii) This is not possible. The only possibilities are that X is either the set of all odd integers,

or the set of all even integers; the same is true for Y . So if X 6= Y then one had better be all the
even integers and the other all the odd integers, which forces X ∩ Y = ∅.

(iv) Say cl(a) = cl(b). Recall that cl(b) = {c ∈ S : b ∼ c}. We know ∼ is an equivalence
relation, so b ∼ b, so b ∈ cl(b). If we’re assuming cl(a) = cl(b) then this means b ∈ cl(a), so by
definition we have a ∼ b.

The other way I did in lectures; if a ∼ b then for any c ∈ cl(b) we have b ∼ c (by definition)
so a ∼ c (by transitivity), so c ∈ cl(a). This shows cl(b) ⊆ cl(a). I’ll now explicitly do the other
way: say x ∈ cl(a); then a ∼ x, so x ∼ a (symmetry) so x ∼ b (transitivity) so b ∼ x (symmetry)
so x ∈ cl(b). Hence cl(a) ⊆ cl(b) and so cl(a) = cl(b).

(v) If there exists some s ∈ cl(a) ∩ cl(b) then a ∼ s and b ∼ s; by symmetry s ∼ b and by
transitivity a ∼ b, so (a) implies (b).

We just proved (b) implies (c) in (iv).
For (c) implies (a) we note that a ∈ cl(a) by reflexivity, and so a ∈ cl(b) meaning cl(a)∩cl(b) 6=

∅, so (c) implies (a).
Thus (a), (b) and (c) are all equivalent.

2.
(i) To prove that it is possible to show that reflexive and transitive implies symmetric, we

just have to write down a proof that if ∼ is any binary relation on any set S and ∼ is reflexive
and transitive, then ∼ is symmetric. To prove that it is not possible, we need to write down a
counterexample, which in this context would mean an example of a set S and a binary relation ∼
which is reflexive and is transitive but is not symmetric.

(ii) We know a ≤ a for all a, so ∼ is reflexive. We also know that a ≤ b and b ≤ c implies
a ≤ c, so ∼ is transitive. But ∼ is not symmetric because 3 ∼ 4 but 4 6∼ 3.

(iii) If x ∈ R then |x − x| = 0 ≤ 1, so x ∼ x. Hence ∼ is reflexive. Next, if |x − y| ≤ 1 then
|y − x| = | − (x− y)| = |x− y| ≤ 1, so ∼ is symmetric. However 1 ∼ 2 and 2 ∼ 3 but 1 6∼ 3, so ∼
is not transitive.

(iv) 0 ∼ 0 is false, so ∼ is not reflexive. However ∼ is symmetric and transitive, because
whatever x and y are, (x ∼ y) is always false, so (x ∼ y) =⇒ (y ∼ x) is true (because false
implies anything). Similarly transitivity is true (because false implies anything).

3. The mistake is that you might not be able to choose t with s ∼ t, because perhaps there are
no t ∈ S at all (including t = s) satisfying s ∼ t.

4.
(i) This is straightforward: f(a) = f(a) so a ∼ a, if a ∼ b then f(a) = f(b) so f(b) = f(a) so

b ∼ a, and if a ∼ b and b ∼ c then f(a) = f(b) = f(c) so f(a) = f(c) so a ∼ c.
(ii) cl(x) = {s ∈ X : x ∼ s} = {s ∈ X : f(x) = f(s)} = {s ∈ X : f(s) = y} = f−1(y).
(iii) Say W is an equivalence class. By definition this means W = cl(x) for some x ∈ X. Now

choose w ∈W . Then x ∼ w so W = cl(w) by a previous question. I want to define g(W ) = f(w).
So now let’s see what happens if we choose w′ ∈W . Then w ∼ w′ because W = cl(w), and hence



f(w) = f(w′) by definition of ∼. In particular this means that our definition of g(W ) was indeed
independent of the choice of element of W we used to define g(W ), so g(W ) is indeed well-defined.

(iv) Say W1 and W2 are two equivalence classes. Choose w1 ∈ W1 and w2 ∈ W2. Then
W1 has non-trivial intersection with cl(w1) (they both contain w1) so cl(w1) = W1 and similarly
cl(w2) = W2. By definition, g(W1) = f(w1) and g(W2) = f(w2). Now let’s say g(W1) = g(W2).
Then f(w1) = f(w2), so w1 ∼ w2, so cl(w1) = cl(w2). Hence W1 = W2. But W1 and W2 were
arbitrary, so g is injective.

(v) Say W ∈ Z. Then by definition W is an equivalence class, so by definition W = cl(x) for
some x ∈ X. Hence h(x) = cl(x) = W . But W ∈ Z was arbitrary, so h is surjective.

(vi) To prove that f = g ◦ h we need to check that for all x ∈ X we have f(x) = g(h(x)).
So set W = h(x) = cl(x). Now to define g(W ) we need to choose some element of W but we
know for sure (by reflexivity) that x ∈ cl(x) so let’s choose x, and then g(W ) = f(x). Hence
g(h(x)) = f(x). But x ∈ X was arbitrary, so g ◦ h = f .

(vii) Say j ∈ J . Then by definition of the image of f we must have j = f(x) for some x ∈ X.
Define i(j) = f−1(j); by part (ii) this is cl(x). In particular i is a well-defined map.

The reason it is injective is that if j1 6= j2 ∈ J then we can choose x1, x2 ∈ X such that
f(x1) = j1 and f(x2) = j2; now x1 6∼ x2 (as j1 6= j2) so cl(x1) 6= cl(x2), meaning that indeed i is
injective.

The reason i is surjective, is that if W is an equivalence class and w ∈ W then f(w) = j ∈ J
and i(j) = f−1(j) is an equivalence class containing w so must be cl(w) = W .

Hence i is bijective.
(viii) If x ∈ X and f(x) = j then i(h̃(x)) = i(f(x)) = i(j) = f−1(j) = {x′ ∈ X : f(x′) =

f(x)} = cl(x) = h(x). Because x ∈ X was arbitrary we have proved i ◦ h̃ = h.
Finally, if j ∈ J then by definition j = f(x) for some x ∈ X. If i(x) = W then W = f−1(j)

which contains x, so g(i(j)) = g(W ) = f(x) = j = g̃(j), and because j ∈ J was arbitrary we have
proved g ◦ i = g̃.

5. If x ∈ Z then x ∼ x + 8 ∼ x + 16 (using n = x and n = x + 8) and similarly x + 1 ∼ x + 6 ∼
x + 11 ∼ x + 16. By symmetry x + 16 ∼ x + 1 and by transitivity x ∼ x + 1 for all x ∈ Z. Now
by induction we can prove that if y is fixed and z = y + n for some integer n ≥ 0 then y ∼ z. The
base case is reflexivity, and the inductive step follows from transitivity and the fact that x ∼ x+1.
As a consequence we deduce that if y ≤ z then y ∼ z. By symmetry we deduce that if y ≤ z then
y ∼ z, and hence y ∼ z for all y, z ∈ Z.

6.
(i) f is bijective; indeed if we define g = f then g is a two-sided inverse function for f . For

f(f(0)) = f(0) = 0, and if x 6= 0 then f(f(x)) = f(1/x) = 1/(1/x) = x, so f ◦ f is the identity
function R→ R.

(ii) f : Z → Z, f(n) = 2n + 1. This is injective, because if f(a) = f(b) then 2a + 1 = 2b + 1
and hence 2a = 2b, so a = b. But it is not surjective, as f(n) is always odd, so there cannot be
any n such that f(n) = 2 (indeed if f(n) = 2 then 2n = 1 but no integer satisfies this equation).

(iii) f : R→ R, f(x) = x3. This is bijective. It’s pretty obvious that if g(x) = x1/3 then g is a
two-sided inverse for f , but if I was going to be super-fussy I would say that in the question I only
said that you could assume that every positive real has a unique positive real cube root, so first you
should make the following observations. (a) The cube of a non-positive real is non-positive, hence
every positive real has a unique real cube root; (b) the cube of a non-zero number is non-zero,
so zero has a unique real cube root (namely zero); (c) if y3 = x then (−y)3 = −x, from which it
follows that every negative number has a unique real cube root. We’ve just checked carefully that
every real number x has a unique real cube root, and if we define g(x) to be the unique real cube
root of x then g(y)3 = y and g(x3) = x (by uniqueness), hence f(g(y)) = y and g(f(x)) = x for
all x, y meaning that f and g are inverse functions.

(iv) f : R→ R defined by f(x) = x3 if the Riemann hypothesis is true, and f(x) = −x if not.
This function is bijective, and the two-sided inverse function is g defined by g(y) = y1/3 if the
Riemann hypothesis is true, and g(y) = −y if it is false. A case by case check shows that whether
or not the Riemann Hypothesis is true, f ◦ g and g ◦ f are both the identity function.
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(v) This question is easier than I thought – one of my tutees last year pointed out that
f(n + 1) − f(n) was a quadratic with negative discriminant, hence (by completing the square)
f(n + 1) > f(n) for all n. This can be used to prove both that f is injective (a < b implies
f(a) < f(b) by induction on b− a) and not surjective (f(1) = 0 and f(2) = 3 so there can be no
integer n such that f(n) = 1). Here is my original answer though (much more complicated).

This function is not surjective. For example I claim there can be no integer n such that
f(n) = 1; indeed such an integer n would satisfy n3− 2n2 + 2n = 2 and hence n(n2− 2n+ 2) = 2;
hence n would have to be a divisor of 2. But the only divisors of 2 are ±1 and ±2, and f(1) = 0,
f(2) = 3, f(−1) = −6 and f(−2) = −21, so none of these work.

It is injective however, although this is perhaps a little tough to prove. We do it by con-
tradiction. Say m,n ∈ Z with m 6= n and f(m) = f(n). Then f(m) − f(n) = 0, so (m3 −
n3) − 2(m2 − n2) + 2(m − n) = 0. Because m 6= n we can divide out by m − n and deduce
m2 + mn + n2 − 2(m + n) + 2 = 0 and our job is to show that this equation has no solutions.
By completing the square and then multiplying by 12 to clear denominators we deduce that
3(2m+ n− 2)2 + (3n− 2)2 + 8 = 0 and this has no real solutions, let alone integer ones, so this is
the contradiction we seek.

7.
(i) f is not defined at zero, so it is not a function with domain R.
(ii) f is not defined for x < 0 as whatever you mean by

√
x it can’t be real.

(iii) f(0) = 1/2 which is not in the codomain.
(iv) We don’t say which solution (and sometimes there is more than one – for example y3−y = 0

has three real solutions). If we were careful to explain exactly which solution we chose (for example
we could choose the largest real solution) then this would be well-defined (but it would not be
continuous – can you find an example of a discontinuity if we chose the largest real solution in
every case?)

(v) If |x| < 1 then 1 + x + x2 + x3 + · · · = 1/(1 − x) (you will see a proof of this next term
when you will also learn rigorously what the definition of an infinite sum is). However if |x| > 1
then the sum does not converge (even though 1/(1− x) makes perfect sense) so as it stands this
function is not defined when |x| > 1.
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