
KMB, 30/11/17

M1F Foundations of Analysis, Problem Sheet 8, solutions.

1. We know from lectures that there exists integers λ and µ such that λa+ µb = 1. If m is some
positive integer then we can deduce that λma + µmb = m. So it looks like we can just buy λm
boxes of a nuggets and µm boxes of b nuggets and we will be done – until we notice that λ and µ
are unlikely to both be non-negative, so probably either λm or µm will be less than zero.

So what do we do? Well, in the last sheet we saw a trick: if we have a solution to Xa+Y b = m
with X and Y integers, then we can subtract b from X, getting X ′ = X−b, and add a to Y getting
Y ′ = Y +a, and then X ′a+Y ′b is also m, because X ′a+Y ′b = Xa−ba+Y b+ab = Xa+Y b = m.
More generally if X ′ = X − qb and Y ′ = Y + qa for any integer q, then X ′a + Y ′b = m (easy
check).

Now I claim that we can set N = ab. Here’s why. The argument above shows that for any
integer m ≥ N (and indeed any integer m at all) we can solve Xa+Y b = m in integers X and Y ,
not yet worrying about whether they are positive or not. Now let’s use the trick of changing X
by a multiple of b and Y by a multiple of a. More precisely, let’s try and change X so that it’s as
small as possible but still at least zero. So let’s write X = qb + r (quotient and remainder) with
0 ≤ r < b, and let’s set X ′ = X − qb and Y ′ = Y + qa. We’ve just seen that X ′a + Y ′b = m.
But furthermore in this case we have X ′ = qb + r − qb = r, so 0 ≤ X ′ < b. In particular X ′ is
non-negative and at most b. But now Y ′ = (m−X ′a)/b ≥ (m− ba)/b ≥ 0 (because we assumed
m ≥ ab), so Y ′ is also non-negative, and this is what we wanted.

Note that actually figuring out the smallest N such that we can always buy m nuggets if
m ≥ N , is harder. We know N ≤ ab from this question, but if you are more careful you can figure
out what the smallest N is exactly (hint: it’s closer to (a− 1)(b− 1) in general).

I’ll finish by noting that if we can instead by either a, b or c nuggets, then finding an explicit
formula for the largest number you can’t buy is an open problem, although of course for any given
explicit set of integers one can solve it. For a general finite set of possible nugget purchases, the
problem of finding the largest number you can’t buy is actually NP hard. Google for “Frobenius
coin problem” or “Frobenius stamp problem” for more information about this question.

2∗. (i) is true. For if a positive integer d divides a and b then it must divide λa+ µb and hence it
divides 1, so it is at most 1. In particular the only positive integer common factor of a and b is 1,
so a and b are indeed coprime.

(ii) is false. For example if a = b = 1 then we can set λ = 3 and µ = 4.

3. (i) As in the hint we write N = N(λa+ µb) = λNa+ µNb. Now N is a multiple of a, so Nb is
a multiple of ab, and N is a multiple of b so Na is a multiple of ab as well. Hence λNa+ µNb is
the sum of some multiples of ab, so N is a multiple of ab.

(ii) Applying (i) we see that if x− y is a multiple of p and of q then it’s a multiple of pq. Now
applying it again with a = pq and b = r (which are coprime because r does not divide pq and r
is prime) we see that x − y is a multiple of pqr and hence x is congruent to y modulo pqr. The
converse is easy.

(iii) We have 27 − 2 = 126 = 2 × 9 × 7. However 9 clearly does not divide 37 − 3, because it
does divide 37 and it doesn’t divide 3. Hence the highest common factor of 27−2 and 37−3 must
divide 2× 3× 7 = 42.

But now I claim that 42 is the answer. To check this all we need to do is to check that n7 − n
is a multiple of 42 for 2 ≤ n ≤ 1000 and to check this it would suffice to show that n7 − n is a
multiple of 42 for all integers n. To do this, by the previous part, it suffices to show that n7 − n
is always a multiple of 2, of 3 and of 7. Let’s deal with these cases separately.

We see n7 − n is always a multiple of 2 by checking the two cases. Either n is odd, in which
case n7 is odd so the difference is even, or n is even in which case n7 is even, so the difference is
even. In either case the difference is even.

We next want to prove that n7 − n is always a multiple of 3. One trick way to do this would
be to notice that n7 − n = n(n6 − 1) = n(n2 − 1)(1 + n2 + n4) = (n3 − n)(1 + n2 + n4) and that



n3 − n is always a multiple of 3 by Fermat’s Little Theorem; one could also check the three cases
n ≡ 0, 1, 2 mod 3 separately.

Finally we want to prove that n7 − n is always a multiple of 7, but this follows immediately
from Fermat’s Little Theorem once we have checked that 7 is prime, which it is, because it’s not
a multiple of 2,3,4,5 or 6.

So we’re done!
(iv) By part (ii) it suffices to check that n561−n is always a multiple of 3, of 11 and of 17. We

do this by generalising Fermat’s Little Theorem thus:
Theorem. If p is prime, and if e is a positive integer congruent to 1 mod p− 1, then for every

integer n we have that ne − n is a multiple of p.
Proof. If n is a multiple of p this is clear. If not then by Fermat’s Little Theorem we have

np−1 ≡ 1 mod p. Now write e = d(p− 1) + 1, and observe that ne−1 = (np−1)d ≡ 1d ≡ 1 mod p,
and hence ne ≡ n× 1 ≡ n mod p.

We can now deduce (iv) because it’s easy to check that 560 is a multiple of 2, 10 and 16.

4.
(i) We have a ≤ a for all a so ∼ is reflexive. We have 1 ≤ 2 but 2 6≤ 1, so ∼ is not symmetric.

If a ≤ b and b ≤ c then a ≤ c, so ∼ is transitive.
(ii) a − a = 0 = 02, so ∼ is reflexive. We have 2 ∼ 1 as 2 − 1 = 12, but 1 6∼ 2 as −1 is not a

square, so the relation is not symmetric. Finally we have 3 ∼ 2 and 2 ∼ 1 but 3 6∼ 1 as 2 is not a
square, so ∼ is not transitive either.

(iii) 2 6= 22 so 2 6∼ 2, and ∼ is not reflexive. We have 4 ∼ 2 but 2 6∼ 4 as 2 6= 42, so the
relationship is not symmetric. We have 4 ∼ 2 and 16 ∼ 4 but 16 6∼ 2 so the relation is not
transitive.

(iv) We have 1 6∼ 1 so ∼ is not reflexive. If a ∼ b then a+ b = 0, so b+ a = 0, so b ∼ a, hence
∼ is symmetric. Finally we have 1 ∼ −1 and −1 ∼ 1 but 1 6∼ 1 so ∼ is not transitive.

(v) We have a− a = 0 is an integer, so ∼ is reflexive. If a− b is an integer then so is b− a, so
∼ is symmetric. Finally if a − b and b − c are integers, then their sum is a − c which is also an
integer. So a ∼ b and b ∼ c implies a ∼ c, and in particular ∼ is also transitive. So in fact this
relation is an equivalence relation.

(vi) 2 6∼ 2 so ∼ is not reflexive. We know 1 ∼ 3 but 3 6∼ 1 so ∼ is not symmetric. It is however
impossible to find a, b, c ∈ S with a ∼ b and b ∼ c (because b would have to be 1 and 3) so the
statement “a ∼ b and b ∼ c implies a ∼ c” is true, as if P is false then “P implies Q” is always
true whatever the truth value of Q. So this relation is transitive.

(vii) This relation is reflexive, symmetric and transitive, because it is impossible to find any
counterexamples to these statements as S is empty (for example for ∼ not to be reflexive we would
have to find a ∈ S with a 6∼ a, but we can’t find any a ∈ S at all, so ∼ is reflexive etc etc).

5.
(i) If a ∈ R then a− a = 0 ∈ G, so a ∼ a. But a ∈ R was arbitrary, so ∼ is reflexive.
(ii) Say a, b ∈ R and a ∼ b. Then g := b − a ∈ G by definition. So −g ∈ G, so a − b ∈ G, so

b ∼ a. But a, b were arbitrary, so ∼ is symmetric. (iii) Say a, b, c ∈ R and a ∼ b and b ∼ c. Then
g := b− a ∈ G and h := c− b ∈ G, hence g + h ∈ G. But g + h = c− a, so a ∼ c. But a, b, c were
arbitrary, so ∼ is transitive.

(iv) If ∼ is reflexive then 0 ∼ 0 so 0 − 0 ∈ G hence 0 ∈ G. If ∼ is symmetric then for g ∈ G
we have 0 ∼ g, so g ∼ 0, so −g ∈ G. Finally if ∼ is transitive then for g, h ∈ G we have 0 ∼ g and
g ∼ g + h, so 0 ∼ g + h hence g + h ∈ G.
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