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M1F Foundations of Analysis, Problem Sheet 7 solutions.

1. We know T ⊆ S is non-empty. First let’s prove that T is bounded above. We know that x is a
least upper bound for S, and this means that for all s ∈ S we have s ≤ x. Now say t ∈ T . Then
t ∈ S (as T ⊆ S) and hence t ≤ x. But t ∈ T was arbitrary, and hence x is an upper bound for T .

Now T is non-empty and bounded, and hence has a least upper bound y. Moreover, we know
that x is an upper bound for T , so by definition of least upper bound we have y ≤ x, and this was
what we were asked to prove.

2.
(a) We have 40/7 = 5 + 5/7, so 4/7 = 0.5??? . . ..
Now 10× 5/7 = 50/7 = 7 + 1/7, so 4/7 = 0.57???? . . ..
Next 10× 1/7 = 10/7 = 1 + 3/7, so 4/7 = 0.571??? . . ..
Now let’s stop a bit and think about where this is going.
The error terms so far have been 5/7, 1/7, 3/7. If you think about it, every number that shows

up in this entire calculation (all the error terms and so on) are all equal to a whole number times
1/7, so in particular each error term will be of the form n/7 for some n, and because the error
terms are all between 0 and 1 (indeed are all less than 1) we must have 0 ≤ n < 7. So there are
only finitely many possibilities for n and eventually we must repeat.

Let’s keep it going to see it happening.
We have 10× 3/7 = 30/7 = 4 + 2/7, so 4/7 = 0.5714??? . . ..
Then 20/7 = 2 + 6/7, so 4/7 = 0.57142??? . . ..
Then 60/7 = 8 + 4/7, so 4/7 = 0.571428??? . . ..
Aah, but now we’re back to 4/7, so the next calculation is 40/7 = 5 + 5/7 and we’ve done that

calculation before, showing that the decimal expansion is 0.571428571428 . . ..
(b) Write q = m/d. WLOG q > 0 (this is shorthand for “if q is negative then its deimal

expansion is just a minus sign followed by the decimal expansion of something positive, so we may
as well apply everything to −q”). The first step in our algorithm is to write q = n + e with n a
whole number, and 0 ≤ e < 1 an error term. Clearly in this case we have e = r/d with 0 ≤ r < d
an integer.

Now to work out the first digit after the decimal point we write 10r/d as a whole number plus
an error term e1 with 0 ≤ e1 < 1, and again we must have e1 = r1/d with 0 ≤ r1 < d an integer.

If you like, you could now formally prove by induction that all the error terms en are of the
form rn/d with 0 ≤ rn < d an integer.

In particular, there are only finitely many choices for each ri, so eventually we must have one
we’ve had before. And then we get two error terms which are the same, and the decimal expansion
starts recurring.

(c) If x only has finitely many non-zero digits after the decimal point, then choosing N such
that all the digits after the Nth are zero we see that 10Nx has all zeros after the decimal point,
so it’s an integer n. Hence x = n/10N .

(d) Say the period has length p. Then x and 10px are both of the form “number with a finite
decimal expansion” plus “0.0000 · · · 000(thing)(thing)(thing)(thing) . . .” where “thing” is a finite
period occurring over and over. Hence 10px − x has a finite decimal expansion, and is hence a
rational number s; hence x = s/(10p − 1) is also rational.

(e) With notation as in the previous part, 10px − x is a rational number of the form t/10N

and hence x must be of the form t/(10N (10p − 1)). Applying this to x = 1/d we see that
1/d = t/(10N (10p − 1)) and clearing denominators we deduce that d divides 10N (10p − 1).

For 35 use the fact that 4/7 has period of length 6, so we suspect that 7 divides 106 − 1 which
indeed it does (indeed 999999 = 7× 142857), and hence 35 divides 9999990 (the 7 divides 999999,
and the 5 divides 10).

3. If x were rational then its decimal expansion would ultimately be periodic. Let N be the length
of the period. Now what can the digits in this period be? If we look at the decimal expansion



of x then we see that eventually it contains strings of zeros of length N or more. So let’s look way
down the decimal expansion to a point where x has started recurring, and all the strings of zeros
have length N or more. This means that the sequence of numbers which is repeating must all be
zero, but this means that x only has finitely many 1’s in its decimal expansion, a contradiction.

4. It’s easy to check that 100 +x+ 100x = 10000x (this is equivalent to 100 = 9899x). Now write
the decimal expansion of x thus:

x = 0.a1b1a2b2a3b3a4b4 · · ·

with the ai and bi denoting digits.
Our equation becomes

100.00000000

+0.a1b1a2b2a3b3 · · ·
+a1b1.a2b2a3b3a4b4 · · ·

= a1b1a2b2.a3b3a4b4a5b5 · · ·

We also know that a1b1 = 01 and a2b2 = a1b1 = 01, so the stuff before the decimal expansion
works out. After the decimal expansion we see a3b3 = a1b1 + a2b2, then a4b4 = a2b2 + a3b3 and
so on – so you can see why it’s happening. Unfortunately it won’t happen forever, because carries
will appear soon and really mess things up.

5.

10001 = 7261 + 2740

7261 = 2× 2740 + 1781

2740 = 1× 1781 + 959

1781 = 1× 959 + 822

959 = 1× 822 + 137

822 = 6× 137 + 0

The last non-zero remainder was 137, so this must be the highest common factor.

6.
(a)

46 = 2.18 + 10

18 = 1.10 + 8

10 = 1.8 + 2

8 = 4.2 + 0

and the last non-zero remainder was 2, so this is the hcf.
(b) Writing each remainder in the form 46λ+ 18µ, we get

10 = 46− 2× 18

8 = 18− 10 = 18 + (2× 18− 46) = 3× 18− 46

2 = 10− 8 = (46− 2× 18) + (46− 3× 18) = 2× 46− 5× 18.

So we can set λ = 2 and µ = −5. There are plenty of other solutions though, as we’ll see in (c).
(c) We know λ = 2 and µ = −5 works. Now note that if we increase λ by adding 18z and

decrease µ by subtracting 46z, then 46λ+ 18µ changes by 46× 18z− 18× 46z = 0. Hence setting
z = 106 we see that λ = 18 × 106 + 2 = 18000002 and µ = −46 × 106 − 5 = −46000005 and this
should work.
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(d) We know that 2×46−5×18 = 2. Now multiply both sides by 2 million and get ρ = 4000000
and σ = −10000000. That should work.

7.
If you think about the algorithm you learnt at school for multiplying positive integers together,

you will see that an easy consequence is that if a and b end in 1 then so does ab.
As for the prims, here’s a lemma.
Lemma. If p is a prime number that ends in 3, and q is a prime number that ends in 7, then

s := pq is a prim.
Proof. Certainly s > 1. Now if s factors into two smaller elements of S then this factorization

must also be a factorization of s in the usual ring of integers. Now by uniqueness of factorization,
the only way to factor s in the usual positive integers is s = 1 × s = p × q (up to order), and p
and q are not in S. Hence s is prim.�

As a consequence, a = 3× 7, b = 3× 17, c = 13× 7 and d = 13× 17 (whatever they are) are
all prim numbers, and so if s = 3× 7× 13× 17 then s = ad = bc has two different factorizations
into prims.

For the two or three prims question, how about this: set a = 3×13×19. Then a is prim because
we can list all the factors of a (1,3,13,3.13,3.19,13.19,3.13.19) and note that none of them end in 1
apart from 1 and a. Similarly if b = 7×17×29 then b is prim. However ab = (3×7)(13×17)(19×29)
and if you really have got this far into the question and have actually thought about it (rather
than just naively reading the answers without thinking, which will teach you far far less), you
should easily be able to check that all these three bracketed factors are prim elements of S.
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