
KMB, 8/11/17

M1F Foundations of Analysis, Problem Sheet 5 Solutions.

1.
a) We first check that F3 = 1 + 1 = 2 is even, and hence that P (1) is true.
For the inductive step, we note that if P (d) is true, then F3d−2, F3d−1, F3d are odd, odd, even,

and now continuing the pattern, the next three terms are odd+even=odd, even+odd=odd, and
then odd+odd=even, hence the next three are odd, odd, even as well. Slightly more formally,
F3(d+1)−2 = F3d+1 = F3d−1 + F3d is odd, F3(d+1)−1 = F3d+2 = F3d+1 + F3d is odd, and F3(d+1) =
F3d+2 + F3d=1 is even. Hence P (d + 1) is true, if P (d) is. This means that P (n) is true for all
n ≥ 1 by the principle of mathematical induction.

b) 2 + 0 + 1 + 7 = 10 leaves remainder 1 when divided by 3, so 2017 has remainder 1 when
divided by 3, so F2017 is odd.

2. Let P (n) be the statement “4n > 3n + 2n”. Now P (1) is false, but we don’t care. And P (2) is
true, because it says “16 > 9 + 4” which is true.

Now let’s prove P (n) implies P (n + 1) for all n ≥ 2; then our slightly modified principle of
mathematical induction will tell us that P (n) is true for all n ≥ 2. And this works, because
if P (n) is true, then 4n > 3n + 2n, and multiplying both sides by 4 (which is positive) we see
4n+1 > 4.3n + 4.2n > 3.3n + 2.2n = 3n+1 + 2n+1, meaning P (n + 1) is true.

Note that P (n) is the true-false statement “4n > 3n + 2n”, it is not the number 4n or the
number 3n + 2n, so hopefully nobody is writing anything like “P (n) > 3n + 2n” in their solutions.

3.
a) For n ∈ Z≥1, let f(n) be the number n + (n + 1) + (n + 2) + (n + 3), and let P (n)

be the statement that f(n) has remainder 2 when divided by 4. Then P (1) is true, because
f(1) = 1 + 2 + 3 + 4 = 10 = 2 × 4 + 2. Moreover, P (n) implies P (n + 1), because f(n + 1) =
(n + 1) + (n + 2) + (n + 3) + (n + 4) = [n + (n + 1) + (n + 2) + (n + 3)] + 4 = f(n) + 4, hence the
remainders when you divide f(n + 1) and f(n) by 4 are the same. We’re done, by induction.

b) Let P (n) for n ∈ Z≥0 be the statement that 11n − 3n is a multiple of 8. Then P (0) is true,
because 0 is a multiple of 8. And if d ≥ 0 and P (d) is true, then 11d− 3d is a multiple of 8, and so
multiplying by 11 we deduce 11d+1 − 11.3d is also a multiple of 8. But clearly 8.3d is a multiple
of 8 too, and the sum of two multiples of 8 is a multiple of 8, hence

11d+1 − 11.3d + 8.3d

= 11d+1 − 3.3d

= 11d+1 − 3d+1

is a multiple of 8. We have shown that P (d) implies P (d + 1), so P (n) is true for all n ≥ 0 by
induction.

c) For the first one, observe n + (n + 1) + (n + 2) + (n + 3) = 4n + 6 = 4(n + 1) + 2, which
is hence 2 mod 4. For the second observe that for n = 0 we can check directly, and for n ≥ 1 we
have 11n − 3n = (11 − 3)(11n−1 + 3.11n−2 + 32.11n−3 + · · · + 3n−2.11 + 3n−1) which is clearly a
multiple of 11− 3 = 8.

4. We see 1! = 1 < 31 = 3, 2! = 2 < 32 = 9, 3! = 6 < 33 = 27, 4! = 24 < 34 = 81,
5! = 120 > 35 = 243, and 6! = 720 < 36 = 729, but 7! = 5040 > 37 = 2187, so the inequality
n! < 3n is true for n ∈ {1, 2, 3, 4, 5, 6} and false for n = 7.

Let us now prove that it is false for all n ≥ 7 by induction. For n ≥ 7 define P (n) to be the
statement that n! ≥ 3n. Then P (7) is true, and for d ≥ 7 we have that P (d) implies P (d + 1),
because if P (d) is true then d! ≥ 3d, so (d + 1)! ≥ d.d! ≥ 3.d! ≥ 3.3d = 3d+1.

5∗. It’s impossible to buy 43 chicken nuggets. Let’s prove this by contradiction. Let say we’ve
just managed to buy 43 chicken nuggets. We can’t just have boxes of 6 or 9, because both 6 and
9 are multiples of 3, and 43 is not. So we must have bought at least one pack of 20, and somehow



bought another 23 as well. But again 23 is not a multiple of 3, so we couldn’t have just used boxes
of 6 or 9 and so we must have bought a second box of 20. These two boxes make 40 so far, so now
we need to buy three more, but we clearly cannot buy 3, because the smallest amount we can buy
is 6.

However it is possible to buy any number m ≥ 44 of nuggets. This is easy to prove by induction,
once you have done by far the hardest bit, which is figuring out exactly what to prove.

Let me start by showing that we can buy any number of nuggets between 44 and 53:

44 = 20 + 4.6

45 = 9 + 6.6

46 = 20 + 20 + 6

47 = 20 + 3.9

48 = 8.6

49 = 20 + 20 + 9

50 = 20 + 5.6

51 = 9 + 7.6

52 = 20 + 20 + 6 + 6

53 = 20 + 9 + 4.6

Now for n ∈ Z, n ≥ 8, let P (n) denote the statement “it is possible to buy any of the following
numbers of chicken nuggets: 6n, 6n+ 1, 6n+ 2, 6n+ 3, 6n+ 4, 6n+ 5”. If we can prove P (n) for all
n ≥ 8 then we are home and dry, because for any number m ≥ 48 we can write m = 6q + r with
q the quotient, at least 8, and r the remainder with 0 ≤ r ≤ 5, and then P (q) says we can do it.

Now P (8) is true, because we just checked it explicitly, and clearly P (d) implies P (d + 1)
because if I can buy 6d + r (0 ≤ r ≤ 5) then I can buy 6(d + 1) + r by just buying another box
of 6 chicken nuggets.

So we can buy any number m ≥ 48, and also anything between 44 and 47, but not 43, so we
are done: the answer is 43.

6. For n ≥ 1, let P (n) be the statement that if there are n blue-eyed islanders, then each of
them will leave the island on the nth boat after the visitor’s revelation (and nobody will leave
beforehand).

Clearly P (1) is true; the only blue-eyed islander will know that they have blue eyes after the
visitor’s comments.

Moreover P (d) implies P (d + 1); if P (d) is true, and there are d + 1 islanders with blue eyes,
then each of these d + 1 islanders knows that there are either d or d + 1 islanders with blue eyes,
and after d days, when nobody leaves, each of the blue-eyed islanders will realise that the other
blue-eyed islanders can’t see d − 1 blue eyes (or else they would have already left), so their own
eyes must be blue, and they will leave on day d + 1.

Hence P (n) is true for all n by induction.
All islanders, with either blue or brown eyes, know this. Hence after 100 days when all the

blue-eyed islanders leave, all the remaining islanders know that they must have brown eyes, so
they all leave on day 101.

As for the paradox, I resolve it in the hints: everyone knows there are blue-eyed islanders,
and everyone knows that everyone knows there are blue-eyed islanders, etc, etc, but this doesn’t
go on forever. Take the case of two blue-eyed islanders, for example. Then everyone knows that
there are blue-eyed islanders, but one blue-eyed islander does not know for sure that the other
blue-eyed islander knows this. Now take the case of three: everyone knows that there are blue-
eyed islanders, and everyone knows that everyone knows that there are blue-eyed islanders, but
a blue-eyed islander cannot rule out the possibility that there are only two blue-eyed islanders,
and we just analysed this case – so in particular, if there are three blue-eyed islanders, then the
blue-eyed islanders do not know for sure that everyone knows that everyone knows that there are
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blue-eyed islanders. This is what changes when the visitor speaks – after that, everyone knows
there is a blue-eyed islander, and everyone knows that everyone knows, and everyone knows that
everyone knows that everyone knows, and so on for as many iterations as you like.

3


