
KMB, 31/10/17

M1F Foundations of Analysis, Problem Sheet 4, Solutions.

1.
a) If p = a+ ib then p = a− ib so the “x coordinate” of p is the same and the “y coordinate”

has changed sign, which is indeed a reflection along the line y = 0.
b) The picture I was expecting is a little arrow from the origin to p, and then another one from

p to p + q, and then the reflection of the entire picture in the real line. The point is that adding
then reflecting is the same as reflecting everything then adding.

c) The reflection of a complex number has the same size as the complex number, but clearly
the angle we’re rotating by is now the negative of the old angle.

d) Again I want to argue that scaling commutes with reflection (i.e. if you scale then reflect,
it’s the same as reflecting and then scaling) and that rotating anticlockwise and then reflecting is
the same as reflecting and then rotating clockwise, so it’s all obvious. is obvious.

e∗) Speaking as a formalist, I do not think that the arguments above are rigorous mathematical
proofs. Fort me, a rigorous mathematical proof is something you can type into a computer running
a certain kind of logic program that knows the axioms of mathematics, and then the computer can
look at what you typed in and either say “yes, this is a valid proof” or “no, this is not watertight,
the first problematic step is on line 24” (or whatever). Indeed I really felt when typing up the
answers above how hand-wavy and non-rigorous I was being.

However I do not want to reject (b) and (d) completely, by any means. Here’s what I think
they are.

Firstly, they are a way of convincing another mathematician that the results are true, and they
are a way of conveying the general idea of why they are true. So “hand-wavy” arguments like
this are hugely important, because even though this is not how a formalist does mathematics, it
is how people explain mathematics to each other.

Secondly, they are a way of convincing yourself not only that the results are true, but also that
you can prove them by grinding out the algebra which a formalist would expect to see in a formal
proof.

One can read more about formalism here. The main beliefs can perhaps be summarised by
saying that mathematics is just a game, like chess: you prove a theorem in mathematics by
deducing it from the axioms, just like you play a game of chess by following the rules. Your tutor
might not be a formalist, especially if they are an applied mathematician; indeed, they might have
a very different take on what mathematics is to mine. I think that one of my jobs in M1F is to
teach you that mathematical formalism exists, and one of your jobs as a student of M1F is to
realise that formalism is often what I am expecting from you in your answers, even though many
of us will think in pictures.

2.
b) y = x− 2 so x = y + 2 and substituting this in gives

3y3 − 9y + 2 = 0.

Note: the more cavalier amongst you might have instead wanted to make the substitution
x = x− 2. I used to do this when I was your age, but it was around this time that I realised that
substitutions of this form are high-risk, because the meaning of x changes when you do this, and
if you don’t ensure that every single old x gets changed to a new x very quickly, you will have a
broken equation. Furthermore, the route back (and we will be going back later) then involves the
substitution x = x + 2, as we move back from the new x to the old, and in general this is just
asking for trouble.

Those of you who resolutely want to stick with x = x−2 can feel free to then substitute x = x/2
for the next part and then get their answer, and then try and figure out what the original x was,
without making any mistakes. And good luck to them! When I make a substitution I always
change the name of the variable, and I usually instantly write down the inverse substitution
straight away (see the very first thing I wrote in this solution).

https://en.wikipedia.org/wiki/Formalism_(philosophy_of_mathematics)


c) Set c = y/2, so y = 2c. Subbing in gives

24c3 − 18c+ 2 = 0

and dividing by 6 yields
4c3 − 3c = −1/3.

d) If c = cos(θ) (note: those of you who are insisting on still using x for all your variables should
now write x = cos(x) and still try to remain unconfused) and the equation becomes cos(3θ) =
−1/3. My calculator, which is firmly switched onto degrees, says 3θ = 109.471220634490691369 . . .,
so θ = 36.49040687816356378 . . ., so c = cos(θ) = 0.8039564414574 . . ., so y = 2c = 1.60791288291483229043 . . .,
so x = y + 2 = 3.607912882914832290431 . . ..

Note while we’re here, how easy it was to get back to x, because we used different variable
names all the way through.

e) It works!
f) The cubic should have three roots, and one way of seeing the others is the following. Recall

that when we solved cos(3θ) = −1/3 we took an inverse cosine and got 3θ = 109.471220634490691369 . . ..
But we could just add 360 degrees to this (or 2π radians) and we would get a new value for 3θ
which would still work; however when we divided everything by 3 we’d find that θ had only gone
up by 120 degrees, so cos(θ) will probably have changed. Indeed it has, and it gives us another
root. Doing this trick again gives the third root.

g) Unfortunately you can’t solve all quartics this way (as far as I know). There’s not quite
enough degrees of freedom. We have cos(4θ) = 8c4 − 8c2 + 1, and given a general quartic we can
“complete the 4th power” setting y = x+ constant to get the equation into the form Ay4 +By2 +
Cy+D = 0, and then scale by c = y/constant to get it into the form Ac4 +Ac2 +Bc+C = 0, and
then multiply by 8/A to get very nearly there, but the Bc term might be non-zero, so it doesn’t
work.

3. (1 + i)100 =
(√

2eiπ/4
)100

= 250e25iπ = −250, and now expanding out (1 + i)100 using the
binomial theorem gives us that the sum is −250.

4.
(a) Check 1 + i =

√
2eiπ/4 and

√
3 + i = 2eiπ/6, so

√
3 − i = 2e−iπ/6. Multiplying these

together, using the Cartesian x + iy product on one side and the De Moivre one on the other
(noting 1/4− 1/6 = 1/12), gives

(
√

3 + 1) + i(
√

3− 1) = 2
√

2eiπ/12.

Now the real part of the right hand side is 2
√

2 cos(π/12), and this must equal the real part of the
left hand side, and the result follows on equating these. Pretty cool, huh? Note that the proof of
de Moivre used the formulae for cos(A+B) etc, and given that most of you probably know cos(30)
and cos(45) etc you could have done it by cos(45− 30) and expanding it out. But using complex
numbers is so much cooler, and saves you from having to remember the formula for cos(A−B). . . .

(b) Let’s prove it by contradiction. So let’s assume for a contradiction that cos(π/12) is

rational. Then its square would be too, which is 6+2+2
√
12

16 and because
√

12 = 2
√

3 it’s easy to

deduce from this that
√

3 is rational. However this contradicts something you proved last week on
the example sheet, so we’ve made a mistake somewhere, and the mistake is our dodgy assumption
above. Hence cos(π/12) is irrational.

5. (a) The picture should be the 10 vertices of a regular decagon on the unit circle {|z| = 1},
making angles with the real axis of 9 degrees, 9 + 36 = 45 degrees, 45 + 36 = 81 degrees and so
on. Those of you working with radians – I pity you at this point. The line x = y should be a line
of symmetry, by the way.

The one closest to i looks, from the picture, like it’s the one corresponding to 81 degrees, or
e81πi/180. But is this a proof? The formalist in me wants to work out the x and y coordinates
of every one of the points, to ten decimal places, and then to work out the 10 distances using
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Pythagoras’ theorem, and then prove that each of these calculations is accurate to, say, 5 decimal
places, and then say that this accuracy is enough to guarantee that indeed the 81 degree point
was the closest. Maybe I’ll be less formalist for this question. . . .

(b) If one of the roots is A = p then the other two are B = ωp and C = ω2p for ω = e2πi/3.
Geometrically, multiplying by ω corresponds to rotating anticlockwise by 120 degrees, and because
ω3 = 1 we see that rotating by 120 degrees sends the line AB to BC, and sends BC to CA. So
the triangle ABC has all its sides the same length and is hence equilateral.
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