
KMB, 16/10/17

M1F Foundations of Analysis, Problem Sheet 2, solutions.

1. Recall that to check that two sets A and B are equal, one has to do two things: first prove
A ⊆ B and then prove B ⊆ A.

(a)
⋃∞

n=0[n, n + 1) equals [0,∞). Why is this? Because n ≥ 0 in the union, we have 0 ≤ n <
n + 1 <∞, so certainly the union is contained within [0,∞). Conversely if r ∈ (0,∞) then there
is some integer n such that n ≤ r < n + 1 (we’ll prove this in the course; alternatively you might
want to argue that it’s “obvious” and whether it is or not depends on your viewpoint of what
mathematics is). This integer n must be at least zero, as if n < 0 then n ≤ −1, so n + 1 ≤ 0,
which implies r < n + 1 ≤ 0, a contradiction. Hence r ∈ [n, n + 1) and n ≥ 0, so this is in the
union on the left hand side.

(b) This union is (0, 1]. For if n ≥ 1 then 1/n > 0 and hence [1/n, 1] ⊆ (0, 1], so we can
deduce that the union is contained within (0, 1]. Conversely, if r > 0 then we showed in lectures
that there’s some positive integer n with 0 < 1/n < r (or maybe this is “obvious”), and hence
r ∈ [1/n, 1].

(c) This union is all of R. It’s clearly contained in R, and conversely if r is any real number
and we choose an integer N > 0 with N > r, and an integer M > 0 with M > −r, and let n be
the maximum of N and M , we have r < N ≤ n and −r < M ≤ n so −n < r, and we conclude
r ∈ (−n, n).

(d) The intersection is just (−1, 1). For if n ≥ 1 then −n ≤ −1 < 1 ≤ n and hence
(−1, 1) ⊆ (−n, n), meaning that (−1, 1) is contained in the intersection; conversely the inter-
section is contained in each of the sets in the intersection and in particular within (−1, 1).

2) Informally, we are going to argue that there can be no largest element, because if s is in
(0, 1) then the average of s and 1 will be a bit larger. Let me write this down more formally
though.

We prove the result by contradiction. Let’s assume for a contradiction that s is a largest
element of (0, 1). Then let’s consider t := s+1

2 . Because s ∈ (0, 1) we have s < 1, and hence
s + 1 < 2 so t = s+1

2 < 1. Because s > 0 we have s + 1 > 0 and hence t = s+1
2 > 0. We deduce

that t ∈ (0, 1). Now if s were a largest element of (0, 1) then we must have t ≤ s, but I claim that
in fact t > s. For t− s = s+1

2 −
2s
2 = 1−s

2 > 0 because s < 1 hence 1− s > 0.

3) By contradiction. Let’s say 3 divides n2 but it doesn’t divide n. Then the remainder when
we divide n by 3 must be 1 or 2, in other words n = 3m + 1 or 3m + 2.

In the first case n2 = (3m + 1)2 = 9m2 + 6m + 1 = 3(3m2 + 2m) + 1 is not a multiple of 3.
In the second case n2 = (3m + 2)2 = 9m2 + 12m + 4 = 3(3m2 + 4m + 1) + 1 is also not a

multiple of 3.
So in either case we have our contradiction, meaning that if 3 divides n2 then 3 must divide n.

4) (a) This is false. For example if a =
√

2 and b = −
√

2 then both a and b are irrational, but
their sum is zero, which is rational.

(b) This is also false. For example if a =
√

2 and b = 0 then ab = 0 is rational.

5) (a) This is true. We need to show that if x ∈ R is arbitrary, then there exists some y ∈ R
such that x + y = 2, and this is easy: we can just let y = 2− x.

(b) This is not true. The claim is that there is some magical number y ∈ R which has the
property that whatever real number x we choose, we will have x+ y = 2. But this cannot be true.
Let’s prove it by contradiction. Let’s assume for a contradiction that such a number y really did
exist, and now let’s try some values of x. For example let’s choose x = 0; then we have y + 0 = 2
and hence y = 2. But now let’s choose x = 1; then we must have 2 + 1 = y + 1 = 2, and hence
3 = 2, a contradiction. So no such y can exist.

(6) Note that
√

2,
√

6 and
√

15 are all positive. Let’s prove
√

2 +
√

6 <
√

15 by contradiction.
So let’s assume √

2 +
√

6 ≥
√

15



(NB lose a mark for >; the opposite of < is ≥).
Both sides are positive so we can square both sides and deduce

(
√

2 +
√

6) ≥ 15.

Now expand out the bracket and tidy up, to get

2
√

12 ≥ 15− 8 = 7.

Again both sides are positive so we can square both sides and conclude

48 ≥ 49

and this is a contradiction.
Hence

√
2 +
√

6 <
√

15.
IMPORTANT NOTE. If you wrote something like this:

√
2 +
√

6 <
√

15

⇒ 2 + 6 + 2
√

12 < 15

⇒ 2
√

12 < 7

⇒ 48 < 49

then you get no marks at all. This is because if P is the statement that
√

2 +
√

6 <
√

15 then the
argument just above shows that P implies 48 < 49, so P implies something true. What can we
deduce about P from this? Nothing! Because true implies true, and false implies true.

If however you wrote

√
2 +
√

6 <
√

15

⇐ 2 + 6 + 2
√

12 < 15

⇐ 2
√

12 < 7

⇐ 48 < 49

then this would logically be fine, although arguably it would also be upside-down, and also strictly
speaking it doesn’t follow from what we proved in the course about inequalities because we only
proved 0 < a < b implies 0 < a2 < b2 rather than the other way around. Can you see how to
prove that 0 < a2 < b2 and a, b > 0 implies a < b?

7) (a) Proof by contradiction. If
√

2 +
√

3/2 were rational, then its square would be too.

But its square is 2 + 3/2 + 2
√

3, and if this were rational then 2
√

3 and hence
√

3 would be too,
contradicting Q3.

(b) This must be irrational because if it were rational then adding −1 would leave it rational,
but adding 1 gives part (a) which is irrational.

(c) This is rational because it’s zero :P
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