M1F Foundations of Analysis, Problem Sheet 2, solutions.

1. Recall that to check that two sets A and B are equal, one has to do two things: first prove $A \subseteq B$ and then prove $B \subseteq A$.
(a) $\bigcup_{n=0}^{\infty}[n, n+1)$ equals $[0, \infty)$. Why is this? Because $n \geq 0$ in the union, we have $0 \leq n<$ $n+1<\infty$, so certainly the union is contained within $[0, \infty)$. Conversely if $r \in(0, \infty)$ then there is some integer n such that $n \leq r<n+1$ (we'll prove this in the course; alternatively you might want to argue that it's "obvious" and whether it is or not depends on your viewpoint of what mathematics is). This integer n must be at least zero, as if $n<0$ then $n \leq-1$, so $n+1 \leq 0$, which implies $r<n+1 \leq 0$, a contradiction. Hence $r \in[n, n+1)$ and $n \geq 0$, so this is in the union on the left hand side.
(b) This union is $(0,1]$. For if $n \geq 1$ then $1 / n>0$ and hence $[1 / n, 1] \subseteq(0,1]$, so we can deduce that the union is contained within $(0,1]$. Conversely, if $r>0$ then we showed in lectures that there's some positive integer n with $0<1 / n<r$ (or maybe this is "obvious"), and hence $r \in[1 / n, 1]$.
(c) This union is all of \mathbf{R}. It's clearly contained in \mathbf{R}, and conversely if r is any real number and we choose an integer $N>0$ with $N>r$, and an integer $M>0$ with $M>-r$, and let n be the maximum of N and M, we have $r<N \leq n$ and $-r<M \leq n$ so $-n<r$, and we conclude $r \in(-n, n)$.
(d) The intersection is just $(-1,1)$. For if $n \geq 1$ then $-n \leq-1<1 \leq n$ and hence $(-1,1) \subseteq(-n, n)$, meaning that $(-1,1)$ is contained in the intersection; conversely the intersection is contained in each of the sets in the intersection and in particular within $(-1,1)$.
2) Informally, we are going to argue that there can be no largest element, because if s is in $(0,1)$ then the average of s and 1 will be a bit larger. Let me write this down more formally though.

We prove the result by contradiction. Let's assume for a contradiction that s is a largest element of $(0,1)$. Then let's consider $t:=\frac{s+1}{2}$. Because $s \in(0,1)$ we have $s<1$, and hence $s+1<2$ so $t=\frac{s+1}{2}<1$. Because $s>0$ we have $s+1>0$ and hence $t=\frac{s+1}{2}>0$. We deduce that $t \in(0,1)$. Now if s were a largest element of $(0,1)$ then we must have $t \leq s$, but I claim that in fact $t>s$. For $t-s=\frac{s+1}{2}-\frac{2 s}{2}=\frac{1-s}{2}>0$ because $s<1$ hence $1-s>0$.
3) By contradiction. Let's say 3 divides n^{2} but it doesn't divide n. Then the remainder when we divide n by 3 must be 1 or 2 , in other words $n=3 m+1$ or $3 m+2$.

In the first case $n^{2}=(3 m+1)^{2}=9 m^{2}+6 m+1=3\left(3 m^{2}+2 m\right)+1$ is not a multiple of 3 .
In the second case $n^{2}=(3 m+2)^{2}=9 m^{2}+12 m+4=3\left(3 m^{2}+4 m+1\right)+1$ is also not a multiple of 3 .

So in either case we have our contradiction, meaning that if 3 divides n^{2} then 3 must divide n.
4) (a) This is false. For example if $a=\sqrt{2}$ and $b=-\sqrt{2}$ then both a and b are irrational, but their sum is zero, which is rational.
(b) This is also false. For example if $a=\sqrt{2}$ and $b=0$ then $a b=0$ is rational.
5) (a) This is true. We need to show that if $x \in \mathbf{R}$ is arbitrary, then there exists some $y \in \mathbf{R}$ such that $x+y=2$, and this is easy: we can just let $y=2-x$.
(b) This is not true. The claim is that there is some magical number $y \in \mathbf{R}$ which has the property that whatever real number x we choose, we will have $x+y=2$. But this cannot be true. Let's prove it by contradiction. Let's assume for a contradiction that such a number y really did exist, and now let's try some values of x. For example let's choose $x=0$; then we have $y+0=2$ and hence $y=2$. But now let's choose $x=1$; then we must have $2+1=y+1=2$, and hence $3=2$, a contradiction. So no such y can exist.
(6) Note that $\sqrt{2}, \sqrt{6}$ and $\sqrt{15}$ are all positive. Let's prove $\sqrt{2}+\sqrt{6}<\sqrt{15}$ by contradiction. So let's assume

$$
\sqrt{2}+\sqrt{6} \geq \sqrt{15}
$$

(NB lose a mark for $>$; the opposite of $<$ is \geq).
Both sides are positive so we can square both sides and deduce

$$
(\sqrt{2}+\sqrt{6}) \geq 15
$$

Now expand out the bracket and tidy up, to get

$$
2 \sqrt{12} \geq 15-8=7
$$

Again both sides are positive so we can square both sides and conclude

$$
48 \geq 49
$$

and this is a contradiction.
Hence $\sqrt{2}+\sqrt{6}<\sqrt{15}$.
IMPORTANT NOTE. If you wrote something like this:

$$
\begin{aligned}
& \sqrt{2}+\sqrt{6}<\sqrt{15} \\
\Rightarrow & 2+6+2 \sqrt{12}<15 \\
\Rightarrow & 2 \sqrt{12}<7 \\
\Rightarrow & 48<49
\end{aligned}
$$

then you get no marks at all. This is because if P is the statement that $\sqrt{2}+\sqrt{6}<\sqrt{15}$ then the argument just above shows that P implies $48<49$, so P implies something true. What can we deduce about P from this? Nothing! Because true implies true, and false implies true.

If however you wrote

$$
\begin{aligned}
& \sqrt{2}+\sqrt{6}<\sqrt{15} \\
\Leftarrow & 2+6+2 \sqrt{12}<15 \\
\Leftarrow & 2 \sqrt{12}<7 \\
\Leftarrow & 48<49
\end{aligned}
$$

then this would logically be fine, although arguably it would also be upside-down, and also strictly speaking it doesn't follow from what we proved in the course about inequalities because we only proved $0<a<b$ implies $0<a^{2}<b^{2}$ rather than the other way around. Can you see how to prove that $0<a^{2}<b^{2}$ and $a, b>0$ implies $a<b$?
7) (a) Proof by contradiction. If $\sqrt{2}+\sqrt{3 / 2}$ were rational, then its square would be too. But its square is $2+3 / 2+2 \sqrt{3}$, and if this were rational then $2 \sqrt{3}$ and hence $\sqrt{3}$ would be too, contradicting Q3.
(b) This must be irrational because if it were rational then adding -1 would leave it rational, but adding 1 gives part (a) which is irrational.
(c) This is rational because it's zero :P

