M1F Foundations of Analysis, Problem Sheet 2.

1. What are the following sets? Justify your answers.
(a) $\bigcup_{n=0}^{\infty}[n, n+1)$.
(b) $\bigcup_{n=1}^{\infty}[1 / n, 1]$.
(c) $\bigcup_{n=1}^{\infty}(-n, n)$.
(d) $\bigcap_{n=1}^{\infty}(-n, n)$.
2. Prove that the set $(0,1)$ (that is $\{x \in \mathbf{R}: 0<x<1\}$) has no largest element. (NB: by a "largest element" of a set S I mean an element $x \in S$ such that $\forall y \in S, y \leq x$.)
3.

(a) Prove that if n is an integer and 3 divides n^{2} then 3 divides n.
(b) Deduce that $\sqrt{3}$ is irrational.
4. Are the following statements true or false? Proofs or counterexamples required.
(a) If a is irrational and b is irrational then $a+b$ must be irrational.
(b) If a is irrational and b is rational then $a b$ must be irrational.
5. Are the following statements true or false? Proof or counterexample required.
(a) $\forall x \in \mathbf{R} \exists y \in \mathbf{R} x+y=2$.
(b) $\exists y \in \mathbf{R} \forall x \in \mathbf{R} x+y=2$.

6*. Prove that $\sqrt{2}+\sqrt{6}<\sqrt{15}$ (NB you may assume the square roots exist).
7. Are the following numbers rational or irrational? Proofs required.
(a) $\sqrt{2}+\sqrt{3 / 2}$ (hint: if it were rational then its square would also be rational).
(b) $1+\sqrt{2}+\sqrt{3 / 2}$.
(c) $2 \sqrt{18}-3 \sqrt{8}$.

